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Abstract: Quantum Key Distribution (QKD) represents a reasonable countermeasure to the advent
of Quantum Computing and its impact on current public-key cryptography. So far, considerable
efforts have been devoted to investigate possible application scenarios for QKD in several domains
such as Cloud Computing and NFV. This paper extends a previous work whose main objective
was to propose a new software stack, the Quantum Software Stack (QSS), to integrate QKD into
software-defined infrastructures. The contribution of this paper is twofold: enhancing the previous
work adding functionalities to the first version of the QSS, and presenting a practical integration of
the QSS in Kubernetes, which is the de-facto standard for container orchestration.

Keywords: Quantum Key Distribution; Quantum Cryptography; software-defined infrastructures

1. Introduction

Recent years have witnessed a growing concern regarding the impact of Quantum
Computing on current asymmetric cryptography algorithms. This tendency is mainly due
to the well-known Shor’s Algorithm [1], proposed by Peter Shor in 1994, and its role in
solving the integer factorisation problem in polynomial time on a quantum computer. For
example, the widely used RSA cryptosystem relies on the assumption that prime factor-
ing is hard to solve by current classical computers. As a result, the advent of quantum
computing jeopardises all the protocols that involve RSA, as well as other fundamental
security algorithms, such as the Diffie–Hellman key agreement. The remarkable advances
achieved by quantum computing in recent years concern academia, industry, and gov-
ernment agencies, such as the National Institute of Standards and Technology (NIST).
Accordingly, NIST launched a challenge to standardise new quantum-resistant classical
cryptographic algorithms, reasserting the importance of the Post-Quantum Cryptogra-
phy (PQC) research field [2]. Similarly, in Quantum Cryptography, the Quantum Key
Distribution (QKD) technique allows solving the specific problem of quantum-resistant
key exchange by leveraging quantum mechanical phenomena (more details about this
technique in Section 2.1. QKD is promising because it does not rely on mathematical
conjectures like classical algorithms but rather on well-known physical phenomena. One of
the main issues of QKD is that it is tied to special-purpose devices, and they come with
limitations, i.e., distance range limit and vulnerability to physical attacks. Besides, it is
far from simple to integrate these systems in modern network infrastructures that heavily
depend on virtualisation and require a high level of flexibility and scalability. The work
behind this paper is a natural prosecution of the one presented in [3] which discusses a new
Quantum Software Stack (QSS) that is able to act as a middleware between QKD devices
and high-level security applications. A QSS manages all the complexity within a QKD
network, providing a straightforward interface for the security applications. Starting from
the work above, we enhanced some architectural and implementation aspects of the first
QSS version. In particular, we introduced an asynchronous approach in developing the
QSS components, the ability to support multi-hop (MH) and long-distance QKD exchanges,
and routing capabilities within the QSS to select the best path for the exchange. Even
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though those are essential and relevant contributions to the development of the QSS, this
paper’s major contribution lies in the integration of the QSS in a Kubernetes cluster. Kuber-
netes (which we examine in Section 2.2) is the de-facto standard for container orchestration
and a platform widely used in many modern paradigms such as Cloud, Fog, and Edge
Computing, Network Functions Virtualisation (NFV), and Internet-of-Things (IoT). Given
these critical application scenarios, QKD integration into Kubernetes represents a consistent
contribution on a practical level and paves the way for the adoption of QKD systems in
multiple domains.

2. Background

In this section, we propose a brief digression on QKD, a presentation of Kubernetes [4]
and its concept of operator, and an overview of the QSS and the related ETSI standards.

2.1. Quantum Key Distribution

QKD is a well-known technique of Quantum Cryptography and allows exchanging
keys among parties by leveraging principles of quantum mechanics, such as entanglement
and the no-cloning theorem [5]. Broadly speaking, QKD counts two main classes: Discrete
Variable QKD (DV-QKD) and Continuous Variable QKD (CV-QKD). Differences depend on the
physical aspects of the key exchange process, i.e., the method to encode quantum information.

Regardless of the specific class and protocol, QKD systems leverage physical devices
such as photon sources and detectors and may use specific waveguides (e.g., optical fibre)
to transmit quantum information. All those elements have intrinsic vulnerabilities and
imperfections that may lead to attacks if not conveniently addressed by QKD protocols.
From a high-level perspective, it is also worth noting that QKD schemes require two
different channels for communication: a quantum channel and a classical authenticated
channel. The first serves as a carrier for quantum information; the second bears additional
classical information, which is generally required to carry out QKD protocols. Several of
these protocols are available in the literature [5,6], e.g., BB84, B92, SARG04, E91, BBM92,
and some of them are implemented in commercial devices, e.g., BB84, COW, T12 [7].
As a tangible example of a QKD system, ID Quantique [8], a renowned QKD devices
manufacturer, recently presented the Cerberis XG QKD System [9] with a secret key rate
of approximately 2 kbit/s and a maximum quantum channel length of 50 km. Moreover,
Toshiba commercialises QKD devices [10] based on a modified version of BB84 (with
decoy states and phase encoding) with a range of up to 120 km and an exchange rate of
300 kbit/s (at 10 dB loss). Those products provide a good outlook on commercial devices’
state-of-the-art.

Despite the availability of these commercial devices, QKD represents a vibrant re-
search field, where great effort is dedicated to enhancing current QKD systems in terms
of security, distance range, and key exchange rate. Some recent proposals and experi-
mental developments related to the so-called twin-field QKD (TF-QKD) protocol [11] are
also worth mentioning. This protocol is based on a measurement-device-independent
QKD (MDI-QKD) scheme [12]. The TF-QKD protocol is remarkable because, as the basic
MDI-QKD, it has the advantage of removing all detector side-channels but additionally
it proposes a novel approach to overcome the rate-distance limit of QKD. This method is
relevant for developing future long-distance QKD exchange systems. This paper does not
go into the details of QKD devices since we treat QKD as a “black box”. We assume that
Point-to-Point (PTP) key exchange between QKD devices is feasible leveraging commercial
devices, and it comes with some limitations regarding endpoints distance and key rate. For
the rest of the paper, we rely on the concept of the QKD network, a network where nodes
leverage QKD devices capable of exchanging keys with their direct neighbours. In such a
network, long-distance exchanges are possible by means of trusted repeaters (Section 3.2).
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2.2. Kubernetes and Operators

Developing microservices instead of monolithic applications has become a widely
adopted approach in distributed systems. Microservices leverage lightweight virtualisation
technologies that run applications in sandboxes called containers. Kubernetes is the de-
facto standard for container orchestration and allows the management of the whole life
cycle of these objects.

Kubernetes sees everything related to an infrastructure as a resource: physical or
virtual nodes, applications, exposed services, and even configurations. A set of physical or
virtual nodes can be aggregated in clusters. Inside a cluster, nodes are labelled as masters
or workers depending on their role: masters manage the cluster and retain sensitive
information and configuration about the infrastructure, workers are deputed to execute the
containerised applications and expose services. Here are definitions of some Kubernetes
resources needed in the rest of this paper:

• Pod: is the smallest deployable object in Kubernetes, and it could be seen as a set of
containers that share the same IP address. In order to run those containers, a Container
Runtime is available on the node (e.g., Docker, containerd, cri-o);

• Service: is an abstract resource that represents a way to expose an application that
could be composed of one or more pods, i.e., replicas of the same applications;

• Deployment: is an object that provides declarative updates for Pods. In practice, it
allows managing changes to their status through the Deployment controller. It is
possible to describe the desired number of replicas of a specific pod and the policies
for the rollout or rollback of the application to previous versions;

• Secret: is an object that contains sensitive data such as passwords, tokens, or keys.
Generally is used to avoid including sensitive information in an application or code;

• Custom Resource (CR): this is a way to extend the Kubernetes API by creating a new
resource that allows storing objects of a certain type;

• Custom Controller: combined with the CR, it continuously monitors the cluster and
based on the state of a CR, it applies changes to the cluster. In this sense, Kubernetes
implements a declarative approach.

To summarise, Kubernetes allows the deployment of containerised applications over a dis-
tributed infrastructure, managing those resources and automatically scaling them when needed.

The relatively recent introduction in Kubernetes of the Operator pattern is also worth
mentioning. As we already discussed, one of the principles of Kubernetes is the control loop
where resources are declared, and controllers continuously monitor them taking actions if
needed. The Operator pattern follows this logic by using CRs and controllers to monitor
distributed applications and manage their life-cycle by instantiating, updating, and config-
uring them. The ultimate goal of an Operator in Kubernetes is to mimic the behaviour of a
human operator who is in charge of managing resources in a Kubernetes cluster.

2.3. Quantum Software Stack and the ETSI Standards

The authors of [3] presented a first attempt in developing a software stack to en-
able cloud infrastructures, and more in general software-defined infrastructures, to use
QKD. The above solution was called Quantum Software Stack (QSS) and released with
an open-source license alongside that paper. QSS intends to fill the gap between QKD
devices (that are often tailored to specific protocols and proprietary interfaces) and modern
infrastructures, whose services need to be scaled, migrated, and reconfigured with great
flexibility. QSS has also been designed to be compliant with the European Telecommunica-
tions Standards Institute (ETSI) standards on QKD [13].

As depicted in Figure 1, the first version of QSS was designed on four different
layers. The lowest layer defines either QKD devices or QKD simulators useful for testing
purposes. At this layer, QKD protocols take place with all their related requirements.
For example, we generally need two communication channels for carrying on any protocols:
a classical authenticated channel for sharing additional information during a key exchange
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(e.g., chosen bases, privacy amplification or error correction info) and a quantum channel
where quantum information flows (i.e., encoded in photons). The layer immediately above
contains the QKD module (QKDM) which serves as a wrapper for the QKD device so
that each device in the QKD network could expose the same interface to the upper layer.
This interface is called the southbound interface. Inter QKDM communication within the
network takes place through the sync interface. A layer above, we find the Quantum Key
Server (QKS), which is the core of the QSS and manages all the information regarding the
exchange, stores the generated keys, triggers the exchange process, and collects routing
information to reach peers in the QKD network. The highest layer is the Secure Application
Entity (SAE) one. This level contains high-level applications that require cryptographic
keys through the QKS using the northbound interface.

SAE

QKS

QKDM

QKD
Device

Node A

SAE

QKS

QKDM 

QKD
Device

Node B

QKDM 

QKD
Device

SAE

QKS

QKDM

QKD
Device

Node C

(1)

(2)

(4)

(3)

Figure 1. Quantum Software Stack (QSS) presented in [3]. Dashed lines represent TCP/IP secure
connections. Thick, double lines indicate the combination of classical and quantum channel for the
QKD exchange. The numbers enumerate the main interfaces: (1) External Interface; (2) Sync Interface;
(3) Southbound Interface; and (4) Northbound Interface.

Figure 2 provides a more detailed view of the QKS. In Section 3, we discuss some of
the architectural components, such as the Redis and Routing modules that are part of the
new QSS version presented in this paper. The other architectural modules remained almost
unchanged from the previous version but they consistently improved with new features
and enhancements (Section 3). To summarize the primary logic behind the QSS, we could
start from the QKDM perspective, where there is a continuous exchange of keys with one
of its peers within the QKD network. We identify this flow of key material as Key Stream
(KS). The QKS controls the life-cycle management of a KS. Each QKS could have different
QKDMs to allow the management of several devices and thus reach different destinations.
This feature also allows making QKSs within a QKD network acting as trusted repeaters
(feature introduced in Section 3.2). Besides, we could imagine mapping more QKDMs on
the same physical device to sustain different flows when devices support multiple streams.
As represented in Figure 1, we could have a PTP exchange among Node A and Node B,
or we could reach Node C from Node A passing through Node B (trusted repeater). In the
first version of QKS, this feature was not available (Section 3.2).

The QKS, in its original version, was mainly in charge of serving SAE key requests and
providing QKDMs with information on where to store generated keys (e.g., ad-hoc Vault
tokens). When an SAE wants to communicate securely with another one over the same
QKD network, a Key Reservation Process (KRP) is required. In particular, when a source
SAE (master or mSAE) contacts its QKS and requires key material with the getKey call, it
specifies the number of keys, their length, and the destination SAE (slave SAE or sSAE).
Then, the KRP takes place between source and destination QKSs (where SAEs are located).
If the KRP succeeds, the source QKS returns the required keys and their IDs. mSAE at this
point could share these IDs with the sSAE, allowing the latter to retrieve the duplicate keys
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calling the getKeyWithId through the destination QKS. The KRP leverages the External
Interface to accomplish this task.

When a QKDM registers to a QKS, a QKDM Registration Process (QRP) takes place
with Keycloak (QSS uses Keycloak [14] as its Identity and Access Management service).
The QRP can start only if the QKDM is available as a Keycloak user. Therefore, for authen-
tication purposes, a registration of the QKDM to Keycloak is mandatory; only afterwards
the QKDM can be configured by a system administrator and the QRP can start through the
Southbound Interface. First, the QKDM sends a registration request to the QKS, provid-
ing information regarding reachable destinations and the underlying QKD device. Then,
the QKS grants the QKDM limited access to the Vault instance and the DB. This process
enables the QKDM to store keys in an isolated portion of the QKS resources.

Another critical aspect of the QSS is the link with the ETSI QKD specifications. The
ETSI ISG (Industry Specification Group) on QKD covers different aspects related to the
standardization of QKD, starting from the physical devices to the software interfaces
that allow the communication of these devices with high-level security applications. The
following specifications are relevant to the present paper:

• ETSI GS QKD 004 V2.1.1 [15]: the specification “QKD; Application Interfaces” de-
scribes the interface to the physical device; in our case, it could be associated with the
Southbound Interface;

• ETSI GS QKD 014 V1.1.1 [16]: the specification “QKD; Protocol and data format of
REST-based key delivery API” describes a high-level interface from the high-level ap-
plication to a key manager. In our case, this corresponds to the Northbound Interface;

• ETSI GS QKD 015 V1.1.1 [17]: the specification “QKD; Control Interface for Software-
Defined Networks” is recent, and it is a first attempt to standardize a relatively recent
trend in QKD device management, namely Software-Defined Quantum Key Distribution
(SD-QKD). The concept is to leverage an SDN controller who knows all the topology
of the QKD network and manages all the QKD nodes accordingly in a centralized way.
This approach could be beneficial in scenarios where the QKD network is switch-based,
meaning the quantum channels could be adjusted using optical switches, which the
SDN controller itself would control.

3. Quantum Software Stack 2.0

As the first contribution of this paper, we introduce in this section a complete software
refactoring of the original QSS with the addition of significant changes in both architecture
and programming approaches. In Figure 2, we illustrate with dashed lines the components
that have been either introduced or considerably modified from the earliest version. The
rest of the components demanded minor changes.

Starting from code refactoring, QSS 2.0 introduces a paradigm shift from a synchronous
approach based on multithreading to an asynchronous one based on multiprocessing
(Section 3.1). Moreover, this new QSS version allows long-distance QKD exchanges
through trusted repeaters, becoming suitable for large QKD network scenarios (Section 3.2).
QSS 2.0 also includes a routing module within the QKS, making possible the discovery
of the QKD network topology and finding the best path over trusted repeaters when a
long-distance exchange occurs (Section 3.3).
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IAM
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Figure 2. The architecture of the new Quantum Key Server (QKS) version.

3.1. Asynchronous Approach

The first version of the QKS used a multithreaded synchronous approach This choice
was poor considering that the standard CPython interpreter limits the execution of multiple
threads at a time by exploiting the Global Interpreter Lock (GIL) [18]. Besides, the QKD
Manager, the core component within the QKS, is an I/O bound application, meaning that
it spends a consistent amount of time waiting for results from other applications. Thus,
the synchronous choice consistently slowed the whole system down. Because of this, we
introduced a new version of the QKS entirely based on an asynchronous pattern and the
asyncio Python library. In more detail, the QKD Manager exposes REST APIs leveraging
the Quart [19] framework , which supports asyncio, and the Hypercorn [20]; asynchronous
web server to serve incoming requests. Even the Routing module (Section 3.3), the available
QKDMs, and the clients for MongoDB, Vault, and Redis now adopt an asynchronous
approach and specific libraries. This new strategy and the adoption of Hypercorn allow
scaling of the application both vertically and horizontally. Indeed, when the number
of requests to the QKS grows, we could decide either to statically allocate additional
workers on the Hypercorn side or dynamically allocate more replicas of the QKD Manager.
Since we designed all the components according to the principles of the cloud-native
applications, we could also deploy our QSS on Kubernetes, thus making the horizontal
scaling process automated.

3.2. Trusted Repeaters

QKD commercial technologies are currently limited to PTP exchanges and cannot
exceed a hundred kilometres of range. Because of this, repeaters are required to make
possible communication over longer distance. As presented in [21], the lack of quantum
repeaters based on entanglement swapping in commercial devices leads to the necessity
of having trusted repeaters. These rely on the weak assumption that nodes within a QKD
network are trusted, and thus they could be used as relays to transmit the key material
over long distances.
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The current version of the QKS introduces the possibility of using trusted repeaters
and performing long-distance exchanges. All QKSs within a QKD network are provided
with routing information coming from their routing modules Section 3.3 that keep this
information updated according to the state of the network. When a long-distance exchange
is required, i.e., an endpoint needs to pass through one or more QKSs to reach its destination,
all the QKSs along the route are informed and reserve two keys to allow the flow of key
material (during the KRP). We adopted the “store and forward” strategy as described
in [22], where data are encrypted and decrypted on each relay. Clearly, this strategy
has its flaws, though it is out of the scope of this paper to find an optimal algorithm
for performing exchange in the case of trusted repeaters. However, due to the modular
software architecture of our solution, it is possible to rely upon the KRP over the trusted
repeaters and develop a custom exchange strategy. It is worth mentioning that, from a QKS
user perspective, the presence of trusted repeaters is entirely transparent as they could
send a request as in the PTP case, only indicating the destination SAE.

3.3. Routing

We introduced the Routing Module (RM) to allow proper traffic steering within a
QKD network and connect two arbitrary endpoints (SAEs) supporting long-distance QKD
exchanges. From a high-level perspective, each QKS has its own RM, which shares routing
information with its peers in the network, enabling the QKS to establish whether an SAE is
reachable and the best path to arrive at it.

The RM leverages a modified version of the Open Shortest Path First (OSPF) proto-
col [23] to select the best path, an approach similar to the one adopted by DARPA and
SECOQC in [24,25]. Information such as SAEs reachable from a specific QKS and recently
opened KSs are transmitted, sending Link State Advertisements (LSAs). The sending of an
LSA is triggered on specific events: registration or removal of a new SAE, opening a new
KS, and expiration of the internal RM timer. This timer is required to tackle situations where
the signalling mechanism fails, i.e., when a node is no longer reachable from the network
and routing tables still need to be updated. The RM stores the collected information in a
Redis data structure, as we depicted in Table 1.

Table 1. Description of the routing table entries in Redis.

Name Type Description

SAE_ID String name used to identify the destination SAE
next_hop String ID of the next QKS in the path to the destination SAE

dest String ID of the QKS of the destination SAE
cost Integer the cost C(t) associated to the path from the current SAE to the destination

length Integer number of nodes in the path to reach the destination

The communication among RMs takes place by leveraging a TCP connection and
custom packets whose structure is shown in Table 2. There exist two packet types so far:
the S packet, which carries information regarding the SAE on a specific QKS and is typically
sent after an SAE registration, and the packet K, which holds information on the QKS
neighbours and the costs to reach them.

The routing protocol computes the routing tables using the Dijkstra algorithm, and the
cost function C(t) is defined by Equation (1), where P is the set containing all the links of a
chosen path.

C(t) = ∑
i

Ki(t) ∀i ∈ P. (1)

Ki(t) is the key load and is defined by the Equation (2). It represents the cost of a
single link based on the available keys on that link at the time t and t− 1. The coefficient
c0 represents the cost when no key is available. This cost is mitigated by the second term
in which K represents the total number of keys that the buffer could contain and ki(t) is
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the number of the currently available keys at the time t. The more ki(t) grows, the more
this term decreases the key load. The third term models the tendency of ki(t) to increase
or decrease over time. Since the only available information as a metric is related to the
available keys and no Quality-of-Service (QoS) parameter (e.g., error rate, jitter) is known,
this is an attempt to model other cost contributions such as congestion on a specific link.
The weights w1 and w2 allow the balance of the contribution of each term.

Ki(t) = c0 − w1 ·
ki(t)

K
− w2 ·

ki(t)− ki(t− 1)
K

. (2)

The RM allows the management of the routing within a QKD network, making each
QSS independent from the others. Other strategies, like the ones based on SDN [17], offer
advantages such as the centralised management of the whole network by knowing a priori
its topology. They could also consistently reduce the number of packets exchanged among
RMs, thus minimising the requirement for additional key material (all routing packets need
authentication). On the bright side, with our decentralised solution, no central entity (e.g.
SDN controller) has to have, even if partial, access to the QSSs. Undoubtedly, the SDN
approach could be integrated easily into our solution by modifying the routing components
and yet profiting from the key management process.

Table 2. Routing LSA packet structure.

Field Name Description

version protocol version
type type of information carried, S for SAEs and K for QKDM links
source QKS source ID, address and port
routing source routing module address and port
forwarder ID of the last QKS which forwarded the packet
neighbors list of connected SAEs or active QKDM links, based on the type field
timestamp packet creation time
authentication data for authentication and integrity checks

4. Integration in a Kubernetes Cluster

This section presents the core of this work: the integration of the QSS in Kubernetes.
Considering the impact of microservices over modern paradigms such as Cloud, Edge
and Fog computing, and Kubernetes as the de facto standard for the orchestration of these
microservices, it is pivotal to integrate quantum-safe cryptography with this technology.
In particular, the QSS already takes care of decoupling the physical technologies needed
for the QKD and the requirements of the high-level security applications. The final piece of
the puzzle is to integrate the QSS into a real orchestration platform so that the applications
running in pods can leverage QKD keys without changing how they interact with classical
secrets provided by the platform.

In a Kubernetes cluster, the control plane, i.e., master nodes, retains all the sensitive
information about the applications. It also provides the high availability of those data
leveraging technologies such as etcd [26]. Since each Kubernetes cluster holds its own
control plane and secrets management system, a reasonable scenario can involve two or
more distributed clusters sharing cryptographic keys with QKD. Secrets in Kubernetes are
unique resources that provide cryptographic keys, credentials and other sensitive data to
applications. Our idea of integration lies in delivering a mechanism that allows a QKD
key to be requested through the Kubernetes APIs from a specific application. Then this
resource can be stored within the application namespace as a secret. Once available as a
secret, the application can use it as a classical key.

To add the functionalities of a QSS in a Kubernetes cluster, as we describe in Section 4.1,
we used the operator pattern (Section 2.2). A set of Kubernetes clusters could be imagined
as nodes of a QKD network, and each one integrates a QSS as an operator. This strategy
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allows applications to treat the QSS as a native resource that could exploit its functionalities
without significant changes.

4.1. Quantum Software Stack Operator

As mentioned in Section 2.2, an operator is a software extension to Kubernetes, which
leverages CRs and controllers following the control loop pattern. Therefore, we could
create additional CRs to map out SAEs and key requests in Kubernetes. Then, using custom
controllers, we could add a logic behind events of the life-cycle related to those resources
(e.g., creation, removal, update). We defined two CRs, Sae and KeyRequest, and developed
the QSS Operator to operate them. All the components of the classical QSS, such as QKS
and QKDM, are available as deployments applied to the Kubernetes cluster.

In Figure 3, a PTP exchange between two clusters is depicted and described
in Section 4.2. Sae, when applied, creates a new logical SAE in the scope of the clus-
ter, registers this SAE to Keycloak, and makes sure that this is available at the application
level of the QKD network. KeyRequest instead starts the KRP at the QKS level depending
on the number of keys requested and their length.

sae_1

QSS Operator

qks_1

qkdm_1

sae_2

QSS Operator

qks_2

qkdm_2

Cluster 1 Cluster 2

Continuous key 
exchange

Key reservation

Secure 
communication

QKD secret QKD secret

Figure 3. PTP exchange among clusters.

From a cluster perspective, the final goal is to have a QKD secret available for an
application as a result of the declaration of the KeyRequest resource. In Figures 4 and 5, we
reported examples of Sae and KeyRequest descriptors for creating the those resources.

apiVersion: "qks.controller/v1"
kind: Sae
metadata:
name: sae1
spec:
id: sae_1
registration_auto: true

Figure 4. Sae resource YAML descriptor.
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apiVersion: "qks.controller/v1"
kind: KeyRequest
metadata:
name: request1
spec:
number: 1
size: 128
master_SAE_ID: sae_1
slave_SAE_ID: sae_2

Figure 5. KeyRequest resource YAML descriptor.

4.2. Resource Creation and Key Exchange

In this section, we analyse the details of the resource creation and the overall logic
behind PTP and MH exchanges. There are some assumptions behind the possibility of
registering SAEs and performing key requests. First, we need to have a QKD network
and two or more Kubernetes clusters, as depicted in Figure 3. Second, at least one QKDM
has to be deployed on each cluster as well as the QKS deployment. Third, we need to
install and configure the QSS operator on each cluster to work with the Kubernetes API
instead of the QKS interface. The last assumption is that there is a continuous exchange
among the QKDMs involved, and so all the registration processes and the KS creation
have been handled as described in Sections 2.3 and 3. Regardless of the type of exchange
(PTP or MH), we need all the SAEs involved registered within the network. This operation
is feasible according to the workflow depicted in Figure 6. An SAE admin, who is in
charge of managing the SAE resource in Kubernetes and requiring QKD keys, can create a
Sae resource. A custom operator can also handle this action without human intervention.
After the resource creation, the QSS operator recognises the new Sae resource and starts
the registration of this resource to Keycloak. Again we have two options: register the
SAE to Keycloak in advance (manual registration) or let the QSS operator handle this part
(automatic registration). This choice can be selected in the descriptor in Figure 4. Once
an SAE can be authenticated through Keycloak, the QSS Operator registers it to the QKS,
and if the automatic registration process is enabled, it retrieves the credentials to access the
QKS by creating a specific Kubernetes secret. Notice that since the scope of the operator is
global within the cluster, an SAE could be in a namespace different from the QKS one.

SAE admin/
operator

Sae

QSS Operator

QKS core

Keycloak
SAE credentials

SAE namespace QKS namespace

(1)
(2)

(3)

(4)

(5)

Figure 6. SAE registration process. SAE admin/operator creates a resource of type Sae (1). QSS
operator monitors resource creation (2). When it finds the new Sae it starts the registration to
Keycloak (3) and the QKS core (4). At the end of the process it retrieves the SAE credentials (5).

Once two registered SAEs want to exchange a key, a resource of type KeyRequest
needs to be created. In particular, the SAE admin/operator again is in charge of applying
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the resource (Figure 5), specifying as parameters the key length, the number of keys
required, mSAE, and sSAE. The workflow (depicted in Figure 7) is similar to the previous
case of SAE registration: the QSS operator detects the creation of the KeyRequest resource,
authenticates the SAE through Keycloak, requests the key material to the QKS, which starts
the KRP and retrieves the key material to the QSS operator, and stores the final keys as a
Kubernetes secret.

SAE admin/
operator

KeyRequest

QSS Operator

QKS core

Keycloak
QKD secret

SAE namespace QKS namespace

(1)
(2)

(3)

(4)

(5)

Figure 7. Key request process. SAE admin/operator creates a resource of type KeyRequest (1). QSS
operator monitors resource creation (2). When it finds the new KeyRequest it starts the authentication
through Keycloak (3) and forward the request to the QKS (4). At the end of the process it retrieves
the QKD secret (5).

Looking at Figure 3, it is worth mentioning that, given an SAE within Cluster 1 as the
initiator (or mSAE) of the request, the responder SAE (or sSAE) within Cluster 2 has to
perform another KeyRequest indicating the IDs of the keys that it wants to retrieve. That
information could be exchanged on an authenticated channel, and also this process could
be automated using a custom operator in Kubernetes. After this second request, all the
SAEs involved have access to a Kubernetes secret representing the key material generated
through the QKD.

The operator also supports MH exchanges, whose scheme is similar to the one depicted
in Figure 1 where it is mentioned the possibility to exchange keys between Node A and
Node C, using Node B as a Trusted Repeater. This is compliant with what we presented in
Section 3.2; thus, given a QKD network where clusters are the nodes, we still can perform
exchanges traversing those clusters and leveraging QSS operators.

4.3. Applications to Suitable Use Cases

Multiple classical applications can enhance their security by leveraging QKD [27].
For example, in a multiuser smartphone network with a star-type architecture, a central
session initiation protocol (SIP) server may share a key with each of its clients. In this case,
QKD can supply these keys to symmetric cryptosystems such as the Advanced Encryption
Standard (AES) that are adopted for encrypting the communication. Another interesting
idea could be to use QKD systems based on free-space optics technologies to secure drone
communications [28]. Additionally, QKD might be adopted in combination with other
security protocols such as Internet Protocol Security (IPsec) and Transport Layer Security
(TLS) to provide reliable key material. This approach can be implemented by adapting
the latter protocols to use QKD keys through specific APIs. In various cases, it adopts
particular variants or extensions of these protocols (e.g., TLS-PSK).

From a modern network standpoint, there are a plethora of cloud-native applications
that could either directly or indirectly benefit from our solution. Indeed, security applica-
tions running on a cluster, such as VPN endpoints, may directly require QKD keys from
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the Kubernetes Operator and use them to configure a VPN tunnel among two endpoints.
Furthermore, some applications may adopt special microservices called service mesh (e.g.,
Istio [29] and delegate them security aspects such as the management of TLS connections.
These objects can act as proxies and serve the upstream application, unaware of the TLS
connection. Clearly, these microservices could also benefit from our solution to improve
the TLS protocol security by using QKD.

Starting from this wide range of possible applications, a timely and engaging exam-
ple are the blockchain technologies. Today, blockchains serve different scenarios ranging
from cryptocurrencies to supply chain management. Due to the sensitive data stored in
a blockchain and the quantum threat affecting its technologies, it is reasonable to focus
on building quantum-resistant blockchain networks. Several studies analyse the security
of blockchain technologies, the impact of the quantum advent, and possible mitigation
both coming from Post-Quantum and Quantum Cryptography [30–32]. Similar to the
previous scenarios, QKD can enhance the security of blockchain technologies. A more
practical example could be given by the Hyperledger project [33] and, in particular, by the
Hyperledger Fabric framework. The nodes within this permissioned blockchain network
extensively use the TLS protocol with algorithms such as RSA and ECDSA to communicate
with each other. The role of QKD, in this case, is to build a quantum-resistant commu-
nication protocol between nodes and components of the framework, either based on an
enhanced version of TLS or a new protocol. Regardless of the specific adoption as the final
protocol, our solution could provide a consistent mechanism to integrate the QKD in such
a scenario. The Hyperledger Fabric framework can be easily deployed as nodes within
multiple Kubernetes clusters, thus requiring no changes to our current model.

Finally, it is also worth mentioning that the QSS Operator has been designed to be
flexible and to adapt to multiple contexts and scenarios. In particular, the QSS operators
may serve as a central entity in a large cluster composed of hundreds or thousands of nodes
as well as it could fit in scenarios with fixed resources such as in edge computing and IoT
systems. Moreover, a tool such as K3s [34] can deploy an optimised Kubernetes cluster
on a single node with limited resources. These are the minimum requirements to run our
software and, clearly, the resources can be scaled as needed.

5. Related Work

Many works have been published on different aspects of the QKD integration in
specific environments or regarding the management of QKD networks. For the scope of
this paper, it is interesting to briefly discuss some papers that propose routing protocols for
QKD and other attempts to integrate QKD in specific domains. The authors of [24] propose
a routing protocol based on a custom version of OSPFv2. In this case, the cost function
heavily relies on the key material available on each QKD link. This avoids having paths
without the minimum number of keys required, but it does not consider congestion or other
network peculiarities. The authors of [22] also proposed a modified version of OSPFv2,
though they trace the traffic load on the various links and the cost function depends on
that. Another work, discussed in [21,35] and regarding the Chinese HCW QKD network,
proposes the use of OSPF in combination with a Quantum Key Reservation Approach (QKRA)
based on the IntServ model. The OSPF protocol finds the shortest path between source and
destination, and then the source sends a request of key reservation to all the nodes within
the path. Even in this case, they assure that the key material is sufficient for the exchange,
but the path may not be optimal. They also pointed out in [21,36] that even an extended
version of OSFPv2, including QoS constraints, could not be optimal for QKD networks.
In general, as stated in [37], we must also evaluate the impact of a public authenticated
channel on the QKD performances. This assertion is true also for the routing protocol.
For example, suppose we use QKD generated keys for the authentication and the integrity
of the public channel. In that case, we should also optimise their consumption to be efficient
regarding the number of packets exchanged for routing purposes.
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Other works target QKD integration in various domains. It is worth mentioning the
work of [38] related to the SD-QKD and introduced in Section 2.3. The authors, in that case,
proposed a new programmable software network architecture based on SDN to integrate
QKD in network operator infrastructures. A similar work was proposed in [39] regarding
the specific domain of NFV. In this case, the idea was to manage QKD systems using
an SDN controller which instructs optical switches on how to forward the traffic of the
quantum channel. In this case, the NFV orchestrator was in charge of both managing the
SDN controller and requesting key material to the key server. In contrast with the previous
ones, our work tries to generalise the problem of the integration of QKD in software-defined
infrastructures by proposing a software stack that could be easily integrated into wide
adopted technologies.

6. Test and Validation

In order to validate our solution, we estimated the throughput and the exchange time
in both PTP and MH case scenarios. We also evaluated the routing algorithm besides the
QSS infrastructure. For the tests regarding the key exchange, we used a scenario with
three Kubernetes clusters deployed on three different physical nodes with the following
characteristics: CPU Intel Core i5-5300U 2.30 GHz (marketed by Intel Corporation, Santa
Clara, California, U.S.), 16 GB of RAM DDR3 1600 MHz (marketed by Kingston Technology
Corporation, Fountain Valley, California, U.S.), Ubuntu 20.04.3 LTS, K3s version 1.22.5 and
containerd v1.5.8 as the container runtime. We used a single virtual machine to test the
routing algorithm where the QKD network nodes were simulated as Docker containers.
The spawned VM had the following characteristics: 16 vCPUs, 40 GB of RAM, Ubuntu
18.04.5 LTS, and Docker CE version 20.10.5.

6.1. Key Exchange Time and Throughput

We started the tests with some assumptions regarding the exchange rate at the
QKDM/QKD device levels. For these tests, we used a special-purpose QKDM which
allows exchanging the key at a specific rate between QKD nodes. This is useful because we
could change this rate and analyse the system’s behaviour in different conditions. These
tests, focusing on the QSS at QKS and QSS operator level, are entirely agnostic to the
underlying devices. Eventually, as future work, they could be enhanced using a QKD sim-
ulator as in [3]. Since we could set the low-level exchange rate between devices arbitrarily
(to values far beyond the capability of the systems—up to 2 Mbit/s) we started attesting
the key exchange capacity of the QKDMs. We immediately noticed that the bottleneck
of this process is the Vault. Indeed, given the Vault key size configuration at a value of
128 bits and the fact that to store a key we need on average 5.6 ms, we could exchange a
maximum number of 178 keys/s from a QKDM to another one, that is a throughput of
22.8 kbit/s. Even if this value is compliant with the current QKD devices, clearly it has
to be enhanced in order to support future and more advanced systems. To enhance the
performance, we could act on two aspects: replicating the Vault instance, since it is running
in a pod, or expanding the size of the keys. The first approach has certain limits since Vault
is a resource-demanding application. The second approach is feasible and straightforward
and could be simply be adopted by changing some parameters in our solution. We decided
to adopt this key size because we wanted to avoid wasting key material, so we chose
the minimum reasonable amount of bits to represent one key and compose longer keys.
Summarising, the primary assumption for all the following tests is that the maximum
low-level throughput is of 22.8 kbit/s and keys exchanged among QKDMs have a length
of 128 bits.

In our first test (Figure 8), we collected data regarding the execution time related to
the application of a KeyRequest type resource. This takes into account the time for the
QKS to perform the getKey operation, which is the greediest in terms of time requested,
and all other operations performed by the QSS operator that are labelled as “QSS operator
time” (Figure 7). Varying the number of keys requested and the length of those keys, we
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observe an expected growth in terms of time required for the QKS to perform the getKey,
while the time of the operator remains constant. Even if all the required keys are already
available in Vault, we need to consider that the getKey operation has to perform the KRP
according to the number of keys requested and then extract those keys from Vault, whose
time depends on both the number and length of the required keys. We covered the part
of the optimisation regarding the length of keys in Vault, yet there is the necessity to
tackle the multiple requests factor. In order to optimise that aspect, we already adopted
the asynchronous approach (Section 3.1); indeed, the performance of the system, even
considering the QKDM bottleneck, the fact that we used only one worker in Hypercorn
for the tests, and only one replica of the QKS in Kubernetes, are already satisfying, i.e., for
100 keys of length 1024 the throughput is approximately 56 kbit/s. Since our system is
modular and scalable, we could adjust the parameters above (e.g., Hypercorn workers,
QKS replicas) according to the coming evolution of QKD devices and reach throughput far
beyond the one reported in this paper.
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Figure 8. Execution time to handle a KeyRequest resource type.

The second test, as depicted in Figure 9, shows the success rate of the KeyRequest
depending on the underlying exchange rate. In order to perform the tests, we set first
the throughput of the special purpose QKDM to 2 kbit/s, then to 1 kbit/s and varying the
rate of the requests we tested the resilience of our solution. As we expected, we see in
Figure 9 that using a 2 kbit/s low-level exchange and requesting 1 kbit/s of key material
leads to 100% success in key exchanges. Maintaining this exchange rate and changing the
low-level exchange rate to 1 kbit/s already leads to a success rate lower than 100%. Indeed,
this happens with a certain probability because of some delay in producing the required
keys. From an operator standpoint, this event results in a failure in retrieving the QKD
secret, which could be solved by essentially forwarding the same request again. With the
same method, we increased the requests per second, and according to what we expected,
the success rate decreased accordingly. The bottom line is that when we vary the exchange
and request rate, the system is resilient even if it cannot serve all requests. Besides, it
notifies the upper level of the failure, letting the high-level application take consequent
actions. When normal conditions are established again, the success rate returns to 100%.
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Figure 9. Success rate of the getKey requests to the QKS varying the underlying exchange rate.

As we did for the PTP exchange in the first test, in the third one, we collected data on
the execution time for an MH exchange. In Figure 10, the results of this test are reported
and they show how the getKey and getKeyWithId execution time varies depending on
the number of hops. We performed these tests in a configuration with three Kubernetes
clusters. As we also expected, the results show that the operator time does not change
during the various experiments. Even the getKeyWithId time does not change because
this operation is the same performed by the sSAE, and it does not depend on the number
of hop between source and destination. The only time that change is the getKey time
which increases linearly according to the number of hops. This is due to the chain of key
reservations that must be built along with each link of the path.
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Figure 10. Execution time of the getKey and getKeyWithId functions for Point-to-Point and Multi-
hop exchanges.

6.2. Routing

The routing protocol with the underlying algorithm, described in Section 3.3, has been
tested as a separate component. This strategy allows us to evaluate the routing protocol in
large QKD networks. In order to test its behaviour, we used the virtual machine described
at the beginning of Section 6. We did not deploy whole QSSs in this case, but we ran only
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the routing module inside a Docker container. Therefore, the QKD network becomes a set
of Docker containers running on a specific host and communicating over a virtual TCP/IP
network. We simulated a scenario in which events such as SAEs and QKDMs registrations
and removals were randomly triggered every 10 s. These events continuously initiated the
update process to send LSA packets over the network and update neighbours. The first
results proved that in our module, each node sees the same network topology for every
topology represented by a connected graph and can reach every other network node.

Moreover, Figure 11 shows the convergence time of the algorithm depending on the
number of nodes within the network. We tested it for a network of up to 50 nodes where
this time is close to 50 ms. We performed the test on a virtual network, suggesting that in a
real scenario, with physical links, the convergence time will grow according to the delay
introduced by the network to transmit the packets. In that case, it is essential to update
the route invalidation parameter to allow convergence. The computational complexity,
according to Dijkstra, is O(|E|+ |V| log |V|) where |E| is the number of links and |V| is the
number of nodes. This may affect the future large QKD networks and require support for
different autonomous systems [23].
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Figure 11. Average convergence time of the routing algorithm depending on the number of nodes in
the QKD network.

7. Conclusions

This paper, starting from the work in [3], proposes a new version of QSS that presents
multiple enhancements: an increase in performance due to an asynchronous and multipro-
cess approach, the compliance with multi-hop long-distance QKD using trusted repeaters,
and a routing module to select the best path for an MH exchange. Moreover, the solution
has been integrated into Kubernetes as an operator, allowing the containerized application
to leverage keys exchanged with QKD. This approach is modular, scalable, and almost
entirely agnostic to high-level security applications. The source code is publicly available
on GitHub [40,41]. Some existing limitations, such as the maximum throughput in key
exchange among QKDMs and possible straightforward remediations, have been discussed.
Even if this solution is still at its early stage, it is promising and as a future work it could be
interesting to test it in actual use case scenarios.

Two of the most relevant outcomes of this work are the fact that this is an entirely
open-source vendor-agnostic framework, the first trying to simplify the integration of QKD
in Kubernetes, and the possible applications to interesting scenarios such as the blockchain
technologies. In future work, it would be interesting to test practical blockchain applications
using the QSS operator and a multi-cluster Kubernetes architecture. In addition, targeting
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large and complex QKD networks is still a challenging task. In this regard, it would be
intriguing to introduce SDN technology to simplify the management of the QKD network
apparatuses offloading the routing module. Another relevant aspect for the future of
QKD networks will impact the choice of relays: overcoming trusted repeaters in favour
of quantum-based relays. Finally, multiple aspects regarding the security of the QSS
software itself running on a cluster shall be considered in the future: being compliant
with the paradigms of Confidential Computing as well as adopting consistent software
protection techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard
API Application Programming Interface
CR Custom Resource
CV-QKD Continuous-Variable QKD
DV-QKD Discrete-Variable QKD
ECDSA Elliptic Curve Digital Signature Algorithm
ETSI European Telecommunications Standards Institute
ETSI ISG ETSI Industry Specification Group
KRP Key Reservation Process
KS Key Stream
GIL Global Interpreter Lock
IoT Internet of Things
IPsec Internet Protocol Security
MDI-QKD measurement-device-independent QKD
MH Multi-Hop
mSAE master SAE
LSA Link State Advertisement
NFV Network Functions Virtualisation
NIST National Institute of Standards and Technology
OSPF Open Shortest Path First
PQC Post-Quantum Cryptography
PTP Point-to-Point
QKD Quantum Key Distribution
QKDM QKD Module
QKRA Quantum Key Reservation Approach
QKS Quantum Key Server
QoS Quality of Service
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QRP QKDM Registration Process
QSS Quantum Software Stack
RM Routing Module
RSA Rivest Shamir Adleman
SAE Secure Application Entity
SD-QKD Software-Defined QKD
SDN Software-Defined Networking
SIP Session Intiation Protocol
sSAE slave SAE
TCP Transmission Control Protocol
TLS Transport Layer Security
TLS-PSK TLS pre-shared key ciphersuites
TF-QKD twin-field QKD
VPN Virtual Private Network
YAML YAML Ain’t a Markup Language
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