
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Edge-based Architecture for Phasor Measurements in Smart Grids / Galantino, Stefano; Risso, Fulvio; Cazzaniga,
Andrea; Garrone, Fabrizio; Terruggia, Roberta; Lazzari, Riccardo. - ELETTRONICO. - (2022). (Intervento presentato al
convegno AEIT2022 International Annual Conference tenutosi a Roma (IT) nel 03-05 October 2022)
[10.23919/AEIT56783.2022.9951842].

Original

An Edge-based Architecture for Phasor Measurements in Smart Grids

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/AEIT56783.2022.9951842

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971161 since: 2022-12-05T12:01:19Z

Institute of Electrical and Electronics Engineers Inc.

A Fog-based Architecture for Phasor Measurements
in Smart Grids

Stefano Galantino, Fulvio Risso
Dept. of Computer and Control Engineering

Politecnico di Torino
Torino, Italy

{name.surname}@polito.it

Andrea Cazzaniga, Fabrizio Garrone, Roberta Terruggia,
Riccardo Lazzari

Tecnologie di Trasmissione e Distribuzione
Ricerca sul Sistema Energetico

Milano, Italy
{name.surname}@rse-web.it

Abstract—This paper investigates the application of Kuber-
netes and Edge computing technologies to operate IT services in
the context of power systems and smart grids. Traditional services
for grid monitoring such as Phasor Measurement Units (PMUs)
and Phasor Data Concentrators (PDCs) require a centralized
architecture and a rigid networking infrastructure in order to
properly function, which today is only achieved at the High
Voltage (HV) transmission level. Furthermore, manual interven-
tion is often the only option for PMUs/PDCs maintenance. In
this work, the traditional PMU/PDC services were deployed as
docker-containers in a decentralized Kubernetes cluster, which
can represent any kind of geographically dispersed TCP/IP
network. By leveraging remote orchestration, several key benefits
are achieved: (1) no manual reconfiguration of the PMU-PDC
communications upon network reconfiguration, (2) automatic
PMU traffic redirection in case of PDC service redeployment in
a different location, and (3) reduced data-loss upon PDC failure
and enhanced overall system resiliency due to minimized ICT
services down-time.

Index Terms—Cloud, Edge, Infrastructure Resiliency, Smart
Grid

I. INTRODUCTION

The proliferation of renewable energy sources (RES) into
power systems poses new challenges to grid operators, who
have to assure the proper and reliable operation of the electri-
cal grid [1]. To this end, efficient and accurate state estimation
(SE) is fundamental to achieve near-real time monitoring,
especially at the distribution level where this function plays
a central role in the implementation of smart grid features [2].
Research on distribution system state estimation (DSSE) began
near 1990 [3] and recently, many projects have introduced
the applications of phasor measurement units (PMUs) in the
distribution networks [4].

PMUs are well-known devices that provide accurate and
synchronized voltage/current phasors with a sampling rate up
to 60 measurements-per-second and are commonly used in
transmission systems [5]–[7], but they are experiencing an
ever-growing interest also for distribution networks, in order to
implement novel schemes for better control and fault location
purposes [8]. Their adoption in the distribution layer may
guarantee benefits in a number of use cases [9], [10].

Although PMUs can improve distribution network monitor-
ing, a crucial aspect of future power systems is their resiliency

also in the case of natural disasters (e.g., extreme weather
events, earthquakes, etc.) or cyberattacks.

Thus, the resiliency of the power grid necessarily relies
also on a robust ICT infrastructure. In fact, (i) the execution
of critical services must be monitored and guaranteed also
in case of application or node failures, either in case of
unexpected disruptive events or possible cyber attacks; and (ii)
both the power grid and the ICT infrastructure should survive
to partition events and any possible network failure that might
isolate one or more sites of the electrical power system. As
of today, PMUs are mostly installed only on HV transmission
lines and the process of gathering, validating, and analyzing
PMUs data is rather complex and based on configurations that
require detailed knowledge of both the power grid network
as well as the IT communication network [7]. A change
in such configurations often requires manual intervention,
which is heavily time-consuming, hard to upscale when the
complexity of the system grows and ultimately hinders the
system resiliency.

The 2021 IEEE guidelines on PMUs installation [11] high-
lights the importance of “data quality” to support real-time
mission critical application at the utility scale, where it is
stressed that data availability is as crucial as data accuracy.
Furthermore, it highlights how the planning of PMUs installa-
tion shall carefully evaluate the IT network capability to assess
which services can be guaranteed.

In this paper we propose a novel IT architecture able to
support the acquisition of phasor data coming from PMU.
The architecture is based on Kubernetes, as the state-of-the-art
Cloud/Edge orchestration technology, and it is designed with
a few objectives in mind: (i) be robust concerning IT network
reconfigurations, (ii) full automation of the PMUs/PDCs con-
figuration parameters and i/o data streams, and (iii) real-time
service monitoring and automatic restoration upon failure.

These achievements are essential for grid operators to
upscale their maintenance and operation of PMUs systems to
thousands of devices. Furthermore, new data access policies
for future applications can be implemented easily from the
central orchestrator, without requiring ad hoc solutions.

The rest of the paper is organized as follows. Section II
details the requirements and the related work, as well as the
proposed architecture in Section III. Section IV presents a pre-

TABLE I: Number of primary and secondary substations in Italy over years 2011-2019.

2011 2012 2013 2014 2015 2016 2017 2018 2019

Primary substations 2.134 2.144 2.159 2.168 2.188 2.195 2.199 2.203 2.200
Secondary substations 432.074 436.204 438.359 439.558 441.056 442.418 443.774 445.159 446.410

liminary experimental validation of the proposed architecture,
and finally Section V concludes the paper.

II. FUNCTIONAL REQUIREMENTS

This paper focuses on the observability of the smart grid,
which is based on two main devices: (i) PMUs (Phasor
Measurement Units), devices that constantly collect relevant
data of the power system and that act as simple data producers;
(ii) PDCs (Phasor Data Concentrators), software services that
collect input data coming from PMUs for data handling, pro-
cessing and storage. A PDC can acts both as data producer and
consumer, as data can be further forwarded to a hierarchically
superior PDC. PMUs require physical measuring hardware,
hence their location is bounded to the edge of the locations
where the above devices are installed, while PDCs are just
software services and hence do not have such strict require-
ments. Given the critical issues related to the electrical grid,
whenever possible, additional resiliency features must be built
on top of these services. Specifically, robustness properties
must be guaranteed for both service execution (self-healing),
and the generated data (no losses). Prior research proposed
traditional virtualization technologies (e.g., VMs) to meet the
above requirements [12], [13]. Although promising, traditional
virtualization is not able to achieve the same recovery time,
as well it demands more resources compared to lightweight
virtualization.

A. Scalability

Table I shows the (growing) number of primary and sec-
ondary substations across the years reported in [14] by e-
distribuzione, the main Italian company operating in the
electrical distribution sector. Data shows that the power grid
includes hundreds of thousands of peripheral sites that, in
the smart-grid perspective, should be able to operate even if
isolated. In this respect, not only IT centralized control is
definitely not appropriate, but the overall architecture must
be highly scalable, as each site should be able to cope with
possible local failures as well as disconnections from the
network backbone.

B. Data resiliency

Data resiliency is a key requirement for monitoring services,
as historical data is fundamental for statistical or post-incident
analysis [15]. Furthermore, smart grid networks should man-
age a huge amount of data, coming from many different
types of devices, with different requirements [16]. Hence, data
replication or, in some cases, regular backups, is crucial to
withstand hardware and network failures.

A first level of data resiliency should be achieved at a
site level, so that data are not tied to a single device but

rather replicated across different storage devices. Another
level of data resiliency should be achieved at a bigger scope,
duplicating relevant data e.g., on cloud data centers, hence
facilitating also the analysis of the state of the entire national
power grid.

C. Communication latency and service redundancy

Although control services are not the objective of this work,
the proposed architecture should also foster the minimization
of network path lengths. This has positive impacts on the com-
munication latency (with beneficial effects on critical control
services for the power grid [15]), better resiliency, and reduced
network perturbations (packet drops, jitter) due to bufferbloat
(although the former seems to have limited importance in
modern edge networks [17]). However, differently from the
transmission system, in which the IT network topology usually
follows the topology of the power grid (often, optical fibers
lay together with electrical cables in the same location) and
is privately self-managed by the energy provider, the distri-
bution system usually relies on the general-purpose network
connectivity provided by telecommunication companies, often
through a 3G/4G/5G mobile connection. Consequently, the
topology of the power grid does not match the physical
topology of the IT network, hence communication between
two different sites in the distribution portion of the network
requires the transit in the network of the telecommunication
provider. This has a huge impact on the overall IT architecture,
as the actual topology of the physical IT network is of
paramount importance to define where to locate redundant IT
services, as well as to optimize communications and reduce
latency.

III. ARCHITECTURE

A distributed edge-based architecture needs to address ad-
ditional problems compared to common cloud/based architec-
tures. For instance, resources at the edge (e.g., CPU, RAM,
storage, number of available devices/servers) are limited com-
pared to the cloud; furthermore, network partitioning events
that isolate one or more sites are a possibility that must be
taken into account. Therefore each site needs to withstand
network partitioning and isolation from the cloud; in addition,
local service redundancy must be achieved in each site.

A. Service Orchestrator

Given the recent trend in the industry, our architecture
is heavily based on Kubernetes,1 which includes implemen-
tations targeting also low-resource devices, hence not re-
quiring datacenter-grade servers. In addition to its native

1https://kubernetes.io.

https://kubernetes.io

features (e.g., automatic service restart/re-spawn in case of
failure, multi-master capabilities, etc.), it includes a large
software ecosystem that can provide well-tested solutions for
many common problems, such as data redundancy. Specif-
ically, K3s2 is the Kubernetes distribution chosen for edge
sites, which features a very limited resource consumption
(CPU, memory, disk), performance close to vanilla Kuber-
netes [18] and a very simple setup. Orchestrator redundancy
has been achieved with multiple masters (active plus stand-
by). The K3s configuration has been further customized to
reduce the interval between the detection of a node fail-
ure to the re-spawn of the services previously running on
the failed node from 5 minutes (default value) to 40 sec-
onds. This has been achieved by modifying the API server
options default-not-ready-toleration-seconds
and default-unreachable-toleration-seconds
to 20 seconds each.

B. Geographical architecture

Our architecture foresees the creation of an autonomous
Kubernetes cluster in each site (either primary or secondary
substation), hence guaranteeing resiliency at the site level.
However, to provide resiliency also in case of failure of
local computing components, the system should be able to
leverage services (e.g., another PDC) in a different location,
possibly with low communication latency. Given that each
power substation is directly connected to the telco network, the
operator micro-POP (Point Of Presence), which is established
in close vicinity of a small set of 5G antennas, might be the
perfect place where to locate such redundancy or to deploy
non-critical cross-substation services.

While the best location for a PMU is strictly dependent
on the power grid [19] (i.e., determined through a proper
cost/optimization process), a first level PDC can be installed
at each site of the power grid, potentially even on the same
device hosting the PMU, collecting the data of the local
PMUs and guaranteeing local survivability in case of network
outages. Their output stream is sent to the higher level
PDC, located inside the telco micro-PoP, where the output
can be sent as input to the local state estimator or other
applications performing data processing or storage of historical
data either locally within the PoP, or in the Cloud, leveraging
high-performance computing (HPC) resources for the most
demanding applications (e.g., fault analysis) [13]. Fig. 1 shows
the resulting topology, where services can be executed either
on physical devices (e.g., PMU), rugged embedded servers
(e.g., PDC), or edge data centers (e.g., high-level PDC).

Leveraging shared resources provided by telcos, the security
of the infrastructure has to be taken into high consideration;
consequently, the traffic of the distribution system should
flow on a secure logical infrastructure (e.g., MPLS, overlay
network, etc.), in a way that clusters, services, and machines of
the electricity provider cannot be reached through the Internet.

2https://k3s.io/

Secondary substation

PMU
PMU

Low-level
PDC

Other
devices

Secondary substation

PMU
PMU PDC

Other
devices

Telco micro-PoP

Fixed (e.g., xDSL) or wireless
(e.g., 5G) connectivity

High-level
PDC

State
estimator

Fig. 1: Topology overview of the proposed architecture.

C. Multi-cluster

Given the huge number of sites (Tab. I), the proposed
architecture must define a scalable mechanism to automate
the service configuration on each site. To address the multi-
cluster management issue, two main approaches have been
considered: a federated multi-cluster architecture (based on
either KubeEdge or KubeFed), and a centralized approach with
a single source of truth (Eve-OS, Rancher Fleet).

The second approach has shown to be the most promising
one thanks to the centralized control as well as the single
point of management. Specifically Rancher Fleet appears to
be a good compromise, providing the advantages of a single
source of truth while being able to handle thousands of cluster
configurations.3 Specifically, a cluster in the cloud runs the
Fleet manager and watches a git repository containing all
the configurations, while Fleet agents, running in peripheral
clusters, poll the central manager to initiate the site registration
process and to obtain the initial cluster configuration. This
process works also in case peripheral clusters are not directly
exposed to the public internet and NAT traversal is required.

Each cluster is associated with the appropriate labels to
identify the geographical region, area, and type of site (e.g.,
primary or secondary substation), allowing the Fleet manager
to push exactly the configuration referring to the selected
cluster, including active services, the required redundancy,
number of replicas, and more. For instance, given that each
secondary substation requires a PDC service, a single instance
of the above service is deployed on all clusters whose labels
include site: secondary-substation.

D. Data persistency

Kubernetes addresses the data persistence problem through
built-in abstractions such as PersistentVolumes and Persis-
tentVolumeClaims; however, the default driver provides basic
data persistence but it does not support data replication. Our
solution introduces an additional layer of abstraction for data
persistence leveraging the enhanced storage features provided
by Longhorn CSI,4 which features advanced data management

3https://fleet.rancher.io
4https://longhorn.io/

pdc pdc
(container)

pmu pmu
(container)

0

2

4

6

8
CP

U
co

ns
um

pt
io

n
[%

]
CPU Usage on x64

pdc pdc
(container)

pmu pmu
(container)

0

10

20

30

40

CP
U

co
ns

um
pt

io
n

[%
]

CPU Usage on arm64

pdc pdc
(container)

pmu pmu
(container)

0.1

0.2

0.3

M
em

or
y

co
ns

um
pt

io
n

[G
B] Memory Usage on x64

pdc pdc
(container)

pmu pmu
(container)

0.20

0.25

0.30

0.35

M
em

or
y

co
ns

um
pt

io
n

[G
B] Memory Usage on arm64

Fig. 2: CPU and memory usage comparison for service execution on bare metal and with containerization.

TABLE II: Relevant specifications of the machine used to carry out
the tests.

Architecture x86 (64-bit) arm (64-bit)
Machine VM Raspberry Pi 4B
linux kernel 5.4.0-48-generic 5.4.0-1042-raspi
CPU model Intel Xeon (Cascadelake) Cortex-A72
CPU cores 4 4
CPU frequency 2.2 GHz 1.5 GHz
Memory size 8 GB 4 GB

capabilities coupled with minimal resource requirements e.g.,
compared to other software such as Rook/Ceph. The Longhorn
service can be replicated on multiple nodes within each site,
each instance attached to a distinct data volume created on the
node itself. Longhorn instances are coordinated to guarantee
that any data is replicated on different physical volumes (hence
nodes), providing the selected level of redundancy to survive
the departure of N data volumes.

A StorageClass applied to persistent data allows spec-
ifying the number of desired replicas and the time for
scheduled backups. To guarantee better performance, we
configured the defaultDataLocality of the Storage-
Class to best-effort, which forces Longhorn to keep
a replica on the same node as the service that uses the
volume. Moreover, additional configurations have been used
to allow a quick instantiation of services using a persis-
tent volume in case of node failure. Specifically, the option
nodeDownPodDeletionPolicy has been configured to
delete-both-statefulset-and-deployment-pod
enabling the force deletion of containers on failed nodes, so
that the volume can be immediately attached to new instances.

IV. EXPERIMENTAL EVALUATION

Monitoring services (i.e., PMUsim and OpenPDC) have
been containerized to be executed in a cloudified environment,
hence only Linux-based operating systems have been consid-
ered for our evaluation. To keep the results consistent, Ubuntu
20.04 has been used as the base OS for all measurements. We
considered both x86 and ARM architectures, 64-bits, which
will be hereinafter referred to respectively as x64 and arm64.
Further information are available in Tab. II.

A. Evaluation method

CPU and memory consumption metrics have been collected
using sysstat, gathering information using Linux standard
counters with a cron job executed every minute. CPU usage

represents the time in which the CPU is not idle and the
system does not have an outstanding disk I/O request. Memory
usage simply accounts for the non-free memory at a given
time. Applications were executed in their standard operating
conditions, e.g., PMU producing data at a constant rate, while
the PDC receives, processes and stores the above data flow.
Tests have been carried out for at least 4 hours to demonstrate
that applications have a consistent behavior over time and to
collect enough data to perform significant statistical analysis,
identifying confidence intervals and outliers.

Reaction times tests have been carried out using helper
bash scripts to poll system events and store their timestamp
for subsequent analysis. Each single case will be explained
more in-depth in the dedicated section.

B. Containerization overhead

This test quantifies the additional resources required by con-
tainerization for the same application installed on bare metal.
The PDC service has been containerized using an Alpine base
image on arm64 and an Ubuntu base image on x64, which
resulted in the most efficient CPU and memory usage in their
respective environments. However, this experience suggests
that the base image to be used when containerizing a service
cannot be given for granted and should be properly assessed
in a real production environment.

Fig. 2 shows that the CPU overhead added by the con-
tainer environment is negligible both in case of x64 and
arm64 (actually, CPU consumption even improves in case of
arm64), whereas the additional memory is in the order of a
few megabytes (53MB for x64 and 40MB for arm64). This
confirms that containerization overhead is almost negligible –
regardless of the device architecture – even for edge devices
with limited computational power.

C. Orchestration and distributed storage overhead

This test quantifies the resources required by K3s, i.e., the
cost of the orchestration (without any additional workload),
differentiating between worker and master nodes. Next, it
analyzes the cost of running also a redundant storage service.

Fig. 3 shows the resource requirements of the different
setups. As expected, the master node results in a higher CPU
and memory footprint with respect to worker nodes, because of
the additional requirements of the control plane components;
the use of Longhorn further increases the footprint in master
nodes on arm64 devices (5% of CPU and 30% of memory).

master master+
longhorn

worker worker+
longhorn

0

2

4

6

8
CP

U
co

ns
um

pt
io

n
[%

]
k3s CPU usage on x64

master master+
longhorn

worker worker+
longhorn

5

10

15

20

CP
U

co
ns

um
pt

io
n

[%
]

k3s CPU usage on arm64

master master+
longhorn

worker worker+
longhorn

0.4

0.6

0.8

1.0

M
em

or
y

co
ns

um
pt

io
n

[G
B] k3s memory usage on x64

master master+
longhorn

worker worker+
longhorn

0.4

0.6

0.8

1.0

M
em

or
y

co
ns

um
pt

io
n

[G
B] k3s memory usage on arm64

Fig. 3: Orchestrator CPU and memory requirements on K3s master and worker nodes, with and without Longhorn.

Although the orchestration overhead is no longer negligible
as for containerization, K3s and Longhorn can provide a good
balance between resource usage – still tolerable also for a
low-end device such as a Raspberry Pi – and the advan-
tages brought in by an orchestrated system, which provides
enhanced data and service resiliency.

D. Orchestrator reaction times

In Kubernetes the reaction time upon node/service failures
can be dramatically reduced using replicas, i.e., N instances
of the same service are executed simultaneously, guaranteeing
service resiliency in the event of n < N failures. Although
appealing, replicas cannot provide benefits in our case. In
fact, multiple PMUs instances would share the same physical
measurement device, hence resulting in hardware contention.
PDCs are not suitable either, as the default Kubernetes load
balancing mechanism sends data to either one of the replicas.
This results in data partitioned across all the PDC instances
and the consequent necessity of data re-aggregation before
further processing, which would not satisfy our requirement of
leveraging existing applications. Therefore, only single replica
services are evaluated.

Our test evaluates the orchestrator reaction time upon the
occurrence of two possible failure events: (i) container restart
after unexpected execution failure (simulated by forcibly send-
ing a kill signal within the container, hence killing the process
delegated to the synchrophasor exchange and triggering the
re-scheduling policy of the orchestrator); and (ii) container
re-instantiation in a healthy node after a node either fails or
becomes unreachable.

We used the tcpdump command to measure the time re-
quired by PMU and PDC to actively restore the synchrophasor
exchange process, monitoring then the actual network packet
exchange between the components. Results are then compared
to the widespread nginx web server, which provides insights
on the maximum performance of a cloud-native application.
The entire process is repeated 10 times to obtain statistically
relevant data.

Results, depicted in Fig. 4, show that Nginx, designed to be
fully cloud-native, experiences the fastest restart time, rarely
exceeding 5s. Instead, PMU and PDC are not designed to
operate on a Cloud environment and the measured restart
time ranges between 6 − 12s for the PMU, and between
18− 25s for the PDC. The proposed results raise some addi-
tional considerations: (i) In our configuration, the Kubernetes

0 5 10 15 20 25
Restart time (s)

NGINX

PMU

PDC

Fig. 4: Data flow restart time interval in case of nginx, PMUs and
PDCs.

20 30 40 50 60 70
Time (s)

Sum

Re-creation
 interval

Not ready
 interval

Node failure
recognize

interval

Fig. 5: Time required to recover services on a disconnected node.

control plane checks every 5s the state of the specific service
(e.g., healthy, unhealthy). Therefore, the contribution of the
orchestrator on the final restart time cannot exceed 5s in the
worst case and can be further reduced upon configuration.
The remaining time is thus related to the service control logic
to re-instantiate the communication and can be reduced only
with proper code refactoring. (ii) As of today, the recovery
upon monitoring service failure is not automated, and in
many cases still requires manual intervention. This implies
that monitoring services have different resiliency requirements,
compared to control services, and can withstand longer service
disruption (e.g., minutes), without compromising the smart-
grid operability.

The node failure is emulated by pushing a set of firewall
rules in iptables to isolate the target node from the
rest of the infrastructure. The isolation process is repeated
multiple times, in order to cover any possible failure, as

the application placement within the infrastructure is (almost)
completely delegated to the orchestrator and may vary over
time. The K3s master is continuously polled to check when
the target node is marked as unreachable and measure the time
required to re-instantiate the containers running on it. Fig. 5
shows the three critical reaction intervals: (i) time required
for the master to recognize a failed node and set its status as
NotReady/Unreachable, (ii) time to re-create all the containers
hosted in the failed node and to restore the application data
flow, and (iii) the total time to have the service restored on
the remaining running nodes. Specifically, the total re-creation
interval is bounded to the slowest-restarting service (i.e.,
usually the PDC), and the time interval required to identify
a node failure strictly depends on Kubernetes control logic
and experience high variability, depending on the moment of
the failure and the next node health check. Still, even in the
worst case, the proposed infrastructure can recover to node
failure event within 70s, well below the requirements.

V. CONCLUSIONS

This paper proposes a novel, scalable architecture to deliver
critical IT services to the geographically distributed power grid
infrastructure. This requires the definition of a Kubernetes
cluster, with autonomous orchestration capabilities, on each
site, due to the inherent resiliency provided by local master
nodes. The deployment of additional services in the telco Point
of Presence helps to drastically reduce the communication
latency between services in the distributed infrastructure, as
well as limiting the impact of possible IT network outages,
hence, improving monitoring procedures. The management
of geographically distributed clusters can be carried out by
Rancher Fleet, avoiding a per-site definition that may be un-
feasible given the number of sites involved. Storage resiliency
has been taken into account and considered a critical part of the
architecture. The evaluation focused on the overhead brought
by lightweight virtualization and especially by the orchestrator,
as well asthe time required by Kubernetes to react to simulated
faults and the consequent application restore time. The results
brought up relevant information necessary to design edge
clusters both in hardware resources and the number of nodes.
The analysis of reaction times gives a general view of the
behavior of Kubernetes and highlights where the tuning should
be carried out to improve the reactions in case of faults.

ACKNOWLEDGMENTS

Authors would like to thank Claudio Lorina, Claudio Usai
and Sebastiano La Terra for their precious help in modelling
and validating the proposed architecture, and Antonio Man-
zalini for his comments. Stefano Galantino acknowledges the
support from TIM S.p.A. through the PhD scholarship.

This work has been financed by the Research Fund for the
Italian Electrical System under the Contract Agreement be-
tween RSE S.p.A. and the Ministry of Economic Development
- General Directorate for the Electricity Market, Renewable
Energy and Energy Efficiency, Nuclear Energy in compliance
with the Decree of April 16th, 2018.

REFERENCES

[1] M. A. e. a. Lopes JAP, “Wires energy and environment,” in The future
of power systems: Challenges, trends, and upcoming paradigms, vol. 9,
no. 3, 2020.

[2] F. Ahmad, A. Rasool, E. Ozsoy, R. Sekar, A. Sabanovic, and
M. Elitaş, “Distribution system state estimation-a step towards smart
grid,” Renewable and Sustainable Energy Reviews, vol. 81, pp.
2659–2671, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1364032117310134

[3] D. Falcao, F. Wu, and L. Murphy, “Parallel and distributed state
estimation,” IEEE Transactions on Power Systems, vol. 10, no. 2, pp.
724–730, 1995.

[4] A. von Meier, D. Culler, A. McEachern, and R. Arghandeh, “Micro-
synchrophasors for distribution systems,” in ISGT 2014, 2014, pp. 1–5.

[5] J. De La Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized
phasor measurement applications in power systems,” IEEE Transactions
on Smart Grid, vol. 1, no. 1, pp. 20–27, 2010.

[6] A. Bose, “Smart transmission grid applications and their supporting
infrastructure,” IEEE Transactions on Smart Grid, vol. 1, no. 1, pp.
11–19, 2010.

[7] U. D. of Energy (DOE), “Advancement of synchrophasor technology
in projects funded by the american recovery and reinvestment act
of 2009,” https://www.smartgrid.gov/document/Synchrophasor Report
201603.html#, 2016.

[8] M. Pignati, L. Zanni, P. Romano, R. Cherkaoui, and M. Paolone,
“Fault detection and faulted line identification in active distribution
networks using synchrophasors-based real-time state estimation,” IEEE
Transactions on Power Delivery, vol. 32, no. 1, pp. 381–392, 2017.

[9] R. Puddu, K. Brady, C. Muscas, P. A. Pegoraro, and A. Von Meier,
“Pmu-based technique for the estimation of line parameters in three-
phase electric distribution grids,” in 2018 IEEE 9th International Work-
shop on Applied Measurements for Power Systems (AMPS), 2018, pp.
1–5.

[10] M. P. Kwaye and R. Lazzari, “Topology identification in distribution
network based on phasor measurement units,” in 2021 IEEE Interna-
tional Conference on Environment and Electrical Engineering and 2021
IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS
Europe), 2021, pp. 1–6.

[11] “Ieee guide for synchronization, calibration, testing, and installation
of phasor measurement units (pmus) for power system protection and
control,” IEEE Std C37.242-2021 (Revision of IEEE Std C37.242-2013),
pp. 1–98, 2021.

[12] F. Luo, Z. Y. Dong, Y. Chen, Y. Xu, K. Meng, and K. P. Wong, “Hybrid
cloud computing platform: The next generation it backbone for smart
grid,” in 2012 IEEE Power and Energy Society General Meeting, 2012,
pp. 1–7.

[13] F. Luo, J. Zhao, Z. Y. Dong, Y. Chen, Y. Xu, X. Zhang, and K. P. Wong,
“Cloud-based information infrastructure for next-generation power grid:
Conception, architecture, and applications,” IEEE Transactions on Smart
Grid, vol. 7, no. 4, pp. 1896–1912, 2016.

[14] E-distribuzione, “Piano di sviluppo 2020-2022,” https:
//www.e-distribuzione.it/content/dam/e-distribuzione/documenti/
e-distribuzione/Piano di Sviluppo 2020 22 30giu2020.pdf, 2020.

[15] P. Kansal and A. Bose, “Bandwidth and latency requirements for smart
transmission grid applications,” IEEE Transactions on Smart Grid,
vol. 3, no. 3, pp. 1344–1352, 2012.

[16] A. Zaballos, A. Vallejo, and J. M. Selga, “Heterogeneous communication
architecture for the smart grid,” IEEE network, vol. 25, no. 5, pp. 30–37,
2011.

[17] M. Iorio, F. Risso, and C. Casetti, “When latency matters: Measurements
and lessons learned,” SIGCOMM Comput. Commun. Rev., vol. 51, no. 4,
p. 2–13, dec 2021.

[18] S. Böhm and G. Wirtz, “Profiling lightweight container platforms:
Microk8s and k3s in comparison to kubernetes.” in ZEUS, 2021, pp.
65–73.

[19] B. Gou, “Generalized integer linear programming formulation for op-
timal pmu placement,” IEEE Transactions on Power Systems, vol. 23,
no. 3, pp. 1099–1104, 2008.

https://www.sciencedirect.com/science/article/pii/S1364032117310134
https://www.sciencedirect.com/science/article/pii/S1364032117310134
https://www.smartgrid.gov/document/Synchrophasor_Report_201603.html#
https://www.smartgrid.gov/document/Synchrophasor_Report_201603.html#
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.pdf

	Introduction
	Functional Requirements
	Scalability
	Data resiliency
	Communication latency and service redundancy

	Architecture
	Service Orchestrator
	Geographical architecture
	Multi-cluster
	Data persistency

	Experimental Evaluation
	Evaluation method
	Containerization overhead
	Orchestration and distributed storage overhead
	Orchestrator reaction times

	Conclusions
	References

