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Abstract—Multiprocessor system-on-chip such as embedded 

GPUs are becoming very popular in safety-critical applications, 

such as autonomous and semi-autonomous vehicles. However, 

these devices can suffer from the effects of soft-errors, such as 

those produced by radiation effects. These effects are able to 

generate unpredictable misbehaviors. Fault tolerance oriented to 

multi-threaded software introduces severe performance 

degradations due to the redundancy, voting and correction 

threads operations. In this paper, we propose a new fault injection 

environment for NVIDIA GPGPU devices and a fault tolerance 

approach based on error detection and correction threads 

executed during data transfer operations on embedded GPUs. The 

fault injection environment is capable of automatically injecting 

faults into the instructions at SASS level by instrumenting the 

CUDA binary executable file. The mitigation approach is based on 

concurrent error detection threads running simultaneously with 

the memory stream device to host data transfer operations. With 

several benchmark applications, we evaluate the impact of soft-

errors classifying Silent Data Corruption, Detection, 

Unrecoverable Error and Hang. Finally, the proposed mitigation 

approach has been validated by soft-error fault injection 

campaigns on an NVIDIA Pascal Architecture GPU controlled by 

Quad-Core A57 ARM processor (JETSON TX2) demonstrating 

an advantage of more than 37% with respect to state of the art 

solution.  

Keywords—Embedded GPUs, Soft-Errors, High performances, 

Error Detection and Correction 

I. INTRODUCTION 

The GPU devices were first introduced as accelerators for 

graphic processing, later driven by the market demand for the 

gaming industry, modern GPUs were developed for higher 

performance in multimedia processing such as texturing, 

shading, and in recent years ray tracing [1][2]. People soon 

realized those GPU devices could be used for other applications 

demanding higher computational power such as scientific 

simulation in the bio-medical area and data mining in the big 

data area. Thus, General-Purpose GPU (GPGPU) devices 

started to gain popularity in other areas with the help of 

corresponding software programming environments for 

researchers and developers to better utilize the many-core 

architectural parallelism in those devices. With the GPGPU 

application expanding within the domain of High-Performance 

Computing (HPC) to safety and mission-critical application, for 

example, self-driving vehicles [3][4][5], reliability becomes 

one of the major constraints to be addressed [6] [7].  

As each technology of GPGPU devices employs the latest 

semiconductor processing technology pushing toward higher 

clock frequency and higher device density, they become more 

susceptible to soft errors due to outside distributors, for 

example, radiation particle strikes even at sea level [8].  

Thus, when safety and mission-critical applications are 

targeted, the reliability of the implemented software and target 

hardware device should be investigated. One of the techniques 

for reliability analysis is through fault injection. Depending on 

the availability of certain information, the injection of faults 

could be carried out at different levels of abstraction. Unluckily, 

the internal implementation of GPGPU hardware is 

unavailable, so fault injection on GPGPU devices is usually 

carried out using models, simulators, accelerated radiation 

beams on real hardware, or instrumented software code [9] 

[10].  

This paper proposes a reliability analysis framework in 

terms of a fault injection environment, named CUBINJ, for 

NVIDIA GPGPU devices based on instrumenting the 

Streaming ASSembler (SASS) instructions and software 

mitigation method able to provide dependable computing 

strategies without introducing a relevant overhead in terms of 

computational time. The developed fault injection environment 

can mimic the faults affecting the control logic and other parts 

within the pipeline of GPGPU cores by instrumenting the actual 

instructions executed on the device. As the fault injection is 

executed while the target application is running at speed on real 

GPGPU devices, it is much faster than using a model or 

simulator. Please notice that in contrast to the existing tool, 

CUBINJ is able to inject transient faults into all threads as well 

as into specified thread(s). However, despite state-of-the-art 

tools such as NVBitFI, CUBIJN requires access and 

instrumentation of the CUDA source code.  
The rest of this paper is organized as follows: Section II 

presents state-of-the-art techniques for reliability analysis 
targeting GPGPU devices. Section III introduces the proposed 
fault injection environment. Section IV presents the developed 
mitigation approach, while Section V describes the fault 
injection experiments on selected benchmark applications with 



an analysis of the results. Finally, Section VI draws the 
conclusions and discusses future works. 

II. BACKGROUND 

Depending on which information is available, different 

techniques are developed to perform reliability analysis of 

GPUs. Several radiation experiments have been performed 

using accelerated radiation beams, focusing on various aspects 

of analysis and mitigation of soft errors in GPGPU devices. 

These experiments present realistic data as actual devices are 

tested under radiation particle strike. However, radiation beam 

hits the device indistinctively and the information regarding the 

internal implementation is not available. Therefore, many 

simulation environments have been developed and exploited to 

perform more detailed analyses.  

Several simulators have been developed for micro-

architectural level analysis, such as the functional GPGPU 

simulator Barra [14], and heterogenous CPU-GPU simulator 

gem5-gpu  [16][17] and GPGPU-sim [18]. These tools mimic 

the parallelism implemented in commercial GPGPU devices 

and could be used at early stages to investigate the reliability of 

GPUs [15].  

In order to perform a more detailed analysis, several models 

at a lower level are exploited. Among them, FlexGrip [19] was 

presented as a VHDL-based model supporting CUDA binary of  

streaming multiprocessor computation based on NVIDIA G80 

architecture. 

In addition to radiation tests and simulators, fault injection 

can evaluate the reliability of a system. In [12], the SASSIFI 

tool was proposed to inject faults in various locations including 

the register files, shared memory, and instruction operands. The 

approach exploits a low-level assembly-language 

instrumentation tool called SASSI to profile and inject errors.  

Similar to SASSIFI, NVBitFI platform has been proposed 

by NVIDIA [13], with the main difference between performing 

dynamic code instrumentation that intercepts dynamic kernel 

calls and inserts error injection without the need to the source 

code and without affecting any instruction scheduling or 

register allocation of the target program.  
The proposed fault injection environment in this paper is 

close to the NVBitFI platform developed by NVIDIA which is 
meant to mimic the hardware faults using instrumented software 
code. However, contrary to VNBitFI, our developed platform is 
capable of isolating single specified threads and evaluating the 
reliability of each individual thread. 

III. EMBEDDED GPUS COMPUTATION SCENARIO 

In order to evaluate the reliability of GPUs, we have 
developed a new fault injection environment, named CUBINJ, 
which has the ability to produce bitflip in Streaming ASSembly 
(SASS) instructions affecting either all the threads or specific 
thread(s). It requires instrumenting the CUDA source code.  

A. Fault Model 

The NVIDIA GPGPU devices employ a Single Instruction 
Multiple Threads (SIMT) model, meaning that the same 
instructions are executed by the many cores inside the device. 
However, each core maintains its own execution flow as a 

thread. The threads could diverge to perform different tasks and 
converge via synchronization or barrier instructions. When the 
CUDA application is launched, users could organize threads in 
Blocks and Grids. As tasks are not always perfectly distributed 
in threads, the same fault in terms of corrupted bits and 
instructions in different threads could yield different results. 
Thus, the current implementation of CUBINJ allows two types 
of fault injection:  

1. Bitflip in instruction affecting all the threads 

2. Bitflip in instruction affecting only certain threads 

Please note that to the best of our knowledge, there is no research 

work dedicated to the evaluation of bitflip affecting specified 

threads. 

B. Compilation of Source Code 

When developing applications running on CUDA-enabled 
platforms, the NVIDIA CUDA runtime environment (runtime 
APIs) is often used as it provides high-level features such as 
context management, kernel invoke syntax extension and PTX 
for Just-In-Time (JIT) compilation support. This is beneficial if 
the application is to be deployed onto different GPGPU devices 
(different generations) as PTX code will be generated and 
embedded into the executable file along with the host code. 
When the application is being executed, the JIT compiler will 
transform PTX code to the device-specific SASS code to be 
executed without user interaction.  

However, the low level of controls that the runtime compiler 
provides leads to difficulties for fault injection mechanisms that 
target actual SASS instruction such as the one proposed in this 
paper. Therefore, we have exploited the NVIDIA Driver API 
(DAPI), as represented in Figure 1. 

 

 
Fig. 1. The Compilation Flow of CUDA SourceCode. 

 
In comparison, the DAPI offers more fine-grained control, 

especially over contexts and module loading. Kernel launches 
are much more complex to implement, as the execution 
configuration and kernel parameters must be specified with 
explicit function calls. However, DAPI is only dealing with 
CUDA binary files.  

CUDA binary file, also referred to as Cubin file, is an ELF-
formatted file that consists of CUDA executable code sections 
as well as other sections containing symbols, relocators, debug 
info, etc. By default, the CUDA compiler driver nvcc embeds 
cubin files into the host executable file. But they can also be 
generated separately and loaded at run time by the CUDA DAPI. 

DAPI allows CUDA code to be compiled into device-
specific SASS binary code and a Cubin file and then be loaded 
into GPGPU device to be executed. In this way, it is much easier 
to extract information regarding the SASS instructions and 
manipulate them for fault injection.  

 
 



 
Fig.2. The Host Application Execution Flow 

C. The Development of the Host Application  

Exploiting DAPI requires extra coding to prepare the host 
application code for loading the Cubin file with some 
differences in invoking the function (kernel) to be launched on 
GPU devices. Please note that the host application is also in 
charge of preparing input data, recording/checking output data, 
and setting up for performance measurement using CUDA 
Profiling Tools Interface (CUPTI). Figure 2 represents the 
general flow of the host application used in the CUBINJ fault 
injection environment.  

D. The Fault Injection Workflow 

 

 
 

Fig. 3. The Developed Fault Injection Environment  

The developed fault injection environment is represented in 
Figure 3. As a first step, the nvcc is used to compile CUDA code 
into Cubinfile while host code is compiled separately into an 
executable file. Then, CUBINJ extracts the binary code related 
to each kernel in the cubin file (kernel.cubin). Since the cubinfile 

has the same binary layout as the commonly used Executable 
and Link Format (elf) file, the extraction of binary code related 
to each kernel in the cubin file is a straightforward process. 
Moreover, exploiting the cuobjdump tool included in the CUDA 
environment, CUBINJ maps the extracted binary code to the 
associated SASS instructions (Golden SASS Mapping). 

As the next step, CUBINJ starts building the fault list 
exploiting the data represented by cubin file as well as the binary 
code of each kernel. The generated fault list is represented as a 
table whose entry contains kernel (function) name, instruction 
index, and corresponding SASS instruction. The fault list is 
provided to the fault injection campaigns.  

For each run of the fault injection campaign, a fault is 
selected targeting one of the SASS instruction’s corresponding 
binary codes. Then, a faulty cubin file with the targeted flipped 
(corrupted) bit is generated. The cuobjdump tool is used again 
on the faulty Cubin file to build the instruction map as the 
previous step in order to gather information on how the SASS 
instruction is corrupted by the target bit. 

 Finally, the CUBINJ automatically launches the host 
application to load the faulty cubin file and gather results from 
the execution. The output of the execution of the faulty kernel, 
as well as the faulty SASS map, is compared with the golden 
kernel output and golden SASS map in order to classify the 
injected bitflip as well as eventually observed faults in the 
output.   

E. Threads Selection 

At this point, the developed fault injection platform supports 
the bitflip in instructions affecting all the threads. This section is 
dedicated to the further instrumentation of developed fault 
injection platform to target the second type of faults, bitflip in 
instruction affecting only certain threads. To do so, the CUBINJ 
is modified to isolate the targeted thread(s). Algorithm 1 
represents the modification introduced in the CUDA source 
code.  
 

 
Algorithm. 1. The Pseudocode of instrumentation of thread(s) isolation 

 
For each CUDA thread, an ID structure is assigned 

depending on the Block and Grid configuration when the kernel 
is invoked. With the ID structure, it is possible to create a 
divergence path to isolate certain threads. Firstly, the original 
CUDA code block is duplicated and split into the two clauses of 
if-else statement, with the thread_filter_condition determining 
which thread will be affected by the faults injected. For example, 
if the condition is threadID == 0 where threadId is the linear ID 
of all the threads (considering the grids and blocks), then only 
thread 0 will be affected by the injected faults. Secondly, two 
extra instructions are inserted surrounding the duplicated CUDA 
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If (thread_filter_condition)

{

tag_instruction begin;

original_cuda_code_block; // target fault sites

tag_instruction end;

}

else{

original_cuda_code_block;

}



code to make target fault sites much easier to locate while not 
affecting the computational logic.  

F. Error Classification 

After execution of the faulty cubin file, the fault injection 
environment logged various information into a local database 
including the fault itself, application exit condition, output data, 
kernel time, and SASS corruption as represented in Figure 3. 
Moreover, the CUBINJ compares the faulty SASS map with the 
golden one and identifies the SASS corruption information. This 
information indicates which and how a SASS instruction is 
affected by the injected fault. For example, the binary code 
“ef5c000000080405” corresponds to SASS instruction 
“@!P0IADD R5, R5, R6 ;”, if its 54th bit is flipped, it becomes 
an invalid instruction; if its 55th but is flipped, it becomes 
“@!P0ALD.PHYS R5, a[R4], R0”; if its 44th bit is flipped, the 
instruction remains the same. Please note that when the injected 
fault results in an invalid instruction (indicated by cuobjdump 
tool), the GPGPU device will report (through driver) that an 
invalid instruction is detected, but the kernel may continue to the 
end.  

With the information stored in the local database, fault 
injection results are classified as follows:  

1) Silent Data Corruption (SDC): the kernel finished 

normally, the host application is able to copy the results from 

GPGPU device memory to host memory, but there is a 

mismatch(es) with the faulty-free run.  

2) Detected Unrecoverable Error (DUE): the kernel did 

not finish normally as DAPI function call returns an error or the 

host application is not able to copy the results from GPGPU 

device memory to host. 

3) Hang: the kernel execution plus the memory copy 

operations are not able to finish within a detection latency time 

(the exact duration is determined on the basis of the benchmark 

application execution time). 

4) Masked: the kernel finished normally and no error is 

observed in the output.  

IV. MITIGATION APPROACH  

The present mitigation approach investigates the 

computational characteristics of a typical application running 

on embedded GPGPUs thus being based on cyclic 

computational stream consisting of the following phases: 

initialization, synchronization with the external data sample, 

data stream from the host memory to the GPU memory (i.e., 

copy the memory controlled by the host processor to the 

memory of the embedded GPU), running the kernel threads, 

data stream from the GPU device memory to the host and then 

performed cyclically.  

The study of the application has been settled giving a 

different range of constraints including the length and size of 

the data stream, the timing constraints of the cyclic operations 

which is limiting the quantity of time dedicated to the various 

operations (included the data transfer) and the resolution of the 

data stream, fundamental to achieve the desired level of sigma 

error. We developed the solution reported in Figure 4, where 

we modified the memory transfer CUDA functions using an 

asynchronous memory copy from the device to the host that 

allows the simultaneous execution of computational threads 

during the transfer able to perform a data comparison. We 

labeled these computational threads as Beacon Threads. 

 

 
 

Fig. 4. The event timeline of the application mitigation method. Beacon 

threads are executed during the memory data transfer from the device to host.  

V. EXPERIMENTAL RESULTS 

In this section, results and analysis from fault injection 

campaigns are presented including the error classification and 

distribution, SDC error comparison, and impact on the 

performance in terms of kernel time.  

A. Experimental Benchmarcks 

To demonstrate the capability of the proposed fault injection 

environment, three benchmark applications were selected:  

1) matSum: It calculates the sum of two matrices.  

2) matMul: it implements the tiled multiplication of two 

512*512 matrices by taking advantage of shared memory. 

3) histogram: it calculates the histogram of a collection of 

bytes (integer from 0 to 255 as commonly used in image 

applications for values of Red, Green, Blue channels).  

All three applications have been instrumented as described in 

Section III for supporting fault injections in all threads and also 

for performing injection only in thread 0 (threadId == 0). 
The three benchmark applications are compiled by nvcc 

using CUDA compute capability 5.0 (SM_50). The 
characteristics of the applications are reported in Table I in 
which kernel time is the average of 1000 runs reported by 
CUPTI profiling API. Please note that the histogram has also 
been tested with the version where thread 1 is affected by the 
faults.  

TABLE I. CHARACTERISTICS OF BENCHMARK APPLICATIONS 

 

Benchmark 

Selected 

Thread 

SASS 

instructions [#] 

Kernel time 

[ns] 

Faults 

[#] 

matSum All Threads 18 4,483 1,536 

Thread 0 24 4,489 832 

matMul All Threads 234 2,361,958 19,908 

Thread 0 456 2,529,229 14,144 

 

histogram 

All Threads 354 839,492 30,208 

Thread 0 762 849,401 22,976 

Thread 1 762 848,201 22,976 

B. Error Rate Distribution 

Exploiting the described fault injection environment, CUBINJ, 

fault injection campaigns were carried out with the three 



selected benchmark applications. Figure 5 represents the 

distribution of different errors. Please note that the number of 

faults for different versions of each application due to 

instrumentation is represented in Table I.  
As it can be observed from Figure 5, the matSum application 

has a very low hang rate while matMul and histogram show 
around 8% and 15% of faults result in hang with a very small 
difference between the fault affecting all threads and only one 
thread. This is happening since matSum is an application without 
a synchronization point in the code, which results in a very low 
probability of hang. Further looking into the exact fault causing 
hang in matSum application, it turns out to be caused by faults 
corrupting a memory load instruction, an integer addition 
instruction, and especially the exit instruction at the end of the 
kernel. While for matMul and histogram, the situation is more 
complicated as some faults affecting the loop controls in the 
code are also causing hang (endless loop leading to timeout due 
to the 15 seconds limit). Besides, faults in the synchronization 
instructions such as SSY (Set Sync Relative Address) would 
also lead to hang.  
 

 
Fig. 5. The Error Rate Distribution Considering Bitflip in Instructions 

Affecting all Threads and Specified Thread  

 
Comparing the distribution of errors for the two versions of 

injection in All Threads and Thread0/1 of the same application 
shows a subtle difference. Furthermore, it could be noticed that 
the hang rate is higher in Thread0/1 version.  

When synchronization barriers are used, all the threads must 
reach the same synchronization point, otherwise, the application 
will wait. However, when instrumentation for fault injection is 
done, thread synchronization function calls are excluded from 
the fault list as only instructions surrounded by the tag 
instructions are targeted. Therefore, our initial expectation is that 
the fault injection campaign affecting only one thread should 
produce a lower hang rate. After investigating the exact fault 
leading to hang, it becomes trivial as these faults not only 
include those corrupting synchronization instructions such as 
SYNC and SSY, but also these corrupting loop related 
instructions (causing huge loop or dead loop) such as simple 
SEL and BRA instructions. 

While the total number of faults is decreased, it is reasonable 
that the rate of hang is comparable or even higher in the situation 
when only one thread is affected. This shines the light on the 
necessity of a mitigation solution for parallel algorithm 

implementations as even when only one thread (one 
computational core) is affected by a fault, the whole application 
execution could be corrupted.  
When comparing the histogram result in which Thread 0 and 

Thread 1 are affected, different error distributions could be 

observed. Please notice that the faults in the two cases are 

exactly the same, but due to the fact that the tasks are unevenly 

distributed among threads, different threads tolerate different 

criticality against possible fault. Thus, when designing 

mitigation techniques, selective strategies at the thread level 

could yield better results in terms of performance, power, and 

reliability trade-off.  

C. SDC Comparison 

Regarding the most undesired SDC, even if for the All Threads 

version and the Thread0/1 version the SDC error rate is similar, 

the numbers of errors in the output are quite different. Table II 

reports the distribution of numbers of errors in the case of SDC.  
For matSum application, if the affected thread is corrupting 

the calculation, most likely (96.90%), only one element in the 
output will be different as reported in Table II. Further 
investigations show that the faults are affecting the instructions 
which store the results into global memory at the last step.  
 

TABLE II. NUMBER OF ERRORS IN OUTPUT IN CASE OF SCD 

 

Benchmark 

Selected 

Thread 

One Error 

[%] 

All Wrong 

[%] 

Average 

Errors 

[#] 

matSum All Threads 0.00 61.76 126.53 

Thread 0 96.90 0.00 1.03 

matMul All Threads 0.00 73.35 254,414.31 

Thread 0 87.24 0.00 6.51 

 

histogram 

All Threads 0.53 53.33 181.99 

Thread 0 74.02 0.89 39.70 

Thread 1 72.77 0.89 39.50 

 
 
For matMul application, it is more complicated as one 

element in the output does not depend on just one thread’s 
calculation. Nonetheless, comparing the output data errors 
shows that for faults affecting all the threads resulting in SDC, 
most of the faults corrupt most of the output elements (73.35% 
of faults corrupt all 262.144 integers in the result of 512x512 
matrix multiplication). On the other hand, for faults affecting 
only thread 0, most of the faults corrupt only one output element. 
However, some faults could corrupt up to 1024 elements as the 
algorithm which implemented the multiplication is divided into 
32x32 sub-matrix operations. The special fault causing 1,024 
wrong output elements is a fault injected into an SSY (Set Sync 
Relative Address) instruction causing an erroneous relative 
address corruption in the calculation of the while sub-matrix.  

For the histogram application, the situation is even more 
complicated as 33,554,432 integers in the range between 0 and 
255 are counted into 256 bins and two kernel functions are 
implemented instead of just one as in matSum and matMul. 
Nonetheless, a comparison of the percentage of fault causing 
just one error for thread 0 and thread 1 versions shows a vast 
difference. This difference is happening due to the unbalanced 
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distribution of workload among threads as in the implementation 
of Thread 0 in the block (threadIdx.x == 0) is in charge of 
merging partially counted results into final results. 

D. Impact of fault on kernel execution time  

For the faults not causing any anomaly execution, i.e. the 
faults categorized into SDC and Masked, it could still affect 
performance in terms of kernel time. From the average kernel 
time as reported in Table I, we established a baseline for each 
application and set the error margin to 10% of kernel time 
around the average one. The percentage of faults either increases 
or decreases the kernel time by more than 10%, as it is 
represented in Figure 6.  

As can be seen in Figure 6, the performance impact of All 
Threads version is much higher than the single thread version 
which is happening since the kernel finished when all threads 
are completed. Even though with performance monitoring, a 
portion of SDC could be detected, the actual percentage is still 
low if only one of the many cores is affected (corruption in 
single-thread execution). Further techniques such as Duplication 
With Comparison (DWC) and Triple Modular Redundance 
(TMR) should be employed for SDC detection and/or 
mitigation.  
 

 
Fig. 6. Distribution of Faults Affecting Kernel Execution Time Considering 

Error Margin of 10% Average Kernel Time. 

 
For matSum application, it shows a higher percentage of 

Masked faults, causing abnormal kernel time, particularly 
1.79% of the faults are causing the kernel time to decrease. Some 
of those faults are related to an IADD instruction close to the 
end of the code which got corrupted, and others are related to 
the final EXIT instruction.  

For matMul application, similarly, 0.84% of faults that cause 
SDC also lead to decreased kernel time when only one thread is 
affected. The faults mainly corrupted ISETP (Integer Set 
Predicate), SEL (Conditional Select/Move) and BRA (Branch to 
Relative Address) which are related to loop structures 
implemented in the application. Those faults cause some 
iterations to skip, thus, resulting in the reduced execution time. 
Besides, 0.79% of Masked faults also lead to decreased kernel 
time. While some faults are similar to the ones provoking SDCs, 
some faults are related to corrupted SSY and SYNC instructions 
for threads synchronization operation. It appears that the 
corrupted synchronization shortened execution time and luckily 
no race condition is triggered causing data error. However, for 

both cases, the exact chain of events leading the overall kernel 
time since only one thread is directly affected by the fault 
requires further investigation.  

E. More information 

As CUBINJ tool records other information including how the 

SASS instruction is corrupted, further analysis could be 

performed. For example, among the Masked faults, there are 

faults that are not actually corrupting the SASS instruction due 

to “don’t care” bits in the instruction encoding. Besides, in some 

cases, the faulty cubin file could not be decoded by the 

cuobjdump tool due to invalid instruction coding. It could still 

be loaded into GPGPU device and executed where the 

information reported by the driver (e.g. dmesg in Linux system) 

could be utilized to identify the instruction and corresponding 

effects. This is not yet included in the current implementation, 

but it is under consideration.  

F. Comparing with State-of-the-art Fault Injection Tools 

In order to perform a comparison between the proposed fault 
injection tool and the state-of-the-art NVBitFI tool, as the latest 
fault injection tool developed by NVIDIA, we have used the 
same benchmark applications to perform fault injection analysis. 
Table III reports the characteristics of the selected benchmarks 
compiled and executed by NVBitFI tool.  
Please notice that as it is expected, the number of SASS 

instructions is the same as compiling the applications using our 

proposed fault injection platforms, while the kernel time has 

been reported exploiting nvprof, the NVIDIA profiling tools for 

reporting and optimizing the performance of CUDA 

applications.  

 
TABLE II. CHARACTERISTICS OF BENCHMARK APPLICATIONS EXECUTING ON 

NVBITFI TOOL 

Benchmark SASS instructions 

[#] 

Kernel time 

[ns] 

matSum 18 56,801 

matMul 234 1,671,000 

histogram 354 1,425,500 

 

 
Fig. 7. Error Rate Report for 10,000 BitFlip Fault Injection Using NVBitFI 

Tool.  

We have performed 10,000 fault injections, configuring the 
NVBitFI tool targeting the single bitflip in the general-purpose 
registers. As it has been mentioned before, contrary to our 
developed fault injection platform, using NVBitFI, it is not 
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possible to target a specific thread for injection and the target 
thread for fault injection is chosen randomly by the tool. 

Figure 7 represents the results of 10,000 fault injections on 
the three chosen benchmarks. The results are classified the same 
way as our proposed tool.  Please notice that during the fault 
injection, we have set the timeout threshold to 15 seconds, the 
same value as fault injection for our developed platform.   

G. Performance Comparison on NVIDIA TX2 embedded GPU 

A Multiply and Accumulate (MAC) algorithm has been tested 

on the Jetson TX2 NVIDIA development kit implemented on 

the basis of the techniques illustrated in [21]. The algorithm has 

been implemented following five different approaches: 

1. Original Application: The original application is related to 

the execution flow using the plain implementation without 

any mitigation feature. 

2. Kernel Threads Duplication using Single Memory: The 

Kernel Threads duplication using single memory is an 

alternative solution where the threads computation is 

duplicated, and the computational memory area is 

equivalent. 

3. Beacon Over Data Transfer using Single Memory: The 

Kernel Threads and the memory are equivalent to the 

original applications, but there is a further computation, 

executed during the data transfer from the device to the host. 

4. Threads Duplication using Duplicated Memory: The Kernel 

Threads are duplicated, and the memory is duplicated. This 

is a typical configuration that it is used for duplication with 

comparison approach where the need is oriented to the 

checking of the operation between the two executions. For 

the purpose of this work, we only include the threads 

duplication on a double memory block. 

5. Beacon Over Data Transfer using Duplicated Memory: The 

Kernel Threads and the memory are equivalent to the 

original applications, but there is a further computation, 

executed during the data transfer from the device to the host 

and the memory is duplicated. 

 

 
 

Fig. 8. Timing performance comparison between the original application and 

the beacon thread algorithm with two memory configurations. 

 

We performed the experimental analysis by comparing the 

timing performance on a data package of 12,000 KB 

considering a cyclic and continuous computational stream and 

injecting a total of 120K single bit flip faults. 

The fault injection results are illustrated in Table IV. The 

beacon threads over data transfer outperforms the soft error 

resiliency with respect to traditional duplication with 

comparison techniques within CUDA kernels. Besides, it is 

interesting to notice that the usage of the beacon threads are 

reducing the error detection latency. This is mainly due to the 

anticipated detection performed by the beacon thread with 

respect to the execution comparison done at the end of each 

computing cycle.  

 
TABLE IV. FAULT INJECTION RESULT 

 
Benchmark 

SDC 
[%] 

Detected 
SDC 

[%] 

Detection 
Latency 

[ms] 

Original 96.7 - - 

Kernel Dup Single Mem 68.2 84.7 2.14 

Beacon OverDT Single Mem 12.5 98.0 1.20 

Duplicated Kernel and Mem 23.8 87.4 3.08 

Beacon OverDT Duplicated Mem 4.7 98.8 1.08 

 

The performance results are depicted in figure 8, where the 

timing performances are illustrated in terms of execution time 

for: a unique algorithm cycle, the kernel threads and the data 

transfer time for device to host (D2H) and host to device (H2D) 

operations.  

We observed that for the developed beacon threads over 

data transfer have an advantage of 37% with respect to state-of-

the-art solution with the CUDA kernel thread’s duplication. 

Furthermore, we compared the algorithms considering the 

duplicated memory area and we observed that the beacon 

approach provides a relevant advantage even if the overall 

computing cycle duration is affected by the duplicated time 

needed for the data transfer threads.  

VI. CONCLUSION AND FUTURE WORK 

A new reliability analysis and mitigation approach for 
GPGPU is presented in this paper. The analysis is based on a 
fault injection solution targeting the SASS instructions executed 
on real devices. Based on the implementation of the CUDA 
code, CUBINJ is able to target all threads, or some specific 
thread(s) determined by a condition statement in the code. Three 
benchmark applications were selected to assess the effectiveness 
of the approach, furthermore a MAC application has been 
analyzed and mitigated on a Jetson TX2 development board 
manufactured by NVIDIA. The mitigation solution presented 
and based on detection thread executed in parallel on the data 
transfer between host and GPGPU devices shows an improved 
resiliency of more than 37% with a limited performance 
degradation.  

As future work, we are building SASS encoding maps to 
further exploit the possibility for instrumentation to support the 
fault injection environment and to extend the fault injection 
analysis and mitigation on GPGPU clusters.  
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