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Abstract—Parkinson’s disease (PD) severity is assessed through
a set of standardised tasks defined by clinical scales such
as the Unified Parkinson’s Disease Rating Scale (UPDRS). In
particular, Leg Agility is a well-established test among the motor
tasks included in UPDRS, which consists in repeated cycles of
knee lifting and lowering, while sitting on a chair. Leg Agility
objective evaluation through optical devices is often investigated
for telemedicine applications. Moreover, remote rehabilitation for
PD subjects through virtual exergaming is becoming a popular
approach thanks to its versatility, increased user engagement
and the possibility of coupling it with remote monitoring tools.
This work investigates if lower-limb exergaming may also be
exploited for assessment purposes similar to traditional evalua-
tion. In particular, if there exists a statistical difference between
the kinematic description of Leg Agility versus the one of a
Bouncing Ball exergame, as provided by an optical (RGB-D)
acquisition system suitable for remote monitoring. Preliminary
results obtained by the comparison of the two types of assessment
in a small group of parkinsonian subjects are presented and
discussed.

Index Terms—Exergame, Gamification, Parkinson’s disease,
Telemedicine, Leg Agility, Azure Kinect

I. INTRODUCTION

Parkinson’s disease (PD) is a chronic and disabling neurode-
generative disease characterised by motor dysfunctions that
worsen along disease progression. Tremor, muscles stiffness
(rigidity), bradykinesia, hypomimia, abnormal posture, gait
and balance disorders are the most common among motor
symptoms [1]. Unified Parkinson’s Disease Rating Scale (UP-
DRS) is the most widely employed scale in clinic to assess
impairment severity for PD, through a set of standardised
tasks [2]. In particular, section III of the UPDRS focuses
on motor examination and includes 18 items that aim to
establish the impairment severity on different motor functions.
Neurologists usually conduct the motor examination during
scheduled follow-up visits in clinical settings; each item is
scored on the basis of the observed motor performance and

the perceived abnormalities during the task execution. The
assessment is thus affected by intersubject variability between
the clinicians in charge of evaluating the test [3].

A quantitative evaluation of UPDRS motor tasks through
automatically-extracted objective features would be of great
interest; indeed, it could help clinicians to modulate therapies
and define personalised rehabilitation protocols according to
actual needs, thus reducing the long-term complications and
lower efficacy of non-optimised treatments [4] [5]. In addition,
it could be the basis for developing integrated home-based
solutions that combine the assessment of standard motor tasks
and exergames for rehabilitation, thus enhancing the remote
patients’ follow-up, reducing the discomfort of frequent access
to clinical facilities, and extending the benefits of traditional
physical and cognitive rehabilitation [6] [7] [8]. In the last
decade, several studies proposed technological solutions to
evaluate UPDRS motor tasks objectively and to analyse spe-
cific characteristics of human body movement in individuals
with PD [9] [10].

More in general, the developed solutions adopt two differ-
ent approaches: wearable sensors (including inertial sensors,
accelerometers, and, more recently, smartphones) [11] and
optical sensors (e.g. RGB-Depth cameras) [12]. In particular,
several studies propose optical approaches to characterise and
assess upper limb motor function [13], analyse dysfunctions
in lower limbs and postural control [3], estimate gait features
[14], evaluate arms swing [15], analyse balance disorders
[16] [17]. Optical approaches are also widely used to design
motor rehabilitation solutions for specific pathologies [18]
[19], including Parkinson’s disease [20], thanks to a generally
recognised non-invasiveness, portability, versatility, high us-
ability, and easy integration into virtual reality environments.
For example, solutions based on optical sensors address the
rehabilitation of lower [21] and upper limbs [22], balance
disorders [23], cognitive and motor dysfunctions [24], and



Fig. 1. BB game screenshot

gait [20]. Serious games, also known as exergames, are a
broadly investigated technique for a more stimulating and
engaging motor-cognitive rehabilitation in healthcare [25], that
have already proven their feasibility and usefulness in several
studies. However, most of the studies about exergaming in
PD focus on the rehabilitative nature of exergames, without
considering them as an additional source of information about
the patient current motor status [26]. In a remote monitoring
scenario, it could be useful to gamify also the assessment stage,
for several reasons: to produce objective and quantitative data;
to increase patient engagement, motivation and satisfaction in
performing the evaluation more frequently; to stimulate and
evaluate specific motor aspects of the patient through goal-
oriented movements.

This work focuses on the Leg Agility (LA) task of UP-
DRS motor examination and its gamification for assessment
purposes. In particular, a gamified version is realised through
a Bouncing Ball (BB) exergame. An RGB-D camera (Azure
Kinect) is used for tracking human body movements during
traditional LA and BB game trials by a small group of parkin-
sonian subjects. Some kinematic features of the collected body
tracking data are computed and statistically compared to high-
light alterations and similarities in the way subjects perform
the same motor task in a traditional and in a gamified version.
Preliminary results obtained on a small group composed of 15
PD patients are presented and discussed.

II. MATERIALS & METHODS

A. Leg Agility

The UPDRS motor tasks are a standardized examination
method used in PD for assessing the patient’s condition
and progression, observing changes in the habitual motor
behaviour or the most impairing effects of symptoms on motor
performance. In particular, this work focuses on LA, which
can be easily performed by subjects in unsupervised (home)
settings thus it is suitable for remote monitoring.

LA is performed in a sitting position, by raising and
stomping the foot on the ground at maximum velocity and
performing the maximum excursion, for a specific number of
repetitions (at least 10) or for a fixed time interval. The task
is performed with the left and the right leg separately. Even

though simple, LA is able to highlight typical motor symptoms
such as bradykinesia, hypokinesia, muscle stiffness, fatigue,
which affects control and coordination of leg movements
during task execution.

B. The Bouncing Ball Exergame

Exergames in virtual environments aim to stimulate the
motor functions through specific activities, such as stretching
or mobilisation exercises, in a more engaging, motivating,
and enjoyable way than traditional physical training. In order
to investigate if such games could also be employed for
motor assessment as an alternative (or complementary) tool
to traditional analysis, a Bouncing Ball (BB) game mimicking
movements from LA task is presented. The game is developed
in Unity 2019, exploiting Azure Kinect body tracking algo-
rithm to implement both Human Computer Interaction (HCI)
and game logic.

BB relies on repetitive movements of the lower limbs to
address motor control and coordination by promoting leg
mobilisation. The exergame is set in an office scenario and
consists of dribbling the ball with legs (thighs). The exercise
is performed in the sitting position as during the traditional LA
task. Fig. 1 shows a screenshot of the game visual environment
displayed to the user during BB.

The exergame requires the user to perform a predefined
number of leg lifting movements (LEGMOV) to hit the
ball with the right and then with the left knee. The ball
is highlighted by a halo when ready to be hit: the patient
should wait for its turn-on before starting the movement. Time
between consecutive ball turn-ons (TURNONTIME), hence
the cadence of the task, can be modified, allowing for a
more relaxed or more dynamic execution. The ball starting
position is expressed as a percentage increase with respect to
the knee rest position (BALLSTART). The 3D skeletal model
reconstructed by Azure Kinect body tracking algorithm maps
with the avatar’s legs on the game scene: every time the subject
raises his leg, the corresponding virtual leg of the avatar will
also raise. When hit, the ball will bounce upward and then
fall back to the starting position, with a velocity dependent on
TURNONTIME. It is necessary to perform the expected num-
ber of movements within a maximum time (LEGMAXTIME)
to complete the game: a real-time algorithm analyses the leg
movements and counts the “good” movements, i.e., those that
result in a ball hit. This information is shown to the user, who
also receives a positive acoustic feedback when hitting the ball.
The therapist pre-configures the game parameters (i.e., LEG-
MOV, BALLSTART, LEGMAXTIME, and TURNONTIME)
according to the patient’s motor condition, choosing among
three possible levels for each parameter.

C. Acquisition & Processing system

The acquisition system employed both for LA and BB tasks
consists of a few hardware components providing a simple,
not bulky, and contactless solution for 3D motion capture. It
is composed of a mini-computer, an Azure Kinect camera,
and a monitor (or a TV screen) that is employed for visual



and acoustic feedback in BB. Azure Kinect provides synchro-
nised color, depth, and infrared streaming at approximately
30 frames per second, thus allowing the real-time tracking
of human body movements. Screen size (27” monitor) and
Graphical User Interface (GUI) layout of BB were chosen to
address reduced sight typical of elderly. The system ability in
evaluating UPDRS tasks in agreement with standard clinical
scores has already been verified in several studies, as well
as the accuracy and robustness of the tracking algorithm
compared to optoelectronic tracking systems [3] [27]. The soft-
ware running on the mini-computer mainly relies on the body
tracking algorithm provided by the Software Development Kit
(SDK) of Azure Kinect camera. The estimated 3D joints of the
skeletal model allow the interaction with the avatar and with
the game environment through natural body movements in BB
and the evaluation in post-processing of the motor performance
both in LA and in BB recordings.

The system includes a specific procedure to store all the
data related to the skeletal model as a file in JSON format:
such output consists of a complex structure that contains 3D
position and rotation of each body joint, tracking confidence
and timestamp. This information is used to extract some kine-
matic features characterising the motor performance during the
post-processing phase, as described in section II(D), through
custom written MATLAB 2020b scripts.

D. Recruited Subjects and Acquisition Protocol

The experimental protocol fixed some exclusion criteria that
include severe disability, severe and almost continuous tremor
with inadequate response to therapy, cognitive impairment
(Mini–Mental State Examination Score < 27/30), and severe
visual impairment. We expect patients with moderate disability
(Hohen-Yahr scale, H-Y ≤ 3) to benefit from the proposed
solution, as monitoring the motor fluctuations and the moti-
vational engagement in rehabilitation become relevant at this
stage. For this study, 15 PD subjects (H-Y: 2.3 ± 0.7 (min:1;
max: 3); average age: 67.8 ± 10.13; gender: 7M/8F) were
recruited for the experimental test at the Division of Neurol-
ogy and Neurorehabilitation, San Giuseppe Hospital, Istituto
Auxologico Italiano, Piancavallo (Verbania), Italy. The local
ethics committee approved the study according to the Helsinki
declaration (1964) and its amendments. Finally, all participants
were volunteers, provided written informed consent prior to
participating in the experimental session, and performed the
test under the same conditions.

Subjects were assisted during experiment by technical per-
sonnel, which was also responsible to instruct them about
the task to perform in each stage. The acquisition protocol
consisted in first executing LA for ten seconds (for each leg),
then playing BB (left leg, then right leg) and finally executing
again LA for other ten seconds (for each leg). During LA,
the subject performed the task in front of the Azure Kinect
without any visual or acoustic feedback from the acquisition
system, as in a normal clinical evaluation. Start and stop of
the task were controlled by technical personnel. During BB,
visual and acoustic feedback was provided through an off-the-

Fig. 2. ANGleg and its segmentation in a BB trial

shelf monitor positioned behind the camera. Considering each
leg trial as single, a total of 60 LA and 30 BB trials were
collected. In terms of pure leg-raise segments (movements),
737 and 112 segments were identified and analysed for LA
and BB respectively.

E. Kinematic Features Estimation

From the JSON files containing the time evolution of the
skeleton during the single task execution (both LA and BB
and for each leg), some relevant joints (i.e, SPINE NAVAL,
PELVIS, KNEE, HIP and ANKLE of the leg of interest) are
taken into account. 3D joint trajectories are low pass filtered
(8 Hz, suitable to capture human voluntary movements) and
resampled at 50 Hz through linear interpolation. The an-
gle between the segments HIP-KNEE and SPINE NAVAL-
PELVIS (i.e., the angle between the trunk and the thigh, called
ANGleg) is calculated. ANGleg decreases while the knee is
lifting, an example of such angle from a BB trial is reported
in Fig. 2. Kinematic features to objectively characterise the
movement are extracted from KNEE and ANKLE trajectories
and ANGleg . The analysis is done both with parameters
describing the entire task execution for one leg (task-level) and
at the level of a single executed movement (segment-level).

At the task-level, global parameters of the recording are
calculated. The focus is on describing the amplitude and
velocity of the movement because these are among the most
important features to be considered in LA clinical assessment,
together with changing in timing and movement direction [28].
Therefore, the ANGleg travelled (amplitude excursion) and
the speed are considered as primary measurements of leg
motion in LA and BB. A complete list of the estimated features
is shown in Table I. In addition, the 3D trajectories of the
KNEE and ANKLE joints are exploited to evaluate the swings
in all directions occurred during the lifts and the regularity of
the movement. An example of the trajectories followed by left
KNEE and ANKLE during a LA execution with the left leg
is shown in Fig. 3.

A regular execution is reflected in a trajectory that overlaps
itself over time. The more such trajectory is extended along
one direction, the less swing is present in the movements.
Geometric considerations are used to translate these aspects



Fig. 3. 3D Trajectories of left ANKLE and KNEE in a LA trial (left leg
moving)

into features. The areas of the 2D (Frontal and Transverse)
planes and the volumes of 3D convex hulls in which the
trajectory is inscribed are computed. In both cases, the higher
the value of the parameter, the greater the irregularity of the
track and the movement outside the main trajectory (the up
and down of the knee). Moreover, to characterise the rhythm
of execution, frequency features are computed. The frequency
corresponding to the maximum spectral power, obtained from
Fourier Transform, is considered as the main frequency. The
frequency band containing the 90% of the power is also
computed.

Within the single task execution, single knee lifts are
automatically segmented to extract segment-level features.
For each lift, the beginning of the movement (START), the
moment of greater trunk-thigh proximity (PEAK) and the
return to the ground (STOP) are identified. The stretch from
START to PEAK identifies the lifting of the knee (leg angle
decreases, up stage of the knee). The PEAK to STOP stretch
identifies the descent stage (leg angle increases, down stage
of the knee). The two stages are analysed separately so that
performance differences in adduction and abduction could be
assessed. The main purpose is again to describe the amplitude
of the movement, i.e., the angle travelled, and its speed.
Because of the fact that excursion is already well characterised
by the previous analysis, speed is detailed. Therefore, angular
speed on each stage (up/down) and on the overall lift (full
START-STOP segment) are extracted in terms of maximum
and mean values. In particular mean v, differently from v ud,
represents the mean of the signed angular velocity in up
(negative sign) and down (positive sign). This feature is
considered to highlight the difference between the speed in
up and in down: the sign of the parameter indicates which
speed is greater; the magnitude how much they differ. The
duration of the movement is also evaluated.

F. Statistical Analysis

The statistical analysis over the extracted features was con-
ducted using the opensource tool Jamovi [29]. After applying
Shapiro-Wilk test, a non-parametric analysis was considered as
the parameters were not normally distributed; hence median,
first and third percentile of the estimated features are reported
in section III. In addition, violin plots representing estimation

Features Description (unit)

T
A
S
K

exc mean Mean leg angle excursion (deg)
exc std Standard dev. leg angle excursion (deg)
exc max Max leg angle excursion (deg)
exc min Min leg angle excursion (deg)

k SV KNEE joint Sway Volume (3D) (m3)
a SV ANKLE joint Sway Volume (3D) (m3)

k SA xy KNEE Sway Area (Frontal) (m2)
a SA xy ANKLE Sway Area (Frontal) (m2)
k SA yz KNEE Sway Area (Transverse) (m2)
a SA yz ANKLE Sway Area (Transverse) (m2)
f max Frequency at the maximum power (Hz)
B90 Frequency at 90% of the power (Hz)

v ud Mean magnitude of speed
in up and down stages (deg/s)

std v ud Standard dev. of the magnitude of speed
in up and down stages (deg/s)

S
E
G
M
E
N
T

max v up Max velocitya in up stage (deg/s)
max v down Max velocitya in down stage (deg/s)
mean v up Mean velocitya in up stage (deg/s)

mean v down Mean velocitya in down stage (deg/s)
exc Leg angle excursion in the segment(deg)

max v Max velocitya in the segment (deg/s)
mean v Mean velocitya in the segment (deg/s)

dur Duration of the segment (s)

a Velocity with sign.
TABLE I

KINEMATIC FEATURES DESCRIPTION

of statistical distribution of features for the PD group in the
two types of execution, traditional (LA) versus gamified (BB)
are also reported. The statistical comparison between LA and
BB was performed using the non parametric Mann-Whitney U
test, considering first executions at task-level then at up-down
segments-level, for the PD group as a whole and for each
subject independently. This kind of test is chosen because we
assume executions of LA and BB, even by the same subject,
to be independent and not perfectly paired, as each patient
executed 2 full LA test (for each leg) versus 1 single BB test
(for each leg). In addition, the test is not sensible to unbalanced
sizes of the two groups compared (737 vs 112 in segments
analysis, 60 vs 30 in full task comparison) [30]. Finally, radar
plots of average values of kinematic features for each subject
in the two tasks were considered: some significant examples
are reported in the next section.

III. RESULTS

Table II contains the median, first and third percentile of
all estimated parameters (task-level, segment-level) divided
per type of execution (LA vs BB). From the table, it can
be observed that parameters related to spatial properties of
the movement under analysis (excursions, sway volumes and
areas) are quite similar in both tasks, whereas velocity, fre-
quency and duration parameters differ. In particular, the main
frequency of the LA execution is almost double (duration in
time twice lower, respectively) of the one in BB.

The following considerations may explain these numerical
results: first, in the gamified setting, the subject follows a
cadence that is defined by the parameter TURNONTIME set
by the therapist, which includes also the time for the ball to



TABLE II
MEDIAN AND PERCENTILES OF EXTRACTED FEATURES

Features (unit) Median (1st percentile, 3rd percentile)

LA BB

T
A
S
K

exc mean (deg) 28.88
(24.42, 34.47)

28.21
(24.02, 33.97)

exc std (deg) 3.33
(2.50, 4.39)

3.41
(2.39, 4.14)

exc max (deg) 35.63
(30.79, 41.83)

32.43
(28.18, 38.47)

exc min (deg) 23.52
(13.15, 27.67)

23.01
(19.37, 30.62)

k SV (m3) 0.12
(0.07, 0.19)

0.10
(0.06, 0.26)

a SV (m3) 0.24
(0.13, 0.32)

0.22
(0.08, 0.48)

k SA xy (m2) 0.59
(0.50, 0.77)

0.66
(0.48, 0.91)

a SA xy (m2) 0.59
(0.43, 0.73)

0.48
(0.35, 0.79)

k SA yz (m2) 0.54
(0.40, 0.83)

0.53
(0.31, 0.89)

a SA yz (m2) 1.16
(0.83, 1.49)

1.30
(0.56, 1.97)

f max (Hz) 0.98
(0.70, 1.37)

0.44
(0.34, 0.44)

B90 (Hz) 1.245
(0.88, 1.66)

0.83
(0.68, 1.03)

v up down (deg/s) 62.44
(46.95, 94.10)

38.37
(33.38, 46.46)

std v ud (deg/s) 15.20
(10.58, 20.35)

11.78
(9.04, 16.13)

S
E
G
M
E
N
T

max v up (m/s) -145.77
(-182.53, -116.60)

-126.87
(-156.62, -99.41)

mean v up (deg/s) -69.68
(-90.92, -48.73)

-44.19
(-56.34, -34.70)

max v down (deg/s) 160.78
(118.65, 209.00)

104.62
(81.59, 129.85)

mean v down (deg/s) 82.86
(54.29, 112.32)

31.17
(24.81, 41.93)

exc (deg) 28.86
(22.97, 35.30)

29.60
(22.93, 35.073)

max v (deg/s) 174.30
(133.86, 219.59)

136.49
(103.91, 163.31)

mean v (deg/s) -0.089
(-1.72, 1.52)

-0.24
(-1.19, 0.45)

dur (s) 0.76
(0.56, 1.00)

1.58
(1.24, 1.85)

fall back in the initial position, ready to be hit. Secondly, the
subject has a visual feedback of the leg height with respect to
the ball height, set through BALLSTART, which could help
the subject in reaching always the same height. Lastly, in LA
task the subject is suggested to raise the leg as fast and as
high as possible, but there is no guarantee that both aspects
will be correctly achieved by the subject, who could favour,
for instance, speed with respect to movement amplitude. These
aspects are further investigated in the following subsections.

A. Task-level analysis

Fig. 4 shows violin plots for task-level kinematic features.
Values are min-max normalised to allow simultaneous visuali-
sation. As it can be appreciated, spatial parameters (excursions
and sway areas and volumes) have similar median values
for their distributions in LA and BB tasks, even though the

Fig. 4. Violin plots of task-level features normalised in LA and BB

violins are more or less spread depending on the parameter
considered. Quite different behaviours are instead observed for
frequency parameters and velocity. This result, however, is co-
herent with what already found in the inspection of median and
percentiles: BB is fixing the cadence at which leg raises are
performed, with evident effects also on the speed kept during
the movement. Indeed, velocities are more widespread in LA,
where the patient is left free to decide the pace (theoretically
his maximum), resulting in an increased variability among
subjects. Moreover, the discrete number of levels in the game
seems to not allow to reach a data variability (characteristic
of the subject) as wide as in LA. Lastly, the sizes of the
two sets are unbalanced. The results of Mann-Whitney U
test are reported in Table III. Significance threshold is set
at p < 0.05. The results are aligned to what already hinted
by violin plots: spatial measures (excursion, sway volumes
and areas) are coherent between the two types of execution:
the subjects tend to perform the same movement in terms of
amplitude and lateral sway in the two tasks (with a proper
setting of BALLSTART parameter in BB). Frequency of the
movement and velocity are instead a discriminating parameter
between the two tasks: the levels defined for TURNONTIME
are not sufficient to elicit a movement cadence and velocity
in BB comparable with the one in LA for all subjects.

An in depth analysis of this result for each subject was car-
ried out plotting radar graph of features average values (again
min-max normalised for visualisation) in all LA trials versus
all BB trials performed by the same subject. Two relevant
cases are shown in Fig. 5 (subject 5) and Fig. 6 (subject 15).
As it can be appreciated, subject 5 has almost equivalent radar
plots for both LA and BB, whereas subject 15 has a complete
opposite behaviour, with almost no correspondence between
features in the two tasks. Analysing the videos collected during
the trials, it can be observed that for subject 5 the game was
almost perfectly calibrated such that the executions of LA
and BB were identically performed by the patient. Moreover,
the subject did not seem influenced by the gamified setting
of BB. Subject 15, instead, performed LA favouring higher
speed and cadence but reduced amplitude; on the contrary,



Fig. 5. Radar plots of task-level features in LA and BB (subject 5)

Fig. 6. Radar plots of task-level features in LA and BB (subject 15)

in the gamified setting of BB the subject performed much
larger leg excursions, even larger than what was required to
hit the ball. This result shows how this specific subject was
affected by the goal-oriented nature of the task, that however
allowed for a truer evaluation of the maximum excursion that
the subject could reach with his legs. Similar behaviours are
identified also in the other examined patients, with almost an
even distribution (half and a half).

B. Segment-level analysis

Fig. 7 shows violin plots of the kinematic features for
segment-level analysis. Again, values are min-max normalised
to allow simultaneous visualisation. The results confirm the

Features BB vs LA p-value

T
A
S
K

exc mean 766.0 0.868
exc min 640.0 0.173
exc max 621.0 0.123
exc std 760.0 0.824
k SV 758.0 0.809
a SV 770.0 0.898

k SA xy 717.0 0.528
a SA xy 684.0 0.345
k SA yz 730.0 0.612
a SA yz 777.0 0.951

f max 70.5 <.001
B90 486.0 0.005
v ud 327.0 <.001

std v ud 592.0 0.069

TABLE III
MANN-WHITNEY U TEST RESULTS AND SIGNIFICANCE

Features BB vs LA p-value

S
E
G
M
E
N
T

max v down 32519 <.001
mean v down 21083 <.001

max v up 19288 <.001
mean v up 10427 <.001

exc 39389 0.436
max v 26117 <.001
mean v 36882 0.069

dur 8709 <.001

TABLE IV
MANN-WHITNEY U TEST RESULTS AND SIGNIFICANCE

Fig. 7. Violin plots of segment-level features normalised in LA and BB

findings at task-level: excursions on single segments show
similar distributions in the two tasks. About velocities, maxi-
mum and mean velocities in leg raise (up stage) and maximum
velocity on segment have similar distributions with slightly
shifted median values (higher for LA), as from Table II. More
widespread are maximum and mean velocities in the down
stage for LA with respect to BB: in the less restricted settings
(LA), it is likely for the subjects to perform this stage in an
uncontrolled manner, with an higher variability among subjects
and trials. Distribution of feature mean velocity, instead,
suggests that both in LA and in BB a similar symmetry in
the speeds between up and down movement is maintained by
subjects in the two tasks. Duration of segment is different be-
tween the two executions as expected, considering the already
mentioned difference in movement velocities and cadence due
to game settings.

The results of Mann-Whitney U test are reported in Table
III. Significance threshold is set at p < 0.05. The results
are aligned to what already hinted by violin plots: excursion
and mean velocity are coherent between the two types of
execution. Indeed, the subjects tend to perform the same
movement in terms of amplitude in the two tasks and with
a similar symmetry in the up-down stages (e.g., if a subject
moves leg faster in up stage and slower in down stage for
LA, likely the same behaviour occurs in BB). Peaks and
mean velocities in up and down stages are instead discriminant
features between the two executions, as well as duration. An
in-depth analysis was performed, considering LA and BB



Fig. 8. Radar plot of segment-level features in LA and BB (subject 5)

Fig. 9. Radar plot of segment-level features in LA and BB (subject 15)

segments grouped by subjects: Fig. 8 and Fig. 9 show radar
plots of min-max normalised segment-level features for the
same two previous significant cases, namely subject 5 and
subject 15. As it can be observed, average values of segment-
level features are almost perfectly overlapping for subject 5,
denoting how the subject performed the two tasks in a very
similar manner also considering this granularity. Subject 15,
instead, shows a marked discrepancy between LA and BB.
These behaviours are coherent with the comment reported in
section III(A).

IV. CONCLUSIONS

Through the statistical analysis of objective and
automatically-extracted kinematic features, this work
proposes a comparison between traditional Leg Agility and a
gamified version of the same motor task, the Bouncing Ball
exergame, suitable for elderly affected by Parkinson’s disease.

The experimental phase involved 15 parkinsonian subjects
who performed both tasks in front of an acquisition and
processing system based on Azure Kinect and its body tracking
library. Virtual 3D skeletons reconstructing the subjects’ mo-
tion during LA and BB trials were analysed by custom written
MATLAB scripts to automatically estimate relevant kinematic
features, either from the spatial, the temporal or the frequency
domain. These features are organised in two levels, for analysis
of the tasks at different granularity, i.e. task-level features and
up-down segment-level features referring to a single cycle of
leg movement. Both levels of analysis provide an insight on

different aspects of the subjects’ execution of LA and BB
game.

From the statistical analysis of the extracted features in the
two types of execution, traditional (LA) and gamified (BB), it
was observed that either at segment-level or task-level, spatial
features related to angular excursion, sway area, or volumes
are similar. Hence, the subjects tend to perform the same leg
raises in both tasks if the initial position of the ball in BB is
properly calibrated to elicit the subject maximum movement
excursion. With respect to velocity, duration, and frequency
parameters, instead, it was observed that the gamified setting
of BB inevitably influences the speed at which the subject
performs the task. This results in a more controlled execution,
partially losing the natural variability of LA which could
contain relevant clinical information. Even though three levels
of cadence/velocity (game parameter TURNONTIME) were
employed, these levels are probably not tailored enough to the
actual subjects to elicit a more natural execution at subjects’
maximum speed in the task. For future experimental tests,
additional levels should be employed. In addition, an automatic
calibration procedure could allow to properly configure the
game through a preliminary execution of traditional LA, so
that the game is more adherent to the real motor skills of the
examined subject.

The examples of subjects 5 and 15 reported in section III
highlight how some PD patients are less behaviourally affected
by the gamified setting of BB (subject 5), with respect to others
(subject 15) who instead completely alter their performance
when in a goal-oriented game. This aspect should be further
investigated by enlarging the statistical sample size with addi-
tional subjects and/or additional BB trials. Furthermore, this
aspect could be leveraged to solicit some specific aspects of
the movement itself. For instance, in subjects who implicitly
prefer the speed aspect during traditional LA, it may be
appropriate to stimulate the amplitude aspect through the
proper configuration of the game; whereas in subjects who
prefer the amplitude aspect during traditional LA, it may be
appropriate to stimulate the speed aspect during the game.
This could lead to a more comprehensive assessment of both
features with respect to traditional LA. Moreover, this could
be achieved while simultaneously rehabilitating the subject on
a specific kinematic feature and promoting greater motor and
cognitive control using also specific cognitive stimulus from
the game.

From these preliminary results, it is reasonable to conclude
that BB exergame does not configure as a complete alternative
to LA evaluation. Nevertheless, it could be employed as
a complementary tool for a more thorough assessment and
rehabilitation, through specific stimulation of motor aspects
that a patient would not put in place autonomously.
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