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Abstract—The quality of products has become a key factor for
success in the current manufacturing industry. This is especially
true in the aviation field where components for aircraft engines
called honeycombs are produced. Due to their small dimension
and peculiar shape, such components typically undergo a severe
and cumbersome visual inspection by specialized operators.
However, this process is highly prone to human error, requires
a lot of time and a high number of undetected defects have
been reported. In order to reduce the whole inspection time,
ensure higher quality and guarantee standardization and process
control, this paper presents an innovative strategy for the fully-
automated inspection of honeycomb engine parts. The proposed
solution is a two-phase process fully controlled by a robot,
leveraging a camera as well as a purposely designed optic fibers
sensor, coupled with Artificial Intelligence (AI) algorithms for
the detection of different types of defects. To assess the function-
ality and validity of the proposed solution, a fully functioning
prototype is described and characterized.

Index Terms—Artificial Intelligence, Complex automation sys-
tem, Computer Vision, Industry 4.0, Robotics

I. INTRODUCTION

Nowadays, with the development of industry 4.0 plants,
companies are moving towards the automation of production
lines, but in most cases the visual inspection of the final
product is still carried out manually by a human operator.
However, the manual inspection of the parts could lead to
misjudgment due to subjective analysis, human tendencies,
environment, and characteristics of the part [1], [2]. The visual
inspection may vary depending on the part produced [3]. For
example, in the aerospace field, the production of honeycomb
parts for the engines is one of the most demanding in terms of
accuracy, complexity, and time required [4]. A honeycomb part
is typically composed of several hexagonal cells connected to
each other with different height and slope (see Fig. 1). During
production, the honeycomb cells are bound to a metal support
through a hot metal fluid [5]. The produced part is exposed
to strong thermal phenomena, leading to different types of
external or internal defects that compromise the performance
of the honeycomb [6] (see Fig. 1).

Fig. 1. Honeycomb structure and defects: a) missing cells, b) damaged cells,
c) opened cells, d) excessive bond material and e) not bonded cells.

In order to ensure the quality of the finished part, the
structure is thoroughly examined by an operator [7], putting
in place specific visual inspection procedures tailored for the
different categories of defects: i) external defects are inspected
by visually observing the part and measuring the size and
type of faults as well as the number of missing or damaged
cells; ii) internal defects are inspected by manually passing
an inspection light through each cell of the honeycomb,
looking for any light dispersion due to incorrect bonding of
the structure (light-bleeding approach). The manual inspection
can address the damages that are either in the honeycomb
wall basements (internal) or in the honeycomb wall medium
part (external), which are the ones that are most critical and
frequent. However, the successful detection of the defects is
highly influenced by the ability and experience of the human
operator [8]. To overcome the problems of manual inspec-
tion, several studies focus on improving the performances of
the human operator through training programs or augmented
reality [9], [10]. While these works show very promising
results, they are still in the early stages and not fully integrated
in a real industrial environment [11]. In [12], the authors
address the inspection issues of aviation components with
non destructive testing. However, these methods require high
costly equipment and specialized workers. Starting from these



considerations, the objective of this paper is to propose a
completely new approach to fully automatize the inspection
of the honeycomb parts, possibly making it more objective
and less prone to human errors. In the following sections we
describe a real case study developed within the context of
the EIT Manufacturing project AVISPA-2, which was fully
implemented and characterized in an aviation industry.

II. CASE STUDY ANALYSIS AND DESIGN CONCEPT

In the first stages of our project, we analyzed a limited set
of significant samples provided by an aviation company to
characterize the most typical defects affecting the parts (see
Fig. 1). Based on the characteristics of such defects and on
their acceptability requirements, we conceived and designed
the automation of the inspection procedure. The observed
defects can be divided into two main broad categories:
(i) External defects: this category includes defects that can be
visually assessed by frontally observing the part, as shown in
(Fig. 1 from a to c). The external defects are all represented
by discontinuities in the cell profile patterns detectable by an
Artificial Intelligence (AI) framework.
(ii) Internal defects: this type of defects (Fig. 1 c and e)
involves the internal structures of the cells. Hence, to solve
this problem, we exploit an automatic light-bleeding approach
through a glass fiber sensor developed for the case study. To
fully automatize the inspection, we integrate robotics, machine
vision, artificial intelligence, and smart sensors. The process
is conceived as a sequence of two consecutive phases:
Phase 1: In the first phase, a robotic arm moves the camera to
take a frontal high-resolution image view of the honeycomb.
The camera software takes the image and computes a disparity
map to provide depth information. The AI framework analyzes
the two images and detects external defects and cell coordi-
nates. In case several defects are detected, the inspection ends
and the part is rejected. Otherwise, Phase 2 starts.
Phase 2: The second phase detects internal defects. More
specifically, the same robotic arm inserts a special glass
fiber sensor inside the cells of the honeycomb, scanning the
whole part. The light-bleeding method allows to highlight the
presence of open cells or not bonded areas. Starting from this
concept, we developed a fully functioning demonstrator in a
real industrial environment, which is described in details in
the following.

III. AUTOMATED INSPECTION SYSTEM

A demonstration robotic set-up was developed in a real
industrial plant (see Fig. 2), with the following components.
1) Kuka KR16-2 robot with KRC4 robot controller: the camera
and the glass fiber sensor are attached to the robot flange.
2) Ingesys IC3 controller: This PLC is used to activate the
camera and the glass fiber sensor and to start the acquisition
during the inspection procedures.
3) SVS-Vistek hr455CXGE camera and K|Lens 3D lens
(K|Lens technology): A high resolution camera with a pro-
prietary 3D lens is used in the Phase 1 to acquire images.

4) Optical fiber sensor (K|Lens technology): the sensor devel-
oped for Phase 2 is composed of several glass fibers and a
microcontroller for data processing.
5) Disparity Map software (K|Lens technology): the disparity
map software provides depth information about each cell in the
honeycomb that are used in Phase 1 for the defect detection.
6) Artificial Intelligence framework: the framework is in
charge of detecting external defects in Phase 1 by means of
automated segmentation techniques.

Fig. 2. Inspection set-up: a) Robotic arm with high resolution camera and b)
optical fiber sensor prototype with c) glass fiber sliding system developed.

A special tool holder was developed to attach both the glass
fiber sensor and the camera to the same robot. The whole
integrated system will be hereafter referred to as the tool.

A. Robotic and camera set-up

The robot is in charge of moving the tool during the
inspection process following an offline programmed trajectory
executed by the KRC4 and Ingesys IC3 controllers. The soft-
ware camera is in charge of taking the images and computing
the disparity map for Phase 1. However, each honeycomb part
has a complex structure composed of several hexagon shaped
cells. Due to the small size of cells, standard stereo systems
with large baseline are unfeasible. To overcome these issues,
a novel multi-view technology, the K|Lens®, having a very
short baseline, is used. This allows to analyze the structure
and depth of each cell with better performances and accuracy.
A full frame industrial camera (SVS Vistech) is used that is
able to acquire images with a resolution of 61Mpx (see Fig. 3-
a).

Fig. 3. a) Multi-view image of an honeycomb and b) Disparity map.

B. Disparity Map software

The acquisition of images using a multi-view stereo system
allows to extract 3D information. By comparing information
about a scene from two different points, the relative depth
information can be obtained in the form of a disparity map
[13]. As described before, the K|Lens enables with one phys-
ical lens to capture 9 perspectives, as shown in Fig. 3-a. In



this Figure, each sub-image looks slightly different from the
others, allowing to obtain a disparity map that is more robust
than the one derived from two perspectives. In Fig. 3-b an
example of disparity map is shown. The depth of each cell is
shown using a color scale, where lighter color indicates lower
distance to the viewer.

C. Optical fiber sensor
In order to automatize the inspection of internal defects for

Phase 2, an optical fiber sensor was developed for this purpose.
If a cell is internally damaged, by illuminating it, rays of light
are reflected in its neighboring cells. Therefore, by monitoring
the neighboring cells, it is possible to understand whether a
cell is healthy or damaged. The optical fiber sensor (see Fig. 2-
b) is composed of the following parts: i) a powerful LED
light generator; ii) two types of glass fibers, the emitting ones
(actuators) and the passive ones (sensors); iii) a closed box
with a mini camera and a microcontroller; iv) a sensor holder,
which enables the connection with the robot end-effector; v)
the fiber driving adapter, in which the fibers are collected
and driven. In Fig. 2-c, the holder and its fibers at work are
shown. The holder has been rigidly connected through screws
to metal cylinders. Those ones, instead, are connected to the
sensor body through ball bearings, which enable the cylinders
to slide when the spring is pressed. The bearings also avoid
the transmission of undesired forces to the holder. When the
robot end effector moves upward, the spring is released and
therefore, the holder regains its original position.

D. Artificial Intelligence framework
The AI framework is in charge of detecting external defects

in Phase 1. It is composed of the following modules: i) the
segmentation module takes the acquired honeycomb image
and disparity map as the input and provides a segmentation
of the single cell profiles/areas and the coordinates of their
centers; ii) the defect detection module takes as input a
set of quantitative features extracted from the segmentation
results and identifies the faulty regions accordingly. In order to
detect the main characteristics of the honeycomb and improve
the results obtained, the segmentation module is based on a
combination of classic approaches (standard edge detectors,
adaptive thresholding techniques) and a deep learning archi-
tecture specialized for semantic segmentation (U-Net, [14]). To
address the issue of low availability of training samples, the
defect detection module is developed as an anomaly detection
system leveraging a set of ad-hoc rules for each category
of defect. The model is trained on small annotated Regions
of Interest (ROIs) of the honeycomb image, together with a
binary mask of each cell wall. Both the approaches are built on
top of standard Python libraries and frameworks for Computer
Vision and Deep Learning (OpenCV, Keras, etc.).

IV. EXPERIMENTAL INSPECTION PROCESS

To demonstrate the functionality of the automated process,
we performed a full demonstration (Phase 1 + Phase 2) on a
few test samples in a real industrial plant. In the following,
we describe the obtained results.

A. 1st Phase Inspection

In the first phase, the robot starts from the initial position
and moves the fixture with the camera above the honeycomb.
When the robot is in position, the camera is triggered and
a new multi-view image (kaleidoscopic image) of the part is
acquired (Fig. 3). The nine views captured with the camera
are pre-processed, cut into individual sub-images, rectified
and used to compute the disparity map of the honeycomb as
described in the previous section. After the calculation of the
disparity map, the two images are collected and provided to
the AI framework that analyzes them through a segmentation
module that provides a segmentation of the single cell pro-
files/areas as outcome (Fig.4, right side) and a defect detection
module that takes as input quantitative features extracted
from the segmentation results. The defects detection module
identifies the faulty regions accordingly, detects the shape of
each healthy cell in green and shows the defected cells based
on the gravity of cell distortion (red ≥ 30%, yellow < 30%
and purple < 5%) (Fig.4, left side).

Fig. 4. Example of honeycomb cells segmentation (on the right) and
honeycomb defects analysis (on the left).

The analysis allows to detect superficial defects like dam-
aged cells, missing cells, and opened cells together with
the coordinates of the center of each cell. The first phase
inspection requires ∼ 15s on a basic CPU or ∼ 8s on a basic
GPU, which is well below the time required for a manual
inspection.

B. 1st Phase validation

To train and test the AI framework, images of defected
honeycombs were taken and a mask of the part was created
manually to serve as the ground truth for the honeycomb
segmentation. The dataset was built by taking images of 8
different honeycombs, split into two completely independent
groups: i) Training honeycombs: the group is composed of
6 honeycombs that are used for training the algorithm and
optimizing the parameters. ii) Testing honeycombs: the group
is composed of the remaining 2 honeycombs that are used
solely for testing purposes. The training/testing images were
acquired with two different experimental settings: i) Off-
process: this setting was implemented in a laboratory with
the camera mounted in a fixed position above the part. Of the
95 off-process images that were acquired, 75 were included
in the training group and 20 in the testing one. ii) In-process:
this is the setting of the integrated demonstrator built in a
real industrial environment. Due to logistics difficulties, it
includes only 20 images taken and added to the testing group.



Finally, we performed two different testing experiments. The
first experiment (off-process testing) trains the model with
the training group (composed only of off-process images)
and tests it with the off-process testing ones. The second
experiment (in-process testing) trains the model with the off-
process training images and tests it with the in-process testing
ones. This experimental configuration allows to further verify
the robustness of the model to environmental conditions that
are sensibly different from the ones used for training. The
results of such two experiments are the following: i) Off-
process: accuracy: 87.99%, sensitivity: 70.31%, specificity:
88.37%; ii) In-process: accuracy: 76.89%, sensitivity: 60.68%,
specificity: 77.36%. As it was reasonable to expect, the off-
process testing metrics showed better results. However, the
in-process testing experiment shows a reduction of accuracy
that is reasonably limited (around 11%), and above 60% for
all the metrics. One can conclude that the model performance
is reasonably good in the given challenging experimental
conditions, with a large room for future improvements.

C. 2nd Phase Inspection

After the inspection of the honeycomb in Phase 1, if no
critical external defects are detected, Phase 2 is carried on.
In this case, the robot places the optical fiber sensor inside
the cells and 24 glass fibers are lighted in order to inspect
the neighbors cells (see Fig 2-c). At the same time, the
remaining fibers are monitored by the mini camera located
inside the body of the tool to sense unexpected light. An
image is acquired by the mini camera and processed by the
microcontroller, if no light is detected from the sensing fibers,
the microcontroller returns that the analyzed cells are healthy
(Fig. 5, left side) otherwise return that the cells are damaged
(Fig. 5, right side).

Fig. 5. Interface with the microcontroller output: a) Healthy part, blue dots
represent healthy cells. b) Damaged part, red dots represent damaged cells.

With this procedure, the whole inspection of the honeycomb
for Phase 2 can be carried on. All the experiments for Phase
2 were directly carried out on the real plant showing up
promising results in detecting internal defects with a 100%
accuracy.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new approach to automatize the
inspection procedure of complex honeycomb parts in the avia-
tion industry. The proposed 2-phases inspection process results
to be fast and robust. The objective criteria for inspection
provided by the aviation field allows our automatic procedure
to be particularly effective in replacing the human role. The
automatic inspection is able to identify with a good level of

accuracy and robustness all different types of defects (either
internal or external) that may be the cause of rejection of
the part, using a two phases procedure. The performance of
Phase 1 can be largely improved in the future by enlarging
the training set with many more honeycombs parts and defect
examples. For Phase 2, a first prototype of honeycomb sensor
is designed and manufactured, which is able to successfully
detect internal damages of the cells. In the future, sensor shape
and weight will be largely improved. At the present stage,
the total estimated inspection time is in the range of 40-60s,
which is a very promising result. Future works will focus
on improving the acquisition and image pre-processing stage,
as well as on optimizing the processing stages in order to
reduce the inspection time by at least a half. Unlike manual
inspection, the procedure is completely repeatable, and the
obtained results are traceable and documentable in every part.
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