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Abstract—Random Forests (RFs) are widely used Machine
Learning models in low-power embedded devices, due to their
hardware friendly operation and high accuracy on practically
relevant tasks. The accuracy of a RF often increases with the
number of internal weak learners (decision trees), but at the
cost of a proportional increase in inference latency and energy
consumption. Such costs can be mitigated considering that, in
most applications, inputs are not all equally difficult to classify.
Therefore, a large RF is often necessary only for (few) hard
inputs, and wasteful for easier ones. In this work, we propose an
early-stopping mechanism for RFs, which terminates the inference
as soon as a high-enough classification confidence is reached,
reducing the number of weak learners executed for easy inputs.
The early-stopping confidence threshold can be controlled at
runtime, in order to favor either energy saving or accuracy. We
apply our method to three different embedded classification tasks,
on a single-core RISC-V microcontroller, achieving an energy
reduction from 38% to more than 90% with a drop of less than
0.5% in accuracy. We also show that our approach outperforms
previous adaptive ML methods for RFs.

Index Terms—Embedded Systems, Machine Learning

I. INTRODUCTION

Machine Learning (ML) inference is at the core of many
emerging Internet of Things (IoT) applications, ranging from
time-series processing to computer vision [1]. In recent years,
a lot of research has been devoted to optimize ML models to
enable the execution of inference tasks directly on IoT end-
nodes, with the goal of improving the standard cloud-centric
approach on several non-functional metrics [2]. Specifically,
besides a lower and more predictable latency in presence of
unstable connectivity, and an enhanced data privacy, perform-
ing inference on end-nodes often results in a higher energy
efficiency too, by avoiding the transmissions of large amounts
of raw data through a power-hungry wireless link [2].

However, this potential can only be realized if the complex-
ity of ML models is made compatible with the limited compute
and memory resources and extremely tight energy budgets
of IoT nodes, most of which are based on Microcontrollers
(MCUs). This is particularly challenging for Deep Learning
(DL) approaches, which despite their state-of-the-art accuracy
on many tasks are often too heavy for MCUs, even after apply-
ing multiple optimizations [3]. Fortunately, non-deep models
are often sufficient for simple tasks, yielding comparable
results with far lower complexity. In particular, decision-tree-
based models have found success both in academia and indus-

try for ultra-low-power applications such as human activity
recognition (HAR) and seizure detection [4]–[6], thanks to
the fact that inference is based on a relatively small number
of compare and branch operations, and that their memory
footprint is compact. In particular, Random Forests (RFs) [7],
i.e., ensembles of decision trees grown on random samples of
the training data, typically reach a significantly higher accu-
racy than individual trees, yet with a much lower complexity
compared to DL solutions. For instance, the deep model pro-
posed in [8] for Electrocardiogram anomaly detection requires
around 200k arithmetic operations and the storage of as many
parameters. Instead, the baseline RF used for our experiments
in Section V achieves a comparable accuracy with around
2k parameters and less than 1k operations. Still, on single
core MCUs, RFs inference time and energy consumption are
linearly proportional to the number of trees, even though
executing the entire RF may only be useful for particularly
difficult inputs. Intuitively, in fact, most trees will agree on
their predictions for an easy input. In those cases, executing a
subset of the ensemble could suffice, as it is unlikely that the
skipped trees would overturn the global (averaged) RF output.

In this work we concretize this intuition, proposing an early-
stopping mechanism for RFs, which terminates the execution
as soon as a high-enough prediction confidence is reached,
with the goal of reducing the average energy consumption
for inference. While similar adaptive inference approaches
have been recently tested for deep learning [9]–[14], their
use with RFs is much less explored. The few existing so-
lutions are either very complex [15] or limited to 2-class
problems [16]. Moreover, they have never been deployed on
embedded devices for energy efficiency. To our knowledge,
ours is the first approach to consider these practical aspects
in a MCU deployment scenario, thanks to an early-stopping
solution featuring i) a runtime-controllable knob to tune the
energy vs accuracy trade-off and ii) minimal latency and
energy overheads compared to the execution of a single tree.
We test our approach on three different tasks, i.e., HAR, heart
failure detection and gesture recognition, on a popular single-
core RISC-V MCU, obtaining an energy reduction ranging
from 38% to 90% with less than 0.5% accuracy drop.

II. BACKGROUND

Decision Trees (DTs) implement classification and regres-
sion tasks by assigning different output predictions to different
axis-parallel rectangular partitions of the feature space. This is978-1-6654-2614-5/21/$31.00 ©2021 IEEE
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obtained comparing, in each node, one of the input’s features
with a threshold, and then recursively executing either the left
or right sub-trees based on the result. The inference starts at
the tree’s root, and ends at one of the leaves, which contain
the output prediction corresponding to the input.

Describing the training (or growth) procedure of DTs is out
of our scope. Interested readers can refer to [17]. Here, we
focus on computational aspects of the inference. Algorithm 1
shows a high-level inference pseudo-code, where T denotes
the tree. Evidently, the time complexity of the main while loop
is O(D) where D is the depth (i.e., the number of levels) of
the tree, while the memory complexity grows with the total
number of nodes, i.e., O(2D), for an unpruned tree [17].

Algorithm 1: Decision Tree inference.
1 n = Root(T )
2 while n /∈ Leaves(T ) do
3 if Feature(n) > Threshold(n) then
4 n = Right(n)
5 else
6 n = Left(n)
7 end
8 end
9 out = Prediction(n)

RFs [7] are ensembles of DTs (called weak learners),
each trained differently with a perturb-and-combine approach,
in order to reduce over-fitting. Modern RF algorithms [18]
perturb weak learners training them: i) on random subsets
of the training samples, and ii) on random subsets of the
input features. At inference time, individual DTs outputs are
then combined to obtain the final prediction. For classification
problems, early implementations of RFs let each tree output
class labels directly, and the final prediction was computed
as the mode of such labels. In contrast, in most modern RF
libraries [18], weak learners output the entire array of class
probabilities, and the final prediction is computed averaging
(or equivalently, summing) the probabilities relative to the
same class and then taking the “argmax”.

From a computational standpoint, on a single-core proces-
sor, RF inference is therefore implemented with a sequential
loop over the weak learners. This is shown in Algorithm 2
for a classification, where M is the number of classes and
DecisionTreeInference() corresponds to Algorithm 1. If the
N DTs that compose the RF have identical depth D, the
total memory occupation, as well as the latency and energy
consumption due to the main loop will be approximately N
times larger than those of a single DT. The time complexity
of the argmax, instead, is O(M).

Algorithm 2: Random Forest Classification.
1 out = 0M //array of 0s of size M
2 for T ∈ Forest do
3 out = out+DecisionTreeInference(T )
4 end
5 class = argmax(out)

III. RELATED WORKS

Adaptive inference is increasingly popular for the deploy-
ment of energy efficient ML models on IoT end-nodes, as
it allows a fine-grained and dynamic control of the trade-off
between accuracy and computational complexity [9]–[14]. The
basic principle is that not all inputs are equally complex to
process (e.g., classify). Easier inputs, which are often the most
common, can therefore be treated with a simpler ML model
than complex ones or, better yet, involving only a portion of
the full model. Ideally, this can yield an accuracy comparable
to the full model while significantly reducing the average
latency and energy consumption.

Several implementations of adaptive inference have been
proposed in literature, especially for Deep Neural Networks
(DNNs). Among the earliest, Big-Little DNNs [10] are built
combining two networks of different complexity and accuracy.
Each input is first fed to the “little” (inexpensive and less accu-
rate) model. Then, the confidence of this model’s prediction
is evaluated, and inference is stopped if such confidence is
higher than a threshold. Otherwise, the same input is fed to the
“big” model. In subsequent works, this idea has been extended
to more than 2 networks, and improved using a different
confidence threshold per class, or resorting to slimmed-down
versions of the “big” DNN to implement the “little” one(s),
e.g., activating only a subset of layers or channels, or applying
a lower bit-width quantization [9], [11]–[13].

Applications of this paradigm to tree-based learning, and
RFs in particular, are less common [15], [16], [25]. Moreover,
the complexity of the few existing techniques makes them
unsuitable for embedded devices. For instance, [15] proposes
two early-stopping criteria, and a mechanism to dynamically
select the optimal order of weak learners for each input.
The computations involved in this selection, however, have
much higher complexity than the evaluation of individual DTs.
Hence, as stated in the paper, their approach is only effective if
the target task involves complex feature extractions, and if the
latter can be partially skipped in case of early stopping. The
work closest to ours is QWYC [16], which focuses on binary
classification problems, and performs early stopping based on
two probability thresholds (ε− and ε+). Furthermore, it also
statically sorts DTs so that those with the highest chance of
triggering an early stop are invoked first. During inference,
whenever a tree outputs a probability lower than ε− or higher
than ε+ the execution is stopped, using the negative/positive
class as final prediction respectively. While this approach
incurs low runtime overheads (two comparisons), the methods
used to extract the two thresholds and to sort the weak learners
are not easy to extend to multi-class problems. Importantly,
[15], [16] and [25] are only evaluated in terms of complexity
reduction, and never deployed on an embedded device to
assess their actual energy and latency savings.

IV. ADAPTIVE RANDOM FORESTS

A. Motivation
Typical RFs are composed of a large number of trees

(N ), in the order of 10s or even 100s. A large N improves



the accuracy of the ensemble, allowing to classify correctly
even the hardest input samples. However, for simpler inputs,
which are often more frequent, a smaller RF with N ′ < N
trees would suffice to obtain a correct prediction. For those
inputs, executing all N weak learners is a waste of time and
energy, particularly critical for IoT end-nodes. On the contrary,
directly deploying a RF with N ′ trees could negatively affect
the accuracy on difficult samples.

Based on these observations, we devise a simple adaptive
early stopping policy for RF-based classifiers, which termi-
nates the inference as soon as a high-enough classification
confidence is achieved. The key difficulty in designing such a
policy is making it able to accurately distinguish those “easy”
inputs for which early stopping does not alter the classification
result. At the same time, since our main goal is to save
energy on resource-limited MCU-based IoT devices, the policy
should also introduce minimal runtime overheads with respect
to the (lightweight) inference process described in Section II,
to avoid reducing or nullifying the energy savings.

B. Aggregated Score Thresholds for Early Stopping

The majority of the lightweight early stopping policies
proposed in previous works [9]–[13], [16] for both deep
learning and RF classifiers, is based on comparing a measure
of classification confidence with a threshold. Confidence is
either measured as the maximum of the class probability scores
produced in output by a model - maxj(Pj) - or as the so-called
Score Margin (SM), i.e., the difference between the two largest
scores:

SM = max
j

(Pj)− max
j 6=jmax

(Pj) (1)

where j ∈ [0,M − 1] is the class index and jmax =
argmaxj(Pj). Regardless of the specific formula, the confi-
dence measure is typically evaluated on individual classifiers.
For example, in the method of [12], early stopping is triggered
whenever SMlast > α, where α is a tunable threshold,
and SMlast is the score margin computed on the output
probabilities of the last classifier executed.

Our work takes inspiration from those policies, but with one
significant difference. In fact, we do not decide whether to trig-
ger early stopping based on individual weak learners outputs,
but rather, depending on the aggregated prediction produced
by the part of the ensemble that has been already executed.
The rationale for this approach is that, for easy inputs, the
aggregated prediction will be very skewed towards a particular
class after a certain amount of trees have been executed, as
an effect of all weak learners predicting the correct class
with high probability, and of using the sum/mean aggregation
described in Section II. Therefore, it is highly unlikely that
the remaining trees will overturn the final decision.

In mathematical terms, we define the partial output of a RF
relative to class j, after executing t trees as:

P
[0:t−1]
j =

t−1∑
i=0

P i
j , ∀j ∈ [0,M − 1] (2)

where P i
j is the score produced by the i-th weak learner for

class j. In our experiments, we try two different early stopping
policies based either on the largest aggregated score St−1 or
on the aggregated Score Margin SM t−1. In formulas, the first
policy stops the inference when:

St−1 = max
j

(P
[0:t−1]
j ) > α (3)

whereas the second one triggers early stopping when the
following condition verifies:

SM t−1 = max
j

(P
[0:t−1]
j )− max

j 6=jt−1
max

(P
[0:t−1]
j ) > α (4)

As shown in Section V, we find SM t−1 to be the most reliable
confidence metric. To the best of our knowledge, ours is the
first lightweight policy that compares the partially aggregated
scores with a threshold to determine early stopping. Nonethe-
less, our experiments show that this approach is significantly
superior to alternatives that base the stopping decision only on
the last weak learner executed.
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Fig. 1: High-level overview of the proposed adaptive inference
method for RFs, for a batch of 1. At each step, the SM is
computed on the partially aggregated scores.

A high-level graphical view of our early stopping process
is shown in Figure 1 for N = 3, M = 2, D = 3 and using
SM t−1 as confidence measure. The orange lines highlight the
selected path in each tree. As shown, after the execution of
each tree, the partially aggregated scores are computed and
then used to decide whether to stop or not.

C. Deployment on MCUs

The deployment of the proposed adaptive RFs on a MCU
requires optimized implementations of: i) the generic RF data
structures used for the inference procedure of Algorithm 2 and
ii) the additional computations required for early stopping.

1) Random Forest Implementation: To the best of our
knowledge, there are no open source RF libraries for our
target MCU (described in Section V). Therefore, we developed
an in-house implementation, inspired by the one available
in OpenCV [19], but optimized for low-memory single-core
hardware. Specifically, while OpenCV represents RFs as lists,
we employed multiple C arrays to reduce the code size and
achieve better memory locality.

Our implementation is based on three main arrays called
FOREST, ROOT and LEAVES, as shown in Figure 2.
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Fig. 2: C data structures of our RF implementation.

FOREST is an array of C “structs” which stores the details
of all nodes. Specifically, each element has three fields:
• fidx: the index of the input feature that should be com-

pared with th in the current node. A special value of -1
is used to identify leaf nodes.

• th: the comparison threshold used to decide whether to
visit the right or left child of the node.

• right: the index of the right child in FOREST. The left
child of node i is implicitly node i+1, in order to reduce
memory occupation, avoiding an unnecessary left field.
For the same reason, for leaf nodes, right is interpreted
as an index in the LEAVES array.

LEAVES is a matrix storing the output probabilities for all
leaf nodes, while ROOT holds the indexes of the root nodes
of the N trees in the RF, and is the starting point for inference.
To clarify our implementation, node indexes in Figure 2
match those of Figure 1. Moreover, the FOREST elements
corresponding to the visited nodes of the first tree (nodes 0, 4
and 5) are shown in detail.

Both in the standard RF implementation used as comparison
baseline and in our adaptive version, input features, compar-
ison thresholds and output probabilities are quantized to 16-
bit integers, in order to reduce the memory occupation and
inference latency, and to enable deployment on MCUs that
do not have a Floating Point Unit. In our experiments, we
found that this quantization maintains the same accuracy of the
floating point RF. Moreover, index fields are also represented
on 16bit, which allows to support RFs with up to 216 nodes.

2) Early Stopping and Tree Batching: With respect to
the baseline RF implementation, our adaptive version has a
negligible memory overhead, as the only additional variable
to be stored is the confidence threshold α.

Instead, the latency and energy overheads can be significant,
despite our simple stopping policy. In fact, assuming to use the
SM as confidence measure, deciding whether to stop requires:
i) finding the two highest scores in the partially aggregated
output, with time complexity O(M) and ii) subtracting them
and comparing them with α, with complexity O(1). For
reference, the evaluation of each DT requires: i) the O(D) visit
of the tree, and ii) the O(M) accumulation of its probabilities
onto the output array. Therefore, the maximum overheads
occur for a classification onto a large number of classes (large
M ) performed with a RF made of shallow trees (small D).

We propose a simple and effective way to reduce the
overheads due to the evaluation of the early stopping policy
based on tree batching. Rather than evaluating SM t−1 after

the execution of each DT, we do so only after a batch of B > 1
weak learners has been evaluated. This has two contrasting
effects on latency/energy. On the one hand, it may cause the
evaluation of more trees than necessary before early stopping,
as the confidence is only evaluated at the end of each batch; on
the other hand, it cuts the overheads linked with our policy by
a factor B. In practice, our experiments show that, depending
on the dataset, batching with B = 2 or B = 4 may yield
superior results than B = 1.

Figure 3 summarizes our adaptive inference procedure in
form of pseudo-code, where SM() is the Score Margin
computation and Batch(b) is the set of DTs belonging to the
b-th batch of size B.

Algorithm 3: Adaptive Random Forest Classification.
1 for b ∈ [0, N/B] do
2 for T ∈ Batch(b) do
3 out = out+DecisionTreeInference(T )
4 end
5 if SM(out) > α then
6 break
7 end
8 end
9 class = argmax(out)

V. EXPERIMENTAL RESULTS

A. Setup: Datasets, models and hardware platform
We test our approach on three datasets of relevant appli-

cations. We use the top-1 accuracy as performance metric if
not differently specified. For each dataset, our starting point
is a standard (non-adaptive) RF whose parameters (N and
D) are determined to obtain either i) the smallest model
that achieves state-of-the-art accuracy, when possible, or ii)
the most accurate model that fits the small memory of the
target MCU, otherwise. For all datasets, we fed the RFs both
with raw data or with low complexity time-domain features
(feasible to extract on a MCU) proposed in the respective
papers. In all cases, we found that raw data yielded the best
accuracy, therefore we report the corresponding results.

The Ninapro DB1 [20] dataset features Electromyography
(EMG) signals of multiple hand movements of 27 healthy
people. Following the experimental setup proposed by [20],
we perform the classification of 14 hand movements using a
10 channel EMG signal. To classify input samples, we use
identical pre-processing (e.g windowing) as in [20] and a
random forest with N = 24 and D = 12 as baseline. UniMiB-
SHAR [21] contains tri-axial accelerometer data, used to
classify 17 different human activities. For this dataset, we
use a baseline RF with N = 32 and D = 9. Given its class
imbalance, we also use the macro-averaging accuracy as target
metric, as suggested by the authors [21]. The ECG5000 [22]
dataset contains an annotated electrocardiogram (ECG) signal
of a single patient, divided into 0.8 seconds windows, each
containing a single heartbeat. We perform a binary anomaly
detection on the annotated heartbeats as proposed in [8],
detecting when a congestive heart failure happens, using a
RF with N = 40 and D = 3 as baseline.



Fig. 3: Hardware-independent comparison among different adaptive approaches and baseline RFs.

We deploy all models on the PULPissimo platform, a 32-bit
single-core RISC-V MCU, with 520 KB memory [23]. We es-
timate the inference clock cycles using a virtual platform [24],
while we derive energy results from the power values of
Quentin [23], a 22nm realization of PULPissimo running at
205 MHz. The RFs have been trained using the scikit-learn
Python package [18], while MCU code has been written in C.
Besides non-adaptive RFs, we compare our method also with
two adaptive solutions: a standard Score Margin evaluated on
the last weak learner, such as the one used in [10]–[12], and the
QWYC method of [16], which however only supports binary
classifications and is therefore only considered for ECG5000.
All adaptive methods are applied to a maximally sized RF,
with the N and D values reported above.

B. Hardware-independent comparison

As a first experiment, since none of the state-of-the-art
methods for RFs have been deployed on MCUs, we compare
them with our proposed approach in a hardware independent
way. To this end, we compute the average number of trees
executed by each adaptive method when running on the entire
validation sets of the three target datasets, for different values
of the corresponding early-stopping thresholds (α or ε− and
ε+). The results are shown in Figure 3 as Pareto fronts in the
accuracy vs number of trees plane. For reference, each plot
also reports the results of the baseline RF (rightmost blue star),
as well as those of smaller (static) RFs built by progressively
decreasing the number of trees N (blue dashed Pareto front).

The results show that our Aggregate SM policy can reach
an accuracy identical to the baseline RF for all three datasets,
while significantly reducing the average number of weak
learners executed. Moreover, our approach significantly out-
performs a standard SM on the two most difficult datasets
(Ninapro and UniMiB). This is due to the fact that the classic
SM relies on a single weak learner’s prediction, which is
often highly confident despite being wrong (except for the
easier ECG5000). The Aggregated SM is also competitive
with QWYC on ECG5000, while not being limited to binary
problems and allowing a much easier exploration of the
accuracy vs complexity space at runtime. In fact, as shown
by the single points in the plots, QWYC always yields very
similar accuracy and number of trees, regardless of the values
assigned to its early-stopping thresholds.

To better quantify the benefits of our approach, Table I
reports the average number of trees executed by each method
when targeting the same accuracy of the maximally sized
(Full) RF, or an accuracy drop < 0.5%. Besides the Ag-
gregated SM with B = 1, the table also reports the results
obtained with larger batch sizes. The column Aggr. Max. shows
the results obtained using the maximum aggregated probability
as confidence measure (Eq. 3) instead of the SM, with B = 1.
Lastly, Red. RF shows the value of N of a static RF that
achieves the same accuracy. The standard SM and QWYC are
not reported in the table as they never reach an accuracy with
a drop < 0.5% with respect to the full RF.

TABLE I: Average number of trees for different accuracy
drops with respect to a full RF.

Data Full Red. Aggr. Aggr. SM
RF RF Max B=1 B=2 B=4 B=8

Drop: 0%
ECG 40 40 27.17 12.46 13.45 13.63 17.17

Ninapro 24 24 16.35 15.05 15.66 19.31 20.71
UniMiB 32 32 30.12 22.55 22.88 23.49 24.31
Drop: 0.5%

ECG 40 7 5.16 3.40 4.52 4.66 8.09
Ninapro 24 19 11.68 8.25 9.35 10.27 10.95
UniMiB 32 25 23.81 17.35 17.96 18.74 20.39

C. Deployment Results

Figure 4 and Table II report the average energy consumption
per input obtained deploying the proposed method on PULPis-
simo. Since ours is the only method deployed on a MCU, the
results refer to its different variants. In particular, we vary
again the batch size B (the figure only shows B = 1 and
B = 2 for clarity) and consider both the maximum probability
score and the Score Margin as confidence measures.

Figure 4 shows that the energy vs accuracy trade-off curves
have similar shapes to those of Figure 3, thus demonstrating
the effectiveness of our method even when taking into account
its runtime overheads. Moreover, it shows that using a batch
of trees is sometimes preferable (e.g., B = 2 for the Ninapro
dataset). This happens because, while B = 1 always yields the
lowest number of visited DTs, as shown in Table I, the smaller
overheads obtained evaluating the policy every B > 1 trees
may outweigh the additional energy costs of visiting a larger
number of trees. This is also the reason why the Aggr. Max
policy is considered. In fact, finding a single maximum over



Fig. 4: Accuracy vs energy consumption of the proposed method for different batches (B) and confidence measures.

TABLE II: Average energy consumption, in µJ , for different
accuracy drops with respect to a full RF.

Data Full Red. Aggr. Aggr. SM
RF RF Max B=1 B=2 B=4 B=8

Drop: 0%
ECG 0.048 0.048 0.035 0.017 0.018 0.017 0.020

Ninapro 0.087 0.087 0.076 0.077 0.074 0.083 0.083
UniMiB 0.112 0.112 0.117 0.105 0.094 0.090 0.089
Drop: 0.5%

ECG 0.048 0.010 0.008 0.005 0.007 0.006 0.010
Ninapro 0.087 0.071 0.050 0.033 0.036 0.039 0.038
UniMiB 0.112 0.090 0.098 0.078 0.071 0.069 0.072

the aggregated scores array is slightly more lightweight than
computing the SM. However, with this less reliable confidence
measure, the visited DTs increase a lot (up to 15 more on
average to reach the same accuracy of the Aggr. SM with
B = 1, as shown in Table I). Thus, the overhead reduction is
insufficient, and this approach is almost always sub-optimal.

Table II shows the total energy consumption of different
variants of our method, for the same two accuracy conditions
of Table I. As anticipated, the lowest energy consumption is
often achieved with B > 1, e.g., on Ninapro (B = 2) or
UniMiB (B = 8) for a 0% accuracy drop. Overall, the best
variant of our method reduces the energy from a minimum of
15% (on Ninapro) to a maximum of 65% (on ECG5000) with
no accuracy drop, and from 38% (UniMiB) to 90% (ECG5000)
when accepting a small accuracy degradation.

VI. CONCLUSIONS

We have presented an adaptive inference method for Ran-
dom Forests, based on an early stopping policy that reduces
the number of weak learners executed for easy inputs. With
experiments on three datasets, we have shown that our method
performs similarly or better than state-of-the-art adaptive so-
lutions. Moreover, it can be effectively deployed on resource-
constrained MCUs, enabling significant energy savings with
limited or null accuracy drops. In future work, we will
investigate the combination of our method with an optimized
ordering of DTs and its extension to multi-core platforms.
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