
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Vector Fitting of Noisy Frequency Responses via Smoothing Regularization / Carlucci, A.; Zanco, A.; Trinchero, R.;
Grivet-Talocia, S.. - ELETTRONICO. - (2022), pp. 1-3. (Intervento presentato al  convegno 2022 IEEE 26th Workshop on
Signal and Power Integrity (SPI) tenutosi a Siegen, Germany nel 22-25 May 2022) [10.1109/SPI54345.2022.9874941].

Original

Vector Fitting of Noisy Frequency Responses via Smoothing Regularization

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/SPI54345.2022.9874941

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971249 since: 2022-09-13T06:11:16Z

IEEE



Vector Fitting of Noisy Frequency Responses via
Smoothing Regularization
A. Carlucci, A. Zanco, R. Trinchero, S. Grivet-Talocia

Dept. Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract—We present a simple and effective strategy to com-
pute reduced-order rational macromodels from noisy frequency
responses. The reference macromodeling engine is the basic
Vector Fitting (VF) scheme, which is well known to be sensitive
to noise in the training data. This problem is here avoided by
augmenting the VF cost function with a penalization term related
to the second derivative of the model, which effectively acts as a
regularizer. The results obtained on a set of noisy measurements
of a Surface Acoustic Wave (SAW) filter demonstrate the effec-
tiveness of proposed approach in rejecting noise and producing
smooth models.

I. INTRODUCTION

Vector Fitting (VF) is currently the most common algorithm
for the identification of behavioral models of Linear and Time-
Invariant (LTI) systems for electrical and electronic applica-
tions. Since its original formulation [1], several improvements
have been documented, including concurrent fitting of mul-
tiple responses [2] and related implementation to multicore
computing hardware [3], [4]. A comprehensive overview of
the VF algorithm and its applications is available in [5],
including post-processing algorithms for passivity enforcement
and SPICE equivalent network synthesis.

It has been shown in [6] that noise in the training data
may have the detrimental effect of impairing VF conver-
gence, which usually takes place for “clean” data in few
iterations. Various methods have been presented for handling
noise in VF application, including hard pole relocation [7],
mixed VF-Newton iterations [6], and instrumental variable
approaches [8], [9]. All these approaches provide viable and
effective solutions, which however require significant modifi-
cations to the main VF algorithm and code.

In this paper, we present an alternative, simple and effective
approach based on a dedicated penalization term added to the
VF cost function. Due to this structure, a minimal modification
is required to any basic VF code, including the public available
implementation [10]. This penalization is here derived based
on an estimate of the second derivative of the model frequency
responses. Second-order derivative minimization is in fact
a well-known data processing technique for data smoothing
in presence of significant noise [11]. The algorithm that
we propose uses smoothed data during the pole relocation
phase, in order to train a minimal number of basis poles.
A second step for residue identification employs second-
derivative penalization to make overall model behavior smooth
and insensitive to noise. The proposed formulation is discussed
in Sec. II.

We tested the proposed algorithm on several examples,
confirming its effectiveness in noise rejection. We present
in Sec. III some results obtained from a set of measured
responses of a discrete filter component. The proposed penal-
ization leads to models of significantly lower order than plain
VF application, which for this case dramatically fails unless
the number of poles is set to an unrealistically large number.

II. FORMULATION

A. Smoothing regularization

The main issue with approximating data that is corrupted
with noise is that the resulting model might represent not only
the main features of the underlying system, but also spurious
contributions induced by noise. A well-known solution to
this problem, denoted as overfitting, is regularization. In this
particular work, we follow the standard idea of smoothing
regularization [11] with the purpose of obtaining a new set of
samples that are close to the original ones, with an additional
condition on their smoothness.

Let us assume that K samples of some transfer func-
tion H(jω) measured at uniformly spaced frequencies ω =
ω1, ..., ωK are collected in the vector H̃ ∈ CK . In order
to measure the smoothness of H̃, we resort to a discretized
second derivative matrix operator T, as in [11], such that
[TH]k ≈ H ′′(jωk) (i.e., the k-th element of the the resulting
vector TH ∈ CK−2). If the frequency samples are uniformly
spaced in frequency, this operator takes the following form

T =


1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

. . . . . . . . . . . . 0 0 0
. . . . . . 0 0 0 1 −2 1

 (1)

up to an irrelevant scaling factor ∆ω2, where ∆ω is the
frequency spacing.

Consider an unknown vector H ∈ CK that solves the
following problem

minimize ∥TH∥22

subject to
{

|Re{Hk − H̃k}| ≤ ε

| Im{Hk − H̃k}| ≤ ε,

(2)

for k = 1, . . . ,K. Here, ε is the maximum allowed deviation
of the reconstructed and smoothed samples Hk from the
original ones. This hyperparameter can often be estimated
based on a noise characterization of the source that produced
the dataset [e.g. the noise floor of a Vector Network Analyzer



(VNA)]. The solution vector H of (2) is thus a smooth
approximation of H̃ and can be constructed to be almost free
from the artifacts induced by noise by tuning ε.

B. Regularized Vector Fitting

In this work, we combine the above regularization strategy
with the Relaxed Vector Fitting (RVF) formulation [12]. The
RVF algorithm can be broken down into two phases: the
pole identification step, during which an estimate of the N
dominant system poles {pi}i=1,...,N is iteratively refined, and
a final step, during which the residues are calculated by solving
a least-squares approximation problem that fits the given data
to a linear combination of the elements of a partial fraction
basis corresponding to pi.

1) Pole identification: In this phase, we solve the ordinary
least squares problem described in [12], constructed based on
the smoothed samples Hk, which are here considered as the
“true” data to be fitted. This allows the pole relocation to
quickly converge to a good estimate of the basis poles that
are strictly required to model the important features in the
transfer function, disregarding the effects of noise. The result
of this phase is a pole set {pi}, whose number depends on the
initial choice of model order N .

2) Final phase: In this second phase, we fit the original
(noisy) data H̃k using the partial fractions centered at pi
as basis functions for the model. The cost function to be
minimized in this step is

f(r) = ||W (Φr− H̃)||2 + γ ||UTΦr||2 (3)

where Φ ∈ CK×(N+1) with Φki = (jωk − pi)
−1, r ∈ CN+1

is the unknown vector containing the model coefficients (the
residues), W, U are real diagonal matrices of weights, and
γ is a hyperparameter. The first term in (3) is the weighted
approximation error and the second term is a measure of the
model smoothness based on its curvature, which is numeri-
cally estimated through T and whose relative importance is
controlled by γ. In our numerical experiments, the last term is
based on the ratio between the second derivative and the actual
value of the function, so that, if inverse magnitude weights are
used, W = diag{|H̃k|−1} and U = diag{|H̃k|−2}.

III. RESULTS

We carried out a validation of the proposed strategy on labo-
ratory measurements of a narrow bandpass filter (Crystek SAW
902.5MHZ, CBPFS-0902). Measurements were performed
with a constant incident power of 0 dBm by using the Agilent
E5071B VNA for various configurations of the intermediate
frequency bandwidth (IFBW) of the receiver [13], leading
to different amounts of noise captured by the measurement
process. Such different noise levels are clearly visible in
Fig. 1 and Fig. 2, especially at low frequency where the filter
response has a small magnitude that is completely shaded
by the measurement noise. For this example, we have two
conflicting requirements: fitting data using a relative error
control in order to represent the full dynamic range and
the small magnitude portion of the frequency responses; and
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Fig. 1. Noisy data compared with the final model built with γ = 10−3.
These measurements were taken with IFBW =500Hz

making the model insensitive to noise, which hides the true
filter response in the low and high frequency rejection bands.

Figures 1 and 2 show the noisy data collected with an
IF bandwidth equal to 500Hz and 70 kHz, respectively, and
the model responses resulting from the proposed algorithm.
The noise floor is clearly visible in both cases. In particular,
the noise floor is used to estimate an appropriate smoothing
parameter, which is set to ϵ = 10−3. Both figures report
the model responses (red) and the model-data error (grey) in
addition to the original noisy data samples (blue). We see that
the data behavior in the filter passband is captured correctly, as
well as the out-of-band ripples both beyond the upper cut-off
frequency and at low frequency. In this experiment, the model
order was set to N = 50 and γ = 10−3.

As reference, we report in Fig. 3 the results of a model
obtained through the standard RVF scheme with inverse mag-
nitude weights and same dynamic order N = 50. This figure
shows that the pole relocation of RVF fails in identifying
proper dominant pole locations. Most of the poles are driven
by the algorithm to fit noise spikes at low frequency, with the
effect of draining poles from the locations required to represent
the actual features of the underlying system.

IV. DISCUSSION

The presented test case can be regarded as a proof of
concept for proposed methodology. Availability of the hard-
ware and the possibility to tune the amount of noise in the
measurements allowed us to investigate the performance of
smoothing regularization and penalization, specifically in the
rejection band of the filter where the response magnitude is
small. Depending on the use of the model, the requirement
for an aggressive accuracy in this rejection band may be
questionable. However, there are several scenarios in which
the measured responses are inherently small, and yet they need
to be accurately represented by a model even in presence of
small signal to noise ratios. A notable example is crosstalk
characterization in shielded and/or twisted differential cables
and more generally in multiconductor high-speed signal links.
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Fig. 2. Noisy data compared with the final model where γ = 10−3. These
measurements were taken with IFBW = 70 kHz

Application to such test cases will be the subject of a forth-
coming extended report.

V. CONCLUSIONS

This paper presented a simple algorithm based on smoothing
regularization combined with Vector Fitting, with the objective
of computing rational macromodels from noisy frequency
responses. An operator that provides an estimate of the second
derivative along frequency is used both to smooth data samples
used for VF pole relocation, and as a penalization term in
the VF cost function for estimating model residues. The
result is a robust and noise-insensitive rational fitting scheme,
whose effectiveness is here demonstrated on a set of noisy
measured responses of a SAW filter. Future investigations will
be devoted to a more complete validation campaign and to
an automated estimation of the hyperparameters that control
algorithm performance and noise rejection.
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