
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Analysis and Mitigation of Soft-Errors on High Performance Embedded GPUs / Sterpone, L.; Azimi, S.; De Sio, C.; Parisi,
F.. - ELETTRONICO. - (2022), pp. 91-98. (Intervento presentato al convegno 21st IEEE International Symposium on
Parallel and Distributed Computing tenutosi a Basel (Switzerland) nel 11-13 July 2022)
[10.1109/ISPDC55340.2022.00022].

Original

Analysis and Mitigation of Soft-Errors on High Performance Embedded GPUs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISPDC55340.2022.00022

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971150 since: 2023-01-13T10:00:36Z

IEEE

Analysis and Mitigation of Soft-Errors on High

Performance Embedded GPUs

L. Sterpone, S. Azimi, C. De Sio

Dipartimento di Automatica e Informatica

Politecnico di Torino

Torino, Italy

luca.sterpone@polito.it

F. Parisi

Electronic, SW and Testing Division

Punch Soft Tronix

Torino, Italy

filippo.parisi@punchtorino.com

Abstract—Multiprocessor system-on-chip such as embedded

GPUs are becoming very popular in safety-critical applications,

such as autonomous and semi-autonomous vehicles. However,

these devices can suffer from the effects of soft-errors, such as

those produced by radiation effects. These effects are able to

generate unpredictable misbehaviors. Fault tolerance oriented to

multi-threaded software introduces severe performance

degradations due to the redundancy, voting and correction

threads operations. In this paper, we propose a new fault injection

environment for NVIDIA GPGPU devices and a fault tolerance

approach based on error detection and correction threads

executed during data transfer operations on embedded GPUs. The

fault injection environment is capable of automatically injecting

faults into the instructions at SASS level by instrumenting the

CUDA binary executable file. The mitigation approach is based on

concurrent error detection threads running simultaneously with

the memory stream device to host data transfer operations. With

several benchmark applications, we evaluate the impact of soft-

errors classifying Silent Data Corruption, Detection,

Unrecoverable Error and Hang. Finally, the proposed mitigation

approach has been validated by soft-error fault injection

campaigns on an NVIDIA Pascal Architecture GPU controlled by

Quad-Core A57 ARM processor (JETSON TX2) demonstrating

an advantage of more than 37% with respect to state of the art

solution.

Keywords—Embedded GPUs, Soft-Errors, High performances,

Error Detection and Correction

I. INTRODUCTION

The GPU devices were first introduced as accelerators for

graphic processing, later driven by the market demand for the

gaming industry, modern GPUs were developed for higher

performance in multimedia processing such as texturing,

shading, and in recent years ray tracing [1][2]. People soon

realized those GPU devices could be used for other applications

demanding higher computational power such as scientific

simulation in the bio-medical area and data mining in the big

data area. Thus, General-Purpose GPU (GPGPU) devices

started to gain popularity in other areas with the help of

corresponding software programming environments for

researchers and developers to better utilize the many-core

architectural parallelism in those devices. With the GPGPU

application expanding within the domain of High-Performance

Computing (HPC) to safety and mission-critical application, for

example, self-driving vehicles [3][4][5], reliability becomes

one of the major constraints to be addressed [6] [7].

As each technology of GPGPU devices employs the latest

semiconductor processing technology pushing toward higher

clock frequency and higher device density, they become more

susceptible to soft errors due to outside distributors, for

example, radiation particle strikes even at sea level [8].

Thus, when safety and mission-critical applications are

targeted, the reliability of the implemented software and target

hardware device should be investigated. One of the techniques

for reliability analysis is through fault injection. Depending on

the availability of certain information, the injection of faults

could be carried out at different levels of abstraction. Unluckily,

the internal implementation of GPGPU hardware is

unavailable, so fault injection on GPGPU devices is usually

carried out using models, simulators, accelerated radiation

beams on real hardware, or instrumented software code [9]

[10].

This paper proposes a reliability analysis framework in

terms of a fault injection environment, named CUBINJ, for

NVIDIA GPGPU devices based on instrumenting the

Streaming ASSembler (SASS) instructions and software

mitigation method able to provide dependable computing

strategies without introducing a relevant overhead in terms of

computational time. The developed fault injection environment

can mimic the faults affecting the control logic and other parts

within the pipeline of GPGPU cores by instrumenting the actual

instructions executed on the device. As the fault injection is

executed while the target application is running at speed on real

GPGPU devices, it is much faster than using a model or

simulator. Please notice that in contrast to the existing tool,

CUBINJ is able to inject transient faults into all threads as well

as into specified thread(s). However, despite state-of-the-art

tools such as NVBitFI, CUBIJN requires access and

instrumentation of the CUDA source code.
The rest of this paper is organized as follows: Section II

presents state-of-the-art techniques for reliability analysis
targeting GPGPU devices. Section III introduces the proposed
fault injection environment. Section IV presents the developed
mitigation approach, while Section V describes the fault
injection experiments on selected benchmark applications with

an analysis of the results. Finally, Section VI draws the
conclusions and discusses future works.

II. BACKGROUND

Depending on which information is available, different

techniques are developed to perform reliability analysis of

GPUs. Several radiation experiments have been performed

using accelerated radiation beams, focusing on various aspects

of analysis and mitigation of soft errors in GPGPU devices.

These experiments present realistic data as actual devices are

tested under radiation particle strike. However, radiation beam

hits the device indistinctively and the information regarding the

internal implementation is not available. Therefore, many

simulation environments have been developed and exploited to

perform more detailed analyses.

Several simulators have been developed for micro-

architectural level analysis, such as the functional GPGPU

simulator Barra [14], and heterogenous CPU-GPU simulator

gem5-gpu [16][17] and GPGPU-sim [18]. These tools mimic

the parallelism implemented in commercial GPGPU devices

and could be used at early stages to investigate the reliability of

GPUs [15].

In order to perform a more detailed analysis, several models

at a lower level are exploited. Among them, FlexGrip [19] was

presented as a VHDL-based model supporting CUDA binary of

streaming multiprocessor computation based on NVIDIA G80

architecture.

In addition to radiation tests and simulators, fault injection

can evaluate the reliability of a system. In [12], the SASSIFI

tool was proposed to inject faults in various locations including

the register files, shared memory, and instruction operands. The

approach exploits a low-level assembly-language

instrumentation tool called SASSI to profile and inject errors.

Similar to SASSIFI, NVBitFI platform has been proposed

by NVIDIA [13], with the main difference between performing

dynamic code instrumentation that intercepts dynamic kernel

calls and inserts error injection without the need to the source

code and without affecting any instruction scheduling or

register allocation of the target program.
The proposed fault injection environment in this paper is

close to the NVBitFI platform developed by NVIDIA which is
meant to mimic the hardware faults using instrumented software
code. However, contrary to VNBitFI, our developed platform is
capable of isolating single specified threads and evaluating the
reliability of each individual thread.

III. EMBEDDED GPUS COMPUTATION SCENARIO

In order to evaluate the reliability of GPUs, we have
developed a new fault injection environment, named CUBINJ,
which has the ability to produce bitflip in Streaming ASSembly
(SASS) instructions affecting either all the threads or specific
thread(s). It requires instrumenting the CUDA source code.

A. Fault Model

The NVIDIA GPGPU devices employ a Single Instruction
Multiple Threads (SIMT) model, meaning that the same
instructions are executed by the many cores inside the device.
However, each core maintains its own execution flow as a

thread. The threads could diverge to perform different tasks and
converge via synchronization or barrier instructions. When the
CUDA application is launched, users could organize threads in
Blocks and Grids. As tasks are not always perfectly distributed
in threads, the same fault in terms of corrupted bits and
instructions in different threads could yield different results.
Thus, the current implementation of CUBINJ allows two types
of fault injection:

1. Bitflip in instruction affecting all the threads

2. Bitflip in instruction affecting only certain threads

Please note that to the best of our knowledge, there is no research

work dedicated to the evaluation of bitflip affecting specified

threads.

B. Compilation of Source Code

When developing applications running on CUDA-enabled
platforms, the NVIDIA CUDA runtime environment (runtime
APIs) is often used as it provides high-level features such as
context management, kernel invoke syntax extension and PTX
for Just-In-Time (JIT) compilation support. This is beneficial if
the application is to be deployed onto different GPGPU devices
(different generations) as PTX code will be generated and
embedded into the executable file along with the host code.
When the application is being executed, the JIT compiler will
transform PTX code to the device-specific SASS code to be
executed without user interaction.

However, the low level of controls that the runtime compiler
provides leads to difficulties for fault injection mechanisms that
target actual SASS instruction such as the one proposed in this
paper. Therefore, we have exploited the NVIDIA Driver API
(DAPI), as represented in Figure 1.

Fig. 1. The Compilation Flow of CUDA SourceCode.

In comparison, the DAPI offers more fine-grained control,

especially over contexts and module loading. Kernel launches
are much more complex to implement, as the execution
configuration and kernel parameters must be specified with
explicit function calls. However, DAPI is only dealing with
CUDA binary files.

CUDA binary file, also referred to as Cubin file, is an ELF-
formatted file that consists of CUDA executable code sections
as well as other sections containing symbols, relocators, debug
info, etc. By default, the CUDA compiler driver nvcc embeds
cubin files into the host executable file. But they can also be
generated separately and loaded at run time by the CUDA DAPI.

DAPI allows CUDA code to be compiled into device-
specific SASS binary code and a Cubin file and then be loaded
into GPGPU device to be executed. In this way, it is much easier
to extract information regarding the SASS instructions and
manipulate them for fault injection.

Fig.2. The Host Application Execution Flow

C. The Development of the Host Application

Exploiting DAPI requires extra coding to prepare the host
application code for loading the Cubin file with some
differences in invoking the function (kernel) to be launched on
GPU devices. Please note that the host application is also in
charge of preparing input data, recording/checking output data,
and setting up for performance measurement using CUDA
Profiling Tools Interface (CUPTI). Figure 2 represents the
general flow of the host application used in the CUBINJ fault
injection environment.

D. The Fault Injection Workflow

Fig. 3. The Developed Fault Injection Environment

The developed fault injection environment is represented in
Figure 3. As a first step, the nvcc is used to compile CUDA code
into Cubinfile while host code is compiled separately into an
executable file. Then, CUBINJ extracts the binary code related
to each kernel in the cubin file (kernel.cubin). Since the cubinfile

has the same binary layout as the commonly used Executable
and Link Format (elf) file, the extraction of binary code related
to each kernel in the cubin file is a straightforward process.
Moreover, exploiting the cuobjdump tool included in the CUDA
environment, CUBINJ maps the extracted binary code to the
associated SASS instructions (Golden SASS Mapping).

As the next step, CUBINJ starts building the fault list
exploiting the data represented by cubin file as well as the binary
code of each kernel. The generated fault list is represented as a
table whose entry contains kernel (function) name, instruction
index, and corresponding SASS instruction. The fault list is
provided to the fault injection campaigns.

For each run of the fault injection campaign, a fault is
selected targeting one of the SASS instruction’s corresponding
binary codes. Then, a faulty cubin file with the targeted flipped
(corrupted) bit is generated. The cuobjdump tool is used again
on the faulty Cubin file to build the instruction map as the
previous step in order to gather information on how the SASS
instruction is corrupted by the target bit.

 Finally, the CUBINJ automatically launches the host
application to load the faulty cubin file and gather results from
the execution. The output of the execution of the faulty kernel,
as well as the faulty SASS map, is compared with the golden
kernel output and golden SASS map in order to classify the
injected bitflip as well as eventually observed faults in the
output.

E. Threads Selection

At this point, the developed fault injection platform supports
the bitflip in instructions affecting all the threads. This section is
dedicated to the further instrumentation of developed fault
injection platform to target the second type of faults, bitflip in
instruction affecting only certain threads. To do so, the CUBINJ
is modified to isolate the targeted thread(s). Algorithm 1
represents the modification introduced in the CUDA source
code.

Algorithm. 1. The Pseudocode of instrumentation of thread(s) isolation

For each CUDA thread, an ID structure is assigned

depending on the Block and Grid configuration when the kernel
is invoked. With the ID structure, it is possible to create a
divergence path to isolate certain threads. Firstly, the original
CUDA code block is duplicated and split into the two clauses of
if-else statement, with the thread_filter_condition determining
which thread will be affected by the faults injected. For example,
if the condition is threadID == 0 where threadId is the linear ID
of all the threads (considering the grids and blocks), then only
thread 0 will be affected by the injected faults. Secondly, two
extra instructions are inserted surrounding the duplicated CUDA

Start

Select CUDA

device

Create CUDA

Context

Enable Profiling

(CUPTI)

Load Kernel

from cubin file

Context clean

up

Input

Preparation

Launch Kernel

Retrieve

Output

Memory

Clean Up

CUPTI Event

Handler

Kernel Elapsed

Time

End Application Specific

Kernel Start/Stop trigger

If (thread_filter_condition)

{

tag_instruction begin;

original_cuda_code_block; // target fault sites

tag_instruction end;

}

else{

original_cuda_code_block;

}

code to make target fault sites much easier to locate while not
affecting the computational logic.

F. Error Classification

After execution of the faulty cubin file, the fault injection
environment logged various information into a local database
including the fault itself, application exit condition, output data,
kernel time, and SASS corruption as represented in Figure 3.
Moreover, the CUBINJ compares the faulty SASS map with the
golden one and identifies the SASS corruption information. This
information indicates which and how a SASS instruction is
affected by the injected fault. For example, the binary code
“ef5c000000080405” corresponds to SASS instruction
“@!P0IADD R5, R5, R6 ;”, if its 54th bit is flipped, it becomes
an invalid instruction; if its 55th but is flipped, it becomes
“@!P0ALD.PHYS R5, a[R4], R0”; if its 44th bit is flipped, the
instruction remains the same. Please note that when the injected
fault results in an invalid instruction (indicated by cuobjdump
tool), the GPGPU device will report (through driver) that an
invalid instruction is detected, but the kernel may continue to the
end.

With the information stored in the local database, fault
injection results are classified as follows:

1) Silent Data Corruption (SDC): the kernel finished

normally, the host application is able to copy the results from

GPGPU device memory to host memory, but there is a

mismatch(es) with the faulty-free run.

2) Detected Unrecoverable Error (DUE): the kernel did

not finish normally as DAPI function call returns an error or the

host application is not able to copy the results from GPGPU

device memory to host.

3) Hang: the kernel execution plus the memory copy

operations are not able to finish within a detection latency time

(the exact duration is determined on the basis of the benchmark

application execution time).

4) Masked: the kernel finished normally and no error is

observed in the output.

IV. MITIGATION APPROACH

The present mitigation approach investigates the

computational characteristics of a typical application running

on embedded GPGPUs thus being based on cyclic

computational stream consisting of the following phases:

initialization, synchronization with the external data sample,

data stream from the host memory to the GPU memory (i.e.,

copy the memory controlled by the host processor to the

memory of the embedded GPU), running the kernel threads,

data stream from the GPU device memory to the host and then

performed cyclically.

The study of the application has been settled giving a

different range of constraints including the length and size of

the data stream, the timing constraints of the cyclic operations

which is limiting the quantity of time dedicated to the various

operations (included the data transfer) and the resolution of the

data stream, fundamental to achieve the desired level of sigma

error. We developed the solution reported in Figure 4, where

we modified the memory transfer CUDA functions using an

asynchronous memory copy from the device to the host that

allows the simultaneous execution of computational threads

during the transfer able to perform a data comparison. We

labeled these computational threads as Beacon Threads.

Fig. 4. The event timeline of the application mitigation method. Beacon

threads are executed during the memory data transfer from the device to host.

V. EXPERIMENTAL RESULTS

In this section, results and analysis from fault injection

campaigns are presented including the error classification and

distribution, SDC error comparison, and impact on the

performance in terms of kernel time.

A. Experimental Benchmarcks

To demonstrate the capability of the proposed fault injection

environment, three benchmark applications were selected:

1) matSum: It calculates the sum of two matrices.

2) matMul: it implements the tiled multiplication of two

512*512 matrices by taking advantage of shared memory.

3) histogram: it calculates the histogram of a collection of

bytes (integer from 0 to 255 as commonly used in image

applications for values of Red, Green, Blue channels).

All three applications have been instrumented as described in

Section III for supporting fault injections in all threads and also

for performing injection only in thread 0 (threadId == 0).
The three benchmark applications are compiled by nvcc

using CUDA compute capability 5.0 (SM_50). The
characteristics of the applications are reported in Table I in
which kernel time is the average of 1000 runs reported by
CUPTI profiling API. Please note that the histogram has also
been tested with the version where thread 1 is affected by the
faults.

TABLE I. CHARACTERISTICS OF BENCHMARK APPLICATIONS

Benchmark

Selected

Thread

SASS

instructions [#]

Kernel time

[ns]

Faults

[#]

matSum All Threads 18 4,483 1,536

Thread 0 24 4,489 832

matMul All Threads 234 2,361,958 19,908

Thread 0 456 2,529,229 14,144

histogram

All Threads 354 839,492 30,208

Thread 0 762 849,401 22,976

Thread 1 762 848,201 22,976

B. Error Rate Distribution

Exploiting the described fault injection environment, CUBINJ,

fault injection campaigns were carried out with the three

selected benchmark applications. Figure 5 represents the

distribution of different errors. Please note that the number of

faults for different versions of each application due to

instrumentation is represented in Table I.
As it can be observed from Figure 5, the matSum application

has a very low hang rate while matMul and histogram show
around 8% and 15% of faults result in hang with a very small
difference between the fault affecting all threads and only one
thread. This is happening since matSum is an application without
a synchronization point in the code, which results in a very low
probability of hang. Further looking into the exact fault causing
hang in matSum application, it turns out to be caused by faults
corrupting a memory load instruction, an integer addition
instruction, and especially the exit instruction at the end of the
kernel. While for matMul and histogram, the situation is more
complicated as some faults affecting the loop controls in the
code are also causing hang (endless loop leading to timeout due
to the 15 seconds limit). Besides, faults in the synchronization
instructions such as SSY (Set Sync Relative Address) would
also lead to hang.

Fig. 5. The Error Rate Distribution Considering Bitflip in Instructions

Affecting all Threads and Specified Thread

Comparing the distribution of errors for the two versions of

injection in All Threads and Thread0/1 of the same application
shows a subtle difference. Furthermore, it could be noticed that
the hang rate is higher in Thread0/1 version.

When synchronization barriers are used, all the threads must
reach the same synchronization point, otherwise, the application
will wait. However, when instrumentation for fault injection is
done, thread synchronization function calls are excluded from
the fault list as only instructions surrounded by the tag
instructions are targeted. Therefore, our initial expectation is that
the fault injection campaign affecting only one thread should
produce a lower hang rate. After investigating the exact fault
leading to hang, it becomes trivial as these faults not only
include those corrupting synchronization instructions such as
SYNC and SSY, but also these corrupting loop related
instructions (causing huge loop or dead loop) such as simple
SEL and BRA instructions.

While the total number of faults is decreased, it is reasonable
that the rate of hang is comparable or even higher in the situation
when only one thread is affected. This shines the light on the
necessity of a mitigation solution for parallel algorithm

implementations as even when only one thread (one
computational core) is affected by a fault, the whole application
execution could be corrupted.
When comparing the histogram result in which Thread 0 and

Thread 1 are affected, different error distributions could be

observed. Please notice that the faults in the two cases are

exactly the same, but due to the fact that the tasks are unevenly

distributed among threads, different threads tolerate different

criticality against possible fault. Thus, when designing

mitigation techniques, selective strategies at the thread level

could yield better results in terms of performance, power, and

reliability trade-off.

C. SDC Comparison

Regarding the most undesired SDC, even if for the All Threads

version and the Thread0/1 version the SDC error rate is similar,

the numbers of errors in the output are quite different. Table II

reports the distribution of numbers of errors in the case of SDC.
For matSum application, if the affected thread is corrupting

the calculation, most likely (96.90%), only one element in the
output will be different as reported in Table II. Further
investigations show that the faults are affecting the instructions
which store the results into global memory at the last step.

TABLE II. NUMBER OF ERRORS IN OUTPUT IN CASE OF SCD

Benchmark

Selected

Thread

One Error

[%]

All Wrong

[%]

Average

Errors

[#]

matSum All Threads 0.00 61.76 126.53

Thread 0 96.90 0.00 1.03

matMul All Threads 0.00 73.35 254,414.31

Thread 0 87.24 0.00 6.51

histogram

All Threads 0.53 53.33 181.99

Thread 0 74.02 0.89 39.70

Thread 1 72.77 0.89 39.50

For matMul application, it is more complicated as one

element in the output does not depend on just one thread’s
calculation. Nonetheless, comparing the output data errors
shows that for faults affecting all the threads resulting in SDC,
most of the faults corrupt most of the output elements (73.35%
of faults corrupt all 262.144 integers in the result of 512x512
matrix multiplication). On the other hand, for faults affecting
only thread 0, most of the faults corrupt only one output element.
However, some faults could corrupt up to 1024 elements as the
algorithm which implemented the multiplication is divided into
32x32 sub-matrix operations. The special fault causing 1,024
wrong output elements is a fault injected into an SSY (Set Sync
Relative Address) instruction causing an erroneous relative
address corruption in the calculation of the while sub-matrix.

For the histogram application, the situation is even more
complicated as 33,554,432 integers in the range between 0 and
255 are counted into 256 bins and two kernel functions are
implemented instead of just one as in matSum and matMul.
Nonetheless, a comparison of the percentage of fault causing
just one error for thread 0 and thread 1 versions shows a vast
difference. This difference is happening due to the unbalanced

1
4

.9
9

%

1
4

.3
0

%

1
3

.2
8

%

1
5

.5
0

%

8
.7

5
%

8
.8

0
%

8
.8

2
%1
1

.4
8

%

7
.2

5
%

2
7

.6
7

%

3
0

.5
3

%

6
.8

3
%

5
.9

1
%

5
.4

4
%8
.1

4
%

9
.5

8
%

0
.4

6
%

0
.3

6
%

1
4

.7
8

%

1
2

.1
6

%

1
2

.6
4

%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SDC DUE Hang

matMul

All Threads Thread 0

matSum

All Threads Thread 0

histogram

All Threads Thread 0 Thread 1

E
rr

o
r

R
a

te
 D

is
tr

ib
u

ti
o

n
 [

%
]

distribution of workload among threads as in the implementation
of Thread 0 in the block (threadIdx.x == 0) is in charge of
merging partially counted results into final results.

D. Impact of fault on kernel execution time

For the faults not causing any anomaly execution, i.e. the
faults categorized into SDC and Masked, it could still affect
performance in terms of kernel time. From the average kernel
time as reported in Table I, we established a baseline for each
application and set the error margin to 10% of kernel time
around the average one. The percentage of faults either increases
or decreases the kernel time by more than 10%, as it is
represented in Figure 6.

As can be seen in Figure 6, the performance impact of All
Threads version is much higher than the single thread version
which is happening since the kernel finished when all threads
are completed. Even though with performance monitoring, a
portion of SDC could be detected, the actual percentage is still
low if only one of the many cores is affected (corruption in
single-thread execution). Further techniques such as Duplication
With Comparison (DWC) and Triple Modular Redundance
(TMR) should be employed for SDC detection and/or
mitigation.

Fig. 6. Distribution of Faults Affecting Kernel Execution Time Considering

Error Margin of 10% Average Kernel Time.

For matSum application, it shows a higher percentage of

Masked faults, causing abnormal kernel time, particularly
1.79% of the faults are causing the kernel time to decrease. Some
of those faults are related to an IADD instruction close to the
end of the code which got corrupted, and others are related to
the final EXIT instruction.

For matMul application, similarly, 0.84% of faults that cause
SDC also lead to decreased kernel time when only one thread is
affected. The faults mainly corrupted ISETP (Integer Set
Predicate), SEL (Conditional Select/Move) and BRA (Branch to
Relative Address) which are related to loop structures
implemented in the application. Those faults cause some
iterations to skip, thus, resulting in the reduced execution time.
Besides, 0.79% of Masked faults also lead to decreased kernel
time. While some faults are similar to the ones provoking SDCs,
some faults are related to corrupted SSY and SYNC instructions
for threads synchronization operation. It appears that the
corrupted synchronization shortened execution time and luckily
no race condition is triggered causing data error. However, for

both cases, the exact chain of events leading the overall kernel
time since only one thread is directly affected by the fault
requires further investigation.

E. More information

As CUBINJ tool records other information including how the

SASS instruction is corrupted, further analysis could be

performed. For example, among the Masked faults, there are

faults that are not actually corrupting the SASS instruction due

to “don’t care” bits in the instruction encoding. Besides, in some

cases, the faulty cubin file could not be decoded by the

cuobjdump tool due to invalid instruction coding. It could still

be loaded into GPGPU device and executed where the

information reported by the driver (e.g. dmesg in Linux system)

could be utilized to identify the instruction and corresponding

effects. This is not yet included in the current implementation,

but it is under consideration.

F. Comparing with State-of-the-art Fault Injection Tools

In order to perform a comparison between the proposed fault
injection tool and the state-of-the-art NVBitFI tool, as the latest
fault injection tool developed by NVIDIA, we have used the
same benchmark applications to perform fault injection analysis.
Table III reports the characteristics of the selected benchmarks
compiled and executed by NVBitFI tool.
Please notice that as it is expected, the number of SASS

instructions is the same as compiling the applications using our

proposed fault injection platforms, while the kernel time has

been reported exploiting nvprof, the NVIDIA profiling tools for

reporting and optimizing the performance of CUDA

applications.

TABLE II. CHARACTERISTICS OF BENCHMARK APPLICATIONS EXECUTING ON

NVBITFI TOOL

Benchmark SASS instructions

[#]

Kernel time

[ns]

matSum 18 56,801

matMul 234 1,671,000

histogram 354 1,425,500

Fig. 7. Error Rate Report for 10,000 BitFlip Fault Injection Using NVBitFI

Tool.

We have performed 10,000 fault injections, configuring the
NVBitFI tool targeting the single bitflip in the general-purpose
registers. As it has been mentioned before, contrary to our
developed fault injection platform, using NVBitFI, it is not

1
7

.1
6

%

1
0

.0
0

%

2
1

.9
4

%

0
.8

9
%

1
1

.3
5

%

0
.0

3
%

1
.5

5
% 4
.0

4
%

0
.8

4
%

0
.7

5
%

0
.8

9
%

0
.0

0
%

0

0.05

0.1

0.15

0.2

0.25

All Threads Thread 0 Thread 1 (histogram only)

matMul

SDC Masked

matMul histogramFa
u

lt
s

C
a

u
si

n
g

 K
e

rn
e

l
E

xe
cu

ti
o

n
 T

im
e

 O
ve

rh
e

a
d

[%
]

46.17%

69.22%

23.01%

51.66%

10.09%

27.04%

2.17%

20.69%

49.95%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

matSum matMul histogram

SDC DUE Masked

E
rr

o
r

R
a

te
 [

%
]

possible to target a specific thread for injection and the target
thread for fault injection is chosen randomly by the tool.

Figure 7 represents the results of 10,000 fault injections on
the three chosen benchmarks. The results are classified the same
way as our proposed tool. Please notice that during the fault
injection, we have set the timeout threshold to 15 seconds, the
same value as fault injection for our developed platform.

G. Performance Comparison on NVIDIA TX2 embedded GPU

A Multiply and Accumulate (MAC) algorithm has been tested

on the Jetson TX2 NVIDIA development kit implemented on

the basis of the techniques illustrated in [21]. The algorithm has

been implemented following five different approaches:

1. Original Application: The original application is related to

the execution flow using the plain implementation without

any mitigation feature.

2. Kernel Threads Duplication using Single Memory: The

Kernel Threads duplication using single memory is an

alternative solution where the threads computation is

duplicated, and the computational memory area is

equivalent.

3. Beacon Over Data Transfer using Single Memory: The

Kernel Threads and the memory are equivalent to the

original applications, but there is a further computation,

executed during the data transfer from the device to the host.

4. Threads Duplication using Duplicated Memory: The Kernel

Threads are duplicated, and the memory is duplicated. This

is a typical configuration that it is used for duplication with

comparison approach where the need is oriented to the

checking of the operation between the two executions. For

the purpose of this work, we only include the threads

duplication on a double memory block.

5. Beacon Over Data Transfer using Duplicated Memory: The

Kernel Threads and the memory are equivalent to the

original applications, but there is a further computation,

executed during the data transfer from the device to the host

and the memory is duplicated.

Fig. 8. Timing performance comparison between the original application and

the beacon thread algorithm with two memory configurations.

We performed the experimental analysis by comparing the

timing performance on a data package of 12,000 KB

considering a cyclic and continuous computational stream and

injecting a total of 120K single bit flip faults.

The fault injection results are illustrated in Table IV. The

beacon threads over data transfer outperforms the soft error

resiliency with respect to traditional duplication with

comparison techniques within CUDA kernels. Besides, it is

interesting to notice that the usage of the beacon threads are

reducing the error detection latency. This is mainly due to the

anticipated detection performed by the beacon thread with

respect to the execution comparison done at the end of each

computing cycle.

TABLE IV. FAULT INJECTION RESULT

Benchmark

SDC
[%]

Detected
SDC

[%]

Detection
Latency

[ms]

Original 96.7 - -

Kernel Dup Single Mem 68.2 84.7 2.14

Beacon OverDT Single Mem 12.5 98.0 1.20

Duplicated Kernel and Mem 23.8 87.4 3.08

Beacon OverDT Duplicated Mem 4.7 98.8 1.08

The performance results are depicted in figure 8, where the

timing performances are illustrated in terms of execution time

for: a unique algorithm cycle, the kernel threads and the data

transfer time for device to host (D2H) and host to device (H2D)

operations.

We observed that for the developed beacon threads over

data transfer have an advantage of 37% with respect to state-of-

the-art solution with the CUDA kernel thread’s duplication.

Furthermore, we compared the algorithms considering the

duplicated memory area and we observed that the beacon

approach provides a relevant advantage even if the overall

computing cycle duration is affected by the duplicated time

needed for the data transfer threads.

VI. CONCLUSION AND FUTURE WORK

A new reliability analysis and mitigation approach for
GPGPU is presented in this paper. The analysis is based on a
fault injection solution targeting the SASS instructions executed
on real devices. Based on the implementation of the CUDA
code, CUBINJ is able to target all threads, or some specific
thread(s) determined by a condition statement in the code. Three
benchmark applications were selected to assess the effectiveness
of the approach, furthermore a MAC application has been
analyzed and mitigated on a Jetson TX2 development board
manufactured by NVIDIA. The mitigation solution presented
and based on detection thread executed in parallel on the data
transfer between host and GPGPU devices shows an improved
resiliency of more than 37% with a limited performance
degradation.

As future work, we are building SASS encoding maps to
further exploit the possibility for instrumentation to support the
fault injection environment and to extend the fault injection
analysis and mitigation on GPGPU clusters.

REFERENCES

[1] H. Nvdia, “NVIDIA Unveils Quadro RTX, World’s First Ray-Tracing
GPU,” 2018. [Online]. Available:
https://NVIDIAnews.NVIDIA.com/news/NVIDIA-unveils-quadrortx
worlds-first-ray-tracing-gpu.

[2] D. C. Anderson and J. Cychosz, “An introduction to ray tracing,” Image
Vis. Comput., 1990.

[3] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A
survey,” Integration, the VLSI Journal. 2017.

1,30

0,20 0,24

0,86

1,82

0,46 0,49

0,87

1,33

0,20 0,26

0,87

3,14

0,45

1,03

1,65

2,67

0,24

0,57

1,66

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

Cycle Duration Kernel_Comp D2H DT H2D DT

Timing Performances

Original App Kernel Threads Dup (cuda)

Beacon OverDT 1 (single mem) Threads Dup (cuda+mem)

Beacon OverDT 1 (double mem)

[ms]

[4] V. Campmany, S. Silva, A. Espinosa, J. C. Moure, D. Vázquez, and A.
M. López, “GPU-based pedestrian detection for autonomous driving,” in
Procedia Computer Science, 2016.

[5] S. Kato et al., “Autoware on Board: Enabling Autonomous Vehicles with
Embedded Systems,” in Proceedings - 9th ACM/IEEE International
Conference on Cyber-Physical Systems, ICCPS 2018, 2018.

[6] S. Azimi, B. Du, L. Sterpone, “Evaluation of transient errors in GPGPUs
for safety critical applications: An effective simulation-based fault
injection environment”, Journal of System Architecture, vol. 75, pp 95-
106, 2017.

[7] L. Sterpone, S. Azimi and B. Du, "A selective mapper for the mitigation
of SETs on rad-hard RTG4 flash-based FPGAs," 2016 16th European
Conference on Radiation and Its Effects on Components and Systems
(RADECS), 2016, pp. 1-4.

[8] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A largescale
study of soft-errors on GPUs in the field,” in Proceedings - International
Symposium on High-Performance Computer Architecture, 2016.

[9] B. Fang, K. Pattabiraman, M. Ripeanu and S. Gurumurthi, "A Systematic
Methodology for Evaluating the Error Resilience of GPGPU
Applications," in IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 12, pp. 3397-3411, 1 Dec. 2016.

[10] L. Sterpone, B. Du, S. Azimi, Radiation-induced single event transients
modeling and testing on nanometric flash-based
technologies,Microelectronics Reliability, Volume 55, Issues 9–10, 2015,
Pages 2087-2091.

[11] S. Tselonis and D. Gizopoulos, “GUFI: A framework for GPUs reliability
assessment,” in ISPASS 2016 - International Symposium on Performance
Analysis of Systems and Software, 2016, pp. 90–100.

[12] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“SASSIFI: An architecture-level fault injection tool for GPU application
resilience evaluation,” in ISPASS 2017 – IEEE International Symposium
on Performance Analysis of Systems and Software, 2017.

[13] T. Tsai, et.al., "NVBitFI: Dynamic Fault Injection for GPUs," 2021 51st
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2021, pp. 284-291.

[14] S. Collange, M. Daumas, D. Defour, and D. Parello, “Barra: A parallel
functional simulator for GPGPU,” in Proceedings - 18th Annual

IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, MASCOTS
2010, 2010.

[15] N. Maruyama, A. Nukada and S. Matsuoka, "A high-performance fault-
tolerant software framework for memory on commodity GPUs," 2010
IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), Atlanta, GA, 2010, pp. 1-12.

[16] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “Gem5-
gpu: A heterogeneous CPU-GPU simulator,” IEEE Comput. Archit. Lett.,
2015.

[17] R. Ubal, L. Pedro, Z. Chen, and D. R. Kaeli, “The Multi2Sim Simulation
Framework,” Architecture, 2010.

[18] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in
ISPASS 2009 - International Symposium on Performance Analysis of
Systems and Software, 2009.

[19] K. Andryc, M. Merchant, and R. Tessier, “FlexGrip: A soft GPGPU for
FPGAs,” in FPT 2013 - Proceedings of the 2013 International Conference
on Field Programmable Technology, 2013.

[20] B. Du, J. E. R. Condia, and M. S. Reorda, “An extended model to support
detailed GPGPU reliability analysis,” in Proceedings – 2019 14th IEEE
International Conference on Design and Technology of Integrated
Systems In Nanoscale Era, DTIS 2019

[21] D. Sabena, M. S. Reorda, L. Sterpone, P. Rech and L. Carro, "On the
evaluation of soft-errors detection techniques for GPGPUs," 2013 8th
IEEE Design and Test Symposium, Marrakesh, 2013, pp. 1-6.

.

