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ABSTRACT The presence of extreme weather conditions is known to expose drivers to a higher risk to incur
in road accidents. Quantifying the correlation between adverse weather conditions and road traffic safety is
useful for several reasons such as planning preventive actions, managing vehicle fleets, and configuring
alerting systems. However, since the risk of road accidents occurrences within a specific spatial region is
influenced by several factors other than the weather conditions, quantifying the actual impact of adverse
weather phenomena regardless of the effect of weather-unrelated conditions can be challenging. To tackle the
aforesaid issue, this paper proposes to adopt a unified latent space model based on time series embeddings.
Firstly, it encodes a subset of historical series reporting weather-related accident occurrences in specific risky
areas into the high-dimensional vector representation. It also encodes the weather element measurements
acquired by meteorological stations spread over the analyzed area. Then, to estimate the risk level of each
region within the same spatial context it seeks the temporal risk patterns that are most similar to those
observed in risky areas. The experiments carried out in a real case study confirm the applicability of the
proposed approach.

INDEX TERMS Time series embeddings, weather data analysis, road accidents analysis, key performance
indicators.

I. INTRODUCTION
Understanding the causes of road accidents is of great
importance in several domains, among which urban mobility
management [1], preventive maintenance [2], and emergency
management [3]. Lots of efforts have been devoted to
studying the factors influencing the likelihood of road
accidents occurrences. In this regard, traffic and weather
characteristics are known to have a strong influence on road
traffic safety [4], [5].

The increasing availability of weather and traffic data
has fostered a deeper exploration of both traffic charac-
teristics [6]–[8]) and weather conditions (e.g., [9]–[11]).
For example, regarding weather effects, the effects of
precipitations, temperature, and visibility conditions are
known [12]. Weather conditions have been found relevant in
the prediction of travel time [13] and fuel consumption [14].
Under the same umbrella, previous studies (e.g., [15]) have
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highlighted the correlation between the presence of extreme
weather conditions (e.g., heavy rain, very low temperatures)
and the occurrence of road accidents. The present work
specifically studies the correlation with such extremeweather
conditions by means of a data-driven approach.

The purpose of this work is to quantify the influence of
extreme weather effects on road accidents occurrences within
specific spatial regions. Despite previousworks have clarified
their big influence, two related issues still deserve attention:
(1) The likelihood of observing traffic crashes is likely to be
influenced by factors other than the occurrences of extreme
weather conditions as well [16]–[18]. (2) Statistics about
traffic crashes are typically incomplete and characterized
by a certain level of uncertainty [19]. For these reasons,
in practice, it is difficult to quantify the actual effect of
extreme weather conditions on road accidents occurrences
regardless of the effect of other conditions.

Motivated by the lack of ad hoc data-driven solutions to
the aforesaid problem, we propose to leverage the weather
element measurements acquired by meteorological stations
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within delimited spatial areas where actual weather-related
road accidents are reported. Specifically, we present a unified
latent space model, based on time series embeddings, that
encodes the key information about (1) the weather-related
road accidents that occurred in risky areas, and (2) the
weather element measurements acquired by meteorological
stations in all the analyzed regions (both the risky areas and
the unclassified ones).

For our purposes, we denote a context as a set of spatial
regions with similar characteristics (e.g., same urbanization
level, similar elevation, same geographical district). We esti-
mate the risk level associated with each region within a spe-
cific context as the similarity level, computed in the unified
latent space, between the weather element measurements
acquired by meteorological stations in the region and those
observed in risky areas. Since weather measurements are
most likely to be acquired with widespread coverage, they
can be profitably exploited to identify sequences of adverse
weather events that are similar to those that occurred in risky
areas, i.e., in the areas where weather-related road accidents
have been previously reported.

The presented data-driven methodology consists of three
main steps. First, the raw weather measurement series
associated with each weather monitoring station are trans-
formed into a set of temporal sequences of observed events
describing adverse weather conditions (e.g., very high or
very low temperature values, heavy rain). Next, the extracted
sequences are embedded into a high-dimensional latent space
model to capture similar trends in the series of weather
element measurements. Finally, the estimation of the risk
levels is performed using four different risk models, which
leverage the encoded information using alternative strategies.

To empirically analyze the results achieved by the proposed
approach we run a set of experiments on real data acquired
from the U.S. Historical Climatology Network and the
U.S. Census. The outcomes of the simulations confirm the
applicability of the proposed approach in real scenarios where
the estimated risk levels can be profitably exploited as Key
Performance Indicators to support decision-making.

The paper outline is reported below. Section II overviews
the related literature. Section III presents the proposed
methodology. Section IV presents the data under con-
sideration and summarizes the main empirical findings.
Section V draws conclusions and discusses the future
research directions.

II. RELATED WORKS
Prior works have already investigated the effect of weather
on road traffic safety. A preliminary attempt to study the
effects of weather conditions on daily crash counts was
made in [16]. The authors applied auto-regressive time series
forecasting models on historical crash data, meteorological
data, and traffic exposure data. The idea behind it was to
predict the number of car crashes that are likely to occur in
the upcoming days by discovering predictive trends from past
series of correlated measurements. Similar to [16], the work

presented in [15] focused on studying the correlation between
the time series of quantitative weather measurements and
the counts of injury accidents reported on a monthly basis.
In parallel, they also investigated the use of daily time series
to study the within-the-month variability of extreme weather
effects. A more robust machine learning-based approach to
accident count prediction is given in [18]. Recent works also
addressed the study of the separate impact of climate and
non-climate variables on fatal traffic accidents [20], [21]. The
study of accident contributing factors has been enabled by
several digital technologies including AI, IoT, and vehicle
networks [22], [23]. A systematic review of the most recent
applications can be found in [24].

The present work studies the effects of extreme weather
conditions on road traffic safety using an unsupervised
approach based on time series embedding techniques.
Unlike [15], [16], [20], [21], it focuses on estimating the
risk level of a spatial context by identifying and comparing
risky patterns that occur in the sequences of extreme weather
events.

Partly related studies tailored to specific application
scenarios have been presented in [25]–[27]. Specifically,
in [25] the authors aimed at forecasting crashes on freeways
due to reduced visibility. The predictive models achieved
around 70% precision in crash identification. The work
presented in [26] analyzed the impact of rainfall on road
traffic accidents in urban areas, whereas in [27] the authors
proposed a crash prediction model to forecast hourly crash
likelihood of highway segments. The aforesaid studies
highlighted the importance of real-time contextual informa-
tion such as weather, road surface, and traffic conditions.
Furthermore, in [27] the authors also argued that rainfall
quantification acquired by meteorological stations is likely
to be not representative enough of the actual road safety. The
methodology presented in this paper is neither tailored to a
specific mobility context (e.g., highways, urban areas) nor
to a particular adverse weather condition (e.g., rainfall, low
visibility).

Recently, the authors in [17], [18], [28] explored the
use of Machine Learning models to forecast road acci-
dents occurrences. Specifically, they trained an ensemble
of tree-based models on multivariate, fine-grained weather
datasets. Thanks to the inherent interpretability of the predic-
tive models, they have shown that a subset of the considered
weather variables is highly discriminating for predicting
accident occurrences. This paper focuses on quantifying
the correlation with adverse weather conditions to estimate
per-context risk levels. The work presented by [19] explored
the data sources that have been previously used in literature
to study road traffic safety. The main takeaway from the
above-mentioned research study is that the presence of data
uncertainty may hinder the application of the previously
proposed data-driven methodologies. Inspired by the latest
research findings, we aim at overcoming the limitations
of existing approaches due to the lack (or uncertainty) of
weather-related accident data.
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A preliminary version of the present work was presented
in [29]. It provides a high-level overview of the problem and a
qualitative evaluation of some preliminary results. This work
substantially extends [29] as follows: (1) It formalizes the
problem under analysis (see Sections III-A, III-B, and III-C),
(2) It details the procedure used to compute the per-context
risk levels (see Algorithm 1), (3) It presents four new risk
models aimed at effectively computing the risk level of a
region within a given context (see Section III-D), (4) It
presents a quantitative strategy to compare the performance
of different risk models (see Section IV-D).

III. PRESENTED METHOD
The proposed methodology, namely Weather Influence on
Road Accidents (WIRA, in short), focuses on quantifying
the effect of adverse weather conditions on road accidents
occurrences in different spatial contexts.

A pseudo-code of the adopted procedure is reported
in Algorithm 1. The main WIRA architectural blocks are
enumerated below.
• Context definition: it maps geographical areas char-
acterized by specific combinations of geographical and
census feature values to different contexts. Each context
is then annotated with the locations of the previously
reported weather-related road accidents (see Section III-
B).

• Weather data acquisition and preparation: the raw
weather element measurements are acquired by the
meteorological stations, collected in a centralized repos-
itory, and processed to extract the temporal sequences
of adverse weather events. To combine weather data
with road accidents counts, each meteorological station
is also mapped to the nearest region within the analyzed
area (see Section III-C).

• Time series embedding: a high-dimensional vector
representation of the per-station series of adverse
weather events is inferred using an ad hoc neural
network-based embedding approach from weather data
(see Section III-D).

• Contextualized risk model: it quantifies the risk level
separately for each of the previously defined contexts.
Risk level estimates are based on domain-specific data-
driven models designed on top of the unified latent
space. (see Section III-E).

A more thorough analysis of each step is reported in the
following sections.

A. SUMMARY OF THE NOTATION USED
• A: geographical area under consideration.
• R: delimited spatial region within A.
• S: set of meteorological stations.
• W: set of weather elements (e.g., temperature, rain/snow
level, snow depth) monitored by the stations in S.

• Tws : series of historical measurements of weather
element w ∈W acquired by station s ∈ S.

Algorithm 1: The WIRA Methodology

Input : A: geographical area under consideration;
C: set of relevant contexts;
Dw: dataset including weather data relative to

all the stations;
Da: dataset including weather-related accidents

data for all the
cities located in the considered area;
M: risk model

Result: L: per-context risk levels

/* Context definition */
foreach c ∈ C do

Rc← partitionAreaIntoRegions(A, c)
R̂c←: traceRiskyLocationsPerContext(Rc, Dw, Da)

/* Weather data preparation */
S← ExtractStations(Dw)
Ŝ←: MapStationsToRiskyLocations(ORc, S)
foreach s ∈ S do

SEs← ExtractAdverseEventSequences(Dw, s)
SE = ∪s∈SSEs
/* Time series embedding */
TSE← Train-Embeddings(SE, S)
/* Apply the contextualized risk

model */
foreach c ∈ C do

Sc← RetrievePertinentStations(S, c)
Ŝc← PertinentStationsCloseToRiskyLocations(Sc,
Ŝ)
foreach s ∈ Sc do

rs←: ApplyRiskModel(TSE,M, s,OSc)
Lc = Avgs∈S {rs}

L = ∪c∈C Lc
return L

• F: set of features describing the key geographical
and census properties of a region (e.g., elevation,
urbanization level).

• C: set of relevant contexts.
• E: set of discrete events corresponding to pairs 〈w,m〉,
where w ∈W and m is a discrete measurement level for
w.

• P(E): power set of E.
• SEs: sequences of adverse weather events acquired by
station s ∈ S.

• Ŝ: subset of stations ŝ ∈ S labeled as risky.
• Lc: contextual risk level.

B. CONTEXT DEFINITION
The geographical area A under consideration is partitioned
into a set of regions R. Each region is associated with a
fixed set of features F, which describe either geographical,
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cartographic, orographic, or census data. For example, the
U.S. territories can be divided into regions characterized by
different elevation range, district, country, and urbanization
level.

Regions with similar characteristics are clustered into
contextual groups. Specifically, a context c is defined as a
subset of feature values (one or more). We assume that a set
C of relevant contexts is provided as input by the domain
expert. Set Rc groups all the regions characterized by context
c. For example, a context may group all the regions in the U.S.
characterized by a high urbanization level.
Given a collection of weather-related accident data Da,

we enrich each context with the corresponding set of past road
accident locations (see Line 3 in Algorithm 1). Specifically,
for each context cwe keep track of theGPS positions of all the
road accidents occurred withinRc. Tracking the geographical
positions of past road accidents will allow us to map adverse
weather conditions to risky locations, as discussed later on.

C. WEATHER DATA PREPARATION
Weather-related measurements are acquired by a set S
of meteorological stations spread over the geographical
area. Stations monitor various weather elements W (e.g.,
temperature, rain/snow level, snow depth).

For each context c we acquire the raw series of weather
elements’ measurements Tws reported by all the meteorolog-
ical stations located within c and collect them into a unique
contextual weather dataset. To define the risk level of a given
context, each contextual dataset will be separately analyzed.

To study the influence of adverse weather effects on traffic
safety, we first identify the occurrences of adverse weather
conditions in the raw weather element measurements (see
Lines 7-9 in Algorithm 1). To this aim, for each station
s we extract the temporal sequence SEs of discrete events
reported by s that represent adverse weather conditions. More
specifically, each event is a triple 〈w, 6,m〉, where w ∈ W
is a weather element (e.g., temperature), 6 is a comparison
operator (e.g.,<), andm is a threshold. For instance, event 〈w
= temperature,6=<,m=−20◦C〉 indicates the occurrence
of a critical minimum temperature below −20◦ C.
Event sequences SEs will be considered to estimate the

per-context risk levels as they embed all the weather-related
risky patterns observed by station s, independently of the
recorded occurrences of past road accidents.

D. TIME SERIES EMBEDDING
Time series embedding entails encoding the sequences
of adverse weather events associated with all the input
meteorological stations within the analyzed context (both
located in risky locations and not) into a unified, high-
dimensional vector space (see Line 11 in Algorithm 1). Each
vector in the embedding space corresponds to a different
station and embeds all the key information provided by the
observed adverse weather events.

Figure 1 depicts the time series embedding inference
process. Red and grey icons respectively correspond to

stations located in risky locations and not. They are both
mapped to vectors in the vector space according to the
sequence of adverse weather events observed in the weather
measurements they acquired.

To encode the sequences of adverse weather events
we tailor the word-level embedding strategy called Para-
graph2Vec [30], originally designed for text processing,
to our context of analysis. The resulting vector space consists
of a distributed vector representation of meteorological
stations, where all the key information relative to each
station is encoded into a separate vector. The key idea
is to map stations reporting similar sequences of adverse
weather events into the same region of the embedding space
thus capturing the underlying characteristics of the seasonal
trends in the event sequence. To this aim, we adopt an
approach similar to a word-level text encoder, which focuses
on capturing the semantic meaning of a word in a textual
corpus.

Our purpose is to encode the words in a vocabulary P(E),
where each word corresponds to one of the possible events
combinations that may occur on a given day. To capture the
seasonality of the adverse weather events, we split the histor-
ical sequences of adverse weather events observed by each
station into multiple sub-sequences, each one corresponding
to specific time spans (e.g., the yearly sequences). The
aggregated sequences of daily event combinations observed
by a station within a year virtually correspond to a text
paragraph (consisting of a sequence of words).

The inference process of the paragraph-level embed-
dings is performed by an extended version of the
Paragraph2Vec [31] architectures, namely the Distributed
Memory-like (PV-DM-like) and Distributed Bag of Words
(PV-DBOW-like), tailored to the problem under analysis. The
PV-DM-like model, depicted in Figure 2(a), relies on the
established Continuous Bag-of-Word (CBOW) model first
proposed in Word2Vec [32]. According to the distributional
hypothesis, CBOW infers the word vectors by assuming
that the occurrences of a given word in a text are likely
to be correlated with those of its immediately preceding or
subsequent ones (namely the context). Analogously, here we
predict the occurrence of specific adverse weather events
on a given day based on its temporal correlation with the
adverse weather events observed in the preceding/following
days. The network takes as input the paragraph and station
identifiers as well as the corresponding sequences of daily
event combinations. It returns the encoding of the subsequent
daily event combination.

PV-DBOW-like, depicted in Figure 2(b), disregards the
contextual information at the input level and forecasts
randomly sampled encodings of daily event combinations
starting from either the paragraph ID or the station ID.

E. CONTEXTUALIZED RISK MODELS
This step entails estimating the risk level of each context on
top of the time series embedding model (see Lines 12-19 in
Algorithm 1). The returned risk level quantifies the likelihood
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FIGURE 1. Inference of station embeddings based on adverse weather event series.

FIGURE 2. The architectures.

that the presence of adverse weather effects influence road
accidents occurrences within the analyzed context.

We present here four different strategies to compute
the risk level tailored to the analyzed context, namely
the contextualized risk models. The idea behind all the
proposed riskmodels is to opportunistically reuse the (partial)
information about the presence of risky locations to quantify
how similar the embedding vectors of the stations located
in non-risky locations are compared to the station vectors
located in risky locations (within the same context). In a
nutshell, the more similar the station embeddings the more
risky the analyzed context because the weather element
measurements are likely to be temporally correlated with one
or more risky sequential patterns.

Whenever not otherwise specified, pairwise vector similar-
ities are computed using the cosine similarity, which is known
to be suitable for comparing samples in high-dimensional
dataset [33].

To define the per-context risk levels, we designed the
following models: (i) Centroid-based model (depicted in
Figure 3a using a simplified bidimensional space), (ii)
proximity-based model (see Figure 3b), (iii) density-based
(see Figure 3c), and (iv) Top-k model (see Figure 3d).
A thorough description of each model is given below.

1) CENTROID-BASED MODEL
Each station embedding belonging to the context is compared
with the centroid of the stations located in the neighborhood

of a risky location (within that context). The centroid is
the representative station located at the center of the risky
locations. It is computed as the point-wise average vector
of all the station vectors located in a risky location. For
example, the red cross in Figure 3a represents the centroid
of the four stations located in risky locations (colored in
red). To estimate the risk level of the light blue and light
green stations we measure the respective distances from the
centroid. The overall risk level of the context is computed by
averaging the per-station risk levels.

2) PROXIMITY-BASED MODEL
Each stationwithin the context is comparedwith theK nearest
stations located in a risky location (whereK is specified by the
end-user). Similarities between pairs of stations are estimated
using the pairwise vector distances. The risk level of the
context is computed as the average of all the station levels.

For example, the light blue station vector in Figure 3b is
compared with the 3 nearest station vectors corresponding
to risky locations. Notice that the nearby grey stations
are ignored as their corresponding risk levels are a priori
unknown.

3) DENSITY-BASED MODEL
Similar to the homonym clustering technique [34], the
neighborhood of each station vector is explored to quantify
the density of stations located in risky locations. The
neighborhood of a station is defined as the subset of stations
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whose similarity is above a given threshold t. For example,
in Figure 3c the neighborhood of the light blue station
(respectively light green) is represented by all the stations
within the light blue circle (respectively light green). The
risk level of a station is computed as the percentage ratio of
risky stations to the overall number of neighbor stations. For
example, the light blue station has just one station located
in a risky location over three neighbor stations (i.e., one red
station and two grey stations). Conversely, the light green
station has ratio 1 as all the three neighbor stations are red.
The overall risk level is the average risk level over all the
stations within the context.

4) TOP-K MODEL
The Top-K model is analogous to the density-based one,
but the concept of neighborhood is defined here as the top-
K nearest stations (rather than all the stations that satisfy a
minimum similarity threshold).

For example, the light blue and light green stations in
Figure 3d are graphically linked to the corresponding top-3
nearest neighbors in the hyperspace. The corresponding risk
levels are 1

3 and 1, respectively.

IV. EXPERIMENTS
This section summarizes the main empirical results achieved
on real-world dataset collecting past weather and road
accidents data reported in the U.S.

The experiments were run on a machine equipped with
Intel R© Xeon R© X5650, 32 GB of RAM and running Ubuntu
18.04.1 LTS.

The main settings used throughout the empirical analyses
are summarized below.
• Weather and traffic data: we consider yearly sequences
of adverse weather events annotated with road accidents
occurrences at the daily granularity.

• Time series embedding: We infer the vector represen-
tation employing the Paragraph2Vec [31] model using
the PV-DM (Distributed Memory Model of Paragraph
Vectors) architecture, an embedding vector size 300, and
50 training epochs.

• Weather incidence: we set the risk threshold to the
75th percentile of the per-station Empirical Cumulative
Distribution Function (ECDF).

The remainder of this section is organized as follows.
Section IV-A and IV-B describe the analyzed data. Sec-
tions IV-C and IV-D respectively analyze the effect of
the main input parameters of the designed method on the
achieved results and compare the performance of the pro-
posed risk models in different contexts. Finally, Section IV-F
shows a prime example of graphical dashboards built on top
of the computed risk levels.

A. DATASET DESCRIPTION
We employed a dataset integrating multiple data sources.
Specifically, (i) a collection of time series describing the
raw weather element measurements acquired by various

meteorological stations located in the U.S., (ii) a collection
of the road accidents that occurred from 2016 to 2020 in the
U.S., and (iii) a selection of contextual pieces of information
including cartographic, orographic, and census data related to
the U.S. territories.

Hereafter we will describe the presented data sources in
detail.

1) WEATHER DATA
We retrieved the daily values (since 1950) of weather mea-
surements gathered by 1218 different meteorological control
stations that are part of the U.S. Historical Climatology
Network (USHCN). The aforesaid collection has been made
available by the NOAA’s National Centers for Environmental
Information.1 To avoid introducing a bias in the subsequent
analyses, we will disregard those stations that are either
placed far from all urban areas or have not enough historical
data (i.e., the number of missing values is significant).

The retrieved dataset describes each station with multi-
variate time series. They consist of the daily gathered data
samples about multiple weather elements. Specifically, for
our purposes, we extracted the following information:
• Precipitation (PRCP)
• Snowfall (SNOW)
• Snow depth (SNWD)
• Maximum temperature (TMAX)
• Minimum temperature (TMIN)
It is worth noticing that, according to the data source

documentation, the above-mentioned elements are referred
to as the five core elements as they are reported for a larger
portions of days compared to those of minor importance.

We extract the following adverse weather events from the
complete dataset:
• Maximum temperature over 32◦ C
• Maximum temperature over 40◦ C
• Minimum temperature under -10◦ C
• Minimum temperature under -20◦ C
• Precipitation over 200mm
• Precipitation over 300mm
• Snowfall over 200mm
• Snowfall over 350mm
• Snow depth over 400mm
• Snow depth over 600mm
For our purposes, we also define a subset of more severe

weather events. They consist of the five most restrictive
events presented namely (i) Maximum temperature over 40◦

C, (ii) Minimum temperature under -20◦ C, (iii) Precipitation
over 300mm, (iv) Snowfall over 350mm and (v) Snow depth
over 600mm).

The thresholds defining adverse and severe weather events
have been extracted from governmental sources2,3,4,.5

1https://www.ncei.noaa.gov/ (last access: June 2021)
2https://www.weather.gov/ama/heatindex
3https://www.weather.gov/dlh/extremecold
4https://www.weather.gov/gsp/snow
5https://www.weather.gov/car/Warning_Criteria
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FIGURE 3. Contextualized risk models.

The likelihood of occurrence of different events depends
on the event type, the considered station, and the date. The
event distribution is rather variable.

The analyzed dataset contains 52 different event combina-
tions. More than half of them are relatively frequent, whereas
all the remaining ones appear less than 100 times.

Within the time frame considered, the number of recorded
events per station varies between 0 and 14624 (mean value:
4600 events per station). The analyzed distribution is quite
balanced: most of the stations report an average number of
events, with barely a dozen of stations reporting less than
100 events and less than 50 reporting less than 1000 events.

2) ROAD ACCIDENTS DATA
The dataset stores road accidents data [35], [36] correspond-
ing to the road accidents that occurred in 49 U.S. states in a
five-year period (i.e., from 2016 and 2020). The stored data
include various features characterizing the accidents such as
the location, time, date, and severity level of the accident.

To label cities (and stations) as risky or not, we introduce
the concept of weather incidence. It indicates the percentage
increase in the number of road accidents that occurred
on days when any severe adverse weather event occurred
compared to the accident count on the remaining days.
Cities characterized by a weather incidence value over a
given threshold are labeled as risky since they are likely to
show an increase in the number and/or severity of accidents

during days with adverse weather conditions. The risk level
of the meteorological stations is, instead, related to their
neighborhood. Specifically, all the stations located close to a
risky city (i.e., the red-colored stations depicted in Figures 1
and 3a-3d) are labeled as risky stations.

The minimum threshold value used to define risky loca-
tions/stations has been empirically determined by plotting
the Empirical Cumulative Distribution Function (ECDF) of
the weather incidence values for all the considered stations
(see Figure 4). Given a weather incidence value of x, the
ECDF computes the percentage of stations associated with
a weather incidence value lower or equal to x. In practice,
60% of the stations are not associated with any weather-
related accident, whereas for about 15% of them the number
of weather-related accidents at least doubled the number of
accidents that happened with fair weather. To define the
weather-incidence threshold value needed to discriminate
between risky and non-risky stations/cities, we select the
value corresponding to the 75th percentile of the empirical
distribution (highlighted in orange in Figure 4).

3) CONTEXTUAL DATA
The dataset samples are annotated with various contextual
features. Specifically, we gather (i) cartographic information
about the division of the U.S. territories in regions, divisions,
and states, (ii) orographic information elevation of the
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FIGURE 4. Empirical cumulative distribution function of the weather
incidence values associated with all the meteorological stations.

location and (iii) census data indicating the urbanization level
of a location.

Cartographic information is derived from the definitions
of states, divisions, and regions defined by the U.S. Census,6

whereas orographic information and urbanization levels
about the main U.S. cities are extracted from a public
dataset.7

a: CARTOGRAPHIC DATA
We characterize the location of each station based on the
corresponding state, division, and region defined by the the
U.S. Census.8 The geographical distribution of stations over
U.S. states is quite imbalanced, with a number of stations per
state varying from 2 to 46. This implies that in several states
we do not identify any risky station. However, as shown in
Tables 1 and 2, the distribution of stations over divisions and
regions is relatively even.

b: OROGRAPHIC DATA
Regarding the orographic properties of the weather stations
considered, the elevation levels observed space from 59m
under sea level, for a weather station in Death Valley (Cal-
ifornia), to 2763m above sea level for a station in Colorado.
We discretize those values by grouping stations into elevation
ranges presenting similar climates (see Table 3).

c: CENSUS DATA
To annotate the source data with census information, we first
map every city to the nearest station. This results in each
station having a list of cities under its influence. 13 U.S.
cities are associated with each of the 969 stations that result
mapped. The variability in the number of cities per station is
significant: it ranges between 1 and 181. For this reason, to
define the urbanization level of the neighborhood of a station,
we set a cutoff threshold on the population size of a city

6https://www.census.gov/ (latest access: November 2021)
7https://simplemaps.com/data/us-cities (latest access: June 2021)
8https://www.census.gov/ (latest access: June 2021)

TABLE 1. Distribution of the meteorological stations over the
urbanization levels.

TABLE 2. Distribution of meteorological stations over the U.S. census
divisions.

TABLE 3. Distribution of the meteorological stations over the elevation
ranges.

TABLE 4. Distribution of the meteorological stations over the
urbanization levels.

under the station’s influence. More specifically, employing
the threshold presented in [37], we define the following three
different ranges of population size:
• High urbanization level: the most populated city located
in the station neighborhood has a population bigger than
250000 people.

• Fair urbanization level: the most populated city located
in the station neighborhood has a population between
50000 and 250000 people.

• Low urbanization level: the most populated city located
in the station neighborhood has a population smaller
than 50000 people.

B. CHARACTERIZATION OF WEATHER-RELATED
ACCIDENTS
We analyze here the distributions of accidents, weather-
related and not, over each of the previously defined contextual
features (see Tables 1-4).

Regarding the partitions into regions (see Table 1),
the groups are quite well balanced. The total number of
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TABLE 5. Weather-related road accidents counts per severity level.

TABLE 6. Weather-related road accidents counts per U.S. census division.

stations in the Northeast region is slightly lower because
their extension is averagely higher. In the South region,
the percentage of critical stations is quite low. This is
consistent with the definition of critical station, which is
correlated with the presence of extreme weather events
such as heavy precipitations (e.g., rain, snow), cold waves
or heat waves. Notice that in the South only the latter
event type, and partially the rain precipitations, are widely
present.

Concerning the Census division (see Table 2), similar
observations hold. It is indeed clear that the divisions with
the lowest percentage of critical stations are the divisions of
the South region (West South Central, East South Central and
South Atlantic) plus the Pacific division. Despite being on the
opposite coast, Pacific division has a similar climate. As for
the regions, in New England the total number of stations is
low (28 stations), and this is again due to the limited size
of the division (i.e., the smallest one in the analyzed data).
In general, the distribution of the analyzed stations across the
Census divisions is quite balanced. Tables 5 and 6 support the
previous explanations of the distributions over census regions
and divisions.

Focusing on the elevation ranges (see Table 3), it comes out
that most of the stations are located under 400m of altitude.
However, the locations at higher elevation ranges show a
higher percentage of risky stations.

Regarding the urbanization levels (see Table 4), the
resulting partitions are not perfectly balanced and this
is probably due to the morphological properties of the
United States of America. Nevertheless, the number of
total and critical stations are sufficient for completing
the target analyses and the percentage of critical stations
is well balanced among the three different urbanization
levels.

Finally, we also analyze the distribution of the analyzed
data over the severity level of the road accident (see Table 7).
As expected, most of the accidents report a medium severity
level (i.e., levels 2 or 3).

TABLE 7. Weather-related road accidents counts per severity level.

C. CONFIGURATION SETTINGS FOR THE RISK MODELS
We focus here on the setup of the contextualized risk
models. The density-based risk model requires the setting
of a minimum similarity threshold (t), which is exploited
to define the boundaries of a station neighborhood. All the
stations that are highly similar to the reference station s
in the vector space are considered s’s neighbors. Similarly,
to apply the top-K and proximity-based models the number
K of most similar station vectors to be considered must be
specified.

We perform a grid search to test various configuration
settings by varying t in the range [0.6, 0.9], K for the top-K
model between 150 and 1000, and K for the proximity model
between 5 and 40. The recommended settings are t = 0.75
(Density-based), K = 250 (top-K ), and K = 15 (Proximity-
based). Notice that the recommended K values are relatively
small. This indicates that including weakly similar stations in
the risk model is likely to be potentially harmful.

D. PERFORMANCE COMPARISON BETWEEN RISK
MODELS
We explored the applicability of the contextualized risk
models to the real-life case study by applying the following
steps:

1) Firstly, we computed the risk levels per context using
the risk models presented in Section III-E. Risk levels
are expected to reflect the incidence of adverse weather
conditions on the road accidents occurrences within a
specific context. The higher the risk levels, the higher
the influence of weather-related events on traffic safety.

2) Secondly, separately for each model and context we
identified the stationswithin each context that fall in the
first and fourth quartiles according to contextualized
risk level distribution. The latter stations are likely
to have a higher risk of weather-related accident
occurrences in the neighborhood. The former ones are
expected to be the stations with the least risk level.

3) Thirdly, we verify the compliance of the risk model
outcomes with the expected ground truth. The subset
of stations belonging to the first quartile (according
to the assignment described in the previous step) is
expected to include a very limited number of risky
stations, whereas the subset of stations in the fourth
quartile is likely to include many risky stations.

4) Finally, we compared the outcomes of the contextual
riskmodels to choose the best-performing ones in terms
of maximal compliance with the ground truth.
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FIGURE 5. Performance comparison between contextualized risk models against the Ground Truth.

FIGURE 6. Comparison of different similarity threshold (t) values. Density-based risk model.

Figure 5 shows, separately for each context type, the
performance of the proposed risk models. They are computed
as the average and standard deviation of the differences
between the ratio of the risky stations in the fourth quartile
to the one in the first quartile (hereafter denoted by 1). The
average value is expected to be positive for all the analyzed
contexts (i.e., the majority of the risky stations are in the
fourth quartile, whereas only a few of them fall into the first
quartile). The aforesaid indicator measures the ability of the
model to properly assign the stations in the ground truth.

The density-based model was the only one that achieved
consistently positive results over all the analyzed contexts,
thus it was recommended as the reference risk model for the
analyzed case study. For the sake of completeness, in Figure 6
we also report similar results achieved by the density-based
model by varying the value of the similarity threshold t . The
achieved results confirm that setting t to 0.75 is appropriate
for the analyzed scenario.

E. PERFORMANCE COMPARISON BETWEEN EMBEDDING
ARCHITECTURES
We compare here the performance of the two architectures
used for time series embedding, i.e., PV-DM-like and PV-
DBOW-like (see Section III-D). In compliance with [31],
we also tested an ensemble method that combines PV-DM-
like with PV-DBOW-like.

The results, summarized in Figure 7, show that the per-
formance of PV-DBOW-like was always the worst, whereas
that of PV-DM-like was averagely the best. Notice that,
unlike PV-DBOW-like, PV-DM-like takes the seasonality of
the adverse weather events into account while generating
the paragraph-level encodings. This can be deemed as
particularly helpful to capture the underlying correlations
between weather event occurrences. Adopting an ensemble
of PV-DM-like and PV-DBOW-like strategies did not yield
significant improvements, likely because the achieved results
are harmed by the poor PV-DBOW-like performance.
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FIGURE 7. Comparison of different embedding architectures. Density-based risk model.

FIGURE 8. Risk levels for the contexts in the elevation value range.
Strategy: Density-based.

F. GRAPHICAL EXPLORATION OF PER-CONTEXT RISK
LEVEL
We report here a prime example of the use of the per-context
risk levels. Specifically, we compute the risk level of
the various contexts separately for each attribute. Then,
we average the KPIs over all the stations in the context.
Depending on the attribute, we plot the risk levels using
the most appropriate data representation (e.g., a map-based
dashboard for the geographical features).

Let us consider the regions first (see Figure 10a). The South
region turns out to be the one with the lowest probability of
seeing an increment in road accidents during extremeweather
days, whereas the Midwest is the region with the highest risk,
followed byNortheast andWest. This result is fully consistent

FIGURE 9. Risk levels for the contexts in the urbanisation level. Strategy:
Density-based.

with the official U.S. census data. The risk levels associated
with the U.S. census divisions reflect the same distribution of
the regions (see Figure 10b).

Two special cases are worth noticing: the East North
Central (in the Midwest) and the Middle Atlantic (in the
Northeast). These two divisions, which are geographically
adjacent but belonging to different regions, show very similar
risk levels (i.e., 0.579 and 0.577, respectively).

The distribution of the risk levels per state is quite similar to
the previous ones (see Figure 10c). The only exception is the
Texas state, which presents a risk level quite higher than its
surroundings. The aforesaid preliminary finding is confirmed
by the unexpectedly very low temperatures recorded in Texas
during winter 2021.
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FIGURE 10. Examples of map-based dashboards reporting the levels of risk of weather-related road accidents in different contexts. Density-based risk
model. Similarity threshold t = 0.75.

TABLE 8. Execution times spent by the embedding models (expressed in
seconds).

Focusing on the elevation ranges (see Figure 8), the risk
level of the stations closer to ground level (i.e., stations with
an elevation lower than 400m) has shown to be the highest
one, followed by stations between 400m and 1000m. The
least risky areas appear to be the ones in the elevation rage
enclosed between 1000m and 1500m. The results achieved
using different similarity threshold values (e.g., t = 0.7) do
not show any significant variations.

Finally, the risk levels have shown to be inversely
correlated to the urbanization level of an area. The risk of the
least populated areas is higher than those of more urbanized
ones. A possible explanation is that in urban areas citizens
have easier access to alternative transportation means (e.g.,
train, subway).

G. EXECUTION TIMES
The overall computational times spent in each experimental
session are in the order of thousands of seconds. The overall
computation time is devoted to (i) data preparation, (ii)

TABLE 9. Execution times in seconds of the risk models.

training of the embedding model and (iii) evaluation of the
risk levels for each station in the analyzed context.

Data preparation, which took about 50% of the overall
time (approximately 15 minutes), consists of the following
sub-steps: (i) Transformation of the original dataset, (ii)
Generation of the discrete events, (iii) Generation of the
per-station event sequences. The execution time is roughly
linear with the dataset cardinality.

Table 8 reports the execution times spent by the time series
embeddingmethods. The (non-linear) representation learning
process was, as expected, the most time-consuming stage of
the presented methodology.

Finally, Table 9 indicates the time needed to evaluate the
risk level, which is often negligible (around 12 seconds in
the worst case). It slightly varies according to the analyzed
context.

V. CONCLUSION AND FUTURE WORKS
The paper studied how to quantify the effect of extreme
weather conditions on road accidents occurring in a specific
spatial context, regardless of weather-unrelated influences.
It relies on both a set of multivariate event series, encoded
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using a neural network-based embedding strategy, and an
incomplete set of road accident annotations that characterize
the stations located within the context. By conveniently
reusing the partial information about risky locations the
presented method is able to estimate a risk level per context.

Based on the experimental campaign conducted on real
U.S. weather and traffic data we can conclude that
• The PV-DM architecture has shown to be the most
suitable embedding model for tackling the problem
under analysis.

• Adopting a density-based risk model appears to be
the most effective strategy to capture the temporal
correlations between adverse weather event sequences.

• Focusing on a relatively small number of neighbors (e.g.,
K=15) is, in general, more advisable to avoid degrading
the overall risk model performance.

• Per-context risk levels can be effectively explored and
analyzed through map-based dashboards.

• The estimated risk levels observed in a prime example
meet the end-users’ expectation to a large extent.

Future works will address (1) the integration of
attention-based sequence encoders [38] to efficiently and
effectively attend relevant temporal patterns in the event
sequences, (2) the study and development of incremental,
semi-supervised approaches that extend the currently
proposed (static) methodology, and (3) the application of the
proposed Machine Learning-based solution to different case
studies (e.g., shared mobility services such as e-bikes and
scooters, insurance customer profiling).
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