
13 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Energy-efficient and Privacy-aware Social Distance Monitoring with Low-resolution Infrared Sensors and Adaptive
Inference / Xie, C.; JAHIER PAGLIARI, Daniele; Calimera, A.. - (2022), pp. 181-184. (Intervento presentato al  convegno
2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME) tenutosi a Villasimius, SU (Italy)
nel 12-15 June 2022) [10.1109/PRIME55000.2022.9816801].

Original

Energy-efficient and Privacy-aware Social Distance Monitoring with Low-resolution Infrared Sensors and
Adaptive Inference

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/PRIME55000.2022.9816801

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971257 since: 2022-09-13T13:35:15Z

IEEE



Energy-efficient and Privacy-aware Social Distance
Monitoring with Low-resolution Infrared Sensors

and Adaptive Inference
Chen Xie

DAUIN, Politecnico di Torino
Turin, Italy

chen.xie@polito.it

Daniele Jahier Pagliari
DAUIN, Politecnico di Torino

Turin, Italy
daniele.jahier@polito.it

Andrea Calimera
DAUIN, Politecnico di Torino

Turin, Italy
andrea.calimera@polito.it

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
Accepted as a conference paper at the 2022 IEEE International Conference on Ph. D. Research in Microelectronics and Electronics (PRIME).

Abstract—Low-resolution infrared (IR) Sensors combined with
machine learning (ML) can be leveraged to implement privacy-
preserving social distance monitoring solutions in indoor spaces.
However, the need of executing these applications on Internet
of Things (IoT) edge nodes makes energy consumption critical.
In this work, we propose an energy-efficient adaptive inference
solution consisting of the cascade of a simple wake-up trigger and
a 8-bit quantized Convolutional Neural Network (CNN), which
is only invoked for difficult-to-classify frames. Deploying such
adaptive system on a IoT Microcontroller, we show that, when
processing the output of a 8x8 low-resolution IR sensor, we are
able to reduce the energy consumption by 37-57% with respect
to a static CNN-based approach, with an accuracy drop of less
than 2% (83% balanced accuracy).

Index Terms—Edge Computing, Adaptive Inference, Social
Distancing, Energy Efficiency, Infrared Sensor

I. INTRODUCTION AND RELATED WORKS

As one of the most effective ways to avoid catching an
infectious disease, particularly in densely populated areas,
social distancing [1] has demonstrated its usefulness to combat
the spread of COVID-19. In this scenario, the demand for
automated social distance monitoring solutions has increased
dramatically, especially for public indoor environments such
as shops, offices, etc.

Researchers have proposed multiple technical solutions for
this task. A first approach consists of computing the distance
between people using the transceivers embedded in their per-
sonal wearable devices or smartphones [2]. However, since this
solution is heavily dependent on the voluntary participation
by users, it is not easy to guarantee its effectiveness in a
real-world case. Another method relies on IoT cameras that
monitor a specific area, track individuals, and compute social
distance with Machine Learning (ML) or Deep Learning (DL)
algorithms, executed either at the edge or in the cloud [3].
While this approach eliminates the requirement of active user
participation, it creates new issues related to privacy. In fact, it
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under grant agreement No 101007321. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and
France, Belgium, Czech Republic, Germany, Italy, Sweden, Switzerland,
Turkey.

permits not only to spot social distance violations, but also to
identify and track individuals, often in violation with privacy
protection laws. Furthermore, leaks of private information
(either accidental or caused by malicious parties) are possible.

Based on these observations, low-resolution infrared (IR)
array sensors configure as a promising alternative [4]. In fact,
these sensors are composed by a small number of thermal
pixels (8x8 or 16x16), which only capture the basic shapes and
temperatures of objects, without having a sufficient resolution
to reveal private information. Moreover, they are effective
regardless of the lighting conditions, including at night. Last,
and most importantly, with their low power consumption and
low-cost, they are fully compatible with an edge implemen-
tation. Combined with ML or DL algorithms, they allow
the realization of a real-time monitoring system without any
permanent data storage or transmission to the cloud, which
further contribute to privacy protection.

In recent years, many researchers have studied applications
of ML to low-resolution IR sensors data [4]–[9]. However,
these studies focused on different tasks, such as human activity
recognition [5], [6], presence detection [7], [8] or people
counting [9]. To our knowledge, our previous work of [4] is the
only dedicated implementation of a social distance monitoring
system on a low-resolution IR sensor, based on Convolutional
Neural Networks (CNNs).

Despite the aforementioned advantages of IR array sen-
sors, the realization of a ML/DL-based system for social
distance monitoring at the edge remains critical from the
point of view of energy consumption. In fact, IoT end-nodes
are typically battery-operated, and based on general-purpose
Microcontrollers (MCUs), since their tight cost budgets do
not allow the luxury of hardware specialization to improve
energy efficiency. In our previous work, we optimized the
consumption of our CNN using 8-bit quantization [10], a well
known technique that reduces the numeric format used to
represent the inputs, intermediate activations, and parameters
of the model. While effective, however, quantization is a static
optimization, applied identically to all inputs. As such, it
misses opportunities for energy saving, as it cannot exploit the
fact that not all inputs are equally hard to classify. Intuitively,
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a CNN may be useful to distinguish whether the “heat shape”
measured by the IR sensor corresponds to a single person (OK)
or two nearby people (social distance violation). In contrast,
a much simpler classifier is sufficient to just detect if at least
one person is present in the frame.

In this work, we start from this observation and propose the
first adaptive inference system for low-resolution IR arrays.
The term adaptive inference refers to a run-time optimization,
in which the complexity of the computation is automatically
tuned to the difficulty of the processed input. Examples of
adaptive systems include big/little models [11], [12], early-
exit [13], [14] and hierarchical/staged classifiers [15]. We
follow the latter approach, proposing a simple yet effective
hierarchical classifier based on a lightweight wake-up trigger,
that triggers the CNN execution only for inputs that require
it. Using the same dataset and CNN classifier of [4], and
deploying our models on Quentin [16], a 22-nm 32bit single-
core RISC-V MCU, we show that we can reduce the total
energy consumption by 37-57% with respect to our previous
work, with a limited accuracy drop < 2%.

II. PROPOSED METHOD

A. Dataset and Social Distance Monitoring Solution

Under proper conditions, social distancing can be framed as
a variant of people counting. In fact, based on the IR sensor
viewing range, it is possible to position the monitoring device
such that a social distance violation occurs whenever more
than a given number of people are in the frame. This, in turn,
reduces the problem to a binary classification (OK/violation).

In this work, we use the open-source LINAIGE dataset [4],
which is specifically tailored for person counting and presence
detection tasks. It contains low-resolution 8x8-pixel infrared
sensor samples, associated with the corresponding people
count. The samples are collected in different indoor environ-
ments at 10 Frames Per Second (FPS), by a ceiling-mounted
Panasonic Grid-EYE AMG8833 sensor [17] , with a view
angle of 60° (see Fig. 1a). The approximate view range of
the IR sensor can be calculated from the view angle and the
distance between sensor and detected objects (people heads),
as pointed out in [4], [17]. For LINAIGE data, the maximum
distance within one frame (the length of the diagonal in the
squared area) is in the [1.53:2.04] m range. Combining this
with the typical 2m social distancing recommendation [18], we
can conclude that a social distance violation is present in the
view area of the sensor whenever 2 or more people appear in
a single frame. Larger areas can be covered by combining and
coordinating multiple IR sensors (out of scope in this work).

This problem formulation leads naturally to the use of
an adaptive inference system. In fact, the problem can be
decomposed in two parts. First, we should distinguish between
an empty frame and people presence; this is a simple task,
that can be solved by a very light model. Only when people
presence is spotted, we then have to distinguish between 1
or more people; this is more complex, since the heat shapes
produced by nearby people are often overlapped, especially

a) Sensor positioning b) Frames examples

One person

Two People
(close)

Two People
(far)

Fig. 1. Grid-EYE sensor positioning and IR frames examples.

with such low-resolution sensors, as shown in Fig. 1b. There-
fore, a model of higher complexity is required. However,
since in a real-world scenario it is likely that many frames
will be empty, invoking the more complex model only when
presence is spotted could significantly reduce the average
energy consumption of the system.

B. Wake-up Trigger and CNN

In order to implement the proposed adaptive inference
system, we combine a simple and deterministic classifier,
which we call Wake-up Trigger, with a compact and 8-bit
quantized CNN. The whole adaptive framework is shown in
Fig. 2. As anticipated, we split the social distance monitoring
task into two stages, each formulated as a binary classification.
In the first stage, the wake-up trigger detects whether at least
one person is present in the frame. If this first stage results in
a “no-person” prediction, inference is terminated immediately
with a 0 output (no violation of social distancing). Otherwise,
the second stage is triggered, and another binary classification
is performed using the CNN, to produce the final violation/no-
violation output.

As shown in Fig. 2, the Wake-up Trigger is substantially a
threshold-based classifier. It works by binarizing the IR frame
pixels to 0/1 based on the measured temperature. Then, the
number of 1-valued pixels is counted and compared with a
threshold. If the threshold is exceeded, it is assumed that at
least one person is present in the frame, and the CNN is
invoked. The clipping value used for binarization is computed
periodically by analyzing a window of N consecutive frames
with no people detected, and extracting the maximum temper-
ature in all pixels (Extract Clip Value block in the figure). The
rationale is that the head of a person passing under the IR array
will be sensed as a temperature increase with respect to the
background, also due to the lower distance from the measuring
device with respect to background heat sources (e.g., heaters).
Indeed, the input binarization implemented by the Wake-up
Trigger can be seen as a sort of background removal process.
In our experiments, we set N = 8.

When human presence is detected by the Wake-up trigger,
the CNN classifier is invoked. We select this type of DL
model due to the state-of-the-art results achieved on multiple
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Fig. 2. Overview of the proposed adaptive inference system.

visual recognition tasks, and we use a 8-bit quantized CNN
architecture similar to the one originally proposed in [4] to
predict social distancing violations. In particular, among the
multiple CNN variants proposed in that paper, we select the
one achieving the best balanced accuracy performance, whose
structure is shown in Fig. 2. The only difference with respect to
the original architecture is the addition of Batch Normalization
(BN), which substantially improves the final classification
accuracy. The CNN consists of one Convolutional (Conv) layer
with BN and Rectified Linear Unit (ReLU) activation, one
Max Pooling layer and two fully-connected (FC) layers with
ReLU and sigmoid activations respectively. The number of
channel in Conv layer is set to 64 and the first FC layer has
a hidden size of 64 as well.

III. EXPERIMENTAL RESULTS

We trained our CNN model using Keras on the LINAIGE [4]
multi-pixel IR dataset using a per-session train/test split.
Namely, the data collected in Session 1 have been used as
training set, while all other sessions as the test set. This ensures
that test data are collected in a different environment and/or at
a different day/time compared to training data. Each training
has been repeated with 5 different random seeds. We trained
for a maximum of 500 epochs with a 10-epoch patience early
stopping. The learning rate was set to 10−3 and reduced by
a factor 0.3 after 5 non-improving epochs. The CNNs have
been quantized to 8-bit with the built-in quantization-aware
training of Keras. We measured classification quality using the
standard accuracy, also the balanced accuracy (Bal. Acc.) and
the F1-Score, both of which are more meaningful for highly
class-imbalanced datasets. For results involving the CNN, we
report mean ± standard deviation over the 5 training runs.

We deployed all models on Quentin [16], a 22nm, 32bit
single-core RISC-V platform with 520kB of memory. Latency
and energy consumption for inference are estimated using the
GVSoC virtual platform [19], for a clock frequency of 205.1
MHz and a supply voltage of 0.54V. All deployed models are
written in C; for CNNs, we used the optimized kernels library
presented in [20], in its single-core version.

A. Classification Performance and Energy Savings

The solid lines and dots in Fig. 3a-c show the classification
performance obtained by the proposed adaptive system in
terms of balanced accuracy, accuracy, and F1-score respec-
tively. Different points are obtained varying the configurable
threshold of the wake-up trigger, and correspond to the mean
score obtained over the 5 training runs. Standard deviation is

reported as a colored band (hardly visible in most curves).
Dashed lines refer to the results obtained by a static CNN
identical to the second “stage” of our adaptive method. Lastly,
Fig. 3d shows the average energy savings in percentage
obtained by the adaptive system, compared to the static CNN.

The three colors correspond to three different versions of
the LINAIGE test set. Specifically, following the observation
of Sec. II that in a practical application scenario, it is likely to
observe long sequences of frames with no people in them, we
consider three variants of the test data: i) Default, the original
LINAIGE test set, ii) Double, a version of the test set with
all frames corresponding to a ground truth label equal to 0
people duplicated, and iii) Triple, similar to the previous one,
but with triplicated 0-labels.

A first result shown by the figure is that the overall perfor-
mance of the adaptive system decreases for larger threshold
values, and that the best results are obtained for threshold
= 1. This is expected, since a higher threshold corresponds
to fewer invocations of the second-stage CNN. For threshold
values > 25, the adaptive system stops working completely,
and begins to act as a constant classifier (always predicting
0). Vice versa, lower thresholds are more conservative: they
reduce the number of false negatives, at the cost of potentially
more CNN invocations than needed, even for frames that do
not actually contain people (i.e., false positives). Importantly,
however, the CNN can still “correct” these false positives by
predicting the “No Violation” class, thus improving the overall
Accuracy, Bal. Acc and F1. For the same reasons, the energy
savings show an opposite trend, increasing together with the
wake-up threshold (Fig. 3d).

The most interesting results are obtained with a threshold of
1: the adaptive system reaches a balanced accuracy of around
83%, only 2% lower than a static CNN solution. Furthermore,
the F1-Score and standard accuracy remain substantially iden-
tical to the static case. At the same time, by invoking the
CNN only when presence is detected in the frame, the average
energy consumption is reduced by 37% to 57% depending on
the number of 0-labels. As expected, the savings increase when
there are more frames without people, showing the potential
effectiveness of the proposed light-weight wake-up trigger in
a real-world scenario.

B. Detailed Comparison

Table I compares the proposed adaptive system (with thresh-
old = 1) to the two individual classifiers (wake-up trigger
and CNN), and to the state-of-the-art deterministic algorithm
proposed in [21]. Besides the classification scores, the table
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Fig. 3. Adaptive System Performance in terms of Threshold vs Balanced Accuracy (a), vs Accuracy (b), vs F1 (c) and vs Energy Saving (d).

TABLE I
DETAILED EVALUATION AND DEPLOYMENT RESULTS OF MODELS TARGETING SOCIAL DISTANCING ON QUENTIN @ 205.1 MHZ

Model Bal. Acc. [%] Acc. [%] F1 Model Mem. [B] Tot. Mem. [B] Energy[µJ] Latency[µs]
8-bit CNN [4] 85.96±0.47 85.50±1.05 0.76±0.01 37.97k 56.07k 1.20 316

Wake-up Trigger 71.30 65.28 0.57 66 12.25k 0.01 2.96
[21] 61 73 0.41 1.71k 23.31k 2.53 665

Our Method 83.86±0.29 85.65±0.68 0.75±0.01 38.04k 56.24k 0.75 198

also reports the data memory occupied by each model once
deployed on the target MCU, the total memory including
code size, and the average energy consumption and latency
for a classification. The “Wake-up Trigger” row refers to
the threshold-based classifier used “stand-alone”, directly for
social distance monitoring. In this case, the best performance
are achieved with a threshold = 2. All results refer to the
Default LINAIGE test set.

As shown, our method significantly outperforms both the
stand-alone wake-up trigger and the approach of [21] on all
classification metrics (up to +20% Bal. Acc.), while obtaining
comparable results to the static CNN, which is analogous
to the one presented in [4]. At the same time, the average
energy and latency are significantly reduced w.r.t. the CNN
(37.5%), at the cost of a negligible total memory overhead
(<0.3%), demonstrating that the proposed adaptive system can
be effectively deployed on MCU-class platforms.

IV. CONCLUSIONS

We have proposed an energy-efficient and privacy-aware
social distance monitoring solution based on low-resolution
IR arrays and adaptive inference. Our results on a low-power
MCU show that energy saving over 37% can be achieved with
respect to a static CNN-based approach. Future works will
include the exploration of adaptive inference combined with
other DL models.
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