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Abstract

Navigation for aquatic and airborne species often takes place in the face of compli-
cated flows, from persistent currents to highly unpredictable storms. Hydrodynamic
models are capable of simulating flow dynamics and provide the impetus for much
individual-based modelling, in which particle-sized individuals are immersed into a
flowing medium. These models yield insights on the impact of currents on population
distributions from fish eggs to large organisms, yet their computational demands and
intractability reduces their capacity to generate the broader, less parameter-specific,
insights allowed by traditional continuous approaches. In this paper we formulate an
individual-based model for navigation within a flowing field and apply scaling to derive
its corresponding macroscopic and continuous model. We apply it to various move-
ment classes, from drifters that simply go with the flow to navigators that respond
to environmental orienteering cues. The utility of the model is demonstrated via its
application to “homing” problems and, in particular, the navigation of the marine
green turtle Chelonia mydas to Ascension Island.

Keywords: Multiscale models, Animal Navigation, Wind and Ocean Currents, Island
Homing

1 Introduction

More than a century ago, Charles Darwin [1] remarked on the astonishing voyages of
adult green turtles, during their migration through open ocean to “home” and nest at
isolated spots such as Ascension Island in the mid-Atlantic (see also [2]). Journeys of
this nature are not uncommon in the animal kingdom, with other notable examples being
the pole to pole migrations of Arctic terns and the return of mature salmon to spawn at
natal grounds. Uncovering the cues that provide the necessary orienteering information
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– celestial, geomagnetic, topographic, chemical etc. – is a key concern: determining the
mechanistic basis for navigation sheds light on challenging ecological questions, such as
the impact of environmental change on populations, e.g. see [3].

A complicating factor is the flow in the surrounding medium, from ocean and river
currents for aquatic organisms to wind for airborne populations [4, 5, 6]. Flow can be
benevolent or malevolent: on the one hand, movement is energetically demanding and
currents provide a useful conveyor belt; on the other, a powerful current or storm could
transport population members into inhospitable or unfamiliar environments. Whether
they assist or hinder, effective navigation clearly demands a finely-tuned navigational
system capable of correcting or compensating for currents [6].

Understanding these processes requires integration and interpretation of various data
sources. Ocean currents and air movements can be obtained from direct measurements
or hydrodynamic models. Regarding navigation, recent years have led to the wide-scale
adoption of GPS-based telemetry for tracking animal movements at global-scales and over
inaccessible environments. Datasets are immense, yet allow paths to be evaluated in terms
of key statistical quantities, including average speeds, turning rates and angles. Coupled
to controlled behavioural studies and knowledge of the flows encountered, we are certainly
better equipped to understand the basics of navigation.

1.1 Modelling movement in ecology

Despite advances in data acquisition, field studies remain difficult and costly and the com-
plementary use of modelling has become commonplace: modelling provides a framework
through which hypotheses can be tested and the impact of perturbations simulated. Ac-
cess to powerful computing has led to a marked increase in the use of individual based
models (IBMs), where each population member is tracked as it moves through its environ-
ment [7]. The adaptability of IBMs is clearly to their advantage, generating tailor-made
data that can be fitted/validated against experimental sources.

For organisms in a fluid environment, a typical approach is to “immerse‘” an IBM
into an imposed flow, so that self-propelled movement becomes augmented by the flow.
Lagrangian-based particle models are often employed for the IBM, with each individual
indexed by its instantaneous position and velocity: navigation can be incorporated via
a directional bias according to orienteering cues. Currents can be obtained from widely
available datasets and models based on these principals have been applied to understand
movement dynamics across aquatic and airborne populations: the advection-dominated
movement of fish larvae [8]; the role of current-directed movement in jellyfish blooms [9];
the influence of directed movement on turtle drifting within ocean currents [10, 11]; the
Atlantic movements of eel larvae [12]; how wind influences the choice of staging sites during
red knot migration [13]; the exploitation of favourable winds by high flying insects [14].
For many further references and examples, see [15, 16].

Assessing a strategy’s effectiveness demands some measure and a standard approach
is to define “Lagrangian targets”, against which simulation output can be evaluated [15]:
for example, what proportion of a population reach some place (e.g. a spawning site)
by some time (e.g. the spawning season)? Yet given that an individual’s path is subject
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Figure 1: (a) Adult green turtles migrate from coastal South America to nest at Ascension
Island (ocean current velocity indicated by scale and arrows, averaged over January 2014).
(b) IBM simulations. Simulated paths over 50 days following an individual’s displacement
from Ascension island (star), where the individual acts as a drifter, a weak or a strong
navigator: only the latter reaches Ascension Island within the simulation time; the dis-
played ocean currents are averaged over the 50 day period. (c-d) Population distribution
snapshot of the (c) IBM and (d) continuous model (75 days post release): simulation
details in Figure 7.

to significant intrinsic (e.g. imprecision in the navigating mechanism) and extrinsic (e.g.
turbulence of currents) variability, care must be paid to the number of simulated organisms
for meaningful information to be drawn. Coupled to their limited analytical tractability, it
can become hard to draw broad insights from IBMs without recourse to computationally
demanding simulation.

An alternative is to propose a fully continuous and macroscopic model, for example via
an equation for the population density: for movement within a flowing medium, partial
differential equations (PDEs) based on systems of diffusion-advection-reaction equations
would be a natural choice. With their roots in classical applied mathematics, they yield
to analytical investigation and are typically efficient to solve numerically. In the present
context, PDE models have been used in problems ranging from predicting tuna distribu-
tions [17] to the persistence of stream populations in the face of fast currents [18] and the
dispersal of moths [19].

Weighed against their analytical tractability, continuous models prove problematic
with respect to parametrisation and validation against individual-level data. Consequently,
a third route is to formally connect an IBM with a PDE model via some scaling-based
approach: by drawing clear lines between the data-friendly IBM and the terms and pa-
rameters of a macroscopic model, their distinct advantages can be exploited. We refer
to [20, 21] for recent reviews with regards to biological movement; in the context of the
present article, we particularly mention [22, 23].
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1.2 Outline

The main aim here is to model organism movement in a flowing field: see Figure 1 for
a schematic. We follow the standard protocol for the IBM by immersing a Lagrangian-
based particle model into a flowing medium. The IBM confers a navigating capacity,
with individuals orienting according to spatially and temporally varying cues. Section
2 summarises this model and the scaling methods that yield a macroscopic continuous
model for the population density, which is of drift-anisotropic diffusion form. In Section 3
we tailor this approach to certain movement classes, including passive drifters and active
navigators. Sections 4 and 5 consider an expository application to homing behaviour,
beginning with an idealised scenario and followed by a preliminary data-driven study into
green turtle homing to Ascension Island. Numerical simulations confirm the method’s
validity, highlighting its capacity to generate data at both an individual and population
level. Moreover, the continuous model’s greater tractability is exploited, demonstrated via
the use of characteristics to quantify the “navigational strength” required by organisms:
if the internal compass is too weak, individuals fail to home.

2 Individual and continuous models

2.1 The individual based model

Each individual is a point particle exerting negligible effect on the surrounding flow, with
the position of the ith individual denoted by xi ∈ Rn (n is the space dimension). Positional
changes are due to (i) passive movement (the external flow), and (ii) active movement
(swimming/flight). Generally n = 3, since organisms move freely in three-dimensional
space, however n = 2 is often sufficient: for example, many oceanic populations spend the
majority of their time at the same depth.

For passive movement we define u(t,x) ∈ Rn as the medium flow at time t and position
x. Active movement follows a velocity-jump random walk [24], in which smooth runs
through space with a constant active velocity v ∈ Rn are punctuated by “turning” and new
velocity selection. Turning is regarded as instantaneous and the time between successive
turns assumed to follow a Poisson distribution, with (constant) turning rate parameter
λ. The new active velocity is selected from a distribution q(v | t,x) and can incorporate
orienteering: navigating cues enter via a bias into specific active velocities. We implicitly
assume that the previous active velocity has no impact on the new active velocity, although
this can be accounted for by extending to q(v | t,x,v′) for previous velocity v′.

Mathematically, if individual i is at position xi(t) and has active velocity vi(t) at time
t, then at time t+ ∆t (assuming ∆t is sufficiently brief) we have:

xi(t+ ∆t) = xi(t) + ∆t(vi(t) + u(t,xi)) ;

vi(t+ ∆t) =

{
q(v | t+ ∆t,xi(t+ ∆t)) with probability λ∆t ,
vi(t) otherwise .

(1)

Here we assume individuals move with the same fixed active swimming/flight speed, s:
only a new active direction is chosen at a turn. This simplification reduces burdensome
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parameters and allows us to set v = sn, where n = v/ |v| is the unit vector describing the
active direction. The distribution q over velocity space V can be redefined as a directional
distribution q̃ over all possible directions (i.e. on the unit sphere, Sn−1):

q(v | t,x) := q̃ (n | t,x) /sn−1 for active direction n = v/ |v| ∈ Sn−1 . (2)

2.2 The continuous model

Model (1) offers an individual-level model of movement at a “mesoscopic” scale. Many
navigational problems, however, play out for large populations at macroscopic scales:
green turtles take weeks to migrate to breeding grounds thousands of kilometres away.
Simulating IBMs can be costly at these larger scales and obtaining an equation for the
population density distribution, m(t,x), becomes attractive.

The process for doing so is intricate yet relatively commonplace: we therefore leave
details in the supplementary text and refer to [21]. In brief, we first propose a continuous,
mesoscopic formulation of the IBM (the “transport model”) and then apply scaling to
derive the macroscopic equation for m(t,x). This takes the form of the drift-anisotropic
diffusion model:

m(t,x)t +∇ · ((a(t,x) + u(t,x))m(t,x)) = ∇∇ (D(t,x)m(t,x)) . (3)

Here, u(t,x) is the previously defined external flow while the advective velocity, a(t,x),
and anisotropic diffusion tensor, D(t,x), derive from the active movement. Specifically,
they relate to statistical properties of the turning distribution:

a(t,x) =

∫
V
vq(v | t,x)dv , (4)

= s

∫
Sn−1

nq̃(n | t,x)dn ;

D(t,x) =
1

λ

∫
V

(v − a(t,x))(v − a(t,x))T q(v | t,x)dv , (5)

=
1

λ

∫
Sn−1

(sn− a(t,x))(sn− a(t,x))T q̃(n | t,x)dn .

In other words, a is the direction of an “average” swimmer, encoded in the underlying
directional distribution, while the diffusion tensor derives from the inaccuracies stemming
from directional choice. Formally, a(t,x) is the expectation and D(t,x) is 1/λ multiplied
by the variance-covariance matrix of q. Consequently, the macroscopic equations depend
explicitly on two statistical quantities that can be drawn from observations of individual
movement.

Equation (3) is a parabolic differential equation, yet it can still be useful to study the
characteristics of the net flow field. Doing so offers a continuous path back to individual
detail: they can be interpreted as equations of motion for an “average” individual and
their (relatively) simple form is analytically amenable. For (3) we have

dx

dt
= u(t,x) + a(t,x)−∇ · D(t,x) . (6)

5



We use this equation later to derive a condition for successful navigation towards a target
(see Section 4.4.2).

3 Drifters to navigators

Our framework accounts for various movement classes and we tailor it for the following:

• Drifters – particles without active motion that simply move with the flow of the
surrounding medium;

• Random movers – self-propelled organisms with negligible orientating bias in their
movement paths (at the level of observation);

• Navigators – self-propelled organisms showing biased movement paths, generated
from following navigating cues.

Here we restrict to two-dimensional scenarios, relevant to aquatic (airborne) popula-
tions that predominantly swim (fly) at the same depth (height): movements through the
depth column occur, but are assumed negligible over the time and space scales considered.
For example, while occasional deeper dives (to around 10-20 m) occur, tracking of green
turtles indicates that most swimming is at or near the surface [32]. We note that the
extension to three-dimensions is relatively straightforward, yet is beyond the aims and
applications of the current paper. For 2D we consider a polar coordinate system: veloci-
ties are given by v = sn = s (cosα, sinα) where α ∈ [0, 2π) is the angle corresponding to
direction n. For the turning response we specify a circular distribution, q̃(α).

3.1 Movement classes

3.1.1 Drifters

A pure drifter is a particle without active movement. Few organisms are truly drifters
(e.g. ballooning spiders), yet various studies approximate as such if active movement is
believed negligible compared to the flow, e.g. [12]. Drifters simply correspond to zero
speed, s = 0, and expressions (4–5) are zero, regardless of the turning distribution. The
macroscopic model is a pure drift equation due to the medium flow:

m(t,x)t +∇ · u(t,x)m(t,x) = 0 . (7)

3.1.2 Random movers

Organisms with self-propulsion but no orientation undergo an unbiased Pearson random
walk [24]: an individual moves some distance in one heading before selecting a new one,
favouring all new directions equally. Consequently, we consider the uniform turning dis-
tribution:

q̃(α) = 1/2π .
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Substituting into (4–5) and integrating yields

a(t,x) = 0 , and D(t,x) =
s2

2λ
I2 .

In the above I2 is the 2 × 2 identity matrix and we obtain a drift-(isotropic) diffusion
equation in the macroscopic model:

m(t,x)t +∇ · u(t,x)m(x, t) = d∇2m(t,x) , (8)

where the diffusion coefficient d = s2/(2λ).

3.1.3 Navigators

In practice, most organisms receive navigating information from their environment. We
can account for guidance cues through biasing the turning distribution: an external cue
is assumed to guide individuals in some dominant direction, denoted by the unit-length
vector w(t,x) ∈ Rn, with bias parameter k(t,x) ≥ 0. k(t,x) measures the navigational
strength and indicates the directional accuracy: at k = 0 the choice is random (and we
recover a random mover); increasing k allows the dominant direction to be chosen with
increasing accuracy, culminating in “perfect navigation” when the dominant direction is
always selected. k(t,x) and w(t,x) are expected to be position and time dependent,
assuming spatiotemporal variation in the intensity and direction of a navigating cue. Fur-
ther, these parameters can also be chosen to explicitly depend on some factor, such as the
geomagnetic field or chemical signals. For clarity of presentation we drop these notational
dependencies in the following.

In two dimensions we consider a distribution on the unit circle. The von Mises dis-
tribution, as a circular analogue to the Normal distribution, offers a de facto standard
for describing directional datasets and has been widely adopted in the analysis and mod-
elling of animal navigation: e.g. [25, 26, 27, 21, 28]. In circular coordinates we choose
w = (cosA, sinA), where A(t,x) defines the dominant angle, and the von Mises distribu-
tion is given by

q̃(α | k,A) =
1

2πI0(k)
ek cos(α−A) . (9)

Ij(k) denotes the modified Bessel function of first kind (and of order j). Here k(t,x) ∈
[0,∞), where k = 0 corresponds to zero bias and k →∞ yields perfect navigation. From
(4-5) (see [21]), we find

a(k,A) = s I1(k)I0(k)
(cosA, sinA) ,

D(k,A) = s2

2λ

(
1− I2(k)

I0(k)

)( 1 0
0 1

)
+ s2

λ

(
I2(k)
I0(k)

− I1(k)2

I0(k)2

)( cos2A cosA sinA
cosA sinA sin2A

)
.

(10)

The active advection is in the same direction as the dominant direction, while the diffusion
tensor is split into isotropic and anisotropic components, where the anisotropy also depends
on A.
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Figure 2: Translation from circular datasets to macroscopic terms for (top) unbiased and
(bottom) biased populations. (a) Datasets, with each angular entry indicated by an arrow;
(b) von Mises distribution (9) and its two defining parameters; (c) advective velocity (a)
and diffusion tensor (D) representations, calculated from equation (10); (d) simulations
of equation (3). For simulations we plot the contour line of constant density (= 10−4) at
successive times for a population initiated at the origin.

Finally, we remark that for instances of multiple preferred directions, e.g. competing
orienteering cues, we can choose a turning distribution composed from linear combinations
of (9). Subsequently, advection and diffusion terms will come from linear combinations of
(10).

3.2 Data to macroscopic measures

We demonstrate the von Mises distribution via converting data into macroscopic measures
for theoretical and genuine populations, see Figure 2 (a). In the top row we consider a
population with no dominant orientation, while a genuine dataset is shown in the bottom
row: the swimming orientation of juvenile green turtles (Chelonia mydas) exposed to mag-
netic fields encountered during ocean travels (reproduced from Figure 2 of [29], “Northern
Field” dataset).

Standard methods (e.g. [25]) are used to estimate k and A in (9), shown in (b).
For the non-oriented population k is negligible and the distribution quasi-uniform. The
genuine dataset, however, yields a large k: this indicates a clear bias in turtle orientation,
suggesting a response to the magnetic field. Calculations for similar datasets reported in
[30, 29, 31] also reveal clear orientational biases, with k ∼ 0.5− 2. Of course, one should
be cautious in subsequent applications of controlled laboratory based data to real-world
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navigation problems.
Column (c) illustrates advective velocities (a) and diffusion tensors (D), calculated

from (10). The former are represented via the arrow lengths and directions; the maximum
length is s (outer dotted circle) and occurs for “perfect navigation”. Diffusion tensors
are exemplified by ellipses indicating the diffusion in distinct axial directions. The quasi-
uniform distribution yields negligible advection and almost isotropic diffusion. Oriented
distributions generate large advective velocities in the dominant direction with reduced
and anisotropic diffusion: greatest orthogonal and lowest along the axial direction of bias,
due to limited movement against the dominant direction.

Simulations of the macroscopic model (3) are shown in (d) under these forms (setting
s = λ = 1). The unbiased dataset generates a population that diffuses in quasi-isotropic
fashion, while the oriented population is advected along the dominant direction; note the
“stretching” due to anisotropic diffusion.

4 Goal navigation under fixed external flows

We demonstrate the methods within a precise application: how does external flow im-
pact on navigation/homing to a goal? Such problems occur in numerous examples, from
pheromone following by moths to adult marine turtle homing. We begin with a simple
scenario, where a generic population attempts to navigate to some goal under a fixed
and uniform flow. While idealised, this could perhaps be interpreted as a hypothetical
experiment, where a population’s movement is studied in a tank or wind tunnel under
a controlled flow, or as an approximated description of a river environment with a (rela-
tively) steady flow. The principal aim is to explore whether the continuous model captures
population-level detail of the IBM and investigate the critical navigational strength for
successful homing; we note that a study under naturally occurring flows is performed in
the next section.

4.1 Region and initial conditions

We suppose movement occurs within a 2D rectangular arena, (x, y) ∈ [−Lx, Lx]×[−Ly, Ly],
and denote x- and y-axes as “west to east” and “south to north” respectively. We assume
(0, 0) marks the centre of the intended goal, which forms a circular region of diameter 10:
for example, an island for turtle navigation.

At the edges we assume no-loss boundary conditions: individuals leaving the arena
are instantaneously “reflected”. In practice the arena is larger than the region where
the principal dynamics are taking place, so that edge effects have relatively little impact:
exploratory simulations with other boundary conditions (e.g. absorbing) demonstrate the
same general behaviour.

We consider two forms of initial condition for a population of N individuals.

1. Localised release. These simulate a “mark and release” study, with individuals re-
leased from a given location. For the IBM an initial location is drawn from a bivariate
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normal distribution with mean position (x0, y0) and symmetric variances σ2. In the
macroscopic model this translates to initial conditions of the form:

m(x, y, 0) =
N

2πσ2
exp

{
−(x− x0)2 + (y − y0)2

2σ2

}
.

2. Uniform distribution. The population is uniformly distributed over a circle of radius
R. For the macroscopic model we set:

m(x, y, 0) =

{ N

πR2
if x2 + y2 ≤ R2

0 otherwise
.

Initial active velocities for the IBM are selected from the turning distribution for active
movement, based on their initial location. Numerical methods have been adapted from
those developed previously [28] and details are in the supplementary text.

4.2 Active and passive movement parameters

Passive movement results from a uniform and constant external flow from west to east:
we set u = (ux, 0) where ux ≥ 0. A generic cue navigates individuals towards the goal:
we take the von Mises distribution (9), with an individual at x = (x(t), y(t)) experiencing
a bias in the dominant direction w = −x/ |x|. For simplicity we set k(x, y, t) = constant:
the cue exerts a uniform navigational strength. In practice, we expect the cue’s strength
to vary, but leave these considerations for future studies.

We take a dimensionless form, with mean active speed and turning rates fixed and
scaled to unit values: s = λ = 1. This allows us to focus on the flow (ux) and navigational
strength (k). Specifically, we assume 0 ≤ ux ≤ s so that the flow is between 0 and 100%
of an individual’s active speed: our framework also allows external currents to exceed the
individual’s active speed, as happens in the later application to Ascension Island homing.
We take k ∈ [0, 3]: upper end values generate more than half of the turns within ±25◦ of
the goal’s true bearing, whereas at k = 0.5 this drops to a quarter; estimates of k from
the datasets in [30, 29, 31] all fall comfortably inside this range.

Simulations of the IBM are conducted for t ∈ [0, 1000] and initial conditions:

(SW) A localised release at (x0, y0) = (−100,−100) (σ = 5), south-west and up-current of
the goal;

(NE) A localised release at (x0, y0) = (+100,+100) (σ = 5), north-east and down-current
of the goal;

(UD) A uniform distribution over the circle of radius R = 100 surrounding the goal’s
centre.

Population success is assessed via two Lagrangian targets: P1000, the population percent-
age that reaches the goal by t = 1000; and T1/2, the time half the population has reached
the goal (T1/2 =∞ if this is not achieved by t = 1000).
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Figure 3: Simulations of the IBM under different initial conditions. (a1) “Release” set-
up, illustrating release locations relative to the goal (central dot). (a2-a5) Representative
tracks for (a2) ux = 0.25, k = 1.0, (a3) ux = 0.5, k = 1.0, (a4) ux = 0.75, k = 1.0, (a5)
ux = 0.5, k = 1.5. Successful (solid red lines) and unsuccessful (black dashed) tracks are
differentiated. The direction and flow strength is indicated by the top left arrows, while
measures P1000 and T1/2 are given above each plot. (b1) “Uniform” set-up with individuals
distributed across the circular region surrounding the goal (central dot). (b2-b5) Initial
locations of individuals that reach the goal by t = 1000 are marked by red dots for (b2)
ux = 0.25, k = 1.0, (b3) ux = 0.5, k = 1.0, (b4) ux = 0.75, k = 1.0, (b5) ux = 0.5, k = 1.5.
Note that we only show the centre of the full region, where Lx = Ly = 300.

To exemplify this within a dimensional context, consider an organism that swims with
a mean speed 1 km/hour and mean turning rate 1/hour. Then (under SW or NE) our
individuals are initially released just over 140 km from a goal of diameter 10 km, and we
study their movement paths over a period of about 6 weeks.

4.3 IBM simulations

We release 1000 individuals SW or NE of the goal, Figure 3 (a1). Figure 3 (a2-a4) show
representative trajectories for k = 1 and: (a2) a weak flow (25% of the individual’s maxi-
mum speed); (a3) a moderate flow (50%); and (a4) a strong flow (75%). For weak flows,
all individuals find the goal by t = 1000 regardless of release location, although (unsur-
prisingly) those initially down-current experience a delayed passage. A critical transition
occurs for moderate and strong flows, with only a few reaching the goal for the former
and none for the latter: the current is too strong and most are swept away. For moderate
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flows, increasing the bias parameter to k = 1.5 drastically increases the population’s suc-
cess, Figure 3 (a5).

We next consider a population (N = 10, 000) distributed according to UD, see Figure
3 (b1). Figure 3 (b2-b5) shows initial locations of individuals that succeed in reaching the
goal, for various (ux, k) combinations. Failure increases as the external flow increases: for
moderate/strong flows only a small upstream sector with advantageous initial locations
succeed. Increasing k to 1.5 for the moderate flow again drastically increases population
success, Figure 3 (b5).

4.4 Continuous simulations

4.4.1 IBM and macroscopic model comparison

The simulations hint at a sharp population success/failure transition, depending on flow
and navigational strength parameters. Can we exploit the macroscopic model to inves-
tigate this systematically? Population densities drawn from the IBM are compared with
m(t,x), computed from (3), under an identical scenario, with a typical result given in
Figure 4 (a-b). An excellent quantitative match is observed between the individual and
continuous models: other comparisons produce similar results. We conclude that, for the
time and space scales considered, the macroscopic model recapitulates population distri-
butions of the IBM.

We hence exploit the numerical advantage of (3) to investigate population success as
we sweep through parameter space. Figure 5 plots P1000 for the three initial distributions:
(a) SW; (b) NE; and (c) UD. As expected, high navigational strength allied to slow flows
permits easy goal navigation.

4.4.2 Critical navigating strength

Results in Figure 5 (a-c) reinforce the notion of a critical success/failure transition and
we quantify this by analysing equations (6). For the problem at hand we obtain D and a
from (10) and take u = (ux, 0). Full details are shown in the appendix, where we obtain
the dynamical system:

ẋ = ux − c1 x√
x2+y2

− c3 x
x2+y2

;

ẏ = −c1 y√
x2+y2

− c3 y
x2+y2

.
(11)

Coefficients c1 and c3 are given in equations (14) of the appendix and depend on k (noting
s = λ = 1).

We test whether (11) adequately describes the movement process by computing and
comparing its trajectories with the scenario of Figure 3 (b): trajectories in Figure 5 (b1-
b4) are differentiated according to whether they hit (solid red) or miss (dashed black) the
goal; the small arrows illustrate the net flow field of (11), derived from the external flow u,
the active orientation a and diffusion gradient. Compared against Figure 3 (b) we clearly
observe excellent qualitative and quantitative agreement.
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Figure 4: Comparison between (a) the IBM and (b) the macroscopic model. 100,000
individuals are released both NE and SW (stars) from the goal (circle); here, ux = 0.5,
k = 1 and other parameters as defined in the text. (a) IBM. Positions are binned into
a two-dimensional histogram to generate a population density map, plotted at the times
indicated. (b) Macroscopic model. We numerically solve (3) according to the parameters
and initial conditions of the IBM, with macroscopic terms computed from (10). Population
densities are indicated by the density scale and a dashed-black curve for the constant
density contour line (= 1).
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Figure 5: Navigating success and the use of characteristics. (a) Population success (mea-
sured via P1000) over a range of parameter combinations and for initial distributions (a1)
SW, (a2) NE, and (a3) UD. In (a3) the curve (thick line) determined from (12) is over-
laid. (b) Trajectories of (11) for the scenario described in Figure 3 (b); trajectory initial
conditions placed on the ring of radius 100. Here, s = λ = 1 and: (b1) ux = 0.25, k = 1.0;
(b2) ux = 0.5, k = 1.0; (b3) ux = 0.75, k = 1.0; (b4) ux = 0.5, k = 1.5. (c) Trajectories
for a whirlpool scenario. The trajectory beginning at (100, 100) is shown for equations
(13) with s = λ = k = 1 and whirlpool strengths: (c1) γ = 0.001; (c2) γ = 0.005; (c3)
γ = 0.01; (c4) γ = 0.05. In (b) and (c) successful (solid line) and unsuccessful (dashed
line) orbits are shown according to whether they pass through or miss the goal (circle).
Small arrows indicate the directional field of the characteristic equations, while stars in
(c) indicate the whirlpool centre.
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Given this quantitative match, we conclude that (11) closely describes the average
individual behaviour and use stability analysis (see Appendix) to obtain the following
approximate1 condition for population success:

s
I1(k)

I0(k)
> ux . (12)

The left hand side increases with k, saturating to s. For a given flow (12) provides a
quantitative estimate for the necessary navigational strength: the guiding signal must be
strong enough to compensate for the flow; moreover, navigation is unsuccessful for ux > s.
We overlay this condition on the results from parameter sweeps in Figure 5 (a3): it clearly
delineates the regions between success and failure.

We have concentrated on steady/uniform flows, yet the characteristic equations can
also be applied to the nontrivial flows often found in nature. As an example, we set
u = γ(66− 0.1x− y, x− 0.1y − 54) and the new characteristic equations become:

ẋ = γ(66− 0.1x− y)− c1 x√
x2+y2

− c3 x
x2+y2

;

ẏ = γ(x− 0.1y − 54)− c1 y√
x2+y2

− c3 y
x2+y2

.
(13)

This creates a “whirlpool”, swirling anticlockwise towards the point (60, 60) and at a
rate determined by γ. In Figure 5 (c) we consider trajectories of (13), starting from
(100, 100) and with active navigation to the goal. For (c1–c4) we increase the whirlpool’s
strength: if weak, trajectories hit the goal (c1–c2), yet when stronger they are sucked into
the whirlpool (c3–c4); note that the convergence points do not coincide exactly with the
whirlpool centre, due to the active movement.

5 Natal homing to Ascension Island by Green Turtles

As illustrated by Figure 5 (c), complicated currents can heavily impact on movement paths
and we move to a genuine, data-driven application: the homing of green turtles (Chelonia
mydas) to Ascension Island, a volcanic island of less than 100 km2 and more than a 1000
km from the nearest landmass: see Figure 1 (a).

Adult turtles make this journey once every few years [33], travelling over 2000 kms
from South American waters to nest at their natal beach (Figure 1 (a)). Nesting starts
December/January and continues through to June/July [34], with many females laying
multiple clutches [33]. How this navigational feat is accomplished remains an outstanding
question and various theories have been proposed, from following odours emanating from
the island [35] to geomagnetic field orientation [36]. In this expository study we neither
focus on the full journey nor the precise navigating mechanism, rather we test our method-
ology and examine the ease of finding the island inside the final few hundred kilometres.
For further theories on marine turtle navigation, see [2, 37].

1A precise condition is considerably harder to find: it would further depend on parameters such as
starting locations, goal size and simulation timeframe.
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5.1 Region and initial conditions

Ascension Island (AI) lies approximately 7◦57′S and 14◦22′W and we set this as the centre
of our region. We say that simulated turtles successfully reach the island if they arrive
within 15 km of its centre (approximately 10 km from its coastline): at this distance we
assume short-range cues (e.g. sound or smell based) lead them to the island. Initially we
apply controlled releases at locations (±3◦,±3◦) north-east (NE), south-east (SE), south-
west (SW) and north-west (NW) of the goal (simulating mark and release experiments).
As before, our plots focus on a compact region centred on the island, yet simulated turtles
move within an extended region (with no-loss boundary conditions).

The initial time is set early in the nesting season: most simulations use a start date of
1st January 2014 (according to ocean current data) and this is defined as “time zero”; later
releases are indicated by +X days. Simulations are performed for 150 days, corresponding
to a time towards the end of the nesting season.

5.2 Passive movement: Ocean flow data

Ocean flows can be obtained from a variety of sources: here we use data (downloaded
from http://pdrc.soest.hawaii.edu/data/data.php) provided by global HYCOM (the
global Hybrid Coordinate Ocean Model, [38]), an ocean forecasting model forced by factors
such as wind speed and heat flux and assimilated with measurements from satellites,
floats, moored buoys, etc. to yield “hindcast” model output. HYCOM has a spatial
resolution capable of reproducing both large scale currents and localised (temporally and
spatially) phenomena such as meandering currents and eddies: potentially significant for
turtle navigation to a small island. In its application we linearly interpolate HYCOM
data (1/12◦ and a daily time step) to that required for model simulations: here we use
its output starting from 1st January 2014 as the earliest date for our simulations. We
stress that HYCOM remains a model and its currents do not fully replicate real-world
complexity: a possible future investigation would be comparing how simulations using
HYCOM data differ with other data sources, including direct measurements based on
Lagrangian drifters. For example, in [39] a systematic investigation into the sensitivity of
simulated trajectories to the resolution of ocean current data was performed.

5.3 Active movement: Navigation

Active movement is parametrised by s and λ, along with those defining the turning dis-
tribution. Following marine turtles is understandably difficult and definitive values are
speculative, yet logical arguments can provide ranges. We assume individuals have a (un-
specified) navigating capacity and periodically reorient towards the island: new active
headings are chosen from (9) with dominant direction pointing to the island centre from
their current location. Note that this assumes individuals correct for drift (periodic re-
assessment of active heading), but do not specifically compensate for it: the latter requires
detection of the flow direction (see also discussion). This assumption lies in accordance
with conclusions from tracking studies [40, 41]. We assume k ∈ [0, 3] as previously.
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We take active speed s ∈ [0, 80] km/day, [42]: s = 0 corresponds to a passive drifter
while upper values lie at the energetic limits for sustained swimming. We set λ = 12/day
(one turn every two hours): this would generate an average swim length between turns
of up to 5 kilometres. Our rationale is that large-scale navigating cues are unlikely to
significantly change over shorter lengths; on the other hand, less frequent assessment would
be less than optimal for drift correction. We remark that direct sources for estimating λ
could be based on a turtle re-estimating its direction each time it surfaces, [43], or through
careful analysis of tracking study data: this will be considered in a future, more refined
study.

5.4 Individual model simulations

The IBM generates both individual and population data, see Figure 6. We consider various
scenarios in which populations (for each, N = 100) are simultaneously released NE, SE,
SW and NW from the island. For each row, the left-most panel shows representative tracks
from each release location, while other panels show histograms for island arrival times.
We also tabulate two population success statistics: T1/2, the time half the population
has arrived at the island; and P100, the percentage that have reached the island 100 days
post-release.

For Figure 6 (a) we set s = 50 km/day, k = 1 and a release at time zero: this represents
a stronger swimmer, with the mean swimming speed lying above the average underlying
current, although there are times and locations where the latter may be considerably faster
(ocean current snapshots can be seen in Figure 7). Consequently, paths can be highly
circuitous before reaching the island (e.g. tracks 3 and 8), despite consistent reorientation
with respect to the island goal. Overall, however, populations are successful in eventually
reaching the island.

We observe a broad spectrum of arrival times between the different populations: T1/2
ranges from ∼ 23 days (for the SE population) to ∼ 90 days for the NW population;
histograms range from tightly clustered (e.g. SE) to scattered (e.g. NE, NW). We also
observe considerable variation within a population: for example, the NE population has
arrival times varying from 20 days to more than 100. Differences between the tracks from
two individuals at a single release location stem from (smallish) variations in their exact
starting location and randomness entering their active movement path, along with the dif-
ferent currents encountered. Compared against the fairly consistent tracks produced for
constant/uniform flows (for example, see Figure 3 (a)), the large variations are undoubt-
edly down to magnification by currents. We highlight trajectories 7 and 8 (both NE) in
Figure 6 (a): while these turtles have identical release times, active movement parameters
and close starting locations, turtle 7 more or less directly homes by the 25th day whereas
turtle 8 becomes enveloped in an eddy before homing on the 83rd day.

This current impact can be further investigated via a later release date (+28 days):
see Figure 6 (b). Populations remain successful overall yet particular statistics change
enormously: NW, NE and SE populations all have an easier island passage yet the SW
population is significantly delayed (T1/2 is almost doubled). Hence, changes in the currents
can be expected to significantly impact on island navigation. Note that the SE population
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Figure 6: Navigation to Ascension Island (red star) in the IBM. Releases at: (a) time zero,
s = 50 km/day, k = 1; (b) time +28 days, s = 50 km/day, k = 1; (c) time zero, s = 30
km/day, k = 1. In each scenario we plot: (left) representative tracks of 8 individuals,
where each track is labelled by an identifier tag and the time of arrival (d = days); (right)
population statistics via histograms of the arrival times and population summary data.
Simulations time step ∆t = 1/8th hour.
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typically appears the most successful, suggesting that releases from this position receive
optimal currents.

To test the impact of active movement characteristics, we reduce s: in Figure 6 (c) we
set s = 30 km/day, k = 1 and a release at time zero. The balance between passive and
active movement is shifted from the latter to the former and navigation becomes trou-
blesome: paths are tortuous and only a tiny fraction reach the island (in the timeframe).
A similar finding is obtained when reducing k. These findings echo those above, that a
critical transition in population success occurs according to movement/flow characteristics.

5.5 Individual to macroscopic model

We compare the IBM and continuous model, testing the latter’s capacity to predict dis-
tributions of the former. Simulations in Figure 7 are based on a NE release at time zero,
s = 30 km/day and k = 1. Figure 7 (a) plots the data from the IBM, superimposing sim-
ulated turtle positions on the ocean currents at various times following release. In Figure
7 (b) we plot m(t,x), obtained by solving equation (3) subject to the same currents and
(10) calculated using the same active movement parameters. A movie of these simulations
is available (Supplementary Movie 1).

The closeness between distributions suggests that the macroscopic model offers an
excellent quantitative approximation for population statistics of the IBM: investigations
for other scenarios yield a similarly close match, with further examples and movies included
in the supplementary materials, including for a pure drifter and a stronger swimmer. As
a point of note, the simulation using (3) takes the order of minutes, while that of the IBM
takes more than an hour2: the latter’s inefficiency stemmed from frequent interpolation
between an individual’s position and drift data, burdensome as the population increases.

We exploit the efficiency of the macroscopic model to investigate population success
as s and k are varied across their full ranges, Figure 8. The simulations focus on a release
date of time zero: broadly, releases at other times generate similar conclusions yet exact
statistics change due to the different currents, as noted above. As for the idealised case
we again observe a fairly sharp transition between overall population success and failure.
The lines s = 0 and k = 0 correspond to “drifter” and “random mover” populations
respectively. Neither are successful: a tiny fraction are assisted by fortuitous currents,
yet the vast majority fail. Navigation is understandably straightforward at the largest
values of s and k: populations arrive within very short times (order of a week to two
weeks). However, while the upper swimming speeds (approximately 0.9 m/s) are feasible
short-term, whether they remain so over days to weeks is less certain. Similarly, upper
values of k represent a fairly precise orienteering mechanism, with more than half of the
turns falling within less than ±25◦ of the true bearing.

Of course, population success does not require both speeds and turning rates to lie
at the upper reaches of these ranges: close to 100% of the populations can arrive at
the island inside 100 days for more moderate combination of k = 1.5 and s = 40km/day.
Further, the nature of the curve between success and failure suggests that a weak navigator

2Neither method can be regarded as “optimal” and this is not a formal analysis: our intention is to
stress that, generally, macroscopic models are more efficient for population studies.
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Figure 7: Comparison between the IBM and macroscopic model. (a) IBM: 100 individuals
are released at time zero at the NE location. In each subplot we show their positions
(white circles) at the indicated times, superimposed on ocean currents. Current data is
illustrated by its direction (arrows) and magnitude (arrow length/density map). Here
we consider a slower navigator (s = 30 km/day, k = 1); for other parameters see text.
(b) Macroscopic model (3) under the same initial set-up, parameters and ocean currents.
m(t,x) indicated by density map, where the scale indicates the number/km2; white regions
represent a density below 10−4. The red star marks Ascension Island.
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Figure 8: Population summary statistics (P100) over a range of (s, k) parameter combina-
tions. Scales indicated on the right.

can compensate by fast swimming, while a slower mover can compensate via a precise
navigation. We should note, however, that 100 days is quite a long time and our model
does not allow individuals to “give up”, nor does it consider “blind spots” in the navigating
information: our present study is purposefully simple to concentrate on the essential
relationship between navigation and currents.

6 Discussion

The aim has been to describe a common framework for modelling navigation in flowing
environments. We achieve this by connecting IBMs to continuous models: the former
allows individual-level data to be generated, while the latter offers an efficient path to
population statistics. Further, the continuous model can be analysed via the method of
characteristics, creating a route back to “average” individual-level movement. This pro-
cess formally connects data inputs for the IBM (e.g. ocean currents, tracking studies)
to the macroscopic model and will allow formal testing of different hypotheses for navi-
gation, through comparing simulation/analytical predictions with empirical observations:
for similar studies, see [44].

We illustrated this for generic movement classes: drifters, random movers and nav-
igators. Formally, drifters are organisms/particles that simply float and are convected
by currents: certain studies assume this if active movement is smallish (e.g. [12]), yet
it must be considered carefully since even small amounts of oriented swimming can alter
overall behaviour [10, 11]. A navigator corresponds to an organism that actively swims,
periodically assessing its environment and biasing its active direction accordingly. The ori-
ented turning response was incorporated via a von Mises distribution, and the macroscopic
model is of drift-anisotropic diffusion form. The von Mises distribution is a standard in
the field, although other forms are available and different models may result [26].

For the examples here the continuous model closely matched the statistics of the IBM.
This good agreement, however, cannot be expected a priori: for example, if the problem
length and timescales are not sufficiently macroscopic. Interactions between individuals
should also be considered, as the formal process assumes these are negligible: this appears
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reasonable for dispersed marine turtles, yet becomes less certain for, say, fish schooling
or bird flocking. Overall, these warnings highlight the advantages of a twin approach:
macroscopic models offer analytical convenience, yet may not apply to the full spectrum
of situations allowed by the underlying IBM.

To demonstrate the methodology within a concrete problem, we primarily focused
on ocean navigation. The framework, however, is general and can be extended to other
scenarios, such as flight navigation: indeed, an earlier application of our approach was
used in [28] to investigate butterfly hilltopping, albeit for negligible wind. IBM models
based on principles similar to those here have been extensively applied to bird and insect
navigation (e.g. see [13]), and it would be intriguing to adapt our model to accommodate
the peculiarities of these applications: for example, by incorporating “resting phases” in
response to unfavourable atmospheric conditions, or flight adaptation towards favourable
winds.

Our model has assumed that turtles simply correct for flow by periodically reorienting
in the direction of the (island) goal. Whether an organism corrects or can actively com-
pensate (by detecting flow direction) is a significant question [6]: a capacity to determine
flow direction has been suggested for a variety of airborne (moths and songbirds, [45]) and
aquatic species (jellyfish [9] and juvenile turtles [46]). Our framework can be adapted to
investigate such phenomena: for example, the navigational response can be based on both
the flow direction and the overall direction of some goal. More generally, our model can
be extended to explicitly include a proposed navigating cue(s): e.g. the varying geomag-
netic field or a transported chemical cue. Chemical cues are certainly well known in the
context of pheromone following, and ocean/wind-borne signals have also been proposed
as potential guidance cues for marine turtles (e.g. [35, 47]).

The homing problem can be understood as a mean free passage time (MFPT) problem,
used in ecology to estimate the expected time for individuals to reach a target [48]. Re-
cently, Kurella et al. [49] considered active navigators with isotropic diffusion and solved
the MFPT problem via asymptotic methods for small targets. This acts as a special case
of our problem, corresponding to conservative drift and isotropic and constant diffusion.
An interesting, yet non-trivial, question emerges on formulating and solving the MFPT
problem for non-isotropic active movement within a non-conservative and dynamic flow
field, as relevant here.

We quantitatively assessed critical relationships for successful homing: for both ide-
alised and Ascension Island scenarios we obtain a relatively abrupt boundary between
population-level failure and success as key characteristic parameters (flow, swim speed,
navigating strength) are varied: see Figures 5, 8. For populations with characteristic pa-
rameters lying firmly inside the “success region”, navigation should be reasonably robust
with respect to currents. Populations lying closer to the boundary, however, may show
sensitivity to currents and large individual variations. Consequently, we expect the impact
of currents on homing to be highly variable from case to case. In the context of Ascension
Island, simulated turtles do home for relatively moderate swimming speeds and navigat-
ing strength but reasonable parameters may lie close to the boundary. We could therefore
expect a range between relatively straightforward and convoluted homing when observed
individually, echoing the variability in re-homing attempts by displaced turtles (e.g. [50]).
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Of course, such findings must be viewed cautiously given the simplistic framework here:
a key aim is to expand these preliminary findings and address the greater complexities
expected in the natural environment.
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A Method of characteristics

From (10) we introduce coefficients:

c1(k) := s
I1(k)

I0(k)
, c2(k) :=

s2

2λ

(
1− I2(k)

I0(k)

)
, c3(k) :=

s2

λ

(
I2(k)

I0(k)
− I1(k)2

I0(k)2

)
. (14)

c1(k) describes active drift and increases with k. c2(k) defines the degree of isotropic
diffusion and decreases with k. c3(k) defines the degree of anisotropy, is negative and is
an order of magnitude smaller than c1 and c2.

The idealised scenario takes u(t, x) = (ux, 0), where ux ≥ 0, and active orientation
is towards the origin. Consequently, an individual at position (x, y) has active direction
−(x, y)/

√
x2 + y2 and, from (10) and (14), we find

a(t, x) = −c1
(
x/r
y/r

)
, r =

√
x2 + y2,

and

D(t, x) = c2

(
1 0
0 1

)
+ c3

(
x2

r2
xy
r2

xy
r2

y2

r2

)
.

The divergence of D is

∇ · D = ∂iDij =
c3
r4

(
2xr2 − x22x+ xr2 − xy2y
yr2 − xy2x+ 2yr2 − y22y

)
=
c3
r2

(
x
y

)
.

Hence, (6) is as given by equations (11) of the main manuscript for the ideal flow case.
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To investigate the success/failure threshold we perform a steady state analysis. The
singular nature of (11) at (0, 0), however, demands a modification: we multiply the right
hand sides of (11) by x2 + y2 to obtain the following system with identical orbits:

ẋ = ux(x2 + y2)− c1x
√
x2 + y2 − c3x ;

ẏ = −c1y
√
x2 + y2 − c3y .

(15)

Steady states and their stabilities are as follows.

(SS1) (0, 0) is always unstable. Eigenvalues are λ1 = λ2 = −c3 and, since c3 < 0, are
positive. Naively one would expect (0, 0) to be an attractor, since it defines the
active heading. However, c3 is a coefficient of the variance-covariance matrix and
expresses uncertainty in the direction choice. This uncertainty (mathematically)
means that the origin is always “just missed”.

(SS2) ( c3
ux+c1

, 0) lies in the negative half-plane, since c3 < 0. SS2 is always a saddle point,
with stability in x-direction and instability in the y-direction.

(SS3) If c1 > ux then there exists a third steady state ( −c3c1−ux , 0):

• if c1 > ux it exists and forms a local and global attractor, defining the point of
convergence for all orbits;

• if c1 < ux, all nontrivial orbits (except steady states and stable orbits of SS2)
are swept out of the domain.

Summarising, we conclude:

Lemma 1 When c1 > ux, trajectories converge to SS3.

How does this translate to goal-finding? The above reveals that all trajectories even-
tually hit the goal if SS3 lies inside it: hence, given sufficient time and assuming the goal
is sufficiently large, Lemma 1 guarantees success and condition (12) provides an approx-
imate condition for the required navigational strength k. Of course, we must stress its
approximate nature, yet for the present application it provides a more than reasonable
estimate, e.g. Figure 5 (a3). One should also note that failure to satisfy Lemma 1 does
not necessarily translate to overall failure: a trajectory could still hit the goal during its
passage, even if it is eventually swept out of the domain, by virtue of favorable initial
conditions.
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