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ORIGINAL ARTICLE Open Access

MRI-based radiomics to predict response in
locally advanced rectal cancer: comparison
of manual and automatic segmentation on
external validation in a multicentre study
Arianna Defeudis1,2,3* , Simone Mazzetti1,2, Jovana Panic2,4, Monica Micilotta5, Lorenzo Vassallo6,
Giuliana Giannetto1,2, Marco Gatti6, Riccardo Faletti6, Stefano Cirillo5, Daniele Regge1,2 and Valentina Giannini1,2

Abstract

Background: Pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal
cancer (LARC) is achieved in 15–30% of cases. Our aim was to implement and externally validate a magnetic
resonance imaging (MRI)-based radiomics pipeline to predict response to treatment and to investigate the impact
of manual and automatic segmentations on the radiomics models.

Methods: Ninety-five patients with stage II/III LARC who underwent multiparametric MRI before
chemoradiotherapy and surgical treatment were enrolled from three institutions. Patients were classified as
responders if tumour regression grade was 1 or 2 and nonresponders otherwise. Sixty-seven patients composed the
construction dataset, while 28 the external validation. Tumour volumes were manually and automatically
segmented using a U-net algorithm. Three approaches for feature selection were tested and combined with four
machine learning classifiers.

Results: Using manual segmentation, the best result reached an accuracy of 68% on the validation set, with
sensitivity 60%, specificity 77%, negative predictive value (NPV) 63%, and positive predictive value (PPV) 75%. The
automatic segmentation achieved an accuracy of 75% on the validation set, with sensitivity 80%, specificity 69%,
and both NPV and PPV 75%. Sensitivity and NPV on the validation set were significantly higher (p = 0.047) for the
automatic versus manual segmentation.

Conclusion: Our study showed that radiomics models can pave the way to help clinicians in the prediction of
tumour response to chemoradiotherapy of LARC and to personalise per-patient treatment. The results from the
external validation dataset are promising for further research into radiomics approaches using both manual and
automatic segmentations.

Keywords: Artificial intelligence, Machine learning, Multiparametric magnetic resonance imaging, Neoadjuvant
therapy, Rectal neoplasms
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Key points
• We implemented and validated a promising radiomics
model to predict response of locally advanced rectal can-
cers (LARC) to neoadjuvant chemoradiotherapy in a
multicentre dataset.
• To provide a robust model for further clinical appli-

cations, we externally validated the model, using patients
from a different centre, who underwent magnetic reson-
ance imaging with various scanners and protocols.
• Results on both training and validation datasets were

promising and showed that the model could be
generalisable.
• Automatic segmentations reached a significantly

higher accuracy on the validation set, compared to the
manual segmentation, prompting the use of the auto-
matic pipeline on a larger validation cohort.

Background
Colorectal cancer is the third most common cancer and
the second leading cause of cancer death worldwide,
representing a tenth of cancer cases and deaths (exclud-
ing nonmelanoma skin cancer) [1]. Nearly 40% of the
new colorectal tumours are in the rectum, with a pro-
portion of locally advanced rectal cancer (LARC) diagno-
sis, i.e., T3 or T4 tumours and no nodal involvement or
any T and nodal involvement [2, 3]. LARC is increas-
ingly being recognised as a heterogeneous disease, being
challenging to cure and with potential different re-
sponses to similar treatments [2]. The standard of care is
a multimodal approach incorporating neoadjuvant che-
moradiotherapy, followed by total mesorectal excision
and adjuvant fluoropyrimidine-based chemotherapy.
This approach has reduced the rates of local recurrence,
but without significant effects on the overall survival [3,
4]. Indeed, only 15–20% of LARC patients achieve a
pathological complete response [5] and benefit from al-
ternative treatment strategies rather than radical surgery,
maintaining a better quality of life without compromis-
ing tumour control [6, 7]. Some patients may not
achieve any downstaging of the tumour or even show
disease progression [8]; for these nonresponder patients,
the side effects of neoadjuvant chemoradiotherapy may
outweigh its benefits and different treatment strategies
should be considered [9].
Radiomics has recently drawn considerable interest as

a potential predictive tool for treatment outcomes, for
its important applications in personalised medicine [10].
Once radiomics will be included in the clinical practice,
it could help in improving the management of patients
with LARC, providing tailored treatments, avoiding un-
necessary toxicity to patient predicted unlikely to re-
spond, and consequently anticipating the radical
treatment or switching to an intensified treatment when
necessary. Recent studies have explored the potential to

predict long-term survival of patients with LARC [11],
to discriminate different stages of rectal cancer [12], and
to predict response to neoadjuvant chemoradiotherapy
to identify patients eligible for less invasive treatments
[13–17].
One of the critical aspects when dealing with radio-

mics is tumour segmentation, a process which is per-
formed mostly manually or semiautomatically [18]. This
has several drawbacks since it is a time-consuming
process and prone to inter-observer variability, which
may hamper the reproducibility of radiomics analysis
[19, 20]. On the other hand, automatic segmentation
techniques based on deep learning are mainstream in
the research fields and now are starting to be considered
in clinical trials showing improvements in image classifi-
cation predictions and recognition tasks [21].
This study aims to implement and externally validate a

radiomics pipeline to predict neoadjuvant chemoradio-
therapy response in patients with LARC, also exploring
the impact of manual and automatic segmentations on
the radiomics prediction models.

Methods
Study design and dataset
We designed and implemented a multicentre retrospect-
ive study including patients with stage II/III LARC who
underwent either neoadjuvant chemoradiotherapy (cape-
citabine or 5-FU or CAPEOX or FOLFOX) or radiother-
apy only followed by total mesorectal excision from
October 2010 to December 2018. Patients were enrolled
from three different institutions (centre A: Candiolo
Cancer Institute, FPO-IRCCS; centre B: AO Ordine
Mauriziano, Torino; centre C: AOU Città della Salute e
della Scienza, Torino). Inclusion criteria were (a) biopsy-
confirmed stage II/III LARC; (b) multiparametric mag-
netic resonance imaging (mpMRI) performed before
neoadjuvant chemoradiotherapy, including at least an
axial T2-weighted (T2w) and axial diffusion-weighted
imaging (DWI); and (c) assessment of the tumour re-
gression rate (TRG). One hundred twelve patients satis-
fied the inclusion criteria. Seventeen were excluded due
to either strong mpMRI artifacts (n = 15) or misalign-
ment between T2w imaging and DWI (n = 2). The final
study sample thus included 95 patients.
Patients from both centres A (n = 44) and B (n = 23)

were randomly divided into training (70%) and test
(30%) sets, from now on called construction set, while
the 28 patients from centre C composed the external
validation set.

Reference standard
Resected tumours were evaluated by three different ex-
perienced pathologists, one for each centre, blinded to
clinical information and mpMRI findings. The TRG was
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assessed according to the Mandard classification [22].
Patients were classified into two different classes: re-
sponders if TRG was 1 or 2 and nonresponders if TRG
was equal to or greater than 3.

mpMRI protocol
mpMRI were acquired using different 1.5-T scanners, as
following details: centre A: HDx Signa Excite (GE
HealthCare, Milwaukee, WI, USA), using an 8-channel
phased-array surface coil or Optima MR450w (GE
HealthCare, Milwaukee, WI, USA), with a 32-channel
phased-array surface coil; centre B: Ingenia (Philips
Medical Systems, Eindhoven, The Netherlands), using a
32-channel body phased-array coil; centre C: Achieva
(Philips Medical Systems, Eindhoven, The Netherlands),
using a 32-channel body phased-array coil. All mpMRI
examinations were performed according to the guide-
lines for pelvic MRI of rectal cancer [23]. Acquisition pa-
rameters for the T2w and DWI sequences used in this
study are reported in Table 1.

Manual and automatic segmentations
Two radiology residents with up to 3 years of experience
and one radiologist with 5 years of experience in report-
ing mpMRI manually segmented rectal tumours on axial
T2w imaging using a 3D Slicer (v. 4.10.1, National Insti-
tutes of Health, USA). All acquired mpMRI sequences
were available to the radiologists during the segmenta-
tion process. We chose not to segment the outer edges
of the tumours to avoid potential inclusion of desmo-
plastic striae, areas of extramural vascular invasion, or
lymph nodes contiguous to the lesion. Manual segmen-
tations were reviewed by two experienced radiologists
with more than 15 years of experience in oncologic

MRI. All tumours were also segmented using a previ-
ously developed deep learning algorithm, based on fully
convolutional networks. The algorithm consists of a pre-
processing step to normalise and highlight the tumour
area on apparent diffusion coefficient (ADC) maps,
followed by segmentation of the tumour on the T2w im-
aging. Two examples of both manual and automatic
three-dimensional segmentations in the same patient are
shown in Fig. 1, one from the construction set (patient
no. 25. Fig. 1a) and one from the validation set (patient
no. 2007, Fig. 1b).

Feature extraction
Manual and automatic segmentation masks were applied
to both T2w and ADC images to extract the correspond-
ing tumour volumes. Texture features were extracted
using the Pyradiomics package, compliant with the
Image Biomarker Standardization Initiative [24], follow-
ing its flowchart for the extraction steps. We started
with the original T2w images, without applying any de-
noising Gaussian filter that could introduce recreated
and fake information [25], and removed outliers, re-
segmenting the masks between the 1st and the 99th per-
centile of the region of interest (ROI). The voxels out-
side the range were subsequently excluded from the
mask.
Discretisation of image intensities inside the ROI is

often required to make the calculation of texture fea-
tures tractable [25]. We discretised the ROI using a fixed
number of bins. This fixed number introduces a normal-
ising effect which may be beneficial when intensity units
are arbitrary and when contrast is considered important
[25]. We chose 64 bins as a compromise solution: it is a
common choice for image quantification in radiomics

Table 1 Multiparametric MRI acquisition

Parameters Centre A Centre B Centre C

T2w TR/TE 7,660/110 ms 3,231/90 ms 5,085/100 ms

Acquisition matrix 416 × 224 320 × 311 512 × 512

Slice thickness 4 mm 3.5 mm 3 mm

Pixel size 0.43 × 0.43 mm2 0.47 × 0.47 mm2 0.8 × 0.8 mm2

FOV 220 mm × 220 mm 240 mm × 240 mm 250 mm × 250 mm

Flip angle 90° 90° 90°

DWI TR/TE 2,000/87 ms 4,011/91 ms 2,694/68 ms

Acquisition matrix 96 × 128 100 × 98 124 × 101

Slice thickness 4 mm 3.5 mm 3 mm

Pixel size 0.86 × 0.86 mm2 1.88 × 1.88 mm2 2.8 × 2.8 mm2

FOV 220 mm × 220 mm 240 mm × 240 mm 345 mm × 345 mm

Flip angle 90° 90° 90°

b-value max 1,200 s/mm2 1,000 s/mm2 1,000 s/mm2

FOV Field of view, ms Millisecond, TR/TE Repetition time/time to echo
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analysis and it makes possible to explore the whole
range of tumour signal intensities.
We extracted 157 features (77 from T2w and 80 from

ADC maps):

1) ROI volume (mm3) from T2w images
2) 4 intensity-based statistics from ADC maps
3) 50 from GreyLevelCo-occurrence Matrix (GLCM)
4) 32 from GrayLevelRunLength Matrix (GLRLM)
5) 32 from GrayLevelSizeZone Matrix (GLSZM)
6) 10 from NeighborhoodGray-ToneDifference Matrix

(NGTDM)
7) 28 from Gray Level Dependence Matrix (GLDM)

The intensity-based statistics were extracted from ADC
maps only, since T2w acquisitions may suffer from high
variability between scanners and acquisition protocols. For
the ADC maps, we considered the first-order features,
without any normalisation step, according to the fact that
the ADC is already an intrinsic normalised sequence, with
a substantial degree of normalisation [26].
Features were calculated for each single slice and then

averaged to enable the method to be rotationally invari-
ant (2.5 averaged method for feature extraction, accord-
ing to the Pyradiomics guideline [24]). The distance
between two neighbouring voxels was considered equal
to one. Details of image processing and features extrac-
tion are provided in Supplementary Table 1.

Feature selection
Feature selection (FS) is a process of selecting an optimal
subset of input variables, excluding irrelevant or redun-
dant data that might cause overfitting and/or be a source
of noise for the classifier [27]. In this study, we com-
pared three different FS algorithms: (a) ranking method,
(b) affinity propagation, and (c) minimum redundancy
maximum relevance. Before applying a FS method, fea-
tures were normalised using the min-max scaling,
choosing the minimum and maximum values on the
construction set.

a) Ranking method. For the training set data, we
calculated for each feature the area under the
receiver operating characteristics curve (AUC) to
estimate its ability to discriminate responders from
nonresponders. We then computed the Pearson’s
correlation matrix between all features to assess
which pairs of features were highly correlated.
When a couple of features showed a Pearson’s
linear correlation ≥ 0.85, we discarded the features
having the lowest AUC. To improve stability and
avoid bias, this selection was repeated 100 times,
using randomly re-composed training sets (70% of
the patients from centres A and B). Features se-
lected at least 70 times were included in the subse-
quent analysis. Once all non-relevant features were
removed, different classifiers were fed with the

Fig. 1 Examples of automatic segmentations of rectal cancer using the fully convolutional network model (blue line) and manual segmentation
(red line) in different slices of two patients. First row: patient no. 25 with a DSC of 0.70; second row: patient no. 2007 with a DSC of 0.65. DSC
Dice similarity coefficient, Pt Patient, Sl. Slice
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remaining features ordered by their AUC values. To
avoid overfitting, we used a k-fold cross-validation
(k = 6), consisting in partitioning the dataset into k
folds and performing training on all but one-fold,
and testing on the left-out fold. This procedure was
repeated until each fold was used. The performance
of each classifier was then averaged to calculate the
mean accuracy of all sub-training sets and the ac-
curacy obtained on the test set. Finally, we selected
a threshold on the number of features based on the
point of overfitting, defined as the point in which
accuracy on the training set keeps increasing while
accuracy on the test set starts decreasing.

b) Affinity propagation. This clustering algorithm does
not require the number of clusters to be set a
priori. The algorithm associates each feature with
an exemplary one: all elements with the same
specimen constitute a cluster. In simpler terms,
each element sends a message to all the others
informing about its affinity towards them. In turn,
the other elements respond to the sender informing
about their association availability. This exchange of
messages continues until each element is associated
with a single exemplar (message passing). The FS is
made by taking only the exemplars as the optimal
feature subset [28].

c) Minimum redundancy maximum relevance. This
method searches for a subset composed of features
that are minimally related to one another while
maximising the prediction of the outcome. The
MATLAB function used, called fsmrmr, ranks all
features in descending order based on their mutual
information quotient value. It assigns a score to
each feature, as high as the importance of the
contribution that the feature gives to the subset of
selected ones. The function works iteratively. At
each iteration, it identifies the best feature
(according to the score) and adds it to the basket of
selected features. The next best feature is the one
with the highest score. In this way, the optimal
subset will be composed of the first N features with
the highest mutual information quotient.

Development and optimisation of classifiers
The previously described FS methods were combined
with four different classifiers: support vector machine
(SVM), Bayesian model, ensemble learning methods, and
logistic regression. Each model was implemented and
optimised using the construction set and then validated
on an external dataset, using both manual and automatic
masks to assess how segmentation affects the results.
Only models which reached a minimum accuracy of 0.5
on the construction dataset were used in the next steps.

The SVM performances were optimised by modifying
the box constraint (from 1 to 50) and the kernel func-
tion (polynomial, linear, Gaussian).
For the ensemble learning, we tested the bagging and

the boosting aggregation. Bagging involves having each
model in the ensemble vote with equal weight. To pro-
mote model variance, bagging trains each model in the
ensemble using a randomly drawn subset of the training
set. We used the random forest algorithm that combines
random decision trees with bagging. For boosting, we
used the Adaboost MATLAB function, involving incre-
mentally building an ensemble by training each new
model instance to emphasise the training instances that
previous models misclassified.
To optimise the logistic regression performances, we

applied both the stepwise regression method and the
generalised linear regression model. The former searches
for terms to add to or remove from the model based on
the p-value of the F-statistics. The p-Enter value was
changed from 0.05 to 0.1 and the p-Remove value from
0.2 to 0.3.
Last, for the Bayesian model classifier, we used the

MATLAB function fitcnb, and no optimisation steps
were performed.

Validation and statistical analysis
Once all models were optimised on the construction set,
we selected the two models (one for the manual and the
other for automatic segmentation) that reached the
highest accuracy and positive predictive value in the pre-
diction of responder patients, unless clear overfitting oc-
curred (AUC ≥ 0.99). These two models were then
validated on the validation dataset.
We also performed a hybrid validation, i.e., the best

manual model, trained with manual masks, was validated
using the automatic masks and, vice versa, the best auto-
matic model, trained with automatic masks, was vali-
dated using the manual masks. We performed an error
analysis between manual and automatic models on the
hybrid validation dataset.
We also performed the Mann-Whitney test to evaluate

(i) differences between volumes of correct and misclassi-
fied tumours for both pipelines and (ii) differences be-
tween dice similarity coefficient (DCS) of correct and
incorrect classifications for the automatic pipeline. Ac-
curacy, sensitivity, specificity, negative predictive value,
and positive predictive value were assessed on both con-
struction and validation datasets. Sensitivity was defined
as the number of correctly classified responder patients
over the total number of responder cases, and specificity
as the number of correctly classified nonresponder pa-
tients over the total number of responder cases. Results
of the two best models from manual and automatic seg-
mentations were compared using the t-test [29].
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Results
Patient dataset
The final dataset of 95 patients included 58 men and 37
women with an average age of 64 years (range 35−83
years). After total mesorectal excision and pathological
evaluation, 42 cases were classified responders (16 with
TRG = 1 and 26 with TRG = 2), while the remaining 53
were classified nonresponders (26 with TRG = 3 and 27
with TRG = 4). The construction dataset included 67 pa-
tients (27 responders and 40 nonresponders), while the
validation set was composed of 28 patients entirely from
centre C (15 responders and 13 nonresponders).
In the automatic segmentation analysis, we further ex-

cluded 4/67 (6%) patients of the construction set (3 from
centre A and 1 from centre B), because tumours were not
identified by the segmentation algorithm (i.e., DSC < 0.20).
Patient and tumour data are summarised in Table 2.

Figure 2 shows a flowchart detailing the datasets and
their subdivision into training, test, and validation sets
(Fig. 2a) and the radiomics pipeline (Fig. 2b).

Feature selection and classification
Manual segmentation
Table 3 shows the results obtained from all combina-
tions of FS and classification methods that reached an
accuracy greater than 0.65 on the construction set using
manual segmentations. The best SVM model was ob-
tained with polynomial kernel and box constrain of 10,
the best ensemble learning results were obtained with
the AdaBoost aggregation function, while the best results
for logistic regression were obtained using a stepwise
method with p-Enter < 0.1 and p-Remove > 0.2.

We excluded the first two solutions because of overfit-
ting (see Supplementary Table 2). Among the remaining
three models, we chose the Ranking approach FS
method (which selected 30 features, i.e., ROI volume, 14
GLCM, 9 GLRLM, 6 GLSZM, of whom 4 from the ADC
map and 26 from the T2w sequence) with the polyno-
mial SVM classifier. Selected features for the best man-
ual model are reported in Supplementary Table 3, while
results of the best model on the validation set are re-
ported in Table 3.

Automatic segmentation
The automatic segmentation algorithm showed perfor-
mances of a median precision of 0.83 (training set), 0.77
(test set), and 0.61 (validation set) in segmenting
tumour. In the automatic pipeline, we discarded from
the training set all tumours that did not reach a DSC
higher than 0.2 compared to the manual segmentation,
since these cases were considered false negatives of the
segmentation algorithm.
Table 4 shows the results obtained from all combi-

nations of FS and classification methods that reached
an accuracy statistically greater than 0.65 using the
automatic segmentations. The best SVM model was
obtained with a Gaussian kernel function and box
constrain of 8, the best ensemble learning results
were obtained with the bagging aggregation function,
and the best results for logistic regression were
obtained using a stepwise method with p-Enter < 0.1
and p-Remove > 0.2.
No overfitting was found in the automatic segmen-

tation approach. The best results were obtained with

Table 2 Patient and tumour data

Total Construction Validation

Number of patients 95 67 28

Number of patients per centre

Centre A 44 44 –

Centre B 23 23 –

Centre C 28 – 28

Sex 58 M 37 F 43 M 24 F 15 M 13 F

Median age, years [IQR] 64 [34–86] 64 [34–86] 64 [35–83]

TRG

1 16 9 7

2 26 18 8

3 26 18 8

4 27 22 5

5 0 0 0

Median of tumour volume (cc) [IQR] 21.3 [2.8–232.2] 23.8 [2.8–232.2] 15.4 [3.5–66.7]

IQR Interquartile range, F Female, M Male, TRG Tumour regression grade
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the Ranking method (which selected 27 features: ROI
volume, 13 GLCM, 11 GLRLM, 2 GLSZM, of whom
3 from the ADC map and 24 from the T2 sequence)
combined with a Gaussian SVM classifier. Selected
features are listed in Supplementary Table 4.

Comparison between manual and automatic
segmentation
The best results using manual and automatic segmenta-
tions were obtained using the Ranking method and
SVM, polynomial for the manual, and Gaussian for the

Fig. 2 Flowchart explaining the dataset subdivision (a). Flowchart illustrating the radiomics pipeline (b). pR Nonresponders, pR+ Responders
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Table 3 Performances for the manual model

Construction set: centre A + centre B

AUC
(95% CI)

ACC %
(95% CI)
[rate]

SE %
(95% CI)
[rate]

SP %
(95% CI)
[rate]

NPV %
(95% CI)
[rate]

PPV %
(95% CI)
[rate]

MRMR+EL (AdaBoost) 1.00
(93–100)

99
(92–100)

100
(97–100)

98
(87–100)

100
(80–99)

96
(95–100)

[66/67] [39/39] [27/28] [27/27] [39/40]

Ranking+EL (Bag) 0.99
(92–100)

94
(85–98)

97
(80–98)

90
(81–100)

96
(74–96)

93
(84–100)

[63/67] [37/38] [26/29] [26/27] [37/40]

Ranking+SVM Gaussian 0.87
(79–95)

81
(69–89)

93
(76–99)

73
(67–88)

94
(79–98)

69
(58–79)

[54/67] [25/27] [29/40] [29/31] [25/36]

Ranking+LR stepwise 0.69
(67–85)

80
(69–89)
[54/67]

89
(71–98)
[24/27]

75
(59–87)
[30/40]

91
(77–97)
[30/33]

70
(57–80)
[24/34]

Ranking+SVM polynomial 0.90
(82–97)

83
(71–90)
[55/67]

85
(66–96)
[23/27]

80
(64–91)
[32/40]

89
(76–95)
[32/36]

74
(60–84)
[23/31]

Validation set: centre C

Ranking+SVM polynomial 0.61
(52–74)

68
(48–84)
[19/28]

60
(32–83)
[9/15]

77
(47–95)
[10/13]

63
(46–76)
[10/16]

75
(60–90)
[9/12]

AUC Area under the curve, ACC Accuracy, NPV Negative predictive value, PPV Positive predictive value, SE Sensitivity, SP Specificity

Table 4 Performances for the automatic model

Construction set: centre A + centre B

AUC
(95% CI)

ACC %
(95% CI)
[rate]

SE %
(95% CI)
[rate]

SP %
(95% CI)
[rate]

NPV %
(95% CI)
[rate]

PPV %
(95% CI)
[rate]

AP+Bayes 0.75
(67–83)

72
(59–82)
[45/63]

74
(54–89)
[20/27]

69
(52–84)
[25/36]

77
(65–87)
[25/32]

65
(51–76)
[20/31]

MRMR+Bayes 0.78
(69–85)

74
(60–83)
[46/63]

81
(62–94)
[22/27]

67
(49–81)
[24/36]

83
(68–92)
[24/29]

65
(44–70)
[22/34]

Ranking+EL (Bag) 0.90
(87–95)

68
(55–79)

96
(81–99)

47
(30–65)

94
(71–99)

58
(50–65)

[43/63] [26/27] [17/36] [17/18] [26/45]

AP+SVM polynomial 0.70
(64–82)

67
(54–78)

81
(62–94)

56
(38–72)

80
(63–90)

58
(48–67)

[42/63] [22/27] [20/36] [20/25] [22/38]

Ranking+SVM linear 0.83
(78–90)

74
(62–85)

70
(50–86)

78
(66–87)

78
(66–87)

70
(55–82)

[47/63] [19/27] [28/36] [28/36] [19/27]

Ranking+SVM Gaussian 0.86
(78–94)

78
(66–87)
[49/63]

81
(62–94)
[22/27]

75
(58–88)
[27/36]

84
(71–92)
[27/32]

71
(57–82)
[22/31]

Validation set: centre C

Ranking+SVM Gaussian 0.81
(60–89)

75
(53–88)
[21/28]

80
(50–95)
[12/15]

69
(37–90)
[9/13]

75
(54–86)
[9/12]

75
(55–83)
[12/16]

AUC Area under the curve, ACC Accuracy, NPV Negative predictive value, PPV Positive predictive value, SE Sensitivity, SP Specificity
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automatic segmentation. Performances reached an ac-
curacy of 68% (manual) and 75% (automatic) in the ex-
ternal validation dataset (p = 0.12). The automatic
method reached higher performances in sensitivity (80%
versus 60%, p = 0.047) and negative predictive value
(75% versus 63%, p = 0.045), while the manual approach
reached higher specificity on the validation set (77% ver-
sus 69%, p = 0.083). The selected features in common
between the two best models are 2 from the ADC maps
(GreyLevelVariance_glszm and SRHGE_glrlm) and 19
from the T2w sequence, listed in Supplementary Tables
3 and 4.
We performed an error analysis between manual and

automatic models for the validation dataset. Nine of 28
patients were misclassified by the manual segmentation
model, seven patients were misclassified by the auto-
matic segmentation model, and four patients were mis-
classified by both models. Figure 3a reports DSC values
and tumour volumes. No differences in volume were
found between misclassified tumours of the automatic
and manual segmentations (p = 0.813). In the manual
pipeline, there was no significant difference between vol-
umes of correct and misclassified tumours. Similarly, in
the automatic pipeline, volumes and DSC values were
not statistically different between correctly and misclas-
sified tumours.
Figure 3b shows the DSC distribution for both manual

and automatic segmentations. All tumours with DSC
values < 0.3 were misclassified, probably because the
segmented area did not include relevant information.
However, one case was also misclassified by the manual
pipeline, meaning that this patient could have different
characteristics in pixel intensity (Fig. 4a). Similarly,
among the 4 misclassified tumours with DSC > 0.70, 3
were misclassified also by the manual pipeline (Fig. 4b).
Among them, patient no. 2028 was misclassified despite
the good segmentation (DSC > 0.8, Fig. 4c), probably
due to the intrinsic characteristics of the tumour.
Supplementary Fig. S1 reports the two bar diagrams

showing how tumour volume for both manual and auto-
matic segmentations did not influence the prediction in
the validation cohort. Errors are equally distributed in all
ranges of volume values and there is no statistical correl-
ation between tumour volume and correct classification
(p = 0.125).

Hybrid validation
Hybrid results are reported in Table 5. The model
Train_MAN + Val_AUTO reached higher accuracy
values than the results of the manual validation (accur-
acy on manual validation was 68%, while positive pre-
dictive value remained 75%). The model Train_AUTO +
Val_MAN had sensitivity and negative predictive values
too low to be considered. The Train_MAN + Val_

AUTO model misclassified 7 patients out of 28, while
the Train_AUTO + Val_MAN model misclassified 10.
The performances between the Train_MAN + Val_
AUTO and the fully automatic approach reached the
same performances on the validation set (accuracy 75%).
Both made seven misclassification errors, four of them
involving the same patients (patient no. 2031, 2015,
2008, and 2049).

Discussion
In this study, we developed and compared performances
of different machine learning algorithms based on pre-
treatment mpMRI to predict treatment response in
LARC patients. Best performances were obtained using
the Ranking approach as feature selection and SVM as
classifier for both manual and automatic segmentations.
The two best models reached an accuracy of 83% and
78% on the construction dataset and 68% and 75% on
the validation dataset, on the manual and automatic
pipeline, respectively. Also, the two best models showed
a good balance between sensitivity and specificity in the
validation set: 60% and 77%, respectively, for the manual
model; 80% and 69%, respectively, for the automatic
approach.
Results are encouraging and we found similar accuracy

on both the external validation datasets, independently
of the segmentation method, when the algorithms were
implemented using the manual segmentation masks.
This finding brings a twofold improvement in know-
ledge: first, proper manual segmentation is needed to de-
velop a pipeline that would be less sensitive to slightly
different segmentations; second, automatic segmentation
is an equally effective alternative to the manual approach
during the validation phase. This finding could be ex-
plained by the fact that radiomics features extracted
from “slightly different” parts of the tumour are consist-
ent. Based on this hypothesis, we can also presume that
either the manual or automatic masks accurately repre-
sent tumour heterogeneity. This data is of key import-
ance when performing large cohort multicentre studies
since automatic segmentation is quite unavoidable to
bridge the gap between research and clinical applica-
tions. Moreover, our analysis demonstrated that misclas-
sified cases are not statistically correlated to tumour
volume; however, we found that the variable ROI volume
was selected as a significant variable by the FS methods
in both approaches. Hence, an automatic segmentation
algorithm estimating lesion volumes should again be un-
avoidable when a large group of patients are enrolled.
To the best of our knowledge, this was the first study

comparing manual and automatic segmentations in a
radiomics study to predict tumour response to neoadju-
vant chemoradiotherapy in patients with LARC.
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Fig. 3 Error analysis. Patients in the validation dataset misclassified by either manual, automatic, or both approaches, sorted by DSC (a). b
Waterfall diagram showing DSC distribution across the validation set for the automatic approach (b). Red bars are the automatic model
misclassified errors and green bars the correct ones. Red * highlights patients misclassified by both approaches. DSC Dice similarity coefficient
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Previously, radiomics was used by Nie et al. [30] and
by Horvat et al. [31] to predict treatment response in
LARC patients. Nie et al. [30] built a radiomics model
using the three mpMRI sequences: T2w, DWI, and dy-
namic contrast-enhanced, reporting an AUC of 0.89 on
a quite small training set (n = 48). Horvat et al. [31] fo-
cused their work on evaluating the ability of T2w and
DWI features to differentiate complete to clinical partial

response; the best result was reached using a random
forest model that achieved an AUC of 0.93, with a sensi-
tivity of 100%, specificity of 91%, positive predictive
value of 72%, and negative predictive value of 100%.
However, these two studies lacked a validation cohort,
not providing an overfitting analysis of the training per-
formances and so limiting their applicability in clinical
practice.

Fig. 4 Examples of three patients segmented by internally developed fully convolutional network model (blue line) and the radiologists (red line).
Pt. 2003 with DSC of 0.18 (a) and Pt. 2015 with DSC of 0.76 (b) were wrongly classified by both manual and automatic systems, while Pt. 2028
with DSC of 0.81 (c) was wrongly classified only by the automatic model. DSC Dice similarity coefficient, Pt Patient, Sl. Slice

Table 5 Results on the hybrid validation for the two best models

Hybrid validation: centre C

AUC
(95% CI)

ACC %
(95% CI)
[rate]

SE %
(95% CI)
[rate]

SP %
(95% CI)
[rate]

NPV %
(95% CI)
[rate]

PPV %
(95% CI)
[rate]

Train_MAN + Val_AUTO 0.69
(60–89)

75
(53–88)
[21/28]

80
(50–95)
[12/15]

69
(37–90)
[9/13]

75
(54–86)
[9/12]

75
(55–83)
[12/16]

Train_AUTO + Val_MAN 0.62
(52–73)

64
(44–81)
[18/28]

47
(21–73)
[7/15]

85
(55–98)
[11/13]

58
(45–70)
[11/19]

78
(47–93)
[7/9]

AUC Area under the curve, ACC Accuracy, NPV Negative predictive value, PPV Positive predictive value, SE Sensitivity, SP Specificity

Defeudis et al. European Radiology Experimental            (2022) 6:19 Page 11 of 14



Petkovska et al. [32] used as a validation dataset a dif-
ferent manual segmentation performed by a second radi-
ologist on a subgroup of patients of the training set,
reaching an accuracy of 74% and AUC of 0.75. Liu et al.
[33] and Shaish et al. [11] performed cross-validation,
reaching an AUC of 0.98 and 0.80, respectively. Also,
Delli Pizzi et al. [34] reached an AUC of 0.79, perform-
ing cross-validation including both features extracted
from the core and the border of the tumour. Li et al.
[35] and Cui et al. [13] enrolled patients from a single-
centre study and performed an internal validation, ran-
domly dividing the dataset into two subgroups, reaching
an AUC of 0.87 and 0.95 on the validation cohort, re-
spectively. Only Bulens et al. [36] and Petresc et al. [14]
validated their models on an external validation dataset,
reaching accuracies of 0.82 and 0.65, respectively, but
with a great unbalance between sensitivity and specifi-
city, i.e., sensitivity of 33% and specificity of 97%, and
sensitivity of 75% and specificity 60%, respectively.
Our study also presents some limitations. First, it is a

retrospective study and selection bias might occur; how-
ever, enrolling subsequent patients and having an exter-
nal validation set could mitigate this bias. The
implementation of a prospective clinical trial would be
of key importance to further validate our results. Second,
the sample size is modest (n = 95), especially for the val-
idation set (n = 28) and the number of patients ex-
cluded, due to mpMRI artifacts, was relatively high (n =
15). This might affect the study power and its clinical
applicability; however, this preliminary analysis consid-
ered patients in a 10-year timespan, whose acquisitions
were not optimised for the purpose of radiomics model-
ling. Nevertheless, results are encouraging, and we are
planning to increase the sample size, considering more
recent acquisitions with improved MRI protocols and
better image quality. Increasing the dataset, along with
the refinement of the automatic segmentation algorithm
(enhancing DSC values), could lead to a more robust
machine learning system. Third, the number of features
included in the final models could be rather high, espe-
cially when compared to the sample size, leading to the
risk of overfitting. However, we believe that using a val-
idation cohort minimised this risk, which would be fur-
ther reduced increasing the dataset and reanalysing the
data in a future study. Last, we classified patients into
two different groups, according to their TRG (1, 2 versus
3, 4, 5), including the partial response (TRG 3) into the
nonresponder class. It could be interesting to consider
partial response to treatment as a different class, since
the neoadjuvant chemoradiotherapy could provide some
benefits to these patients.
As a future step, we will also focus our attention on

the integration between radiomics studies and other
omics, like genomics and pathomics [37, 38]. This is a

research topic that should be considered in next-
generation multiomics predictive tools.
In conclusion, our study shows that radiomics models

can pave the way to help clinicians in the prediction of
tumour response to chemoradiotherapy and to personal-
ise per-patient treatment. The results from the external
validation dataset are promising for further research into
radiomics approaches on both manual and automatic
segmentation. Overall, this could represent an innovative
starting point for the introduction of an AI tool in help-
ing the decision-making process, to noninvasively select
patients eligible, i.e., for organ-preserving strategies or
therapies changings. Nevertheless, further studies are
needed, including larger datasets from multiple centres,
also improving the automatic segmentation process, to
fully integrate these methods in a real-world setting.
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