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Abstract—In recent years, Social Media platforms have at-
tracted millions of users, becoming a primary communication
channel. They offer the possibility to massively ingest and
instantly share big volumes of user-generated content before,
during, and after emergency events. Being able to accurately
quantify the impact of such hazardous events could greatly help
all organizations involved in the emergency management cycle
to adequately plan the required recovery operations. In this
work, we propose a novel Natural Language Processing approach
built on rule-based algorithms able to estimate, from tweets
posted during natural hazards, the impact of emergency events in
terms of affected population and infrastructures. We implement
our approach in an operational environment and present its
validation on a publicly released dataset of more than 1.4K
manually annotated tweets, showing an overall weighted F1 score
of 0.77.

Index Terms—Social media, impact estimation, emergency
events, natural language processing, rule based algorithm

I. INTRODUCTION

Natural disasters have become increasingly frequent in
recent years, together with their impact on infrastructures
and population [1]. During emergencies, information is the
key component leading towards situational awareness and
significantly contributing to a more efficient and effective orga-
nization of disaster management operations. In the aftermath
of a disaster, official sources often produce reliable reports
upon time-consuming on-site inspections, providing manually
validated data, albeit with a significant delay.

However, in recent years, the surge of mobile devices
and social platforms has indirectly enabled a large flow of
information with capillary distribution around the globe.

Monitoring social media usage during disasters has been
proven to be effective in estimating some important properties
of the event obtaining important results in extraction of sit-
uational awareness information [2] and understanding natural
hazard effects on society such as business recovery time after
disaster [3]. Provided that an accurate geocoding mechanism
of the tweets is provided, it is also possible to precisely locate
the area affected by the event in a timely manner: by analysing
location of tweet messages posted during an earthquake it is
possible to estimate the impact area [4] and even its epicenter
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with high accuracy [5]. Similar outcomes can be obtained for
other hazard types, such as hurricanes, where for instance the
activity of Twitter users is often positively correlated with
their path [6]. The volume of disaster-related tweets produced
in an area is shown to be strongly correlated also with the
level of damage caused by the event itself [7]–[10]. However,
most of these solutions show two main drawbacks: first, they
tend to focus on large-scale information, extracting estimates
and averages from a global aggregation, losing smaller, yet
still relevant impact data. Second, they are often specifically
designed to deal with a particular event type, making them
less effective in different domains.

Given these issues, in this work we propose a system able
to analyze a collection of tweets related to the same event
providing both large and small-scale estimates of damages
provoked by hazard, intended as the number of affected
entities, following a purpose specific taxonomy (see Table I).

The system has not been specifically designed for a certain
kind of disaster, but instead to be general enough to han-
dle hazards of any type. We evaluate the performances of
the proposed system on a set of manually annotated tweets
posted during several natural hazards, providing both overall
performances and per-disaster evaluations. Our contributions
can thus be summarized as follows:

• we propose a generic and modular impact estimation
system which processes disaster-related tweets to pro-
vide both large- and small-scale damage estimates of
hazardous events.

• we thoroughly evaluate our approach on a collection of

TABLE I
IMPACT ESTIMATION TAXONOMY

Infrastructure Population
Road Dead

Bridge Injured
Residential Missing

Power Network Evacuated
Water Network Rescued

Cultural Heritage Hospitalized
Burned Area (Km2) Other
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manually labeled tweets, made available to the public1,
highlighting strengths and shortcomings of our approach.

II. RELATED WORKS

A. Event Detection

By design, our impact estimation system does not require
the preliminary event detection and tweet grouping to be done
in any specific way. Several solutions to this problem have
been devised over the years in literature, allowing for different
alternatives suitable to this context. A first viable approach is
proposed by [11], where tweets are collocated within a spatial
grid, tracking disaster related keywords frequencies over time.
A statistical-based probability is then computed for a potential
disaster event. Slightly different solutions have been proposed
in the context of information retrieval: following an announce-
ment published by external and official sources, these systems
monitor social media streams looking for event-related tweets.
For instance, the system proposed in [12] is triggered by the
detection of extreme weather events and starts monitoring
a set of crisis-related keywords in the designated area. The
occurrence of the event is then confirmed after a volume-
based statistical test. Using a similar approach, [13] proposes
a framework that tracks and retrieves useful information about
a given incident using social media messages, after an emer-
gency service has broadcast the occurrence of an incident.
In our deployment we leverage the fully automated system
described in [14], performing online clustering of the incoming
tweets using an ensemble of textual and geographical features
being able to cover with low latency a global area with local
resolution.

B. Impact estimation

Several works in literature have demonstrated the benefits
of using social media streams for rapid damage assessment,
focusing on different aspects of impacts. Considerable research
efforts have been made in damage assessment for earthquake
events: a Latent Dirichlet Allocation (LDA) approach [15] has
been employed to classify damage levels reported in tweets
posted during a California earthquake, using the predictions in
a damage assessment model proposed specifically for earth-
quakes by FEMA2 to obtain a damage map. Alternatively,
a system based on machine learning has been exploited to
classify the damage level, on a scale from 0 to 3, reported in
damage-related tweets, testing it in the context of an earth-
quake [16]. A similar study [17] proposes the use of a long
short-term memory (LSTM) model to automatically process
documents describing damages sustained by buildings after
an earthquake to classify the reported damage level following
the ATC-203 taxonomy. The study in [18] represents the first
system aimed at estimating the damage of an event with more
detail: the system leverages a set of machine learning-based
text classifiers, able to distinguish informative content in social

1data and code available at https://github.com/gblanco10/impact-estimation
2https://www.fema.gov/
3https://www.atcouncil.org/

media, categorize the information type and extract from these
tweets potentially useful data according to the information
type. A similar work has been proposed in [19], where a set of
algorithms have been employed to extract from an input text
pairs of type (attribute-value) which respectively contains the
kind of affected category and its associated estimate mentioned
in the text.

III. EVENT DETECTION PIPELINE

While the proposed impact estimation system remains ag-
nostic with respect to the preceding natural language process-
ing pipeline, in this work we describe its use and details in
a pipeline for real-time analysis from social media streams,
whose general schema is reported in Fig.1. Excluding the
impact estimation, the architecture is composed of three subse-
quent steps: data ingestion (i), information extraction (ii), and
event detection (iii). The first is an open endpoint to the Twitter
filtering API, which allows to receive a continuous stream
of tweets containing a given set of keywords and language.
The second step enriches textual information through text
classification, such as information content, and Named Entity
Recognition (NER), for instance the geographic location they
refer to. The last module allows instead to aggregate the
individual information provided by the stream of documents
according to topic similarity and spatio-temporal proximity.
The result is a set of clusters, representing the occurrence
of disaster events of any kind. The output of this module,
the collection of tweets for each detected event, is then fed
to the impact estimation system which will extract impact
information from every tweet to then aggregate it in second
stage, producing the overall estimate associated to the event.

A. Tweet processing

In document processing step, we employ a serial pipeline
following [20], composed of two serial steps: information
extraction and localization. Tweets are provided by real-time
data ingestion module that continuously gathers emergency-
related posts, queried from Twitter through a predefined list
of keywords for each type of supported hazard (earthquake,
flood, storm and wildfire) and language (Italian, English and
Spanish). Given the amount of information shared on social
media, the first step is dedicated to filtering out useless and
unwanted content, eliminating tweets containing a series of
blacklisted words, or with a word count below a predefined
threshold which has been set to 10. Each tweet is further
processed to remove emoticons, URLs and other unwanted
characters, then tokenized and encoded using MUSE [21],
a set of pretrained FastText multilingual embeddings. The
vector representations of each tweet are then fed into a series
of deep learning models. First, a lightweight Convolutional
Neural Network (CNN) provides a multi-label classification
over a fixed taxonomy of information types, further discarding
documents classified as irrelevant. Second, a Long-Short Term
(LSTM) Memory network [22] extracts a series of named
entities following the Ontonotes classification [23], focusing
on location names. The use of an aligned latent space allows

https://github.com/gblanco10/impact-estimation
https://www.fema.gov/
https://www.atcouncil.org/


Fig. 1. Real-time pipeline for social media analysis with the employment of our modular impact estimation system.

for a more efficient training focusing on available data, without
sacrificing the performance even on low-resource languages
(e.g., Italian, Spanish). Last, each geographical entity detected
in the text is geocoded using OpenStreetMaps services [24], in
order to provide an estimated location for each document. The
final output is thus represented by the textual content of the
tweet itself, a unique identifier of the author, useful to further
disambiguate content, the generated annotations and a set of
geographical bounding boxes and timestamps associated with
the single document.

B. Event detection

To collect tweet-level information fragments into a unique
comprehensive event overview, we adopt an online clustering
pipeline, following the work in [14]. The module is based on
two main concepts: clusters and events. The former simply
represents a collection of similar elements and is exploited
as internal data structure, the latter can be seen as a flagged
cluster that satisfies a set of required criteria, and constitutes
the output of the system, that is multiple sets of tweets each
associated to a hazard type, a start and end time, and a
geographical area.
The detection process, parallel and independent for each
language and hazard type combination, follows in the first
part a greedy incremental clustering approach: tweets, received
from the previous module are individually preprocessed, fur-
ther extracting and refining features, and attached to one or
multiple clusters according to a similarity metric based on
geographical proximity and correspondence of keyword and
hashtags. Cyclically, this iteration is suspended and several
cluster management operations are performed, starting from
defragmentation, that finds and merges independent active
clusters that may describe the same event, having over time be-
come similar or neighboring. Subsequently, non-event clusters
are evaluated for flagging, considering primarily the number
of unique authors in the clusters and some content information
metrics. After a time period, tweets of non-event clusters
expire, and are removed from the cluster, that is purged if
consequently empty. Event clusters are similarly time-limited
to improve content coherence, but leveraging an idling and
chaining mechanism the events are unbounded in duration.

IV. IMPACT ESTIMATION ALGORITHM

The impact estimation system proposed in this work aims
to precisely estimate the impact of a natural disaster of any
kind in a set of categories regarding both population and
infrastructures (reported in Table I), starting from a set of
tweets all related to the same disaster. For each event it
estimates whether a given category has been affected or not,
and in case provide the number of impacted entities in the
category. It works in a two stages fashion: in the first one
the information about disaster impact is extracted from each
tweet. During this information extraction stage, it exploits a
multilingual rule-based algorithm (provided that the necessary
rules have been written for the target language, currently
supporting English, Italian and Spanish) which detects the
mention of impacted categories in input text. The system then
associates each detected category with a numeric estimate
present in text and validates this association thanks to a
language model. In second stage the system aggregates the
fine-grained information extracted from all event tweets to
provide the final estimate associated with the whole event.
Fig.3 reports all operations executed to obtain the event impact
estimate starting from a collection of tweets.

A. Impact extraction

The overall schema of this stage is presented in Fig.2.
The process is applied independently to every single tweet
belonging to event currently under analysis. The first step, right
after the ingestion of real-time information, is an additional
cleaning and formatting phase, while the subsequent ones
extract from the cleaned but unstructured textual input a
structured output containing the information about affected
entities. To do this, a rule-based algorithm is employed,
which provides position in text of each mention of possibly
impacted category. As the actual estimate associated to a
given category is seldom reported in a standard format, but
rather is often written in many different forms, a candidate
estimate generation step produces a set of candidate numerical
expressions possibly related to each detected category. After
that, possibly ambiguous assignations are resolved, outputting
the final estimation for current tweet.

Concerning the first operation, input text has already been
preprocessed by the information extraction step of pipeline



Fig. 2. Impact extraction building blocks. The yellow blocks represent the intermediate result after each block for an example input text.

in Fig.1, but additional operations specific to this phase
are required for impacts extraction: any number written in
characters is converted in digits and detected named entities
are masked in text. In addition, a dependency parser [25]
is exploited to create a word dependency graph and detect
sentence boundaries (respectively G and S in Fig.3).

After preprocessing, the system identifies the categories of
affected entities mentioned in text exploiting the rule-based al-
gorithm (step 2 in Fig.2). This is applied to each input sentence
and returns the positions of the keywords that triggered all the
matching rules, allowing the analysis of a specific text portion
to find the associated impact measure (see I in Fig.3). In order
to provide an estimate for each detected impacted category, the
system retrieves, once per category, the sentence in which the
entity was found together with any numeric expression in the
sentence itself (step 3 in Fig.2). Among these numbers, if any,
we expect to find a numerical quantity describing an impact
estimate for the observed category. Moreover, the system also
performs a check on each digit found to assess whether it is
a good candidate estimate or not: we are interested in raw
measurements, meaning that a good estimate must not be part
of either a date or time string, and it must not refer to scientific
measurements or currencies. The system collects all valid
candidate estimates found in the sentence, keeping for each
of them the impact category they are possibly referred to, the
value, the position in input text and the distance from related
mentioned entity (see E in Fig.3). If no correct candidate
estimate has been found in the sentence, a placeholder value
of 0 is used. This describes the situation in which the system
has detected an impact category, but it has not been able
to find its associated estimate. Once the detected candidate
estimates have been collected, the system produces a final
estimate for each mentioned category sequentially, following
their appearance order in text (step 4 in Fig.2). Among all
potential estimates associated with each category, the first one
satisfying a set of conditions is selected as result for the given
category. The conditions are as follows:

• There is a path in dependency graph G connecting
mentioned category and candidate estimate.

• The position of a candidate estimate precedes any other
mentioned category, after currently observed one.

• The position of a candidate estimate follows any other

mentioned category, preceding current one (intuitively, it
must reside between other categories, if present).

• A candidate estimate has not been already associated to
any other impact category.

Fig. 3. Impact Estimation algorithm on single event data
1: Input: current event tweets collection T
2: Output: current event impact estimate R
3: Stage 1: Impact Extraction phase
4: for all t ∈ T do
5: G,S ← PREPROCESS(t)
6: for all s ∈ S do
7: I ← APPLY RULES(s)
8: E ← FIND CANDIDATE ESTIMATES(I, s)
9: end for

10: for all e ∈ E do
11: if VERIFY CANDIDATE(e,G) then
12: V (CATEGORY(e))← TIME(t), VALUE(e)
13: break
14: end if
15: end for
16: end for
17:
18: Stage 2: Impact Aggregation phase
19: for all c ∈ C do
20: if LENGTH(V (c))= 0 then
21: R(c)← 0
22: else
23: R(c)← MOST FREQ(MOST REC(V (c)))
24: end if
25: end for
26: return R

The placeholder value of 0 is also set for any category
without a candidate estimate satisfying these conditions. The
reasoning for these conditions stands in how reporting quan-
tities in text is normally structured: in fact, it is often the case
that the number of affected entities is close to related entity
(before or after) or at most in the same sentence, but it is not
common to find this numerical quantities once another affected
entity has been mentioned in text, even less so to have the same
number linked to two different entities. At the end of this stage,
the system has assigned an estimate for each detected impact



TABLE II
IMPACT ESTIMATION - CLASSIFICATION RESULTS PER EVENT TYPE AND MICRO-AVERAGE OVERALL PER CLASS.

Category Event type A P R F1 Support Category Event type A P R F1 Support

Road
Fire 0.99 1.00 0.66 0.80 6

Dead

Earthquake 1.00 1.00 1.00 1.00 175
Flood 0.99 0.50 1.00 0.67 2 Storm 0.99 1.00 0.99 0.99 272

Overall 0.99 0.75 0.75 0.75 8 Flood 0.99 0.99 0.99 0.99 442

Bridge
Earthquake 1.00 1.00 1.00 1.00 2 Overall 0.99 0.99 0.99 0.99 889

Fire 1.00 1.00 1.00 1.00 3

Injured

Earthquake 1.00 1.00 1.00 1.00 142
Overall 1.00 1.00 1.00 1.00 5 Storm 1.00 1.00 1.00 1.00 276

Residential

Earthquake 0.97 0.25 1.00 0.40 2 Flood 1.00 1.00 1.00 1.00 7
Storm 0.98 0.96 1.00 0.98 149 Overall 1.00 1.00 1.00 1.00 425
Flood 0.98 0.81 0.98 0.89 48

Missing
Flood 0.99 0.99 1.00 0.99 354

Fire 0.97 0.50 0.83 0.62 6 Storm 0.99 0.75 1.00 0.86 3
Overall 0.98 0.88 0.99 0.93 205 Overall 0.99 0.99 1.00 1.00 357

Power Network
Flood 1.00 1.00 1.00 1.00 5

Evacuated

Earthquake 1.00 1.00 1.00 1.00 3
Storm 1.00 1.00 1.00 1.00 3 Storm 1.00 1.00 1.00 1.00 1

Overall 1.00 1.00 1.00 1.00 8 Fire 0.96 0.10 1.00 0.18 1
Water Network Flood 1.00 1.00 1.00 1.00 1 Overall 0.99 0.35 1.00 0.52 5
Cultural Heritage Flood 1.00 1.00 1.00 1.00 4 Rescued Flood 0.99 0.75 1.00 0.86 3

Burned Area
Fire 0.99 1.00 0.84 0.91 19 Hospitalized Storm 0.99 1.00 0.50 0.66 2

Flood 0.99 0.00 0.00 0.00 1
Other

Flood 0.99 0.36 0.80 0.50 5
Overall 0.99 1.00 0.80 0.89 20 Storm 1.00 1.00 1.00 1.00 2

Overall 0.99 0.46 0.85 0.60 7

category in the given tweet and updated the general status
associated to the current event (V in Fig.3). A schematic view
of the information extraction process together with the results
produced by each phase, decorated by an example input text,
is reported in Fig.2-3.

B. Impact aggregation

The information extracted in first stage (V in Fig.3) has,
for each category reported in Table I, all impact measures
extracted from event related tweets sorted according to tweet
creation time. Impact aggregation phase combines then the
information extracted from each tweet to produce an overall
estimate associated to the whole event, using the following
approach for each impact category: if there are no measures,
it is established that the event has not provoked an impact
in the given category. Otherwise, the impact measure in the
observed category is given by the most frequent value among
the most recent 100 ones. If two measures appear with same
frequency, it is selected the largest one.

The description of the complete process of impact estima-
tion for a single disaster event is reported in Stage 2 of Fig.3.
The information about crisis events shared on social media
platforms can easily be noisy and rapidly change over time:
limiting the choice to the most recent values helps to ignore the
initial estimates, which are usually inaccurate, while choosing
the most frequent value allows to overlook eventual noisy
estimations.

V. PERFORMANCE EVALUATION

The proposed system has been evaluated on a test set of
1416 English tweets (retrieved and processed with the pipeline
reported in Fig.1) posted during six different crisis events
happened in 2021: flood in Nepal, flood in Germany, flood in
North Carolina, storm in Czech Republic, earthquake in China
and fire in California. Among a wide set of detected events,
these were carefully chosen because considered representative
on a global scale considering a yearly scenario. Additionally,
only crises big enough to contain impact information have
been selected. Most of them are related to flood disasters, given

their high frequency, while earthquakes have been selected
since is the hazard that accounts for the highest number of
people potentially exposed [1]. Other disaster types have been
included for sake of completeness, to evaluate the system
against different crises. Details about test set construction are
provided in Table III.

The main objective of the evaluation is to measure system
ability in detecting affected entities mentioned in text, focusing
on damaged infrastructures and affected people, and estimat-
ing their number. To this purpose, the selected tweets were
manually annotated using the following criteria: each tweet
is associated with a possibly empty set of impact categories,
following the taxonomy reported in Table I. A category is
associated with a tweet whenever the former is mentioned
in the text. Each present category is also associated with a
numerical impact, expressed as the number of entities affected
in that category. In case the tweet does not clearly express the
number of affected entities, the corresponding impact is set to
0.

TABLE III
TEST DATASET PROPERTIES. START AND END COLUMNS REPRESENT THE

TIME OF RESPECTIVELY THE FIRST AND LAST TWEET ASSOCIATED TO THE
EVENT RATHER THAN THE START AND END TIME OF THE EVENT ITSELF.

Event Start End # Tweets
Earthquake in China 2021-05-21 15:53 2021-05-22 15:51 183

Flood in Nepal 2021-06-16 06:32 2021-06-20 02:49 182
Storm in CZE 2021-06-24 17:22 2021-06-27 09:00 373

Flood in Germany 2021-07-15 07:50 2021-07-17 05:41 226
Flood in North Carolina 2021-08-18 20:39 2021-08-21 02:57 194

Fire in California 2021-08-23 20:33 2021-08-28 15:02 258

Even though the system works at the event level, providing
an estimate after aggregation of information extracted from
each tweet, performance validation has been done at tweet
level only, given that it represents the most critical phase of the
process. Working at event level implies instead the necessity
of ground truth information of impacted categories at this
level of granularity: despite the presence of disaster databases
such as EM-DAT [26], they usually do not report impacts



TABLE IV
IMPACT ESTIMATION - REGRESSION METRICS PER EVENT TYPE AND MICRO-AVERAGE OVERALL

Category Event type MAE MSE Support Category Event type MAE MSE Support

Road
Fire 25.00 1201.00 6

Dead

Earthquake 18.22 5147.95 175
Flood 0.00 0.00 2 Storm 3.12 416.74 272

Overall 18.75 900.75 8 Flood 1.02 43.16 442

Bridge
Earthquake 0.50 0.50 2 Overall 5.05 10282.42 889

Fire 10.00 150.00 3

Injured

Earthquake 0.89 11.07 142
Overall 6.20 90.20 5 Storm 8.83 1060.18 276

Residential

Earthquake 0.00 0.00 2 Flood 0.29 0.57 7
Storm 6.19 803.25 149 Overall 6.04 692.20 425
Flood 2.43 211.44 48

Missing
Flood 3.30 74.52 354

Fire 16.67 1666.67 6 Storm 0.00 0.00 3
Overall 5.56 682.11 205 Overall 3.27 73.90 357

Power Network
Flood 0.00 0.00 5

Evacuated

Earthquake 6944.00 1.46e8 3
Storm 0.00 0.00 3 Storm 140.00 19600.00 1

Overall 0.00 0.00 8 Fire 24500.00 6.00e8 1
Water Network Flood 0.00 0.00 1 Overall 9124.40 2.08e8 5
Cultural Heritage Flood 1.00 1.00 4 Rescued Flood 0.00 0.00 3

Burned Area
Fire 1168.51 1.29e7 19 Hospitalized Storm 1.50 4.50 2

Flood 8000.00 6.40e7 1
Other

Flood 1800.20 1.62e7 5
Overall 1510.08 1.55E7 20 Storm 19500.00 7.60e8 2

Overall 6857.28 2.29e8 7

with a detailed taxonomy. Moreover, these databases leverage
different sources before reporting the event estimate, while
our system relies only on information posted on social media,
therefore comparing our predictions with values reported in
database would inevitably evaluate the accuracy of information
posted on Twitter rather than the impact estimation itself.
Results of impact category classification are displayed in Table
II, highlighting, for each class, the values of Accuracy (A),
Precision (P), Recall (R) and F1 score metrics measured on
the test set both separated by hazard type and overall, together
with the number of tweets mentioning the category (reported
in Support column). Results highlight how population-related
categories are more represented in test set with respect to
infrastructure ones. The system appears to correctly detect
impact categories in the majority of cases, and at the same
time very rarely produces false positive predictions. Recall and
precision values highlight in fact relatively good and balanced
performances, regardless of the category and hazard type,
reaching an overall weighted F1 score of 0.77 on the entire test
set. After the system has detected the presence of an impact
category, it is also asked to provide a numerical estimate of
entities affected, which can be considered a regression prob-
lem. Mean Absolute Error (MAE) and Mean Squared Error
(MSE) have been collected to characterize the performances
in this additional task. The metrics reported in Table IV have
been evaluated considering only estimates provided when the
given category was actually mentioned in text. Results show
an acceptable MAE in each category, except for Evacuated
and Other labels, where the few tweets mentioning these
categories were poorly estimated. Performances per hazard
type show again consistency for those categories sufficiently
represented in test set, while underrepresented categories show
varying performances. Given the low amount of validation data
available, caused by the peculiarity of these categories, it is not
possible to draw strong conclusions about the performances in
such categories without further manual labeling.

VI. CONCLUSION AND FUTURE WORKS

This paper proposes a system capable of providing precise
impact estimations of ongoing crisis events: obtained perfor-
mance demonstrates the feasibility of its use in a real-world
scenario, as a tool to support the planning of ongoing rescue
operations. However, despite its promising results, we believe
that the current system can still improve in both tasks, i.e., the
detection of affected entities and the estimation of numerical
quantities. In fact, while the rule-based approach can be tai-
lored to any use case, general definitions are typically prone to
false positive predictions, while careful rule setting to cover all
possible cases may become a never-ending task. Given recent
advances in literature, a machine learning-based algorithm
for automatic detection of specific entities may obtain even
better results than the rule-based approach, provided that a
robust ground-truth is available. Moreover, impact estimates
in each category are tightly coupled with word dependencies
extraction: erroneous dependencies may result in wrong or
misplaced predictions, creating a chain reaction of misleading
associations. In this scenario, the design and implementation of
a more resource intensive, albeit more precise, deep learning-
based dependency extractor could also be beneficial for this
task.
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