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A penalty function approach to constrained Pontryagin-based Nonlinear
Model Predictive Control

Michele Pagone, Mattia Boggio, Carlo Novara, Anton Proskurnikov, Giuseppe C. Calafiore

Abstract— A Pontryagin-based approach to solve a class of
constrained Nonlinear Model Predictive Control problems is
proposed, which employs the method of penalty functions for
dealing with the state constraints. Unlike the existing works in
literature, the proposed method is able to cope with nonlinear
input and state constraints without any significant modification
of the optimization algorithm. Theoretical results are tested
and confirmed by numerical simulations on the Lotka-Volterra
prey/predator nonlinear system.

I. INTRODUCTION

Over the last years, Model Predictive Control (MPC) has
been accepted as a powerful control tool for a wide range
of technological applications [1], [2], thanks to its capability
to design control algorithms for multivariable systems under
state, input, and output constraints. The resulting controllers
also provide optimality of a predefined performance index.

The key point of the MPC design is the method for
addressing optimal control problems (OCP) within a re-
ceding horizon strategy. To cope with nonlinear dynamics
and constraints, as well as with non-convex performance
indexes, Nonlinear MPC (NMPC) has been introduced (see,
e.g. [3] and references therein). To find the global optimum
in this situation is difficult, optimization algorithms are
computationally intensive and, in general, the solution rarely
admits an explicit closed-form representation [4], [5].

In this paper, we propose a solution that is based on
Pontryagin’s Minimum Principle (PMP)[6]: under some as-
sumptions on the Hamiltonian function, we can obtain an
explicit control law - a function of the state and the co-state -
even if the system dynamics and/or constraints are nonlinear.
The price paid for this is the necessity to solve a Two-Points
Boundary Value Problem (TPBVP) in order to find the state
and co-state functions. The first applications of the PMP
to receding horizon control date back to works by [7], [8]
and [9] who have also established important higher degree
optimality conditions based on the theory of Lie algebras.

Although TPBVP problems usually cannot be solved
analytically, a number of efficient numerical algorithms to
solve OCP in real time have been proposed [10] such as,
e.g., the stabilized continuation method [7] and its accel-
erated versions [11], the Newton-type algorithm [12] and
the extended modal series method, approximating OCP with
nonlinear constraints by standard LQR problems [13]. An
efficient active set method of solving discrete-time PMP
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equations arising in MPC problems with input and terminal
state constraints was developed in [14]. Continuous-time
OCPs can be accurately approximated by discrete-time ones
as demonstrated by the recent work [15].

Whereas initial and terminal state constraints can be ac-
commodated by existing PMP-based MPC algorithms, direct
application of PMP becomes problematic in the situation
where the state vector is constrained at any time [3], [16]. In
this situation, the differential equations of PMP are different
for constrained and unconstrained trajectories: unconstrained
and constrained pieces of the trajectory are ‘tailored’ by
imposing additional interior tangency conditions at the junc-
tions points [17], [18]. This substantially complicates the
solution of TPBVP in real time except for the situations
where the optimal solution structure is known a priori.

An alternative way to cope with state or mixed input-
state constraints is based on the use of barrier functions that
arise as penalty terms in the objective function. A general
methodology to get rid of relaxing both state and input
constraints by introducing penalty terms has been proposed
in [19] under the assumption that the nonlinear system has
a well-defined relative degree. A similar approach has been
proposed for a special type of constraints in [20]. In this
paper, we further elaborate the approach proposed in the
example from [8], where the state constraint is replaced by
an appropriate penalty term in the cost functional, without
significantly modifying the algorithm of solving OCP com-
pared to the unconstrained case. Unlike [19], [20], input
constraints does not need to be relaxed and can be tackled
by the standard PMP.

The penalty function method proposed in this paper is
concerned with defining a methodology for accounting the
state constraints within the TPBVP, without affecting the
differential equation solution feasibility. This latter aspect
was widely discussed by [21], which pointed out that, when
employing the classical log-barrier function, some TPBVP
numerical singularities can arise. A similar approach can be
found in [22]: a Lagrangian-barrier function based method
which adds the state constraints as a logarithmic term to the
objective function. As remarked in [16], the penalty functions
methods can be divided into two different classes: exterior
and interior. We focus on the interior penalty methods since
they are more likely to generate feasible solutions. This can
be an interesting particularity in numerous nonlinear and
non-convex applications: satisfaction of constraints is more
important than optimality (see also [23] and the reference
therein).

We propose a class of Gaussian-like penalty function.



Thanks to this approach, the solution to the system of
differential equations, in general, does not present numerical
singularities in solution. An important advantage of the
proposed penalty methodology relies in the relaxation on the
constraints and penalty function assumptions, in particular,
the penalty function has to be only C 1-smooth unlike the
approach from [19].

To sum up, the proposed NMPC framework shows the
following advantages: i) Unlike numerical methods, where
a discretization of state, input and constraints before op-
timization is required [24], the PMP-based solution does
not need the input parametrization anymore, resulting in a
better accuracy in tracking the reference; ii) the PMP-based
NMPC seems to perform a more efficient trade-off between
computational complexity and final reference tracking with
respect to the direct methods, being suitable for on-line
applications.

The paper is organized as follows. In Section II the NMPC
scheme and its unconstrained Pontryagin-based solution are
illustrated. The PMP-based solution of the constrained prob-
lem is shown in Section III. A simulated example is presented
in Section IV. Finally, the conclusions are drawn in Section
V.

II. NMPC FRAMEWORK

Consider the following affine-in-the-input nonlinear sys-
tem:

ẋ(t) = f (x(t))+g(x(t))u(t) (1)

where x ∈ Rnx , u ∈ Rnu are the state and the input, respec-
tively. We assume that the state of system (1) is measured
in real time, with a sampling time TS. At each time t = tk,
a prediction x̂ of the system state and output over the time
interval [t, t +Tp] is performed, where Tp ≥ TS is the predic-
tion horizon. The prediction is obtained by integrating (1).
At each time t = tk, we look for an input signal u∗(t : t+TP),
minimizing a suitable cost function J

(
u(t : t +Tp)

)
subject

to possible constraints that may occur during the system’s
operations. Our goal is to track a reference signal xr ∈ Rnx .
The considered NMPC cost function J

(
u(t : t +Tp)

)
in the

Bolza form is

J =
∫ t+Tp

t
x̃T

p (τ)Qx̃p(τ) dτ +

+
∫ t+Tp

t
uT (τ)Ru(τ) dτ + x̃T

p (t +Tp)Px̃p(t +Tp)

(2)

where x̃p = xr− x̂ is the predicted tracking error. Moreover,
Q=QT ≥ 0, P=PT ≥ 0, and R=RT > 0 are diagonal matri-
ces. Trivially, Q,P∈Rnx×nx and R∈Rnu×nu . Mathematically,
at each time t = tk, the following optimization problem is
solved:

u∗(t : t +Tp) = argmin
u(·)

J(u(t : t +Tp))

subject to:
˙̂x(τ) = f

(
x̂(τ)

)
+g
(
x̂(τ)

)
u(τ), x̂(t) = x(t)

x̂(τ) ∈ XC, u(τ) ∈UC, ∀τ ∈ [t : t +Tp],

u(τ) ∈K C
(
[t, t +Tp]

)
.

(3)

XC and UC are sets describing possible constraints on the
state and input, respectively and K C ([t, t + Tp]) is the
space of piece-wise continuous functions. A receding control
horizon strategy is employed: at a given time t = tk, the input
signal u∗(tk : tk +Tp) is computed by solving (3). Then, only
the first optimal input value u(t) = u∗(tk) is applied to the
plant, keeping it constant for t ∈ [tk, tk+1]. The remainder of
the solution is discarded. Then, the complete procedure is
repeated at the next time steps t = tk+1, tk+2, ...

Assumption 1: Let f ∈C 1(Rnx→Rnx) and g∈C 1(Rnx→
Rnx).

Assumption 2: The admissible control set UC ⊆ Rnu is
UC = {u ∈ Rnu : uimin ≤ ui ≤ uimax}, i = 1, ...,nu.

Assumption 3: The state constraint set is XC = {x ∈ Rnx :
C(x) ≤ 0}. Here, C(x) ∈ C 1(Rnx → R) is, generally, a non-
convex function.

Remark 1: The optimization problem (3) is numerically
hard to tackle, since u is a continuous-time signal and
thus the number of decision variables is infinite. The direct
solution of the OCP requires a finite parametrization of the
input signal u (see, e.g., [24]). For example, as illustrated
in Section IV, a piece-wise constant parametrization can be
assumed, with changes of value at the nodes τ1, . . . ,τN ∈
[t, t +Tp] with N the number of nodes. The choice of N > 1
can lead to satisfactory performances behaviors, but at cost
of computational complexity increment. One can pick N = 1
(corresponding to a constant input for every τ ∈ [t, t +TP])
in order to reduce the computational complexity of the
optimization algorithm. Nevertheless, this approach could
not always guarantee an acceptable level of performance.
This issue is mitigated when using the PMP approach pre-
sented in the manuscript which does not require any a-priori
prarametrization of the control signal. This latter does not
significantly effect the algorithm computational complexity.

A. Unconstrained Pontryagin-based NMPC Solution

We neglect for the moment possible constraints on the
state and the input, focusing on the case where XC ≡ Rnx

and UC ≡ Rnu .
According to [6], a necessary condition for a trajectory

x(t) to be the extremal path and the corresponding control
u(t) to be the optimal input, is that the Hamiltonian scalar
function H(x(t),u(t),λ (t)) ∈ C k(Rnx ×Rnu ×Rnx → R) at-
tains its minimum value when u = u∗ and while satisfying
the differential equations in (1), the time evolution of the
Lagrangian multipliers λ ∈ Rnx) (or co-state variables), and
a set of boundary conditions (B.C.). The Hamiltonian is
defined as

H = x̃T
p Qx̃p +uT Ru+λ

T ( f +gu
)
. (4)

The necessary conditions for optimality can be derived by an-
alyzing the first-order variation of the augmented expression
of (2). The rigorous mathematical formulation of the first-
order variation can be found in [25]. Whereby, the Pontryagin



formulation of the NMPC optimal control problem:

(x∗,u∗,λ ∗) = argmin
u(·)

H

subject to:
ẋ = f +gu

λ̇ =−∇xHT

xk− x(tk) = 0

λ
T (tk) =−µ

T

λ
T (t +Tp) = 2Px̃p(t +Tp).

(5)

From (5), we can note that the optimization problem is
subject to both the state dynamics in (1), and the dynamic
of the co-state variables λ , described by the so-called Euler-
Lagrange differential equations. Both the state and co-state
evolution must satisfy a set of boundary conditions to be im-
posed at the borders of the prediction horizon. The B.C. have
to be satisfied by λ and x during the system evolution along
the extremal path. At each time t = tk, the state value cannot
be chosen arbitrarily: the continuity between two successive
sampling steps must be ensured, so that xk = x(tk). In (5),
at t = tk, λ (tk) =−µ where µ is the Lagrangian multipliers
vector corresponding to the state continuity constraint.

The Euler-Lagrange equations - describing the λ time
evolution - take the form of:

λ̇ =−
(
λ

T
∇x
(

f (x)+g(x)u
)
−2Qx̃p

)T
. (6)

The optimal control law is obtained by minimizing the
Hamiltonian with respect to u. From (4), we have

u∗ =−1
2

R−1(
λ

T g(x)
)
. (7)

Accounting the PMP-based NMPC solution in (5), to-
gether with the optimal control law in (7), it is clear how
the optimal control problem in (5) turns into a two-points
boundary value problem. Indeed, the equations (1) together
with (6) and the B.C. in (5) represents a TPBVP to be solved
over the prediction horizon [t, t +Tp]. The TPBVP solution
provides the λ and the x of the explicit control laws (7).

The TPBVP is formalized as follows:

ẋ = f +gu

λ̇ =−∇xHT

xk− x(tk) = 0

λ
T (tk +Tp) = 2Qx̃p(tk +Tp)

(8)

Remark 2: Observing the optimal control law (7), the
input u∗(τ) depends on λ (τ) and x(τ), whose values change
at each sampling step of the TPBVP over the prediction
horizon. For this reason, the PMP-based NMPC solutions
does not require an a-priori parametrization of the input
signal. This is a very interesting results since the OCP
algorithm achieves high performances without increasing
the computational complexity independently from the input
parametrization.

Remark 3: A preliminary proof on the finite-time stability
of the closed loop is proposed by the authors in [26]. This

study is mainly devoted in prooving the finite-time practical
stability of the closed loop when the optimal control law
is in feedback, by employing an innovative Lyapunov-like
function based on the predicted values of the state.

III. INDIRECT SOLUTION OF THE CONSTRAINED OCP

In general, the constrained case can be handled by means
the indirect optimization problem only when the optimization
is performed off-line, by augmenting the system with addi-
tional variables [25], [27]. Nevertheless, when dealing with
an on-line optimization process, this aspect can be tough,
since it is necessary to iterate the solution in order to identify
the control arcs where the constraints are active and imposing
additional B.C. at the junction points.

A. Input Constraints

We consider that the input is bounded linearly, such that
UC = {u(t) ∈ Rnu : uimin ≤ ui(t) ≤ uimax , ∀t}. Consider the
optimal control law (7), for the nonlinear system (1), the
optimal control u∗ ∈UC is:

u∗ = satUC

(
−1

2
R−1(

λ
T g(x)

))
(9)

where the sat(·) represents the saturation operator and it
applies element-wise to the input vector. In formulae, the
ith control component is:

u∗i =


uimin , if − λigi(x)

2ri
≤ uimin

uimax , if − λigi(x)
2ri

≥ uimax

−λigi(x)
2ri

, otherwise

(10)

where ri is the ith entry of the R diagonal.
Proposition 1: For the nonlinear system (1) with perfor-

mance index (2), if u∈UC, the constrained optimal command
is given by (10).

Proof: From the optimal control equation we have u∗=
argminu∈UC H. For the problem at hand, since ∇uλ T f (x)= 0,
we can neglect the terms not depending on the control in the
Hamiltonian. Then, picking only the control-depending terms
of the Hamiltonian and recalling that R is a diagonal positive
matrix:

u∗ = arg min
u∈UC

[ nu

∑
i=1

riu2
i +

nx

∑
i=1

λigi(x)ui

]
. (11)

Since there are no coupled control terms, the optimal control
equation can be solved by minimizing the Hamiltonian
element-wise. This is straightforward, since, in this config-
uration, the Hamiltonian consists of an elliptic paraboloid
whose main axes are parallel to the Cartesian axes. Consider
the unconstrained case. Since the Hamiltonian is convex with
respect to u we have that H(u)≥H(u∗)+∇uH(u∗)T (u−u∗)
, i.e. all the admissible values of the input are enclosed in one
of the halfspaces H++ delimited by the hyperplane tangent
at H in u∗. Denote, now, the constrained optimal input with
u∗c , we have that u∗c ∈H++ and H(u∗) < H(u∗c). Since the
Hamiltonian is monotone with respect to the input, H(u)≥



H(u∗c)+∇uH(u∗c)
T (u−u∗c)≥H(u∗)+∇uH(u∗)T (u−u∗), i.e.

there are not any values of u which improve the Hamiltonian
performance index. Hence (10) is an optimum for the input
constrained problem.

B. Path Constraints

In order to incorporate the path constraints within the OCP,
we define an augmented cost function J̃ such that, when
the state approaches the boundary of the forbidden set, its
value becomes significantly larger than J, limC(x,t)→0 J̃ �
J. Therefore, we augment the cost function by choosing
a suitable penalty function k(x) which prevents the states
approach the boundary of the constrained set whilst its value
is (almost) null when far from the boundaries. This is a well
known methodology to deal with the path constraints [28].

Assumption 4: Assume the penalty function k(x) ∈
C 1(Rnx → Rnx).

The augmented cost index is given by

J̃(u(τ)) = J(u(τ))+
∫ t+TP

t

n

∑
i=1

ki(x) dτ. (12)

where n is the number of the state constrains. The augmented
Hamiltonian is

H̃(x,u,λ ) = H(x,u,λ )+
n

∑
i=1

ki(x). (13)

With the slight modification of the NMPC performance
index and the consequent Hamiltonian augmentation, the
contribution of the penalty function will affect the Euler-
Lagrange equations by adding the terms of ∇x ∑

n
i=1 ki(x). In

a more general form λ̇ =−∇x
(
H +∑

n
i=1 ki(x)

)
.

IV. SIMULATED EXAMPLES

Consider the predatory-prey Lotka-Volterra model, de-
scribed by a couple of first-order nonlinear differential equa-
tions with an exogeneous input applied on both states:{

ẋ1 = x1(α−βx2)+ x1u1

ẋ2 = x2(γx1−δ )+ x2u2
(14)

where x1 and x2 are the prey and predator population
respectively and u1 and u2 the corresponding input compo-
nents. Let α = 0.25, β = 0.25, γ = 0.008, and δ = 0.008
be parameters describing the interaction between the two
species [29]. The admissible input set is described by UC =
{u(t) ∈ R : − uimax ≤ ui(t) ≤ uimax , ∀t}, where u1max = 10
and u2max = 5. Concerning the state constraints, a nonlinear
function prevents the predator specie grows too abruptly with
respect to the prey specie, then, avoiding the extinction of
both species when the prey population goes to zero. Hence,
XC = {x(t) ∈ R2 : 5 −

(
(x1 − 100)2 + (x2 − 51.5)2

)1/2 ≤
0, ∀t}. Thus, the state constraints are handled employing a
Gaussian-like penalty function k(x) = aexp(−bC(x)2) with
C = 5−

(
(x1−100)2 +(x2−51.5)2

)1/2, a = 106, and b = 1.
a and b have been tuned through a trial and error procedure.

Remark 4: Note that, the penalty k(x) reach the maximum
value when C(x) = 0 and then it goes to zero when C(x)> 0
(i.e., the constraint is violated). This choice is a consequence

TABLE I
NMPC PARAMETERS

TS Tp R Q P
1 10 500 · I2×2 diag(10,35) diag(10,35)

of the use of a Gaussian-like function as penalty. It partially
prevents possible numerical singularities in TPBVP solution
but it does not guarantee a strict fulfillment of the constraint.
This issue can be mitigated by a proper choice of the penalty
parameters a and b, tuned by simulations.

Hence, the augmented Hamiltonian is

H̃ = λ1
(
x1(α−βx2)+ x1u1

)
+λ2

(
x2(γx1−δ )+ x2u2

)
+

+
nu

∑
i

riu2
i +

nx

∑
i

qix̃2
pi
+ k(x)

(15)

where qi is the ith entry of the Q diagonal and x̃pi , i = 1,2 is
the predicted tracking error. Then, TPBVP is formalized as:

ẋ1 = x1(α−βx2)+ x1u1

ẋ2 = x2(γx1−δ )+ x2u2

λ̇1 =−αλ2 +βλ1λ2−λ1u1− γλ2x2−2q1x̃p1 −
∂k(x)
∂x1

λ̇2 = βλ1x1− γλ2x1 +δλ2−λ2u2−2q2x̃p2 −
∂k(x)
∂x2

xi = x(tk)
λ (t f ) =

(
2Px̃p(t f )

)T

(16)
The solution of the TPBVP in (16) provides the λ for the
explicit optimal control law:

u∗ =−1
2

R−1(
λ

T x
)

(17)

The NMPC parameters are listed in Table I. The desired
state is a limit cycle. Indeed, [xr1(t),xr2(t)]

T = [10cos(t)+
100,10sin(t)+50]T . The initial state is x0 = [40,40]T . This
means that prey and predator populations are much larger
than zero, that is the two species are both far from the
risk of extinction. Throughout the simulations, TS and Tp
are dimensionless and they are meant as iteration steps.

In Figure 1, the phase-plane curve of the predator-prey
populations is shown. In particular, it is highlighted how
the NMPC approach is perfecty able to fulfill the input and
state constraints, without affecting the tracking performance.
Note that, by a proper tuning of the NMPC parameters,
the state trajectory is ‘forced’ to reach the reference by
avoiding the constraint from above. This choice is aimed
to avoid a possible extinction of both species when the prey
population goes to zero. Figure 2 displays the time evolution
of populations x1 and x2, and the corresponding tracking
errors e1 and e2. This latter have a very fast convergence to
zero, proving the effectiveness of the optimization algorithm.
Finally, in Figure 3, the command activity is reported.

We are now interested in comparing the behavior of the
solutions when employing different optimization strategies in
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an unconstrained scenario: the PMP-based and the Sequen-
tial Quadratic Programming (SQP) solutions. Concerning
the SQP case, we further considered two different cases:
i) constant input parametrization (NMPC-1), ii) piece-wise
constant input parametrization with N = 10 (NMPC-10). In
the latter case, the input is parametrized with the same
sampling steps adopted in the PMP-based solution. Note
that, the TPBVP has been solved by employing the Matlab
function bvp5c. Figure 4 reports the results obtained in the
unconstrained case, both for SQP and PMP. The resulting tra-
jectories are slightly different. However, in all configurations,
the NMPC is able to get a good tracking of the reference.
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From the computational burden point of view, Figure 5
presents a comparison between the solutions. If considering
a similar input parametrization, the PMP-NMPC shows su-
perior computational performances with respect to the SQP-
NMPC-10. Moreover, also when considering the constant
input parametrization, the PMP-NMPC owns slight better
performances - together with a better reference tracking -
with respect to the SQP solution.
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Then, we highlight that the advantages of the proposed



PMP-based NMPC framework are: i) a better reference
tracking than the NMPC-10 configuration, ii) a similar com-
putational cost with respect to the NMPC-1 configuration.

V. CONCLUSIONS

We proposed an alternative approach for the Nonlinear
Model Predictive Control optimization problem. We obtained
a control law by developing an algorithm based on the
Pontryagin Minimum Principle, turning the optimal control
problem into a two-points boundary value problem. The
resulting optimal input is function of the state and co-state
variables, whose time evolution is described by the Euler-
Lagrange differential equation. Hence, the optimal control
law was obtained analytically by minimizing the Hamiltonian
of the system. Moreover, we also coped with state constraints
by exploiting a suitable penalty function within the cost
function, without any modification of the optimization al-
gorithm. The proposed methodology was then applied to the
Lokta-Volterra nonlinear dynamics. The results highlighted
the effectiveness of the control algorithm, showing excellent
reference tracking and the compliance with the input and
path constraints. Throughout the text, we assumed that all
optimization problems are feasible (the solution exists and it
is unique). Obtaining conditions of recursive feasibility is a
topic of ongoing research.

REFERENCES

[1] J. Richalet, A. Rault, J.L. Testud, J. Papon, Model predictive heuristic
control-application to industrial processes, Automatica, Vol. 14, pp.
413-428, 1978.

[2] S.J. Qin, T.A. Badgwell, An Overview of Nonlinear Model Predictive
Control Applications, Progress in System and Control Theory, Vol. 26,
pp. 3-32, 2000.

[3] M. Diehl, H.G. Bock, H. Diedam, P-B. Wieber, Fast Direct Multiple
Shooting Algorithms for Optimal Robot Control, Fast Motions in
Biomechanics and Robotics, Vol. 340, pp. 65-93, 2007.
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