POLITECNICO DI TORINO
Repository ISTITUZIONALE

Raspberry Pi based Modular System for Multichannel Event-Driven Functional Electrical Stimulation
Control

Original

Raspberry Pi based Modular System for Multichannel Event-Driven Functional Electrical Stimulation Control / Prestia,
Andrea; Rossi, Fabio; Mongardi, Andrea; Demarchi, Danilo; Ros, Paolo Motto. - ELETTRONICO. - (2022), pp. 2592-
2597. (Intervento presentato al convegno 2022 44th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC) tenutosi a Glasgow, Scotland, United Kingdom nel 11-15 July 2022)
[10.1109/EMBC48229.2022.9871852].

Availability:
This version is available at: 11583/2971237 since: 2022-09-12T09:14:31Z

Publisher:
IEEE

Published
DOI:10.1109/EMBC48229.2022.9871852

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

11 April 2024

Raspberry Pi based Modular System for Multichannel Event-Driven
Functional Electrical Stimulation Control

Andrea Prestia, Fabio Rossi, Andrea Mongardi, Danilo Demarchi, Paolo Motto Ros

Abstract—This paper describes the implementation and
testing of a modular software for multichannel control of
Functional Electrical Stimulation (FES). Moving towards an
embedded scenario, the core of the system is a Raspberry
Pi, whose different models (with different computing pow-
ers) best suit two different system use-cases: user-supervised
and stand-alone. Given the need for real-time and reliable
FES applications, software processing timings were analyzed
for multiple configurations, along with hardware resources
utilization. Among the results, the simultaneous use of eight
channels has been functionally achieved (0% lost packets)
while minimizing system timing failures (excessive processing
latency). Further investigations included stressing the system
using more constraining acquisition parameters, eventually
limiting the usable channels (only for the stand-alone use-case).

Index Terms— Functional electrical stimulation, Raspberry
Pi, Embedded system, Real-time computing, Rehabilitation
engineering

I. INTRODUCTION

Embedded systems are emerging technologies thanks to
their limited power consumption, dimensions, cost, and com-
plexity [1]-[5]. In recent years, the use of embedded systems
in the biomedical field has increased, especially for telereha-
bilitation purposes, as a result of the Covid-19 pandemic [6],
[7]. Among the employed treatments in physiotherapy prac-
tice, Functional Electrical Stimulation (FES) offers several
advantages for recovering motion functionalities thanks to
the not invasive stimulation of skeletal muscles [8], [9].
From an engineering point of view, embedded solutions
for controlling stimulation application are based on inertial
sensors to capture body movements [10], [11], or on the
surface ElectroMyoGraphy (sEMG) technique [12], [13] to
assess the muscles activation by recording the electrical
signals generated during myofibers contraction [14].

Among other architectures, state-of-the-art embedded sys-
tems for FES control often include the use of Raspberry Pi
(RP1) [15] machines as wearable controllers to support post-
stroke gait [16], or cycling for spinal cord injury victims [17],
also aiming to sport competitions [18]. On the other hand,
among the future perspectives of the investigated works is
the use of an RPi for greater modularity of the described
system [19]. Main reasons for using an RPi machine as
the control platform lie in its versatility, size, and cost [20]
compared to a common laptop: indeed, an RPi can be
integrated into a portable device to provide a user-friendly

This work was not supported by any organization.

The authors are with the Department of Electronics and Telecommunica-
tions (DET), Politecnico di Torino, 10129 Turin, Italy (corresponding author
e-mail: andrea.prestial@polito.it)

Control Electrical
Platform Stimulator

Acquisition Devices

—> video output
<«— user input

ATC
Node 1 ’))

Electrical

)
Acquisition E i
q ‘ S | Stimulator
Devices §
: .“5 Pulse
@ || Generator
ATC
)
Node N J) @ User-controlled

@ Stand-alone

Fig. 1. (top) Standard system usage setup with a GUI; (bottom) The flow of
the ATC-FES operation starts from the ATC processing of the SEMG signals
on the acquisition devices and ends with the application of FES, thanks to
the translation of the muscular data into stimulation patterns performed by
the control platform. Here, the software routines manage extra- (BLE, FES,
and GUI) and intra- (among objects) modules communication and operations
by implementing a multi-threaded approach.

solution for healthcare personnel [21]-[23] or, alternatively,
it can be adopted as a wireless collector node to stream data
to a remote central unit (e.g., telerehabilitation) [24]-[26].

The RPi-based system involved in this work (see Fig. 1)
results from an embedded implementation for modulating
FES according to muscle activity [27], [28], using the event-
based Average Threshold Crossing (ATC) technique to pro-
cess the SEMG signal directly on the acquisition board [29].
ATC consists in generating a digital event every time the ana-
log SEMG signal crosses a predefined threshold. The number
of events generated within a time window is transmitted
as input to the FES control system instead of the whole
SEMG signal, which is therefore not even sampled [30]. The
information synthesis resulting from the ATC simplifies the
data processing phases [31], thus leading the FES control
towards the minimization of the processing latency between

the input signal and the output stimulation, and improving
real-time operations [13]. The interaction between the ATC
acquisition devices and the electrical stimulator is provided
by an RPi, acting as the control platform of the system. This
single-board computer is equipped with suitable hardware
resources for inter-operating the system modules and for the
development of a custom Graphical User Interface (GUI) for
system management.

Complementary to what we reported in [28], which in-
vestigates how the previous version of our system performs
in controlled rehabilitative sessions involving 17 healthy
subjects, this work analyzes the software performance of
our new implementation from a technical point of view.
Therefore, different test benches have been set up for sev-
eral configurations, varying the computational effort, in two
different use cases, and taking into account up to three
RPi machines, with different computing powers, as control
platform.

II. SYSTEM OVERVIEW

Fig. 1 (top) depicts the typical using condition of the
system, where the muscular activity of the first subject
modulates the stimulation applied to the second one to obtain
the replication of the performed movement. In a rehabil-
itation scenario, the two subjects can be a therapist and
her/his patient, respectively [32]. The functional architecture
of the ATC-FES system can be conceptually schematized
as a cascade flow of three parts (see Fig. 1 (bottom)). The
acquisition devices (each working as a standalone module)
extract the information from muscle contractions by ATC-
processing the sSEMG signal and stream the result through
Bluetooth Low Energy (BLE) communication [29]. The
control platform receives the ATC data from all the available
boards and defines an appropriate stimulation profile based
on muscular activation [27]. The electrical stimulator (i.e.,
RehaStim 2 [33]) closes the loop by inducing the generated
biomimetic pattern [13].

Considering the above process, we can notice how the
control platform represents the central core of the system,
making possible to bridge input and output devices effec-
tively. As a consequence, the performance of the machine
running the control software determines the limit of system
applicability, especially when the processor has to be selected
suitable for embedded computation [1]. Following these
considerations, in this paper we propose and analyze our
implementation for two use-cases:

a) User-controlled interface: the system is managed by
means of a Graphical User Interface (GUI), which
allows the user to actively supervise the stimulation
session and provides a visual feedback on muscular
activation and FES pulses generation.

b) Stand-alone system: user interaction is limited to remote
control, and main ATC-FES operations run indepen-
dently from a direct user supervision.

Clearly, the first application requires adequate devices and

graphical (hardware) supports to work properly, demanding
high-performance machine resources w.r.t. the stand-alone

TABLE I
RASPBERRY PI BOARDS FEATURES FOR CONTROL PLATFORM

Model #core Architecture fcLk RAM BLE
(GHz) (GB)

RPi-4B 4 Cortex-A72 (64-bit) 1.5 4 5.0

RPi-3B+ 4 Cortex-A53 (64-bit) 14 1 4.2

RPi-OW 1 ARMI11 (32-bit) 1 0.5 4.1

application, which relaxes the computational constraints by
minimizing user-system interactions. We took into consider-
ation these dissimilarities by selecting as control platforms,
belonging to the RPi family, the most appropriate boards,
which ensure the compatibility with our test benches due
to their portable, open design, wireless connectivity, and
system-on-chip features [15]. In particular, looking at the
RPis reported in Table I, we chose the RPi-4B and RPi-3B+
machines to run application a), also aiming to verify if the
software operates unaltered while scaling down the platform
performance. Instead, the lighter requirements of application
b) allowed us to opt for the RPi-OW device, whose reduced
computing capacity better adapts to the power constraints of
an embedded scenario.

III. SOFTWARE IMPLEMENTATION

The control software has to fulfill multiple technical
requirements, to be compliant with different biomedical
applications. In particular, it must be scalable, to perform
efficiently even with multiple interfaced devices, it should
be modular, according to object-oriented programming [34],
to ease the development of each module, and it has to be
sufficiently reliable, to minimize failure probability and to
ensure users’ safety [35]. Moreover, the real-time control
of FES represents an additional and essential application
requirement [36]. We decided to design the system software
using the Python programming language because of its
versatility and rapidity of development, which sped up the
evolution of the control system across different hardware
platforms and Operating Systems (OSs), from common com-
puters to embedded systems [13].

Regarding the management of peripherals communica-
tion, the control of the on-board BLE transceiver has been
implemented taking advantage of the Bluepy library [37],
which relies on BlueZ [38] (the official GNU/Linux Blue-
tooth stack), and the RehaStim2 electrical stimulator has
been controlled through the ScienceMode2 communication
protocol [39]. In this second case, a custom library im-
plementation, relying on the Pyserial [40] module, allows
the user to conveniently update the stimulation parameters
(e.g., pulse amplitude, width and frequency) during on-going
stimulation.

On the other hand, the main system data flow and the
computation of FES parameters are handled by means of a
completely custom module. In particular, ATC input values
are transformed into stimulation intensities using a Look-
Up Table (LUT), whose parameters are defined by a linear
regression algorithm normalized on the maximum output

values obtained during an initial calibration [13], [27]. Our
custom LUT implies a very fast and responsive ATC process-
ing, thus not impacting on the overall computational timings
and providing the output parameters with the lowest latency
possible [13].

Then, for the user-controlled case (see Sec. II), we chose
to develop the GUI using the Kivy Python-compatible frame-
work [41], leveraging the GPU for performance maximiza-
tion. In particular, considering the reliability requirement, ad-
hoc Kivy buttons and graphs have been combined together to
provide the end-user with the complete control of the system.

All above considered, the architecture of the software is
divided into multiple modules (Fig. 1). The BLE and FES
modules handle communications with the external devices,
and one object is instantiated for each connected acquisition
board, storing the features of each sensing units. The System
core is responsible for all the data processing and internal
communications between software modules, while the GUI
(whenever available, depending on the use-case) allows the
user to supervise the system behavior and to intervene if
needed.

The tasks of these modules have been assigned to multiple
threads, in order to concurrently execute operations and
achieve an overall real-time performance. In particular, one
thread per module has been created, resulting in a minimum
of 4 threads when in the use-case b) with only 1 acquisition
device linked (System + FES + BLE + 1 Acq. Dev.)
and a maximum of 12 operative threads when using the
implementation a) with 8 devices involved (System + FES
+ BLE + GUI + 8 Acq. Dev.).

Multiple thread-safe queues [42] have been configured to
obtain proper communication among objects, with software
data exchanges only on user-defined event-triggers, also pro-
moting system scalability by easing the concurrent manage-
ment of multiple channels. Furthermore, this implementation
allows the system to operate in synchronous or asynchronous
mode. In the first case, the ATC processing is performed only
after the proper reception of all the ATC values from the
corresponding queues of all the connected boards. Vice versa,
in the asynchronous case, the thread does not wait for the
availability of all the data, thus updating the FES parameters
only for the channels whose ATC packet is received. This
behavior depends on the implicit time-shift between each
device, working independently from each other, and on the
thread handling the Bluetooth communication.

Fig. 2 shows the processing dataflow representing the

entire procedure from the ATC data reception to the acknowl-
edgement of the FES parameters update command. The first
step is to retrieve the ATC data from the queue of each active
acquisition device. Then, the new data are appended to the
matrix containing the two most recently acquired ATC values
for each channel, and a median operation is performed for
noise robustness [13]. The result is used as the index for the
LUT to identify the modulated stimulation parameter (e.g.,
pulse amplitude) for the associated stimulation channel. In
order to create the packet containing the pulse parameters,
both the results obtained from the LUT and the pre-defined
not modulated stimulation parameters are provided as input.
The ScienceMode2 communication protocol [39] requires
using a 1-byte checksum through Cyclic Redundancy Check
(CRC) and the use of byte stuffing to avoid the presence
of bytes equal to the start or stop sequence of the packet.
Finally, the last steps are the serial transmission (to the elec-
trical stimulator) of the created packet and the corresponding
reception of the acknowledgment sent back.

IV. TEST SETUP

Processing times were measured from the end of the phase
of getting data from the acquisition queues to the acknowl-
edgment reception from the stimulation device (Fig. 2).

Since the purpose of this work is a hardware and soft-
ware performance assessment, the tests were performed
on different system configurations and did not involve the
participation of human subjects. The combinations of tested
configurations consist of the use of multiple acquisition
devices, different windows for the ATC technique, syn-
chronous/asynchronous processing of received data, and the
optional use of the GUL

The number of tested acquisition devices ranges from 1 to
8 (maximum number of channels managed by the electrical
stimulator) with a one-to-one control. In particular, for the
sake of synthesis and without loss of generality, the tested
configurations involved 1, 3, 5, or 8 channels.

Processing synchronization was evaluated to satisfy possi-
ble application requirements, which may need to apply FES
only when data are received from all connected acquisition
devices.

Since shrinking the ATC window is among our future
perspectives, tests were also performed by halving its value
(i.e., from 130ms to 65ms) for the most critical system
configurations with 5 and 8 active channels.

Last, although RPi-3B+/4B involve the use of a GUI, the
configurations with 8 channels have also been tested without

1

| Get from Append new Median last 3 LUT L X
| Queue ATC value ATC values 1

\ 1

For each channel with available ATC data
1

Packet creation Write Read
Command Ack
CRC Byte
stuffing

X: amplitude/width

~ width/amplitude
" frequency

Phases included in the processing times

Fig. 2. Following the first phase of retrieving ATC data from the queue of each acquisition device, the modulated stimulation parameter X is computed
through three processing steps and provided as input to the (ScienceMode2) packet creation block together with the not modulated parameters Y. The
measured processing times start after the get from the acquisition queues, and end at the acknowledgment reception from the stimulation device.

ID RPi N Sync Win GUI CPU RAM Losses Delays

(ms) (%) (MB) (%) (%)
Cl1 1 no 130 yes 9.55 85.01 0 0 Cl1
C2 3 Mo 130 yes 1235 86.32 0 0 c2
C3 yes 130 yes 10.57 86.31 0.03 0 c3
C4 no 130 yes 1557 87.44 0 0 C4
C5 5 yes 130 yes 1193 873 0.1 0 Cs
C6 no 65 yes 1735 8736 0 0 Co6
Cc7 yes 65 yes 1421 87.56 0 0 C7
C8 4B no 130 yes 179 88.97 0 0 Cc8
c9 no 130 no 5.6 232 0 0 9
C10 yes 130 yes 15 88.8 0.1 0 C10
Cl11 g ves 130 no 338 2289 0.14 0 Cl11
C12 no 65 yes 1893 89.33 0 0 C12
C13 no 65 no 695 2284 0 0 C13
Cl14 yes 65 yes 17.32 88.98 0.1 0 Cl4
C15 yes 65 no 43 2312 131 0 Cl15
Cl6 1 no 130 yes 7472 13848 0 0 Cl6
Cl17 3 mo 130 yes 71.17 139.85 0 0.07
C18 yes 130 yes 71.83 13942 1.53 0
C19 no 130 yes 67.62 13998 0.14 0.11
C20 5 vyes 130 yes 69.03 139.41 3.04 0.07
C21 no 65 yes 6533 14027 7.06 12.98
C22 yes 65 yes 6692 139.99 1278 582
C23 3B+ no 130 yes 633 140.71 0.93 3.11
C24 no 130 no 1055 23.09 0 0
C25 yes 130 yes 6582 14039 3.63 0.72
C26 g vyes 130 no 57 2292 0.8 0
C27 no 65 yes 6045 14095 134 16.99
C28 no 65 no 13.68 23.09 0 0
C29 yes 65 yes 62.88 14041 17.87 7.08
C30 yes 65 no 84 2321 0 0
C31 1 no 130 no 376 2299 0 0
C32 3 Mo 130 no 643 2258 0 0
C33 yes 130 no 377 2285 0 0
C34 no 130 no 779 2298 0.2 0
C35 5 yes 130 no 562 2321 0.02 0 C35
C36 no 65 no 89 2276 3.36 0 C36
C37 yes 65 no 797 2326 0.12 0.11 C37
C38 no 130 no 928 2319 0.03 0 C38
C39 g yes 130 no 814 2355 0.08 0 C39
C40 no 65 no 90.6 2321 2656 99.66 C40
C41 yes 65 no 906 232 2694 99.72 C41

Fig. 3.

Measured processing times for each tested configuration
[1130ms []65ms [JAsync []Sync : Off-axis outliers (<235ms)
oo+ ‘ ‘ ‘ \

dy-1dd

- HC- -+

I
1
1
1
1
1
1
1
| O ——HH H
1
1
1
1
1
1
1
1
1
- !

[~ HL- .- - A -

- - O+ =
- - - - I - - - - 4 2
- - [T+ - S+ H+ o+ 1 2
- Fe— - - CT—F----- H -

- T s s SRR ' + -

1

- - - - - T F----- HHH

- | | - - - - E - - - -

0 20 40 65 80 100 120 130 140

Processing time (ms)

Obtained results for each tested configuration. The table on the left reports the CPU and RAM usage, the percentages of lost packets, and those

for which the processing times exceeded our constraint (i.e., ATC window). The boxplots on the right show the measured processing latencies as described

in Section IV.

it for the sake of completeness and to understand its effect on
the system. In particular, the tests without GUI were carried
out by communicating with the system via the command line,
and so having one less thread since ATC and FES profiles
were not plotted.

Each test included 3 min of continuous operation, with
CPU and RAM usage continuously monitored.

V. RESULTS AND DISCUSSION

This section presents the characterization of the system
across the multiple tested configurations, whose results are
reported in Fig. 3.

For both system implementations (i.e., the user-controlled
and the stand-alone system), the increase of acquisition
devices results in longer processing times. This is mainly due
to two factors: each input device is managed by a thread, so
the number of active threads increases; the command packet
size is proportional to the number of initialized stimulation
channels, thus requiring more time to build the packet.

Enabling the synchronization among input channels re-
laxes the processing phase, as the control platform needs
to build the command packet fewer times. However, since
waiting for data from all queues may take longer, the prob-
ability of queued data piling during subsequent processing
steps increases: in these cases, only the most recent data
are processed (for each input device), while older data are
discarded. The percentage of data lost, w.r.t. those streamed
by the acquisition devices, is reported in the Losses column
in the table on Fig. 3. As expected, this percentage gets
higher when the number of input devices increases and the
ATC window decreases.

The use of the halved window (i.e., 65ms) results in
more processing cycles per time unit, which also reduces the
operating time before the next ATC value(s). The percentage
of data that took longer than one ATC window to be
processed is reported in the Delays column of Fig. 3.

The user-controlled implementation of the system features
negligible losses and zero delays when RPi-4B is employed
as the control platform. Combined with a maximum CPU

utilization of 18.93 % in the most critical configuration (i.e.,
8 channels, asynchronous processing, and 65 ms window),
our measurements confirm the RPi-4B as an ideal platform
for this implementation. On the other hand, the use of the
RPi-3B+ involves more losses and delays (as evidenced by
the high presence of outliers in Fig. 3), which reflect in an
increase of RAM utilization w.r.t. the RPi-4B. A reasonable
explanation for this behavior is related to the less performant
GPU available on the RPi-3B+, which does not fully support
the graphical requirements of our application. Although
its performance decrease, considering that the interquartile
range of the processing times is always within the ATC
window, the use of the RPi-3B+ is still a feasible solution
for use-case a).

The stand-alone system implementation (i.e., based on the
RPi-OW) exhibits good performances for all tested config-
urations, except those involving 8 channels with the halved
window. In these cases, the percentage of discarded data ex-
ceeds 26 %, while more than 99 % of the processed data takes
longer than 65 ms. Comparing to what was obtained with
RPi-3B+ (when the GUI was not used), the amount of RAM
utilization is the same (about 23 MB), while the percentage
of CPU usage is much higher (92.8 % versus 10.55% in
the configuration with 8 channels, asynchronous processing,
and 130 ms window). Despite the higher CPU usage, if the
ATC window is not halved, all data are processed on time,
thus allowing the implementation b) to be used even with 8
channels.

VI. CONCLUSION AND FUTURE PERSPECTIVES

In this paper, we proposed and analyzed the ATC-
controlled FES workflow on different RPi machines for two
use-cases: a user-supervised version and a stand-alone one.

Since real-time operability is a fundamental prerogative
of FES systems, the computational latencies of the software
were examined, emphasizing the system scalability in terms
of input devices and considering the usage of RPi hardware
resources. As a perspective of future developments of the
ATC technique, tests were performed on different acquisition
windows. The obtained results confirmed the feasibility of
using the RPi-3B+/4B as the control platform when the
maximum number of active channels (i.e., eight) is selected,
even with the reduced ATC window. With the same channels
configuration, the RPi-OW, acting in the stand-alone appli-
cation, is able to manage up to eight-channels only with the
longer (common) window.

The outcomes of this study allowed us to take a further
step towards adopting our system for rehabilitation purposes,
promoting its use for daily life activities involving multiple
muscle groups (e.g., human gait and reaching exercises),
thanks to the verified real-time and multichannel operation.

Next steps will also include the development of an IoT
solution to complete the remote control of the stand-alone
system, making it totally suitable for telerehabilitation.

[1]

[3]

[4]

[5]

[6]

[7]
[8]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

M. Peter, Embedded System Design: Embedded Systems Foundations
of Cyber-Physical Systems, and the Internet of Things. Springer
Nature, 2021.

A. Mongardi, P. Motto Ros, F. Rossi, M. Ruo Roch, M. Martina, and
D. Demarchi, “A low-power embedded system for real-time SEMG
based event-driven gesture recognition,” in 2019 26th IEEE Interna-
tional Conference on Electronics, Circuits and Systems (ICECS), 2019,
pp. 65-68.

M. Capra, S. Sapienza, P. Motto Ros, A. Serrani, M. Martina,
A. Puiatti, P. Bonato, and D. Demarchi, “Assessing the feasibility of
augmenting fall detection systems by relying on UWB-based position
tracking and a home robot,” Sensors, vol. 20, no. 18, 2020. [Online].
Available: https://www.mdpi.com/1424-8220/20/18/5361

X. Wang, M. Hersche, B. Tomekce, B. Kaya, M. Magno, and
L. Benini, “An accurate EEGNet-based motor-imagery brain—computer
interface for low-power edge computing,” in 2020 IEEE International
Symposium on Medical Measurements and Applications (MeMeA).
IEEE, 2020, pp. 1-6.

S. F. L. Romero and L. Serpa-Andrade, “Low-cost embedded system
proposal for EMG signals recognition and classification using ARM
microcontroller and a high-accuracy EMG acquisition system,” in
International Conference on Applied Human Factors and Ergonomics.
Springer, 2020, pp. 422-428.

G. Dere, “Biomedical applications with using embedded systems,”
in Data Acquisition-Recent Advances and Applications in Biomedical
Engineering. IntechOpen, 2021.

M. N. Sadiku, R. A. Jaiyesimi, J. B. Idehen, and S. M. Musa, Emerging
Technologies in Healthcare. AuthorHouse, 2021.

K. Masani and M. Popovic, Functional Electrical Stimulation in
Rehabilitation and Neurorehabilitation, 01 2011, pp. 877-896.

C. Marquez Chin and M. Popovic, “Functional electrical stimulation
therapy for restoration of motor function after spinal cord injury and
stroke: a review,” BioMedical Engineering OnLine, vol. 19, 05 2020.
A. L. Basith, A. Arifin, E. Arrofigi, T. Watanabe, and M. Nuh,
“Embedded fuzzy logic controller for functional electrical stimulation
system,” in 2016 International Seminar on Intelligent Technology and
Its Applications (ISITIA), 2016, pp. 89-94.

S. Marzetti, V. Gies, V. Barchasz, H. Barthelemy, H. Glotin,
E. Kussener, and R. Vauche, “Embedded learning for smart functional
electrical stimulation,” in 2020 IEEE International Instrumentation
and Measurement Technology Conference (I2MTC), 2020, pp. 1-6.
Z. Bi, Y. Wang, H. Wang, Y. Zhou, C. Xie, L. Zhu, H. Wang, B. Wang,
J. Huang, X. Lii, and Z. Wang, “Wearable EMG bridge — A multiple-
gesture reconstruction system using electrical stimulation controlled
by the volitional surface electromyogram of a healthy forearm,” /IEEE
Access, vol. 8, pp. 137330-137 341, 2020.

F. Rossi, P. Motto Ros, R. M. Rosales, and D. Demarchi, “Embedded
bio-mimetic system for functional electrical stimulation controlled by
event-driven SEMG,” Sensors, vol. 20, no. 5, p. 1535, Mar 2020.
[Online]. Available: http://dx.doi.org/10.3390/s20051535

R. Merletti and S. Muceli, “Tutorial. Surface EMG detection in
space and time: Best practices,” Journal of Electromyography and
Kinesiology, vol. 49, p. 102363, 2019. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S1050641119302536

S. J. Johnston and S. J. Cox, “The Raspberry Pi: A technology
disrupter, and the enabler of dreams,” Electronics, vol. 6, no. 3, 2017.
[Online]. Available: https://www.mdpi.com/2079-9292/6/3/51

B. Sijobert, C. Azevedo, J. Pontier, S. Graf, and C. Fattal, “A sensor-
based multichannel FES system to control knee joint and reduce stance
phase asymmetry in post-stroke gait,” Sensors, vol. 21, no. 6, 2021.
[Online]. Available: https://www.mdpi.com/1424-8220/21/6/2134

B. Sijobert, R. Le Guillou, C. Fattal, and C. Azevedo Coste,
“FES-induced cycling in complete SCI: A simpler control method
based on inertial sensors,” Sensors, vol. 19, no. 19, 2019. [Online].
Available: https://www.mdpi.com/1424-8220/19/19/4268

A. Bo, L. da Fonseca, J. Guimaraes, E. Fachin-Martins, M. Paredes,
G. Brindeiro, A. de Sousa, M. Dorado, and F. Ramos, “Cycling with
spinal cord injury: A novel system for cycling using electrical stim-
ulation for individuals with paraplegia, and preparation for cybathlon
2016,” IEEE Robotics Automation Magazine, vol. 24, no. 4, pp. 58-65,
2017.

G. Ricarte, L. de Macédo Pinheiro, and A. P. Lanari B6, “Intuitive
and modular software architecture for functional electrical stimulation
rehabilitation,” in 2020 Latin American Robotics Symposium (LARS),

https://www.mdpi.com/1424-8220/20/18/5361
http://dx.doi.org/10.3390/s20051535
https://www.sciencedirect.com/science/article/pii/S1050641119302536
https://www.sciencedirect.com/science/article/pii/S1050641119302536
https://www.mdpi.com/2079-9292/6/3/51
https://www.mdpi.com/1424-8220/21/6/2134
https://www.mdpi.com/1424-8220/19/19/4268

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]
[38]
[39]

[40]

2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on
Robotics in Education (WRE), 2020, pp. 1-6.

N. S. Dhillon, A. Sutandi, M. Vishwanath, M. M. Lim, H. Cao,
and D. Si, “A Raspberry Pi-based traumatic brain injury detection
system for single-channel electroencephalogram,” Sensors, vol. 21,
no. 8, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/
21/8/2779

R. Bayareh, A. Vera, L. Leija, and J. Gutiérrez-Martinez, “Devel-
opment of a thermographic image instrument using the Raspberry
Pi embedded system for the study of the diabetic foot,” in 2018
IEEE International Instrumentation and Measurement Technology
Conference (I2ZMTC). 1EEE, 2018, pp. 1-6.

F. Stradolini, A. Tuoheti, P. Motto Ros, D. Demarchi, and S. Carrara,
“Raspberry Pi based system for portable and simultaneous monitoring
of anesthetics and therapeutic compounds,” in 2017 New Generation
of CAS (NGCAS), 2017, pp. 101-104.

T. Shaown, 1. Hasan, M. M. R. Mim, and M. S. Hossain, “IoT-based
portable ECG monitoring system for smart healthcare,” in 2019 Ist
International Conference on Advances in Science, Engineering and
Robotics Technology (ICASERT). 1EEE, 2019, pp. 1-5.

V. V. Garbhapu and S. Gopalan, “IoT based low cost single sensor
node remote health monitoring system,” Procedia computer science,
vol. 113, pp. 408-415, 2017.

V. Pardeshi, S. Sagar, S. Murmurwar, and P. Hage, “Health monitoring
systems using IoT and Raspberry Pi — a review,” in 2017 interna-
tional conference on innovative mechanisms for industry applications
(ICIMIA). 1EEE, 2017, pp. 134-137.

H. Hamil, Z. Zidelmal, M. S. Azzaz, S. Sakhi, R. Kaibou, S. Djilali,
and D. Ould Abdeslam, “Design of a secured telehealth system based
on multiple biosignals diagnosis and classification for IoT application,”
Expert Systems, p. 12765, 2021.

F. Rossi, P. Motto Ros, S. Cecchini, A. Crema, S. Micera, and
D. Demarchi, “An event-driven closed-loop system for real-time FES
control,” in 2019 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2019, pp. 867-870.

A. Prestia, F. Rossi, A. Mongardi, P. Motto Ros, M. Ruo Roch,
M. Martina, and D. Demarchi, “Motion analysis for experimental
evaluation of an event-driven fes system,” IEEE Transactions on
Biomedical Circuits and Systems, pp. 1-1, 2021.

F. Rossi, A. Mongardi, P. Motto Ros, M. Ruo Roch, M. Martina, and
D. Demarchi, “Tutorial: A versatile bio-inspired system for processing
and transmission of muscular information,” IEEE Sensors Journal,
vol. 21, no. 20, pp. 22285-22303, 2021.

F. Rossi, P. Motto Ros, S. Sapienza, P. Bonato, E. Bizzi, and D. De-
marchi, “Wireless low energy system architecture for event-driven
surface electromyography,” in Applications in Electronics Pervading
Industry, Environment and Society, S. Saponara and A. De Gloria, Eds.
Cham: Springer International Publishing, 2019, pp. 179-185.

P. Motto Ros, A. Sanginario, M. Crepaldi, and D. Demarchi, “Quality-
energy trade-off and bio-inspired electronic systems,” in 20/8 IEEE
International Conference on the Science of Electrical Engineering in
Israel (ICSEE), 2018, pp. 1-5.

K. Shima and K. Shimatani, “A new approach to direct rehabilitation
based on functional electrical stimulation and EMG classification,”
in 2016 International Symposium on Micro-NanoMechatronics and
Human Science (MHS), 2016, pp. 1-6.

HASOMED GmbH, Operation Manual RehaStim 2, RehaMove 2, 09
2012.

R. K. Ege, Programming in an Object-Oriented Environment. Aca-
demic Press, 1992.

R. Oshana and M. Kraeling, Software engineering for embedded
systems: Methods, practical techniques, and applications. Newnes,
2019.

Z. Li, D. Guiraud, D. Andreu, M. Benoussaad, C. Fattal, and
M. Hayashibe, “Real-time estimation of FES-induced joint torque with
evoked EMG,” Journal of neuroengineering and rehabilitation, vol. 13,
no. 1, pp. 1-11, 2016.

1. Harvey. Bluepy. Accessed: April 11, 2022. [Online]. Available:
http://ianharvey.github.io/bluepy-doc/

B. Project. BlueZ. Accessed: April 11, 2022. [Online]. Available:
http://www.bluez.org/

B. Kuberski, ScienceMode?2, RehaStim2 Stimulation Device, Descrip-
tion and Protocol, 12 2012.

C. Liechti. Pyserial. Accessed: April 11, 2022. [Online]. Available:
https://pyserial.readthedocs.io/en/latest/index.html

[41] K. Project. Kivy. Accessed: April 11, 2022. [Online]. Available:

https://kivy.org/#home

[42] P. S. Foundation. Queue — A synchronized queue class. Accessed:

April 11, 2022. [Online]. Available: https://docs.python.org/3/library/
queue.html

https://www.mdpi.com/1424-8220/21/8/2779
https://www.mdpi.com/1424-8220/21/8/2779
http://ianharvey.github.io/bluepy-doc/
http://www.bluez.org/
https://pyserial.readthedocs.io/en/latest/index.html
https://kivy.org/#home
https://docs.python.org/3/library/queue.html
https://docs.python.org/3/library/queue.html

	Introduction
	System Overview
	Software Implementation
	Test Setup
	Results and Discussion
	Conclusion and Future Perspectives
	References

