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ABSTRACT
Mosquitoes are a major global health problem. They are responsible
for the transmission of diseases and can have a large impact on
local economies. Monitoring mosquitoes is therefore helpful in pre-
venting the outbreak of mosquito-borne diseases. In this paper, we
propose a novel data-driven approach that leverages Transformer-
based models for the identification of mosquitoes in audio record-
ings. The task aims at detecting the time intervals corresponding to
the acoustic mosquito events in an audio signal. We formulate the
problem as a sequence tagging task and train a Transformer-based
model using a real-world dataset collecting mosquito recordings.
By leveraging the sequential nature of mosquito recordings, we
formulate the training objective so that the input recordings do not
require fine-grained annotations. We show that our approach is able
to outperform baseline methods using standard evaluation metrics,
albeit suffering from unexpectedly high false negatives detection
rates. In view of the achieved results, we propose future directions
for the design of more effective mosquito detection models.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Super-
vised learning.

KEYWORDS
Mosquito detection, Audio event detection, Transformer models,
Audio sequence modelling

1 INTRODUCTION
The identification of mosquitoes is of great importance for moni-
toring the risk of mosquito-borne diseases and for the development
of mosquito control strategies. However, recognizing the mosquito
buzzing sounds is a challenging task. Aside from the difficulty of
detecting faint sounds, they can be also easily confused with sim-
ilar background or buzzing sounds. In recent years, data-driven
methodologies have shown state-of-the-art performance on Acous-
tic Event Detection (AED). Deep neural networks are capable of
learning complex representations of raw audio data, which can be
particularly beneficial to tackle AED. However, most of the afore-
said approaches are designed for the audio classification tasks, e.g.,
urban sound classification [13]. Conversely, the identification of

∗All authors contributed equally to this research.

mosquitoes events is a frame-based event detection task, which re-
quires the correct identification of intermittent and variable-length
buzzing sounds.

The most common approach to identify acoustic events in long-
lasting recordings is to train a deep learning model to classify
short audio segments. In [8, 9] each audio frame is processed in-
dependently, and the classification results are combined to make
global decisions on the whole audio recording. As a drawback,
the aforesaid approaches ignore the temporal dependencies among
frames, which can be crucial for the identification of variable-length
mosquitoes buzzing sounds.

To address the above issue, we propose a methodology that
leverages transformer-based architectures to analyze long-range
dependencies among audio frames in the whole audio recording.
Transformer-based models have proven to be useful for modeling
dependencies among sequential data in a variety of tasks, related
to both text [4, 16] and audio processing [1, 3]. They leverage
a self-attention mechanism to model the relationships between
tokens/frames, thereby building a global representation of the in-
put sequence. Notice that acoustic events can occur at different
temporal locations and have arbitrary durations. This makes their
representations particularly well-suited for their identification of
mosquitoes acoustic events. To our purposes, we generate audio
signals containing acoustic events at different positions, which are
then used to train the model for the prediction of frame-level la-
bels. To the best of our knowledge, this is the first attempt to use
transformer-based models to automatically identify mosquitoes
acoustic events in audio recordings1.

2 WAVEFORM ANALYSIS FOR MOSQUITO
DETECTION

Detecting mosquito audio events in an audio recording entails the
identification of the time intervals in which each event occurs.
Hence, it entails modeling the audio sequence to take into account
the sequential dependencies among the audio recordings.

We present Waveform analysis for Mosquito Detection (Wav-
MoDe). It extends the WavLM model [3] to address the task of
mosquito event detection. WavLM [3] is a transformer-based model
for modeling the sequential dependencies in an audio sequence.
It has been originally proposed for speech-related tasks such as
automatic speech recognition, speaker identification, and speaker

1The project source code is available for research purposes https://github.com/
MorenoLaQuatra/ComParE2022_MED (Latest access: June 2022)

https://github.com/MorenoLaQuatra/ComParE2022_MED
https://github.com/MorenoLaQuatra/ComParE2022_MED
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Figure 1: Frame-level annotation strategies for the training
data.

diarization. It has shown to be effective for modeling the sequen-
tial dependencies of an audio sequence and we leverage the same
architecture in this work to model mosquito sounds.

The original architecture is composed of a CNN-based feature ex-
tractor that transforms an input audio frame into a fixed-dimensional
vector, followed by an encoder module composed of a stack of 12
transformer layers. Each audio frame has a fixed length of 20 ms
with a sampling rate of 16kHz.

Similar to the original model, Wav-MoDe leverages the WavLM
architecture for feature extraction and to model the sequential
dependencies of an audio sequence. It is provided with an audio
frame classification layer, on top of the original architecture, which
is aimed at labelling each frame of an audio recording. The backbone
architectures of Wav-MoDe and WavLM are specular. They are
both pre-trained in a self-supervised manner on large-scale audio
datasets.

2.1 Sequence tagging
The proposed methodology aims at tagging the input signal with a
label indicating whether or not the corresponding frame contains
an acoustic mosquito event. Given an audio recording, the goal is to
identify the start and end timestamps of mosquito audio events. In
order to train the sequence labeling model, a frame-level annotation
of the signal is required.

Considering a set of audio recordings 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁 }, each
of their frames 𝑓𝑗 ∈ 𝑥𝑖 is tagged with a label 𝑦 𝑗 ∈ [0, 𝐿], where
𝑦 𝑗 ≠ 0 if the frame contains an acoustic event, and 𝑦 𝑗 = 0 oth-
erwise. 𝐿 ∈ {1, 2, 3} is the number of classes considered in the
frame classification task (see Section 2.2 for a detailed explanation).
When the frames are tagged at the frame level, the problem can
be reformulated as a sequence labeling task in which each frame
is assigned with a label. However, fine-grained annotations at the
frame level are not only time-consuming but also challenging, since
even for humans is difficult to identify frames that contain acoustic
mosquito events. For this reason, prior works addresses mosquito
audio event detection at a coarser granularity, i.e., at the recording
level. In the latter scenario, 𝑦 𝑗 is a binary label indicating whether
an event occurs in the audio recording.

To leverage the sequence-level context we generate artificial
training signals including acoustic events positioned at different
time points of the audio recording. In particular, we alter the original
recording to insert acoustic events at specific recording time points.
The signal is then labelled accordingly.

Figure 1 illustrates the methodology used for the generation of
the training signals. Our approach is based on a data augmentation

Figure 2: Mosquitoes masking procedures to train audio
frame classification model.

strategy that consists in inserting acoustic events at different posi-
tions in the recording. In particular, when we pick a non-mosquito
recording from the training data, we do not apply any specific data
augmentation and label each of its frames as𝑦 𝑗 = 0. On the contrary,
when we select a recording 𝑟𝑚𝑜𝑠 , that is labeled as mosquito

• we randomly select a non-mosquito recording 𝑟𝑏𝑎𝑐𝑘 (e.g., an
audio signal containing background noise),

• we select a random position 𝑝𝑏𝑎𝑐𝑘 in the recording 𝑟𝑏𝑎𝑐𝑘 ,
• we add 𝑟𝑚𝑜𝑠 to 𝑟𝑏𝑎𝑐𝑘 , starting from the position 𝑝𝑏𝑎𝑐𝑘 .

If the 𝑟𝑏𝑎𝑐𝑘 recording is shorter than 𝑟𝑚𝑜𝑠 , then we produce a
new sequence by repeating 𝑟𝑏𝑎𝑐𝑘 until it is longer than 𝑟𝑚𝑜𝑠 . To
generalize data augmentation is randomly appliedwith a probability
of 75%, whereas in the remaining 25% cases we retain the original
𝑟𝑚𝑜𝑠 recording. In the former case, the position of the mosquito
in the augmented recording is selected according to the following
heuristics:

• in one third of the cases, the mosquito is added at the begin-
ning of the recording (e.g., 𝑝𝑏𝑎𝑐𝑘 = 0),

• in one third of the cases, the mosquito is added at the end of
the recording (e.g., 𝑝𝑏𝑎𝑐𝑘 = 𝑙𝑒𝑛(𝑟𝑏𝑎𝑐𝑘 ) − 𝑙𝑒𝑛(𝑟𝑚𝑜𝑠 )),

• in one third of the cases, the mosquito is added at a random
position; e.g., 𝑝𝑏𝑎𝑐𝑘 ∼ U(0, 𝑙𝑒𝑛(𝑟𝑏𝑎𝑐𝑘 ) − 𝑙𝑒𝑛(𝑟𝑚𝑜𝑠 )),

Where 𝑙𝑒𝑛(·) denotes the length of the corresponding recording.
The frames of the generated sequence are labeled as 𝑦 𝑗 ≠ 0 for
the ones that contain the mosquito and as 𝑦 𝑗 = 0 otherwise. More
details about the labeling procedure for the generated recordings
are given in Section 2.2. The background signals for the data aug-
mentation process are randomly selected from the recordings of
the training dataset containing background noise. Furthermore,
additional noise samples are selected from

• FSDnoisy18k [7], a public-available dataset characterized
by 42.5 hours of data belonging to 20 different classes. It
contains real-world noisy audios and their corresponding
manual annotations.

• Sound Events for Surveillance Applications (SESA) [15], a
freely-accessible dataset containing 585 audios belonging to
4 different noise classes.

• Glasgow Isolated Sound Events (GISE-51) [17], an open dataset,
based on FSD50K dataset [6], which includes 16’357 audios
of different duration covering 51 different classes.



AU
TH
OR
S V
ER
SIO

N

How Much Attention Should we Pay to Mosquitoes? MM ’22, October 10–14, 2022, Lisboa, Portugal

2.2 Data labeling
We combine audio signals containing mosquitoes events with back-
ground sounds to create new signals annotated with mosquito
buzzing sounds. The audio frame classification task is treated as a
sequence labeling problem. The label assigned to each audio frame
indicates either the presence or the absence of a mosquito event.
The proposed endeavor closely resembles the Named Entity Recog-
nition (NER) task in the domain of Natural Language Processing:
the key idea is to assign the label O to every frame that is not part of
any event, and assign labels B, I, E to the frames at the beginning,
inside, and at the end of the event, respectively.

In the experiments we test the following three different labeling
options (see Figure 2):

• 2-label schema: It is themost straightforward labeling schema.
The label O is assigned to every frame that is not part of any
event whereas all the frames containing mosquito sounds
are assigned to the class I.

• 3-label schema: The label O is assigned to every frame that
is not part of any event. The frames containing mosquito
sounds are assigned to the classes B if they are at the begin-
ning of an event, I otherwise (i.e., if they are internal or at
the end of the mosquito event).

• 4-label schema: It is similar to the 3-label schema, but the
end of an event is explicitly highlighted using label E.

The 2-label schema is potentially an over-simplification and does
not allow to distinguish between frames at the beginning, in the
middle and at the end of the mosquito event. The 4-label schema, on
the other hand, is a more fine-grained labeling schema and allows
us to distinguish frames at the beginning, in the middle and at
the end of the mosquito event. The 3-label scheme is a trade-off
in which only the beginning of an event is denoted by the label
B and the end is not explicitly indicated. During inference, we
aggregate the predictions of all mosquito-related events, i.e., we
sum the class probabilities of frames not labeled with O into one
class probability (i.e, the overall probability of having a mosquito
event). An empirical comparison between the labeling options can
be found in Section 3.

3 EXPERIMENTS
We evaluate the Wav-MoDe performance on the official dataset
(HumBugDB) of the ComParE 2022 mosquito sub-challenge [14].
However, notice that the proposed solution is general and can be
applied to address similar tasks.

HumBugDB dataset characteristics. The dataset proposed for the
mosquito sub-challenge is a large-scale collection of mosquito
sounds recorded with mobile phones [9, 10]. It is characterized
by ∼ 20 hours of recordings containing mosquito sounds and ∼ 15
hours of recordings of non-mosquito sounds. The dataset is split
into train, dev-a, dev-b and test sets. While train and development
sets are made available to the participants, the test set is redacted
for a blind evaluation process. Both training and development sets
contains only coarse-grained labels that indicate the presence of
mosquito sounds in each audio sample.

Evaluation metrics. The ComParE 2022 mosquito sub-challenge
relies on the PSDS [2] metric to compare the performance of the

proposed systems. It is specifically designed to evaluate sound event
detection systems. In light of the similarity between the mosquito
event detection and the the speaker diarization problem, we also
consider the Detection Error Rate (DER) [5], which is commonly
used in the evaluation of binary classification tasks such as speech
activity detection. It is defined as:

𝐷𝐸𝑅 =
𝐹 +𝑀

𝑁
(1)

where 𝐹 ,𝑀 , and 𝑁 represent the duration of false positives, misses,
and the total duration of each audio event, respectively.

Experimental settings. Wav-MoDe is trained on the training set
given by the challenge organizers. The model is fine-tuned using
AdamW optimizer [11] with an initial learning rate of 10−5 and a
linear decay schedule with a decay rate of 0.01. We train the model
for a maximum of 20 epochs using early stopping strategy. At each
epoch, the model is evaluated on the development set provided by
organizers (i.e., the evaluation is performed combining both the
dev-a and dev-b sets) to choose the best checkpoint.

All the experiments were performed on a machine running
Ubuntu 21.10 and equipped with AMD® Ryzen 9® 3950X CPU,
Nvidia® RTX 3090 GPU, and 128 GB of RAM.

Attention window. Transformer-based models learn long-range
dependencies among audio frames by encoding the entire sequence
using an attention mechanism. However, the complexity of the
attention mechanism is quadratic to the sequence length and im-
pedes the model to process long audio recordings. To overcome
the aforesaid limitation, Wav-MoDe is trained setting the maxi-
mum duration of the attention window to 60 seconds. During the
inference process, the model is then applied to the recording by
splitting it into chunks of different lengths 𝐿𝑤 ∈ {60, 6, 0.6, 0.06}
seconds. The length of a single frame in Wav-MoDe is 0.02 seconds.
Specifically, the highest value 𝐿𝑤 = 60 seconds corresponds to the
training time window, whereas 𝐿𝑤 = 0.06 seconds corresponds to
lowest resolution in terms of context that can be used to classify
an audio frame.

3.1 Results
The results of the evaluations performed on the development and
test sets are reported in Table 1. It indicates the DER and PSDS
values achieved by Wav-MoDe in different evaluation settings, as
well as for the baseline proposed in [8]. The results on the test set
are limited by the maximum number of system submissions allowed
by the challenge organizers.

We separately evaluate the results obtained by Wav-MoDe with
different attention windows to assess the impact of contextual
information on the results. For both metrics, the optimal results
are obtained with 𝐿𝑤 = 0.6𝑠 . This indicates that considering a
larger context is not always beneficial. Indeed, the 𝐿𝑤 = 60𝑠 setting
is likely to provide too much context for the classification task
of a single frame, introducing noise and impeding the model to
focus on the relevant context. On the other hand, by setting 𝐿𝑤 =

0.06𝑠 is likely to provide a too limited context for the classification
task of a single frame, thus reducing the ability of the model to
leverage the local context. The empirical evaluation shows that
𝐿𝑤 = 0.6𝑠 (i.e., the best performing configuration for both metrics
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Table 1: Performance comparison of the baseline model and Wav-MoDe using different attention windows. Mel-BNN [8]
represents the official baseline provided by task’s organizers. CI indicates the bayesian confidence interval for the DER
evaluation metric computed using a probability 𝛼 = 0.9. Symbols ↓ and ↑ imply lower and higher is better, respectively. The best
results are highlighted in boldface.

Model PSDS ↑ DER ↓ PSDS ↑ PSDS (MaxEFPR:3600) ↑
Dev A Dev B Dev A Dev B Test Test

Mel-BNN [8] 61.4 3.4 56.02 (CI: 54.50 - 57.54) 98.59 (CI: 97.47 - 99.71) 6.4 14.2

2-label-60ms 0.00 0.00 96.63 (CI: 96.49 - 96.78) 98.64 (CI: 98.36 - 98.93) - -
3-label-60ms 23.3 15.1 82.06 (CI: 81.45 - 82.67) 87.73 (CI: 85.89 - 89.57) - -
4-label-60ms 42.5 66.8 88.88 (CI: 88.50 - 89.26) 85.67 (CI: 83.53 - 87.81) - -

2-label-600ms 31.7 0.00 76.76 (CI: 75.83 - 77.69) 99.08 (CI: 98.26 - 99.90) - -
3-label-600ms 55.8 63.0 49.9 (CI: 48.2 - 51.6) 57.55 (CI: 51.35 - 63.74) 48.9 12.0
4-label-600ms 68.7 81.0 48.0 (CI: 46.3 - 49.7) 56.36 (CI: 50.00 - 62.72) 24.6 36.3

2-label-6s 5.6 0.00 92.3 (CI: 91.3 - 93.1) 100 - -
3-label-6s 11.6 49.4 50.0 (CI: 48.2 - 51.8) 60.3 (CI: 54.2 - 66.5) 1.2 12.0
4-label-6s 8.1 17.0 56.7 (CI: 55.1 - 58.3) 82.2 (CI: 77.2 - 87.2) - -

2-label-60s 5.5 0.00 92.0 (CI: 91.1 - 93.0) 99.7 (CI: 99.2 - 1.00) - -
3-label-60s 21.1 36.9 49.8 (CI: 48.1 - 51.6) 65.6 (CI: 59.4 - 71.9) 0.3 0.5
4-label-60s 12.3 4.3 55.8 (CI: 54.2 - 57.4) 82.4 (CI: 76.9 - 87.8) - -

in the development sets) is a good trade-off, as provides enough
context without introducing significant irrelevant information.

Among different labeling schemes, the best results are obtained
with the 3-/4-label scheme. By explicitly indicating the beginning
and ending of an event, the model is better trained to recognize
local patterns. Comparing their results in the development sets, 3-
label scheme provide better results with larger attention windows,
while 4-label scheme provide better results with smaller ones.

Pitfall in evaluation metrics. The official evaluation metric (PSDS)
provides a quantitative assessment of the ability of the model to
recognize mosquito events. However, when evaluating the model
from a qualitative perspective, we found that it is likely to predict
short-lasting background within long-lasting mosquito events. The
PSDS metric, in its standard setting overlooks this behaviour and,
as a result, both model fine-tuning and evaluation are likely to
lead to sub-optimal results in real-world applications. To overcome
the aforesaid limitation, contest organizers provided an alterna-
tive PSDS scoring function, which accounts for short incorrect
detections (see the PSDS column with MaxEFPR=3600 in Table 1).
These modifications penalizesWav-MoDe, whose results, due to the
model’s tendency to produce short-lasting background detections,
are significantly lower compared to the original scoring system (see
the comparison between PSDS settings in Table 1).

The results on the test set shows that 3-label scheme with 𝐿𝑤 =

0.6 seconds achieves the best performance considering the standard
PSDS setting, while 4-label scheme with 𝐿𝑤 = 0.6 seconds performs
best considering modified PSDS setting.

4 CONCLUSIONS AND FUTUREWORKS
In this work, we proposed a novel approach, namely Wav-MoDe,
to detect and localize mosquito events from audio recordings. It
is based on an end-to-end transformer architecture that is trained
to predict the mosquito event label for each frame of the input

waveform. Although the model achieves very good performance
according to the standard evaluation metrics, unfortunately, it is
susceptible to predicting short-lasting background within long-
lasting mosquito events. This behaviour is partly highlighted by the
alternate PSDS scoring provided by the contest organizers, which
penalizes systems providing such prediction pattern.

The future research activities call for the study and adoption
of new and ad hoc evaluation metrics able to effectively manage
short-lasting events and thus better reflecting human expectations.
Furthermore, we aim at overcoming the limitations enforced by
the complexity of the standard attention mechanism by leveraging
time-restricted self-attention models [12].

Finally, seeking for a more efficient utilization of temporal corre-
lations, we will investigate the design of streaming architectures
able to provide online prediction of mosquito events.
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