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Abstract. With the advent of collaborative manipulators, the community is push-
ing the limits of human-robot interaction with novel control, planning, and task
allocation strategies. For a purposeful interaction, however, the robot is also re-
quired to understand and predict the action of the human not only at a kinematic
level (i.e. motion estimation), but also at an higher level of abstraction (i.e. action
recognition), ideally from the human own perspective. Dealing with egocentric
videos comes with the benefit that the data source already embeds an intrinsic at-
tention mechanism, driven by the focus of the user. However, the deployment of
such technology in realistic use-cases cannot ignore the large variability of back-
ground characteristics when changing environment, resulting in a domain shift in
features space not learnable from labels at training time. In this paper, we discuss
a method to perform Domain Adaptation with no external supervision, which
we test on the EPIC-Kitchens-100 UDA Challenge in Action Recognition. More
specifically, we move from our previous work on Relative Norm Alignment and
extend the approach to unlabelled target data, enabling a simpler adaptation of the
model to the target distribution in an unsupervised fashion. To this purpose, we
enhanced our framework with multi-level adversarial alignment and with a set of
losses aimed at reducing the classifier’s uncertainty on the target data. Extensive
experiments demonstrate how our approach is capable to perform Multi-Source
Multi-Target Domain Adaptation, thus minimising both temporal (i.e. different
recording times) and environmental (i.e. different kitchens) biases.

Keywords: Human-Robot Cooperation, First Person Action Recognition, Unsu-
pervised Domain Adaptation

1 Introduction

Current robotics research demonstrated a significant trend in the development of tech-
nologies to support the physical interaction between humans and machines, ranging
from the planning and control [2], up to their social impact [26]. However, the deploy-
ment of such technology in the real world, e.g. in household or industrial environments,
requires an extension of the human intention retrieval capabilities of robots, from a mere
pose estimation and forecast, to an high level description of the action executed. As an



2 Planamente et al.

example, considering a companion robot assisting the human in preparing a meal, the
feasibility to infer from video the current action performed can enable the prediction
of the next steps of the receipt, and eventually assist the cook with proper tools han-
dover. To reach this goal, a very promising solution relies on the usage of egocentric
vision, in which the human activity is recorded by wearable cameras placed on the head
of the user [50]. In contrast with standard third person Computer Vision (CV) tasks,
this setting comes with the benefit that source data are characterised by a rich multi-
modal information, thanks to the proximity of audio/video sensors to the action scene,
and by an intrinsic embedding of an attention mechanisms that stems from the human
gaze direction itself. Although egocentric vision rapidly attracted the interest of the re-
search community [60,58,21,30,23,66], this particular setup of data collection comes
with several difficulties: i) ego-motions represents a significant source of noise for the
dataset, because changes in head posture cause a shift in the point-of-view and back-
ground, introducing confusion between ego-motion and the real action of the subject;
ii) model predictions tend to be strongly correlated with the surrounding environment,
which represents a bias in the dataset (usually referred to as environmental bias)[42],
thus resulting in decreased performances when the environment changes (e.g. different
kitchens); iii) video recordings of actions can change in time, e.g. as a consequence to
differences in illumination (night vs. day), habits, or changes in human skills on the
longer distance.

It is important to recall that the effect of this problem is not consistent across dif-
ferent sensing modalities. Considering, as an example, the ego-motion, the impact on
the auditory channel is extremely limited, while the visual domain is strongly affected.
The optical flow, instead, is more focused on the motion in the scene, rather than the
appearance, and is therefore less sensitive to environmental changes [42] (see e.g. Fig.
1). Despite being more subject to environmental bias, RGB data are richer information
sources, representing in detail all the objects present in the scene. As such, they play a
crucial role for understanding the affordances of the scene [24]. Lastly, the domain shift
of the audio signal is further distinct from the visual one (e.g., the sound of ‘cut’ will
differ from a plastic to a wooden cutting board). These observations suggest that do-
main shifts are not all of the same nature, and their impact can vary significantly across
modalities. As a consequence, it is of crucial relevance to develop classifiers able to as-
sess - depending on the conditions - which modality is more informative, and therefore
modulate on the flight the weights that combine different sensing inputs for the out-
put definition. This approach demonstrated how increasing the network’s multi-modal
learning capability promotes model resilience across domains, allowing the model to
better recognize action under diverse domain shifts.

As a step in this direction, in our previous work [46], we proposed a multi-modal
framework, called Relative Norm Alignment network (RNA-Net), which aims at pro-
gressively aligning the feature norms of audio and visual (RGB) modalities among
multiple sources in a Domain Generalization (DG) setting, where target data are not
available during training. Interestingly, our results demonstrated that a mere feeding of
all the source domains to the network without applying any adaptive techniques leads to
sub-optimal performance, while a multi-source domain alignment allows the network
to promote domain-agnostic features[46]. However, it must be noted that the RNA-Net
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Place pan Stir riceTake carafe

Fig. 1. Three examples of RGB frames (top line) and colorized optical flow (bottom line) with
the corresponding verb and noun labels. The three frames come from different kitchens in the
Epic-Kitchens-100 dataset.

assumes a simplified (and unrealistic) scenario, in which only one single domain shift
(environmental bias, i.e. different kitchens) and few different actions (8 labels) are con-
sidered. With this work, we extend and generalise the field of application of RNA-Net
to a more realistic and challenging scenario, where i) most of the possible domain shifts
are considered and ii) we considerably increase the number of actions and objects avail-
able for the classifier (up to 97 actions and 300 different objects).

To reach this goal, in this work we developed a method to tackle the most realistic
setting possible, adopting the Epic-Kitchens-100 dataset and facing the corresponding
UDA challenge. Indeed, both the presence of different environments and the fact that
the source and target domains are captured in different temporal moments make it a
multi-shift problem ideal for our experiments. Our basis idea is that, to increase the
consistency of the predictions and close the source-to-target accuracy gap, it is neces-
sary to tackle concurrently both the temporal shift and the environmental bias. Such a
problem is an extension of a simple UDA setting and may be referred to as Multi-Source
Multi-Target Domain Adaptation. The term ”Multi” refers to the various environments
found in both the source and target datasets.

As anticipated before, to face this new setting we exploited the capability of the
RNA-Net method of close the gap between feature norms of different modalities. Our
method was complemented with several domain adaptation techniques which tackle
other aspects of the domain shift. In particular, we integrated several branches at distinct
levels of abstraction, namely frame-level and video-level, into our framework to use the
adversarial alignment technique for feature adaptation as in [9]. All of the techniques
presented attempt to use the target data by acting simply on the model’s features; differ-
ently, we introduce in this framework a set of losses aimed at minimising the classifier’s
uncertainty on the target data, thereby boosting the model’s adaptability. Lastly, to deal
with the significant challenges posed by this dataset, we adopted different models as an
ensemble to obtain the final prediction and we introduce also a set of ensemble UDA
losses.
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To summarize, this paper advances the state of the art with the development of
a strong UDA pipeline that we tested on a competitive international challenge (Epic-
Kitchens-100)4. Our contributions are (see also Figure 2):

1. RNA-Net was extended to the Flow modality, obtaining remarkable results without
accessing target data;

2. with further modifications, RNA-Net was adapted to work with unlabelled target
data under the standard Unsupervised Domain Adaptation (UDA) setting;

3. the challenge’s setting was revisited by identifying a new concurrent shift denom-
inated ”environmental bias”. Our framework was modified accordingly to perform
Multi-Source Multi-Target Domain Adaptation;

4. the final results were obtained by combining different model streams by means
of DA-based losses, namely Min-Entropy Consistency (MEC) and Complement
Entropy (CENT).

2 Related Works

First Person Action Recognition. So far, most of the research effort has been fo-
cused on data provided by a specific view of the camera (often fixed), i.e., third person
view [54,64,5]. With the recent release of a large-scale dataset of first-person actions
[14], the community started to investigate the potential and the challenges of videos
recorded from an egocentric viewpoint. As we anticipated in the Introduction, first per-
son action recognition suffers from sudden changes of view caused by the motion of
the camera. To tackle this problem, the main approaches proposed so far are based on
multi-stream architectures [5,54,41,37,6,30,40], many of which are inherited from the
third-person action recognition literature. The networks used to extract spatial-temporal
information from egocentric videos can be divided into two main groups. The first ex-
ploits Long Short-Term Memory and variants [59,60,58,21] to generate an embedding
representation based on the temporal relations between the features frames. The sec-
ond [55,62,66,29] leverages 3D convolutional kernels, which jointly generate spatial-
temporal features by sliding along the spatial and temporal dimensions. Recent works
also exploit an attention mechanism at frame or clip level [60,58,44,39,40] to re-weight
the spatial or temporal features, obtaining interesting results. By observing the impor-
tance of multi-stream approaches in this context, several papers investigate alternative
methods to fuse streams w.r.t. the standard late fusion approach, creating a more com-
pact multi-modal representation [57,65,66,69]. The most popular technique in this con-
text is the multi-modal approach [5,42,64,58,21], especially in EPIC-Kitchens compe-
titions [15,14]. Indeed, RGB data is frequently combined with motion data, such as
optical flow and audio information [31].

Unsupervised Domain Adaptation (UDA). The goal of UDA is to bridge the do-
main gap between a labeled source domain and an unlabeled target one, which often
are drawn from different data distributions. We can divide unsupervised domain adap-
tation approaches into discrepancy-based methods, which explicitly minimise a dis-
tance metric between source and target distributions [67,53,38], and adversarial-based

4 https://epic-kitchens.github.io/2022
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Fig. 2. An overview of the proposed approach. It can be summarized in four main aspects: 1.
Domain Generalization through RNA-Net [46], 2. Unsupervised Domain Adaptation via Multi-
Level Adversarial Alignment and entropy minimization, 3. Multi-Source Multi-Target Domain
Adaptation extension and 4. Ensemble Domain Adaptation losses.

methods [19,61], which target the same goal using a gradient reversal layer (GRL) [22].
Other works, instead, exploit batch normalisation layers to normalise source and target
statistics [35,36,7]. The approaches described above have been designed for standard
image classification tasks. Considering methods developed specifically for video tasks,
instead, it is worth mentioning UDA for action detection [1], segmentation [10] and
classification [9,42,12,28,43,56]. To align the temporal dynamics of feature space for
videos, several works on video domain adaptation use an adversarial learning frame-
work like DAAA [28], also at multi-level such as in TA3N [9], in conjunction with an
attention mechanism. TCoN [43] exploits a cross-domain co-attention mechanism to
match the feature distributions between source and target domains, for temporal align-
ment. Other methods, instead, exploit jointly with the adversarial approach also aux-
iliary self-supervised tasks. As an example, in Munro et al. [42] the authors propose
a synchronisation task to learn the multi-modal correspondence of RGB and optical
flow. SAVA [13], instead, proposes a self-supervised predictive method for video do-
main adaptation, which aims to predict the clip order. Instead in [56,32,52], the authors
propose a self-supervised contrastive learning approach for video domain adaptation.

Domain Generalization (DG). The DG scenario is a particular setting in which
no target data is available at all, and the model is expected to learn to generalise using
inputs from a single or multiple source domains, as it may happen in realistic scenarios.
Previous approaches in DG are mostly designed for image data [4,63,33,20,34,3] and
are divided in feature-based and data-based methods. The former focus on extracting
invariant information which are shared across-domains [33,34], while the latter exploit
data-augmentation strategies to augment source data with adversarial samples to get
closer to the target [63]. Interestingly, using a self-supervised pretext task is an efficient
solution for the extraction of a more robust data representation [4,3]. Recently, in [46]
we proposed a feature-level solution for Domain Generalization problem in first person
action recognition by leveraging audio-visual correlations.

3 Problem Definition

Epic-Kitchens Action Recognition Challenge, is based on a dataset of video con-
sisting of trimmed actions, where the start and end times of each action are given.
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The objective of the challenge is to understand the activity executed in each sample,
uniquely defined by the couple ’verb’ (i.e. the actual action) and the main interacting
object (’noun’). In the official dashboard 5 the authors report the performance linked to
all those 3 categories separately. This is done because objects and actions represent the
two main pillars that describe the high-level activity implemented, but since they are
encoded differently in the input data (mainly RGB for objecs, motion for actions), in
some cases the model could be more accurate in classifying only one of the two. The
overall activity classification is assumed to be correct only if both the object and the
action are classified properly.

Given ks ≥ 1 source domains {S1, ...,Sks}, where each S = {(xs
i , y

s
i )}

Ns

i=1 is
composed of Ns source samples with label space Y s known, our goal is to learn a
model representation able to perform well on kt ≥ 1 target domains {T1, ..., Tkt},
where each T = {xt

i}
Nt

i=1 of Nt target samples whose label space Y t is unknown. If we
consider Ds,i,Ds,j distributions of the i-th and the j-th source domain and Dt,w,Dt,z

distributions of the w-th and the z-th target domain. Our two main assumptions are that
the distributions of all the domains are different, i.e., Ds,i ̸= Dt,w ∧ Ds,i ̸= Ds,j ∧
Dt,w ̸= Dt,z , with i ̸= j and with w ̸= z, i, j = 1, ..., ks and w, z = 1, ..., kt, and that
the union of all label spaces is shared, Cs = Cs,1 ∪ ... ∪ Cs,ks = Ct,1 ∪ ... ∪ Ct,kt = Ct.
In this work we consider three different scenarios:
Domain Generalization (DG), where at training time the model can access one or
more fully labeled source datasets S1, ...,Sks, but no information is available about the
target domains T1, ..., Tkt. The objective is to train a model able to predict an action of
the target domain without having access to target data at training time, thus exploiting
the knowledge from multiple source domains to improve generalization. The literature
refers to this setting considering the number of target domains kt equal to 1.
Unsupervised Domain Adaptation (UDA), where at training time it is possible to
access a set of unlabeled target samples belonging to the target domains T1, ..., Tkt,
jointly with one fully labeled source domain S1, ...,Sks. Usually the literature refers to
this setting considering both the number of target domains kt and the number of source
domains ks equal to 1.
Multi-Sources Multi-Target Unsupervised Domain Adaptation, an extension of the
previous setting, with the only difference that ks and kt are larger than one.

4 Our Approach

In this section, we first describe the DG approach used. Then, we show our UDA frame-
work and its extension for Multi-Source Multi-Target Domain Adaptation. Finally, we
demonstrate how to re-define existing DA-based losses to induce consistency between
different architectures.

4.1 Domain Generalization

The multi-source nature of the proposed challenge setting makes it perfect to deal with
the domain shift using DG techniques. Thus, we first exploited a method which has been

5 https://codalab.lisn.upsaclay.fr/competitions/1241#results

https://codalab.lisn.upsaclay.fr/competitions/1241#results
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recently proposed to operate in this context, called Relative Norm Alignment (RNA)
[46]. This method consists of an audio-visual domain alignment at feature-level through
the minimization of a cross-modal loss function (LRNA). The latter aims at minimizing
the mean-feature-norm distance between the audio and visual features norms among all
the source domains, and it is defined as

LRNA =

(
E[h(Xv)]

E[h(Xa)]
− 1

)2

, (1)

where h(xm
i ) = (∥·∥2 ◦fm)(xm

i ) indicates the L2-norm of the features fm of the m-th
modality, E[h(Xm)] = 1

N

∑
xm
i ∈Xm h(xm

i ) for the m-th modality and N denotes the
number of samples of the set Xm = {xm

1 , ..., xm
N}.

Authors of [46] proved that the norm unbalance between different modalities might
cause the model to be biased towards the source domain that generate features with
greater norm, thus causing wrong predictions. Contrarily, by simultaneously solving
the problem of classification and relative norm alignment on different domains, the net-
work extracts a shared knowledge between the different sources, resulting in a domain-
agnostic model.

In this work, we extended the RNA-Net framework to the optical flow modality,
in order to exploit the multiple sources available from the official training splits while
showing the effectiveness of RNA loss in a multi-source DG setting.

4.2 Domain Adaptation

The UDA techniques embedded into our pipeline can be divided in two main groups:
feature-level and classifier-level. The first aims at aligning the distribution of source
and target, and works at different levels of representation (frames- and video-level); the
latter, instead, reduces the classifier’s uncertainty on target data.
Multi-Level Adversarial Alignment. Following popular unsupervised domain adap-
tion techniques for videos, we integrate into our framework an adversarial approach
[9,42], consisting of an extension of the DANN [22] typical UDA image-based method.
We apply it at two different feature levels; frame- and video-level. It entails the intro-
duction of two separate branches in our framework. Down-stream of said branches there
are discriminators that try to distinguish the two domains (source and target). Contrar-
ily, by maximising the corresponding discriminator losses, the network learns feature
representations invariant to both domains.
Attentive Entropy. In order to reduce the uncertainty of the classifier on the target data,
we minimize the attentive entropy loss proposed in [9] as in [48]. This action minimizes
the entropy, resulting in a refinement of the classifier adaptation. The term ”attentive”
refers to a loss re-weighting approach that prioritizes videos with low domain discrep-
ancy by focusing on minimizing entropy for these videos.

4.3 Multi-Source Multi-Target Domain Adaptation

The previous Epic Kitchen challenges [17,16], as well as the literature on unsupervised
domain adaptation for first person action recognition [42,46,45,49,47], reveal a strong
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dependency of the models on the environment where the actions are recorded. This
problem, known as ”environmental bias”, causes a decrease in performance in occur-
rence of environment switches. As regards past action recognition challenges, we see
this behavior by comparing performances of the models when tested on S1 (seen) and
S2 (unseen). In the setting proposed in [42], similar behavior is observed, demonstrating
the model’s low generalization ability when tested on different kitchens.

The above considerations allow us to identify a secondary shift in this challenge,
that occurs along with the temporal shift. Indeed, the training data are collected from
different environments i.e. kitchens, thus introducing an environmental shift. As a re-
sult, we may rename the challenge setting Multi-Source Multi-Target Unsupervised Do-
main Adaptation. To deal with this new setting, we propose a novel framework - which
we call Multiple Spatio-Temporal Adversarial Alignment (MSTAA) - combining Multi-
ple Temporal Adversarial Alignment (MTAA) and Multiple Spatial Adversarial Align-
ment (MSAA). MTAA is obtained by adopting 2K domain adversarial branches (where
K indicates the number of kitchens), aligning the source and the target distribution both
at video- and frame-level for each kitchen. Instead, MSAA consists in adding another
adversarial branch with a k-dimension discriminator in order to align the distribution of
different kitchens and alleviate the environmental bias issue.

4.4 Ensemble UDA losses

For our final testing, different models have been used in order to fully exploit the po-
tentiality of popular video architectures. However, training individually each backbone
with standard UDA protocols would result in independently adapted feature represen-
tations, which consequently vary between different streams. Our intuition is that this
aspect could impact negatively the training process and the performance on target data.
Indeed, since the domain adaption process acts on each architecture independently,
naively training the backbones separately would yield mismatching prediction logits
on target data, which, when combined, could increase the level of uncertainty of the
model. For this reason, we use the Min Entropy Consensus (MEC) loss, to impose a
consistency constraint between feature representations from various models. Then, re-
purposing the existing Complement Entropy (CENT) loss, we attempt to exploit the
target data samples based on the assumption that there are some conditions in which it
is easier to answer the question ”Which classes does this action not belong to?” rather
than ”Which class does this action belong to?”.
Min Entropy Consensus (MEC loss). We extended the loss proposed in [51] to en-
courage coherent predictions between different models. The resulting loss is defined
as:

LMEC = − 1

m

m∑
i=1

1

b
max
y∈Y

∑
b

log pb(y|xt
i) (2)

where m is the cardinality of the batch size of the target set, y is the predicted class, and
log pb(y|xt

i) is the prediction probability of the b-th backbone network. The intuitive
idea behind the proposed approach is to encourage different backbones to have a similar
predictions.
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Complement Entropy (CENT). The Complement Entropy (CENT) loss aims at neu-
tralizing the negative effects on the final prediction of clips whose logits present high
degrees of uncertainty. It accomplishes this by “flattening” the predicted probabilities of
“complement classes”, i.e., all classes except the predicted one. As a result, when pre-
dictions are ensembled, the noise due to uncertainty on complement classes is reduced.
We refer to this loss as “complement entropy” objective, as it consists in maximizing
the entropy for low-confident classes rather than minimizing it for the most confident
one, as standard entropy minimization does. It is defined as:

LCENT =
1

N

N∑
i=1

H(ŷic̄)

= − 1

N

N∑
i=1

C∑
j=1,j ̸=p

(
ŷij

1− ŷip
log

ŷij
1− ŷip

)

(3)

where N is the total number of samples in the batch, ŷip = maxj(ŷij) represents
the predicted probability of the class p with the higher score for the i-th sample, and
H(·) is the entropy function computed on the prediction of complement classes ŷic̄
(c̄ ̸= p). The formulation is similar to the one in [8], and we extend it to operate in an
unsupervised fashion.

5 Framework

In this section, we describe the architectures of the feature extractors used to produce
suitable multi-modal video embeddings, and the fusion stategies adopted to combine
them. Finally, we deepen the analysis describing the hyper-parameters used.
Backbone. For our submission, we adopted three different network configurations. In
the first one, corresponding to the RNA-Net framework in [46], we used the Inflated
3D ConvNet (I3D), pre-trained on Kinetics [5], for RGB and Flow streams, and a BN-
Inception model [27] pre-trained on ImageNet [18] for the auditory information. Each
feature extractor produces a 1024-dimensional representation which is fed to an ac-
tion classifier. In the second configuration, we used BN-Inception models for all the
three streams, using pre-extracted features from a Temporal-Binding-Network (TBN)
[42] model trained on EPIC-Kitchens-55. In the last configurations, we used standard
ResNet-50 architectures [25] equipped with the Temporal Shift Module (TSM) [37]
pre-trained on EPIC-Kitchens-55 6.
Multi-modal fusion strategies. In all the above mentioned configurations, each modal-
ity is processed by its own backbone, and the corresponding extracted representations
are then fused following different strategies. For RNA-Net, we followed a standard late
fusion strategy, consisting in averaging the final score predictions obtained from two
different fully-connected layers (verb, noun) from each modality. In the other configu-
rations, we adopted the recent mid-fusion strategy, called Semantic Mutual Refinement
sub-module (SMR), proposed in [68], to generate a common frame-embedding among
the modalities. Then, using temporal pooling, we obtain a final video-embedding that
is sent to the verb and noun classifiers.

6 https://github.com/epic-kitchens/epic-kitchens-55-action-models

https://github.com/epic-kitchens/epic-kitchens-55-action-models
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6 Experimental Setting

Dataset. EPIC-KITCHENS-100 [15] is the dataset utilized in our experiments; it was
recorded by 16 individuals from diverse nations (in North America and Europe). The
dataset is divided into two major groups: Source and Target data, which include 16.115
and 32.024 samples, respectively. The source data consists of labelled videos recorded
in 2018, whereas the target data consists of unlabeled videos collected in 2020. Both
categories are further subdivided into train, validation, and test sets. The dataset in-
cludes a total of 3369 possible actions, each of which corresponds to a combination of
”verb” and ”noun”. The total classes for verb and noun are respectively 97 and 300.
Input. For RNA-Net, we use 16 continuous frames (segment) randomly sampled for
each modality during training, while at test time 5 equidistant segments spanning across
all clips are fed to the network. At training time, we apply random crops, scale jitters and
horizontal flips for data augmentation, while at test time only center crops are applied.
Regarding aural information, we follow [30] and convert the audio track into a 256
× 256 matrix representing the log-spectrogram of the signal. The audio clip is first
extracted from the video, sampled at 24kHz and then the Short-Time Fourier Transform
(STFT) is calculated of a window length of 10ms, hop size of 5ms and 256 frequency
bands. Hence, the x and y axis represent time and frequency, respectively. As regards the
other two architectures, TSM and TBN, we use respectively 8 and 25 frames uniformly
samples along all the videos.
Implementation Details. We trained I3D and BN-Inception models with SGD opti-
mizer, with an initial learning rate of 0.001, dropout 0.7, and using a batch size of 128,
following [46]. Instead, when using pre-extracted features from ResNet50 or BNIncep-
tion, we trained the SMR modules on top of them for 45 epochs with an initial learning
rate of 0.03, decayed after epochs 25 and 35 by a factor of 0.1. We used a batch size
of 128 with SGD optimizer. We weighted RNA, CENT and MEC losses λRNA = 1,
λCENT = 0.31 and λMEC = 0.22 respectively. In addition, we report the values used
to weight the attentive entropy loss, γ = 0.003, and the domain losses at different levels
for MSTAA, β = (0.75, 0.75, 0.75).

7 Results

In Table 1 we report our best performing model on the target test, achieving the 2nd po-
sition on ‘verb’, and the 3rd on ‘noun’ and ‘action’. The 3rd place on ’action’ obtained
in the challenge is a demonstration of the robustness of the pipeline developed. Indeed,
unlike the first two positions [11], our approach focuses on developing an unsupervised
domain adaptation strategy that is independent of the backbone used. Indeed, the dis-
parity between our results and the other two approaches is justified by the fact that they
either used large models for action recognition (2nd place) or introduced hand detection
as a secondary branch (1st place [11]). Our results, instead, demonstrate that our UDA
pipeline is competitive even without adopting state-of-the-art models or auxiliary tasks
(such as hand detection). Adding the techniques reported above is complementary to
our work and is another step toward solving the multi-source multi-target domain adap-
tation realistic setting. Additionally, in Tables 2 (left and right) we show an ablation of
the proposed UDA and DG methods described in section 4.
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UNSUPERVISED DOMAIN ADAPTATION LEADERBOARD

Rank Verb Top-1 Noun Top-1 Action Top-1 Verb Top-5 Noun Top-5 Action Top-5

VI-I2R 1 57.89 40.07 30.12 83.48 64.19 48.10
Audio-Adaptive-CVPR2022 2 52.95 42.26 28.06 80.03 67.51 44.03
plnet 3 55.51 35.86 25.25 82.77 60.65 40.09
CVPR2021-chengyi 4 53.16 34.86 25.00 80.74 59.30 40.75
CVPR2021-M3EM 5 53.29 35.64 24.76 81.64 59.89 40.73
CVPR2021-plnet 6 55.22 34.83 24.71 81.93 60.48 41.41
EPIC TA3N [15] 8 46.91 27.69 18.95 72.70 50.72 30.53
EPIC TA3N SOURCE ONLY [15] 9 44.39 25.30 16.79 69.69 48.40 29.06

Table 1. Leaderboard results of EPIC-Kitchens Unsupervised Domain Adaptation Challenge.
The results obtained by the top-3 participants and the provided baseline methods are reported.
Bold: highest result Underline: second highest result; Green: our final submission.

UNSUPERVISED DOMAIN ADAPTATION

Verb Noun Action

Ensemble (E) Source Only 53.64 32.65 22.98

E-UDA 53.88 33.10 23.22

E+MEC 53.67 34.32 23.91

E+MEC+CENT 54.20 33.92 23.99

E-SMR+MEC+CENT 54.55 34.72 24.22

E-SMR+MEC+CENT+MTAA 54.09 33.72 23.77

E-SMR+MEC+CENT+MSTAA 54.01 34.82 24.24

DOMAIN GENERALIZATION

Target Verb Top-1 Verb Top-5

Source Only ✗ 44.39 69.69

EPIC TA3N [15] ✓ 46.91 72.70

RNA-Net [46] ✗ 47.96 79.54

EPIC TA3N+RNA-Net ✓ 50.40 80.47

Table 2. Left. Results on the EPIC-Kitchen validation set with different ensembling UDA losses.
Right. Results on EPIC-Kitchen test set under the DG setting. Bold highest result.

How well do DG approaches perform? The results in Table 2(right) are obtained
under the multi-source DG setting, when target data are not available during training.
Noticeably, RNA outperforms the baseline Source Only by up to 3% on Top-1 and 10%
on Top-5, highlighting the importance of using ad-hoc alignment techniques to deal
with multiple sources in order to effectively extract a domain-agnostic model. More-
over, it outperforms the recent UDA technique TA3N [9] without accessing target data.
Interestingly, when combined with EPIC TA3N, it further improves performance, prov-
ing the complementarity of RNA to other existing UDA approaches.

In Table 2(left) it can be seen how the proposed UDA approaches improve Top-1
accuracy on all categories by up to 1%. Although using an additional adversarial branch
for each kitchen does not appear to provide a significant improvement on the validation
set, it increases the top-1 action accuracy on the test set, allowing us to obtain the third
position in the challenge. Without MSTAA, the accuracy on the action top-1 reaches
just 24.83%. This outcome was predictable given that the validation set is populated
with a different set of kitchens than the test set, whereas the kitchens in the test set are
the same as those used for the target and source training. This aspect confirms the Multi-
Source Multi-Target Unsupervised Domain Adaptation setting and the presence of two
different shifts, the temporal shift (2018-2020) and the environmental shift (among the
kitchens).
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8 Conclusions

In this paper, we introduced and discussed the potentiality of egocentric vision for
human-robot cooperation. Indeed, this source of information may come with the in-
teresting benefit of an intrinsic attention mechanism associated to the user head posture
and gaze direction. The wearability of the sensing setup makes this technology partic-
ularly suitable to be deployed in unstructured scenarios, where robots and humans are
co-existing in a daily-life environment. While from one side this is a key enabling fac-
tor for the actual deployment of human-robot cooperating frameworks, it also brings
several challenges, such as the severe noise superimposition caused by ego-motion, and
the strong domain shifts associated to the particular unstructured tasks (i.e. changing
environments, subjects, habits). For this reason, to really unlock the potential of ego-
centric vision, it is important to develop models able to generalize efficiently across
domains. In this paper, we presented an unsupervised approach for Multi-Source Multi-
Target Domain Adaptation for egocentric action recognition as a strong solution to the
problem of temporal and spatial biases. Moving from these promising results, we plan
to integrate our framework in a more general human-robot cooperation framework, in
which the manipulator will be able to identify the action performed by the human, and
eventually plan a consequent action to support human tasks.
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