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Summary

In the last decade, machine learning has drawn considerable interest in the
Information Technology industry as a consequence to the promising performance
achieved by graphics processing units. Although the current capabilities of artifi-
cial intelligence are constantly increasing, the energy required to train models is
becoming unfeasible due to the use of conventional von Neumann architectures.
This characteristic appears to be particularly critical in the context of Deep Learn-
ing where the networks parameters have to be routed from memory to processors
to compute gradients, and subsequently routed back to memory to perform the up-
date. This limitation suggests to move beyond the current architectural approach
and take inspiration from the brain to rethink of novel architectures. Among the
different emerging technologies, the memristor stands out as a promising candidate.

Neurological research suggests that neural representation is highly dynamic, en-
coding multiple types of tasks and stimuli by the joint activity of interconnected
populations of neurons. Among the many proposed models, dynamic neural net-
works are able to mimic these biological complex phenomena and have been exten-
sively studied from the hardware implementation’s point of view.

This thesis explores the field of dynamic neural networks and aims to exploit
memristor’s programmability to implement the equilibrium point learning tech-
nique known as Equilibrium Propagation to train continuous-time recurrent neu-
ral networks and weakly-coupled oscillatory neural networks in solving associative
memory and classifications tasks. Since the neural connectivity matrix of these
models can be implemented in memristive crossbars, a detailed analysis of noise
and systematic contributions of this fundamental building block is provided. The
overall goal of this work is to evaluate the performance of dynamic neural networks
mapped on simulated analogue memristor-based platforms that take into account
device and circuits’ non-idealities.
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"If intelligence was a cake, unsupervised
learning would be the cake, supervised
learning would be the icing on the cake,
and reinforcement learning would be the
cherry on the cake. We know how to
make the icing and the cherry, but we

"

don’t know how to make the cake.”
Yann LeCun
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Introduction

Motivations

In the last decade, as a result of the great performance enhancement achieved
by Graphics Processing Units (GPUs), machine learning has drawn considerable
interest in the Information Technology (IT) industry [1]. A GPU is a specialized
processor designed to accelerate multiple and simultaneous computations by tak-
ing advantage of its parallel processing architecture. This peculiarity significantly
facilitates machine learning operations and speeds up data pipelines. Although
the state-of-the-art capabilities of Artificial Intelligence (AI) models constantly in-
crease, the energy required to train and exploit those models becomes unsustain-
able. This is mainly due to the conventional architecture adopted by the current
computers that separate the processing unit from the memory unit (i.e. von Neu-
mann architecture). This characteristic appears to be particularly critical in the
context of deep learning.

The Back-Propagation algorithm was developed in 1986 by David Rumelhart,
Geoffrey Hinton and Ronald Williams for training multi-layer neural networks [2].
The algorithm consists in an iterative training scheme that aims to minimize the
difference between the system output and a desired target. This technique makes
use of the chain rule of differentiation for composite functions and compute gradi-
ents by recursively propagate the error signal from the output layer to the network
stratification. Besides its extraordinary ability, the learning process needs to shut-
tle back and forth large amounts of data between memory and processing units
making the algorithm computationally demanding and energy consuming. At each
iteration, the networks parameters have to be routed from memory to processors
to compute gradients, and subsequently routed back to memory to perform the up-
date. This important limitation suggests to move beyond the current architectural
approach and take inspiration from the brain to rethink of new, unconventional
non-von Neumann architectures.

To this end, the search of innovative computing platforms that could offer new,
low power processing methods and architectures has intensified [3, 4]. A neuromor-
phic computing approach aims to overtake the current conventional digital process-
ing by exploiting complex dynamics and nonlinear phenomena emerging from the
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physics of non-volatile memory devices such as memristors [5, 6].

Recently, memristors have played a key role as synaptic devices for bio-plausible
neural networks: their peculiar switching properties and signal storing capability
are well suited for emulating synapse functionality of biological neural networks [7,
8]. Neurological research suggests that neural representation is highly dynamic,
encoding multiple types of tasks and stimuli by the joint activity of interconnected
populations of neurons. A neuromorphic computation attempts to mimic these
biological complex phenomena by modelling and implementing each part of the
neuronal network into hardware with the aim of running machine learning algo-
rithms.

Hardware approaches have remarkably accelerated the inference process of neu-
ral networks showing promising performances in terms of energy efficiency, speed
and accuracy. However, despite their fascinating potential for neuromorphic ap-
plications, memristive devices reveal undesirable properties when it comes to pro-
gramming their conductance [9, 10]:

1) The conductance update is inherently stochastic exhibiting cycle-to-cycle and
device-to-device variabilities;

2) Memristive devices can be programmed up to a finite conductance range;
3) Memristors have a non-linear conductance response.

These effects can be mitigated by performing an offline training on conventional
computers and then transferring the computed weights onto memristive hardware
by means of complex tuning protocols. However, in the case of in situ learning,
such techniques can not be used since devices have to be repeatedly programmed
throughout the process.

A second challenge to face is the non-locality of most training algorithms: weight
update do not exclusively depend on the pre- and post- synaptic neurons. Among
the many proposed bio-plausible learning techniques [11], the novel learning frame-
work known as Equilibrium Propagation (EP) has drawn particular interest in the
neuromorphic computing community due to the locality of its weight update rule
[12]. Recently, various works have proposed hardware implementations of EP for
training recurrent and spiking neural networks paving the way for building fully
analog neural networks supporting on-chip learning [13, 14, 15, 16, 17, 18, 19].

Thesis organization

This thesis is structured as follows. Chapter 1 introduces the field of Ma-
chine Learning focusing on learning techniques used in Dynamic Neural Networks.
Chapter 2 introduces the emerging field of Neuromorphic computing and describes



Introduction

simulated analogue computing platforms that exploit memristors’ conductance pro-
grammability to implement the novel algorithm Equilibrium Propagation to train
recurrent neural networks and weakly-coupled oscillatory neural networks in solving
associative memory and classifications tasks. Chapter 3 provides a detailed analysis
of memristive crossbars to assess the system performance. Chapter 4 evaluates in
terms of random and systematic errors the proposed memristor-based computing
systems used to perform linear computations in probabilistic models. Chapter 5
concludes the thesis and gives some possible future lines of the work.

Main Contributions

This thesis explores the concept of dynamic neural network trained with equi-
librium point learning rules. This class of dynamic system is modelled from a
circuital implementation point of view providing the mathematical tools to analyse
its ability to solve machine learning tasks. The key contributions of this work are
summarized as follows:

1. A unified formulation of the three different equilibrium point learning rules,
Recurrent Back-Propagation, Contrastive Learning and Equilibrium Prop-
agation was used to simplify the different notations found in the current
literature;

2. The Spike-timing-dependent plasticity (STDP)-compatible weight change pro-
posed by the authors in [20] for training asymmetric neural networks is math-
ematically justified by the analysis of geometrical properties of the lagrangian
multiplier used to solve the constrained optimization problem:;

3. The symmetric learning rule for energy-based models is generalized to the
case of gradient-like dynamics;

4. A unified formulation of the output random noise distributions of memristive
crossbars is reported;

5. The wire resistance contribution when solving a matrix-vector multiplication
using memristive crossbars is given in a closed mathematical expression;

6. The calibration stage for the recovering step used in memristive circuits is
generalized to the case of feedback loops.

Most of these results are based on previous works:

e Zoppo, Gianluca and Marrone, Francesco and Bonnin, Michele and Cor-
into, Fernando". "Equilibrium Propagation and (Memristor-based) Oscilla-
tory Neural Networks". In: 2022 IEEFE International Symposium on Clircuits
and Systems (ISCAS). (Accepted)
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Zoppo, Gianluca and Korkmaz, Anil and Marrone, Francesco and Palermo,
Samuel and Corinto, Fernando and Williams, R. Stanley. "Analog Solutions
of Discrete Markov Chains via Memristor Crossbars". In: IEEE Transactions
on Circuits and Systems I: Regular Papers (2021), pp. 4910-4923.

Zoppo, Gianluca and Marrone, Francesco and Corinto, Fernando. "Local
learning in Memristive Neural Networks for Pattern Reconstruction". In:
2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE
(2021), pp. 1-5.

Zoppo, Gianluca and Marrone, Francesco and Corinto, Fernando. "Equilib-
rium propagation for memristor-based recurrent neural networks'. In: Fron-
tiers in neuroscience (2020), p. 240.

Zoppo, Gianluca and Marrone, Francesco and Corinto, Fernando. "A Continuous-

time Learning Rule for Memristor-based Recurrent Neural Networks"'. In:
2019 26th IEEE International Conference on Electronics, Circuits and Sys-
tems (ICECS) (2019), pp. 494-497.



Chapter 1

Dynamic Neural Networks for
Optimization

In the biological systems framework, the term 'learning" refers to the result
of progressive modifications that occur at the neuronal synapses level. Synaptic
changes and global tasks live at separate levels, i.e. a single synapse is not aware
of the overall purpose of the learning process. There must exist some underlying
principles, governing the local synaptic modifications, that allow the system to
accomplish the overall learning activity. However, these fundamental rules remain
largely unknown.

A pioneer of this open field of research is Donald O. Hebb [21] who suggested in
1962 that synaptic changes occur whenever a coincidence of pre- and post-synaptic
activity yields. The connection between two neurons is strengthened if they both
simultaneously activate under an external input, and reduces if they activate sepa-
rately. Although this is a basic local learning rule, it is well known that it can lead
to powerful self-organization effects in relatively simple neural networks models.

From a different perspective, gradient descent offers a more sophisticated tech-
nique that provides to the system some guiding directions to reorganize the con-
nections changes throughout the network. Among the large variety of different
algorithms that have been proposed, Back-Propagation [2] and Back-Propagation
through time [22] stand from the crowd. Even though these methods seem to be
biologically implausible, they represent the workhorse of the Al era [23].

Inspired by computational neuroscience works, contemporary approaches aim to
emulate the surprising efficiency of the Back-Propagation learning scheme by means
of local learning rules [24, 25]. Since neurological research shows that neurons per-
form leaky integration and synapses are updated through local mechanisms, models
based on Dynamic Neural Networks seem adapted to capture this complex biologi-
cal dynamical behaviour. Thus, recent strategies have been used to investigate the
learning phase of brain-inspired architectures [26]. The next sections introduce the
mathematical tools used to analyse the stability of continuous-time neural network

5
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and the principles of learning.

1.1 Nonlinear Dynamical Systems

Consider a generic nonlinear dynamical system:

dx
a ~ fx.f) (1.1)
x(0) = %o

where f: R" x R — R" is a continuously differentiable vector-value function. The
n-dimensional vector x = (z1,...,x,)T represents the state variables of the system
and 6 is a system parameter. For sake of simplicity, this section considers # € R
but the same analysis can be generalized to 8 € R" with m > 1.

Definition 1. A solution & of the algebraic equation:
f(z,0)=0

is defined as equilibrium point, or fized point of system (1.1). The equilibrium point
x is said to be

o Stable, if for each € > 0, there ezists 6 = 0(e) > 0 such that

|2(0) — & < 6 = ||la(t) — &l <e, Vt>0

o Locally asymptotically stable, if it is stable and there exists § such that

l(0) — & < & = lim [|a(t) — & = 0

An equilibrium point T is said to be unstable if it is not stable.

Figure 1.1 shows the topological nature of the dynamic system (1.1) near an
equilibrium point X . If X is asymptotically stable, we may find a constant J such
that any trajectories that start in its neighborhood B(%k,0) = {x : ||x — X|| < §}
will eventually tend to X.

Definition 2. The region of attraction of an equilibrium point is the set of all
starting points x(0) = xy such that the solution x(t, xy) of the system (1.1) satisfies

lim [a(t, z0) — @] = 0.



1.1 — Nonlinear Dynamical Systems

The concept of stability of an equilibrium point of dynamic systems is of crucial
importance in the analysis of nonlinear dynamic systems. However, the analytical
calculation of the exact region of attraction might be difficult or even impossible.
Let us define as

%ﬂ%(iﬂ) %ﬂ%(ﬁ,@)
Je (%) = (Jiy) = : : (1.2)
%%()2,«9) gx%(fc,e)

the Jacobian matrix of the system evaluated at the equilibrium point X.

x(t)

(b) (c)

Figure 1.1: Definition of (a) stable, (b) asymptotically stable and (c) unstable
equilibrium point X.

Lyapunov’s first method makes use of the eigenvalues of J¢(X) to examine the
local asymptotic stability of Xx:

Theorem 1. (Lyapunov’s first Method)
Let & be an equilibrium point of the dynamical system (1.1).

o s asymptotically stable if the real parts of all the eigenvalues \; Vi =1,....n
of J¢(Z) are negative, i.e. Re(N\;)) <0Vi=1,...,n;
o I is unstable if there exists at least one k with 0 < k < n such that Re(\) > 0.

In large scale dynamical systems, the direct computation of the eigenvalues of
the Jacobian is usually complicated. The following theorem provides some useful
conditions that can be used to verify the nature of the jacobian matrix’s eigenvalues.

Theorem 2. (Gershgorin Circle Theorem)
Let A € C™". Then every eigenvalue of A lies in one of the Gershgorin circles

where S; = 31 14 |A;j| and S; = i1t |A;j].
7
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As a result of this theorem the following property holds:

Corollary 1. Let Z be an equilibrium point of the system (1.1), J(Z) be the jacobian
evaluated at the equilibrium point and S; = 320_ ;. |yl If Ju < 0 and S; < |J
fori=1,...,n then & is a locally asymptotically stable equilibrium point.

Proof. The Gershgorin circles for Jg(x) are given by:
D;={z€C:|z— (Jy,0)] < S;}. (1.4)

Theorem 2 guarantees that all eigenvalues of J¢(X) lie in D; for some 1 < i < n.
Since J; < 0 Vi =1,...,n then the centers (.J;;,0) are all located on the negative
real half-axis of the complex plane. |J;| is the distance between each center and
the origin of the complex plane and the circles radius S; < |J| for i = 1,... n.
This implies that every D; is entirely contained in the negative real half-axis of
the complex plane. Thus, the real part of all eigenvalues is negative and X is
asymptotically stable for Theorem 1. |

In some applications, one may require that a system has a unique asymptotically
stable equilibrium. The equilibrium X is said to be globally asymptotically stable,
whenever the trajectory x(t,xo) approaches X as t — oo regardless of the initial
condition xy. The following theorem is a well-established result used to verify the
global stability of equilibria.

Theorem 3. (Lyapunov’s second Method) Let & be an equilibrium point for the
system in Eq. (1.1). Let V : R™ — R be a continuously differentiable function such
that:

a) V() =0 and V(z) > 0 Ve + &;
b) d—v(:v) < 0,Ve+ &;
dt
dv

Then © = & is asymptotically stable. If E(m) < 0Vx+# & then x = & is stable. In
addition, if it yields:

c) V(x) = oo when ||z|| — oco.
then x = x is globally asymptotically stable and is the unique equilibrium point.

The Lyapunov theorem provides an alternative to the Gershgorin’s conditions
for the analysis of locally asymptotically stable equilibria. However, it does not
say anything about the form and the way to construct suitable functions V', but at
least gives sufficient conditions to examine. Figure 1.2 shows the geometric relation
between the system trajectories in the neighborhood of a stable equilibrium and
the Lyapunov function as described in Theorem 3.

8
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A

V<ZI§1, 5132)

dx
dt
X
I To

Figure 1.2: Geometric meaning of the Lyapunov function: the inner product of the

Lyapunov function gradient VV' and the tangent vector ‘2—’; is constantly negative.
This means that the angle between these the two vectors is larger than 90 degrees

and V' (x1, ro) monotonically decreases along trajectories.

Gradient-like systems, an important class of dynamic systems, have a natural
candidate for the definition of a Lyapunov function. These kind of vector fields can
be defined in the following compact matrix form:

Cfl—): = —A(x,t)VxE(x,0) (1.5)
where A(x,t) is a symmetric positive definite matrix whose entries may depend
on the time ¢ and the state vector x and £ : R" x R — R is a differentiable
scalar function. Whenever A(x,t) = I, the vector field (1.5) defines a gradient
(or conservative) system with potential function U = —E. These systems are well
known in the classical mechanics framework.

Let us assume that 6 is fixed and use the notation F(x) = E(x, ) for sake of
simplicity. The stability of the system (1.5) depends on the critical points’ nature
of the function F. A point x* is a critical point of F whenever V,F(x*) = 0. If all
the second-order partial derivatives of F exist, x* is defined a local minimum of F
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if the hessian matrix

92 92
((Z)T;?’(X*) agla]in (x*)
Hp(x") = ; . :
0°E 0*FE
92,021 (X*) e W(X*)

is positive definite, i.e. x' Hy(x*)x > 0 Vx € R".
Theorem 4. The following properties hold:
a) E decreases in time along system’s trajectories;

b) The set of critical points of E is identical to the set of equilibrium points of
the system (1.5);

c) Let " be an isolated local minimum of E(x). Then x* is a locally stable
equilibrium point of the system (1.5);

Proof.  a) E(x) decreases in time since its derivative along the system’s trajec-
tories is: IE p
— = VXETd—f W_ U ETA(x, )VLE < 0 (1.6)

under the condition that the matrix A is symmetric and positive definite.

b) The system converges to one of the possibly many local minima of the function

E:
E
d— = Vi ETAx,t)V,E=0& V£ =0 d—X =0 (1.7)
dt dt
dE N .
Thus, — = 0 only at the equilibrium points of the system (1.5).

dt

c¢) Let us define the function

for ¥x € B(x*,0). Observe that V(x*) = E(x*) — E(x*) = 0. The second
order Taylor expansion about the equilibrium point gives:

Vi(x) =V(x*) + V,V(x)"(x — x) + (x — x)Hy (x*) (x — x*).
For an isolated local minimum x* it yields:

1) ViV (x*) = Vi E(x*) =0,
2) Hy (x*) = Hg(x") is positive definite.

10
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It follows that
V(x) = V(") + (x — x)THy(x")(x —x*) > V(x*) =0

for all x € B(x*,0) and x # x*. Therefore, V(x) is a Lyapunov function of
the system:

1) V(x*) =0and V(x) > 0 Vx € B(x*,0)

dav. __ dF
2) G =5 <0

and x* is a locally stable equilibrium point of the system (1.5).
|

The above proposition guarantees that E(x) decreases in time and the system
converges to an asymptotically stable equilibrium that coincides with a local min-
imum of E(x). Since there may exist multiple equilibria, the system converges
to the nearest local minimum close to the initial starting position. The speed of
convergence depends on the choice of A [27].

Remark 1. Theorem /j provides a way to construct a Lyapunov function given
the scalar function of a gradient-like system. If the scalar function is positive, i.e.
E(x) > 0 Yx #+ z* then it coincides with the (global) Lyapunov function.

1.1.1 Gradient Descent

The attraction behaviors of equilibria provide the basis for solving many differ-
ent applications. Let us consider the following unconstrained optimization problem:
find a vector x € R" that minimizes the scalar function F = E(x). This function is
often called cost, energy or objective function. Optimization problems require the
uniqueness of the equilibrium to avoid convergence towards local minima (undesired
spurious responses) and hence ensure global optimization. One of the simplest and
popular method used in optimization, namely gradient descent algorithm, makes
use of the gradient system defined in Eq. (1.5) with A(x,t) = nl:

dx
i —nVxE(x) (1.8)
where 1 > 0 is usually called the learning parameter. As a result of Theorem 4, the
evolution of the system state variable x results in the minimization of E(x) as the
time flows. The discrete-time version of the steepest-descent can be formulated as:

Xptr1 = X — f]VxE(xk), k 2 1 (19)

where 7 is the learning rate that (implicitly) depends on the integration time.
Equation (1.9) represents the fundamental building block of the famous Back-
Propagation algorithm.

11
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1.1.2 Dynamic Neural Networks

Let the n-dimensional vector x = (z1,...,z,)? represents the state variables of
the continuous-time dynamic neural networks given by:

dX n
T —Ex,W.D), x(0)=x)€R (1.10)
y = g(x)

where f: R" x R"*"™ x R” — R" is a continuously differentiable vector field, ¢(-) is a
monotone increasing activation function such that ¢'(z) # 0 Vz € R, W is the ma-
trix of connecting weights W;;, and I is a vector of external inputs. Dynamic neural
networks require to have many asymptotically stable equilibrium points whenever
they are employed to simulate neural associative memories or to implement feature
extraction in image processing [28, 29]. For Theorem 1, this happens whenever one
of the following condition hold:

o The system (1.10) is a gradient-like (or gradient) system with energy FE;

o The jacobian matrix of the system (1.10) yields all the hypotheses defined in
the Corollary 1 of the Gershgorin Circle Theorem.

1.2 Dynamic Neural Learning

There are two main concepts of dynamic neural learning: equilibrium point
learning and dynamic temporal learning [30, 31]. The former is designed for im-
plementing neural associative memories and aims to teach the system to converge
to prescribed equilibria. The requirement of this dynamic learning is the stability
of the equilibrium points. The latter adjusts the parameters of a neural system
such that the system state follows desired trajectories in time. It is interesting to
observe that this last learning process can be considered as the generalization of
the equilibrium point learning algorithm. When the time becomes long enough, the
system state will reach a steady state defined by the prescribed trajectory. This
section focuses on the former method.

The objective of an equilibrium point learning scheme is to find the weights W;
so that, for a given initial condition x°, the fixed point of the system corresponds
to a desired target value T.

This is achieved by minimizing a suitable cost C(T, g(x)) that measures the dis-
crepancy between the target and the current output of the system at equilibrium
y = g(x) by iteratively moving in the direction of the steepest descent as defined by:

oC
8W,-j

ox

AWl - - .
= oW,

(T, g(%)) = —1Vy,C"G'(x)

(1.11)

12
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where G'(X) = diag(¢’(Z1), ..., ¢ (Z,)) is an invertible matrix.

In general, it is usually preferable to learn a set of target patterns and minimize
C(T,x) =¥, C(T/,x) with T = {T',..., T™}. However, due to the linearity of
differentiation, it is sufficient to analyse the estimation of the gradient for one single
pattern. Depending on the choice of W, network’s units can be split in three sets:
input, hidden and output. For sake of simplicity, the following analyses focus on
the case where input and output units coincide. However, the following algorithms
work either in the case of input-hidden-output hierarchy with feedbacks connections
or fully connected networks.

1.2.1 Recurrent Back-Propagation

Recurrent Back-Propagation was first introduced by Almeida and Pineda who
independently obtained the same results and developed an iterative scheme to ad-
just the synaptic weight matrix of a dynamic neural network [32, 33]. The idea
is to force the neural network to converge, for fixed input and initial state, to a
desired fixed—point attractor. As for feedforward neural network, this is achieved
by minimizing a particular loss function associated to the neural network param-
eters. The novelty of this method is that the error signal is "back-propagated" by
introducing an analog side network (i.e. an associated differential equation). This
avoids the direct computation of the gradient by exploiting the second nonlinear
dynamics of a side network.

The learning process consists in minimizing the loss function C which measures
the difference between the desired fixed point T and the output of the system at
the actual fixed point x. One way to drive the system to converge to a desired
attractor is to let it evolve in the weight parameter space along trajectories which
have opposite direction of the gradient as defined in Eq. (1.11). The derivative of
x with respect to W;; is obtained by observing that the fixed points of (1.10) must
satisfy the nonlinear equation:

f(%, W,I) = 0. (1.12)

Differentiating (1.12) with respect to W;; one obtains:

ox of?
Je(X =0 1.1
(5 355+ e (113
where o of
_ YU T
8m] [07 - 707 GWZJ b 0 ) 0]
1

13
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A

0
Solving (1.13) in terms of —81/[)/( , the gradient descent defined in Eq. (1.11) becomes:
ij

0%
oW,

v, ORI (R)

AW;; = —nV,CTG' (%) (1.14)

Unfortunately, (1.14) requires a matrix inversion to compute the error signal but,
considering

2= [Jf (%)) '¢'(%)V,C (1.15)

one can avoid this inversion by introducing an associated dynamical system. Indeed,
(1.15) is equivalent to:
JI %)z — V,C =0 (1.16)

where V,C = G'(x)V,C. This equation can be seen as the steady state of the
following associated network:

d
d—j = JT(%)z — V,C. (1.17)

Therefore, the system of differential equations is completely defined by:

;—}; =f(x, W.I)
%2 _ JT(%)z — V,.C (1.18)
dt of,

Observe that the weights’ update depends on the corresponding fixed points of the
first two equations.

In conclusion, the learning system defined in Eqgs. (1.18) minimizes the target
cost function C by introducing an associated differential equation that computes
the backpropagated error signal by avoiding the jacobian inverse’s computation.
However, the necessity of a side network for the propagation of error derivatives
makes this technique highly different from emulating the brain complex computa-
tion. In any case, this method has established the basis for future works on this
direction as shown in the next sections.

1.2.2 Contrastive Learning

Contrastive Learning is a supervised learning algorithm for training dynamic
neural networks that admit an energy function governing the dynamics [34, 35].
The weights’ update is proportional to the difference between the energy evaluated
at the equilibrium points of two different running phases: free, without teacher
signal, and forced, with teacher signal.

14
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Let us assume that a dynamic neural network can be rewritten as a gradient-like

(or possibly gradient) system governed by the free energy function E/(y, W, I):
dx

= =G X) VB (x, W.T) = =V, B/ (y, W, T) (1.19)
where y = g(x) is the output of the system and V,E/ = G'(x)VyE’. The goal
of the learning algorithm is to adjust the network parameters so that for a given
initial condition and an external input, the output of the system converges to a
target equilibrium T. In order to train the system, the algorithm considers a second

gradient-like system:

d
d_)t{ = —VyEt(y7 W7I7T) (120>
with energy E'(y, W,I1,T) = E/(y, W,I) + F(y, W,1,T) where the function F
denotes a teacher forcing term such that F(y, W,I,T) = 0 if the output of the
system coincides with T. Let us define the cost (or contrast) function

C(W,ILT) = E'(y",W,LT) — E/(3/, W,I)

and define the contrastive learning rule as:

oC o
AW, = — S E'$'W.ILT) — B/ W.1
WJ naWij naWij [ (y 9 9 ) (y 9 ’ )]
oyt OF! oy’ OFE/
— Et T _ Et T — )
(0B OF!
—Now,; ~ aw,

where VyEH(3") = VyE/(§7) = 0 at the equilibria of systems (1.19) and (1.20).
This method aims to reduce the difference between the free and forced dynamics
by recursively changing the systems’ parameters according to the different energy
configurations obtained. Even though it has been proven that for a specific case of
neural networks this simple methodology equals the Back-Propagation algorithm
efficiency [36], the objective function has some theoretical problems. It may happen
that C assumes negative values if the free dynamics stabilizes in a minimum of the
energy function that has a lower value than the one found by the forced dynamics
[37]. This may result in a sudden change in the weight update and a temporary
"unlearning" phase.

1.2.3 Equilibrium Propagation

Recently, Bengio and the authors in [12] proposed an alternative solution to
the use of a side network by introducing Equilibrium Propagation, a learning tech-
nique used for energy-based models. The advantage of this approach is indeed the

15
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requirement of just one kind of neural computation for the training phase of the
network. This method is more flexible than the Contrastive Learning algorithm
because the cost function C can change and the gradient descent is performed by
locally perturbing the system. This avoids the undesirable theoretical problems
outlined in Section 1.2.2. Firstly, inputs are clamped and the network relaxes to
a fixed point which corresponds to a local minimum of the energy function. Sec-
ondly, after a small external error signal is injected, the network relaxes to a new
but nearby fixed point which now corresponds to a rather lower cost value. The
method recasts the approach proposed by Pineda and Almeida into the equivalent
constrained optimization problem:

II\l)%]Il C(T,y) subject to f(x,W,I)=0 (1.22)

The constrained optimization problem defined in Eq. (1.22) can be solved by means
of the Lagrange Multipliers’ method [12, 38]. Let us introduce a new variable
A € RV, the Lagrange multiplier, and consider the Lagrangian function defined by:

L(x,\, W, T, 1) = C(T, g(x)) + A f(x, W, ). (1.23)

Let us keep the entries of the weight matrix W constant and solve for (A, x):

(1.24)

Vil =f(x,W,I)=0 — x =X equilibrium of (1.10)
Vil =G (x)V,C+JI(x)A =0

In order to find the solution A of the system (1.24), Bengio and his co-workers
suggested to consider the following augmented dynamical system:

dx?

where 3 > 0 is a forcing parameter and y” = g(x”). A fixed point % of the new
dynamical system satisfies
/(%" W,I) = 0. (1.26)

Since (1.26) is constant V/3, the total derivative with respect to 3 evaluated at 5 = 0
gives:

N A
Je(X) == - V,C(T,y) =0. (1.27)
9p lp=0
where £°=° = %. Let us now compare the two following equations:
J(x)ZE —v,C=0
t®) o], ~V (1.28)

JITE)A+ G (X)V,C =0
16
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and by solving the system in terms of A, it follows that:

< e O
A= PR ERIEIG

Since the remaining system parameters IW;; do not appear to have a similar straight-
forward closed formulation, a gradient descent on the Lagrangian gives the following
iterative solution:

(1.29)

oL _grof g of

AW, = —
Wi = =5 > =X o, oW,

(1.30)

where 1 > 0 is the learning rate. Unfortunately, Eq. (1.30) requires the inverse of
the jacobian matrix and multiple matrix multiplications. However, the following
results show some useful geometric properties of the lagrangian multiplier A that
can be used to simplify the computation of the gradient descent.

Proposition 1. The two following properties hold:

1) The two gradient descents defined in Eqs. (1.11) and (1.30) have the same
< C
direction aa—vé](?v, AW T I = %ﬁ(ﬂ Y);
6:0>'

Proof. 1) Let us start computing the gradient of the Lagrangian function with
respect to Wi;:

2) It yields that V,C" X = V,CT <_%

oL . . (1.30) <7 Of
AW T = W) =
29, CTE R g (5 W) =
ij
(1.13) . OX
="V, CTG' (%) ET
ij
(1) 0C R
= T
o, (T )

2) Let us transpose the second equation of system (1.28) and get:

%% 15=0 (1.31)
%) + V,CTG/(%) = 07

17
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oT
By multiplying the first equation with the row vector A it yields:

AT B ~T
A Je(x)2Z —-A V,C=0
f(X)9s 6=0 Y (1.32)

A I(%) + V,CTG (%) = 0

By substituting the second equation into the first and using the symmetry
property of the dot product it follows:

. ox" ay”
VyCTA = -V, TG R) S| = v,CT (-0 1.33
y y ( ) Gﬁ 5=0 y 85 5=0 ( )
where % = G’(xﬁ)%.
|
Equation (1.33) shows that along the gradient’s direction of the cost function C at
P
(T, g(%x)) the projection of the vector —% equals the projection of the vector
B=0
A. This means that the information provided by Eq. (1.29) is redundant and one
< oy’
can simply consider A = —% . Using Prop. 1, the update rule for the system
8=0
weights is:
. Ofi
] oW 1.34
(2] Y w 130
" aﬁ B=0 aWij 7

The training process can be therefore summarized in the following steps:

1) First, the input is clamped and the network follows the free dynamics defined
by the gradient system (1.10) relaxing to the free fixed point X;

2) Secondly, a small perturbation of amplitude —gVC(T,x) is introduced to
the system (1.10) allowing the neural network (1.25) to relax to a new fixed
point %°:

3) Lastly, the weights of the matrix W are changed according to Eq. (1.34).

Since the update is non-symmetric, the learning process that follow the gradient
descent defined in Eq. (1.34) is referred in the next sections to as Asymmetric
Equilibrium Propagation.

The authors in [12] showed that gradient systems (or equivalently energy-based
models) have a symmetric update rule. The following result shows that the asym-
metric update rule defined in Eq. (1.34) is equivalent to a symmetric update when-
ever the systems admits a gradient-like formulation with A(x,t) = G'(x)™*:

18
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| RS

| RS

(a) (b)

Figure 1.3: The objective of an equilibrium point learning scheme is to find the
system parameters so that, for a given initial condition, the fixed point of the
system corresponds to a desired target value. (a) Illustration of a generic dynamical
system whose stable equilibria correspond to the learnt associated memories. (b)
[lustration of a gradient-like system whose equilibria/memories correspond to the
minima of the associated energy function.

Theorem 5. Let the dynamical system defined in Eq. (1.10) be a gradient-like
system of the form:

dx o\ —1
= = fEW.I) = —G'(x) VB (x, W.T) (1.35)
y = g(x)

where £ : RY — R is a twice differentiable function. Let F(z, T, W, I,3) =
E(x, W,I) + SC(T,y) be the augmented system energy, the learning rule defined
in Eq. (1.34) is equivalent to:

oF oF
i %, W, T,1,3) — i % T, W.1,0)
AW;j o« — lim — o (1.36)
—0 I}
where &’ is the fized point of the system:
dx” BB / -1 B
i f7(x”, W, 1) = —G'(x)" VF(x°, T,W,1, ) (1.37)
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Proof. From Eq. (1.34), the gradient descent is:
05,
9p
The i—th component of the vector field defined in Eq. (1.35) is

1 OF OF
fo= —gmyon WD = 5 6o WD 3%

AVVij:n<

o
) oW

for every i =1,...,n.

oy,”
AW%Z"(%?

(8@-5
=N

of .
)W) -

9P

(g

where in the last equality we used the symmetry property of the mixed second-
order partial derivatives of twice differentiable functions. Let us now observe that
Ex,W,I)=F(x,T,W,1,0), thus it follows:

O’FE
X, W,I) =
,8:0> OW,;0y; & )

0*FE
x. W.1
Bﬂ)awm%;x B

09" PE
A iy — . aas B T7 W7 I> =
=0 (B ) g % LWL
P (1.39)
_ &0
N5 (X 7T7W7I7/3>‘|

ap laWz‘j =0

|

Figure 1.3(a) shows the geometric interpretation of a generic dynamical system
whose stable equilibria correspond to some associated memories. If the system ad-
mits a gradient-like formulation, the equilibria/memories correspond to the minima
of the energy function as shown in Fig. 1.3(b). The next sections illustrates some
examples of application of the previously presented learning rules.

1.3 Continuous-time Recurrent Neural Networks

A continuous-time recurrent neural network with n dynamical neural units is
described by the following nonlinear differential equations in matrix form:

{X =—x+ Wg(x) +1 (1.40)

y = g(x)
20
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where I € R" is an input vector and W € R™*" is the interconnecting weight matrix.
The neural output is y = g(x) where g(-) is a continuous, monotone and increasing
activation function. Using a matrix notation, g(x) = [g(z1),...,g(z,)]} € R™
For the local asymptotic stability of the equilibrium point %, all the eigenvalues
of the jacobian matrix at the equilibrium must be examined. The jacobian of the
dynamical system defined in Eq. (1.40) evaluated at the equilibrium is:

Je(%) = —1+ WG'(%) (1.41)

where G'(x) = diag(¢'(71),...,¢'(1%)). As a result of Corollary 1, X is an asymp-
totically stable equilibrium point of the neural network (1.40) if
n
Wiigl(i’i) <1 and Z |V[/zjg,(i'])| < ‘ -1+ W”g,(ff?z”
j=Lj#i
foralli=1,...,n.

Let C(T,x)) = 1T — g(%X)||* be the cost function that measures the euclidean
difference between the target vector and the output of the system at the equilibrium.
The next two subsections reformulate Recurrent Back-Propagation and Equilibrium
Propagation for the specific case of the neural network defined in Eq. (1.40).

A) Recurrent Back-Propagation

By computing and evaluating the jacobian of the system at the equilibrium

dfi
point of the system we get that JF (%) = —I 4+ G'(X)W7 and / = g(2;) = 1;.

oW,
The learning system defined in Eq. (1.18) becomes
;—j =—x+ Wg(x)+1
d—j — 2+ CER[WTz+ T — g(%)] (1.42)

AWU X 2z@j

As it is pointed out by [32], the stability of the dynamical system defined in Eq.
(1.40) is a sufficient condition for the stability of the second equation defined in Eq.
(1.42). To prove this, it is enough to observe that the two systems’ jacobians Jg¢
and JT have the same eigenvalues, hence it follows that the fixed points of (1.40)
must also be locally stable if the fixed points of (1.42) are locally stable.

B) Asymmetric Equilibrium Propagation

Let us define the extended vector field:

d

dt
— —x+ Wg(x) + I+ 5[T — g(x)]
21
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Let y = g(x) be the output of the free dynamics (5 = 0) at the equilibrium point
and §° = g(%x”) the output of the nudged phase (8 > 0). According to Eq. (1.34),
the learning scheme is

B _ 4
LTy (1.44)

1.4 Hopfield Neural Networks

A Hopfield Neural Network is a continuous-time recurrent neural network with
n dynamical neural units and symmetric weights, i.e. W;; = Wj; with possibly
Wi = 0. The system can be described by the following nonlinear differential
equations in matrix form:

dx
o =X + Wg(x) +1 (1.45)
y = g(x)

where I € R” is an input vector and W € R"*" is the interconnecting symmetric
weight matrix. The stability of the neural network (1.45) can be analysed by using
the following energy:

B(x W) = /0 Y gl (s)ds — %g(X)TWg(X) —1Tg(x). (1.46)

It is possible to verify that:

ViE(x, W) = G'(x) [x - Wg(x) — I "2 —¢’(x)% (1.47)
Hence, the dynamic equation of the continuous-time neural network (1.45) can be
expressed in the form of a gradient-like system:
dx ! -1
i f(x, W,I) = —=G'(x) " V< E(x, W, I). (1.48)
Intuitively, the trajectory of the system defined in Eq. (1.48) moves downhill along
the surface described by E(x). In the case of sigmoidal or hyperbolic tangent
activation functions, the matrix G’(x)~! defines a Riemannian metric which changes
with time and influences the speed of convergence of the network. However, it does
not alter the equilibrium points of the system. Thus, equilibria of (1.48) are minima
of the energy function defined in Eq. (1.46):

f(x, W,I) =0 = V, E(x, W,I) = 0 (1.49)

The next subsection reformulates Contrastive Learning and Equilbrium Propaga-
tion for the case of Hopfield Neural Networks using the results found in Theorem
5.
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A) Contrastive Learning
Let us rewrite the Hopfield energy defined in Eq. (1.46) in terms of the system’s
output y = g(x) as:
SN L o7 T
Ef(y, W,1I) = Z/ sds — 3y Wy -T'y.
i=1"0

If F(y, W,I,T) = Z||T — y||* with v € R_0}, we can define the teaching energy as
E'(y, W.I1.T) = E/(y, W.I) + F(y, W,1.T).

Let C(W,I,T) = EX(y", W.I,T) — E/(§/, W, ) be the cost function, the learning
dynamics is defined as the following set of differential equations:

;—j = —x+ Wg(x)+1
X
OE! oE/ ot N
AW, = = (i = i ) = a(aDal@l) - o(al)a(a)
where %/ and %' are the equilibrium points of the free and teaching dynamics,
respectively.

B) Symmetric Equilibrium Propagation

Let C = ||T—g(x)|* be the cost function that measures the euclidean distance
between the target T and the output of the system g(x) at the equilibrium. Let us
define the following augmented energy function:

F(x,T,W, ) = E(x, W) + BC(T, x) (1.51)

where 3 > 0 is the forcing parameter and consider the corresponding gradient-like
system:

d

X (W) = G () VaF(x T W ) (152
or equivalently,

‘jl_’t‘ = —x + Wg(x) + I+ 3[T — g(x)]. (1.53)

A fixed point X° of (1.53) corresponds to a local minimum of the augmented energy
function. Observe that if 5 = 0 then systems (1.45) and (1.53) coincide. From Eq.
(1.36), the learning scheme is defined as:

dp | oWy, 5o -
d " Af A8 . AZ R )
-3 (9())9(2)) F 9(27)g J‘])B 9(&)g(2;)
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with 5 = 0.

1.5 Kuramoto Model

The appearance of synchronized oscillations in the brain has prompted many
studies using oscillatory networks to perform temporal coding of information such as
associative memories. Generally, networks consist of coupled oscillators interacting
with each other according to suitable learning rules, and the information is coded
as phase-locked oscillations. The Kuramoto oscillator stand from the crowds as
one of the most used mathematical models for oscillatory associative memory. The
dynamics of the network is described in terms of the phase equations:

dxi: Wiisin(x; —x;) Vi=1,....n 1.55
dt J J

J=1

where x € R" is the state variable vector and W € R™*" is the coupling weight
matrix. Whenever the interconnections are assumed to be symmetric, i.e. Wy; =
W;i and W;; = 0, the state stability of the system dynamics can be deduced by
reformulating it as a gradient system whose potential function is:

1 N
Ex, W) = —3 > Wi cos (z; — xj) (1.56)
ij=1

It is easy to verify that the dynamic equation of the dynamic neural network (1.55)
can be expressed in the form:

dl’,‘ oF
=——(x,W 1.57
7 o (x, W) (1.57)
for all i = 1,...,n. This means that equilibria of (1.55) are minima of the poten-

tial function defined in Eq. (1.56). The next subsection reformulates Contrastive
Learning and Equilbrium Propagation for the case of the phase dynamics defined
by the Kuramoto model using the results found in Theorem 5.

A) Contrastive Learning

Let us define the potential function defined in Eq. (1.56) as the free energy
Bl (x,W.,I). If F(x, W,L,T) =237, cos (T; — x;) with v € R_{o}, we can define
the teaching energy as

FE'(x,W,I,T) = E/ (x, W,I) + F(x, W,I1,T).
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Let C(W,I,T) = E/(x', W,I,T) — Ef(fcf7 W, 1) be the cost function, the learning
dynamics is defined as the following set of differential equations:

dx; n .
;= 2= Wisin (2 — i)
T n . .
P >i—1 Wigsin (z; — x;) + vy sin (T; — ;) (1.58)
OE! OE'
AW, = —n <5VV,-]- — 3VVz‘j> = cos (4} — ﬁ’z) — cos (2] — i’;c)
forall 2,7 =1,...,n. The outputs %/ and %' are the equilibrium points of the free

and teaching dynamics, respectively.

B) Symmetric Equilibrium Propagation

The learning rule tries to modify the weights W;; so that, for a given initial
condition xg, the output X of the system (1.55) corresponds to a desired target
value T. This is achieved by minimizing the cost C for a single pair of points T
and x: .

C(T,x) =n—Y_cos(T; — z;) (1.59)
i=1
which measures the distance between a desired target T and the output state of
the system x. Observe that C(T,x) > 0 and g¢(-) is the identity function. Let us
define the following augmented energy function:

F(x,T,W,5) = E(x, W) + BC(T, x) (1.60)

where 5 > 0 is the forcing parameter and consider the corresponding gradient
system:

N
7= oy W TWLB) = Wysin(z; — @) + fsin (T, —x:) - (L61)

j=1

foralli=1,...,n. From Eq. (1.36), the learning scheme is defined as:

F
AWU & _i 0 (iﬁ7T7W7LB) =
g | oW;; 0
- (1.62)
d (Aﬁ A/3> ! Cos(i:f—ﬁt?)—cos(ﬁ:l—ij)
= — COS\T;, —X = ]l1m
d,@ t J B=0 B5—0 B
Thus, the learning rule can be simply approximated in:
m%m“Mﬁ_ﬁ%W%@_%x (1.63)
p
with g ~ 0.
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1.6 Conclusion

This chapter gave a mathematical treatment of gradient descent learning al-
gorithms for neural networks using the general framework of nonlinear dynamical
systems.

The system defined in Eq. (1.10) with initial conditions x¢ is assumed to be
convergent during the learning process. This happens when either the system is
a gradient-like (or gradient) system or the jacobian matrix of the system yields
all the hypotheses defined in the Corollary 1 of the Gershgorin Circle Theorem.
Accordingly, the learning rules considered depend on the output of the system
evaluated at equilibrium. The fixed point X is a function of the system parameters
W for fixed initial conditions and external inputs, the aim is to modify W so that
x approaches a desired target T. In terms of gradient (or gradient-like) systems
this results in potential functions that have as local minima the stable equilibria of
the system.

The key contributions of this chapter are:

1. Three different learning rules, Recurrent Back-Propagation, Contrastive Learn-
ing and Equilibrium Propagation are presented in a unified formulation, as
learning algorithms to continuous-time dynamic neural networks.

2. The authors in [20] assumes a priori a STDP-compatible weight change similar
to the one found in Eq. (1.34) and show that the scalar product between
this vector field and the gradient descent g—g, is negative. This guarantees the
optimization of the objective function. The results found in Prop. 1 prove that
the projection of the lagrange multiplier along the direction of minimization
coincides with the contribution given by —%L;. This mathematically justifies

the choice of the lagrangian multiplier as A = —% and proves that the

STDP-compatible weight change compute the exact gradient.

3. Theorem 5 generalizes Equilibrium Propagation for energy-based model to
the case of gradient-like dynamics by considering a modified version of the
energy used in [12]. This choice was dictated by the need of a Hopfield-like
neural network that could be easily implemented by an electric circuit.

26



Chapter 2

Dynamic Neural Networks and
Brain-inspired Computing

Neuromorphic computing is an emergent field of technology combining artificial
intelligence, neuroscience, computing architecture and material sciences [39]. While
modern computers had achieved notable performance, the ever-growing pressure
for big data keeps on demanding a rapid development of sophisticated computing
platforms. The execution of various computational tasks in current von-Neumann
architectures needs to shuttle back and forth large amounts of data between mem-
ory and processing units. This requires enormous computing hardware resources
and large power consumption during operations. For these reasons, the desire to
replicate the biological neural activity to transport and process information has
attracted significant attention from different research groups. Inspired by the hu-
man brain, neuromorphic systems have demonstrated remarkable computational
efficiency improvements paving the way for a novel class of customized hardware
architectures.

The availability of different types of emerging devices has pushed neuromorphic
research into two broad areas of investigation:

1) bio-plausible computing: focused on emulating dynamics of biological synapses;

2) bio-inspired computing: focused on developing electronic systems that make
use of algorithms inspired from biological mechanisms.

The former computing research has focused in building algorithms for Spiking Neu-
ral Networks that closely mimic biologically observed phenomena, such as spike-
timing-dependent plasticity (STDP). The latter has focused on efficiently comput-
ing mathematical functions. A workhorse of this class is the feed-forward artificial
neural network architecture. This thesis is focused on artificial synapses for bio-
inspired neuromorphic computing systems that enable fast and sustainable machine
intelligence.
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Most neuromorphic approaches are based on pure CMOS technology. However,
in the last decade several emerging nanoscale devices have been explored for im-
plementing synapses in bio-inspired neural networks. Among these, the memristor
stands out as a promising candidate.

The overall goal of this chapter is to review the most important characteristics
of memristive devices and propose simulated analogue computing platforms that
exploit memristors’ conductance programmability to implement equilibrium point
learning in dynamic neural networks. In particular, this section focuses on the
novel algorithm Equilibrium Propagation used to train recurrent neural networks
and weakly-coupled oscillatory neural networks in solving associative memory and
classifications tasks. During the training stage, the network oscillates between
the two phases defined in Chapter 1 and computes the gradient of the associated
cost function. The results of this chapter are based on previous works "Equilib-
rium propagation for memristor-based recurrent neural networks" by Zoppo et al
[13], "Equilibrium Propagation for Recurrent Neural Networks based on Resistive
Switching devices: from circuit implementation to supervised machine learning" by
Costamagna [40] and "Local Learning in Memristive Neural Networks for Pattern
Reconstruction" by Zoppo et al [41].

2.1 Memristors

The memristor (contraction of memory resistor) was theoretically presented for
the first time in 1970 by [5] as the fourth ideal circuit element, in addition to the
capacitor, the resistor and the inductor.

The original definition was given in terms of a relation of the form F'(¢,q) =0
where ¢ (voltage momentum or flux) and ¢ (current momentum or charge) are the
time integrals in (—oo, t] of the port voltage and current respectively. Under mild
regularity assumptions, it is possible to express the voltage in terms of the current
(or vice versa) in the forms:

v = R(q)i i=G(o)v
{ { o 1)

d¢

The quantities R(q) and G(¢) depend on the entire history of the input variable
and are defined as the memristor’s memristance and memductance respectively.
The concept of memristor was consequently generalized to the concept of extended
memristor [42]. An extended memristor is defined in terms of the voltage v and
the current ¢ by

i =G(¢,v,x)v
x = g(¢,v,%) (2.2)
b —u

28



2.1 — Memristors

where x = (z1,...,z,)" € R"is an internal vector with n state variables, G(¢,v, x)
is the memductance and ¢ : R"™2 — R" is a continuous function that governs
the evolution of vector x. A similar definition for the voltage-controlled extended
memristor can be obtained by interchanging the current momentum and the current
with the voltage momentum and voltage. The peculiarities that discern a memristor
within the set of all nonlinear dynamical systems, are:

e any zero-mean periodic input (voltage or current) yields a current-voltage
loop in the first and the third quadrants of the ¢ — v plane;

o the loop is pinched at the origin (other additional intersections may occur);
o the loop has a shape varying with both the amplitude and frequency.

The choice of particular materials or specific physical mechanisms do not define
memristors. This is clearly reported in [43] “all 2-terminal non-volatile memory de-
vices based on resistance switching are memristors, regardless of the device material
and physical operating mechanisms”. The next section reports a brief introduction
to some of the current memristive technologies.

2.1.1 Device Technologies

In the last two decades, memristive switching devices have been realized using
many different physical mechanisms of material systems. Commonly, the process of
programming into the high-conductance state is referred to as "SET" and program-
ming into the low-conductance is "RESET". Among all the several variants, this
thesis rapidly introduces Phase-Change Memories (PCMs), Conductive-Bridging
(CBRAMs) and Resistive (ReRAMs) random access memories. For an extensive
review on memristive physical devices, see [9, 10].

Phase-Change Memory RAM

PCMs are based on reversible crystallization (high-conductance state) and amor-
phization (low-conductance state) of the so-called phase change materials [44]. Po-
tentiation and depression in PCM occur by modulating crystalline-to-amorphous
volume ratio. The change of state of a PCM device is highly influenced by the tem-
perature reached by the phase-change material when applying an electrical pulse to
the device. RESET tends to be an abrupt procedure whereas the SET operation can
be made incremental by repeated pulses that slowly crystallize the high-resistance
plug within the device. The amorphous material gradually transforms into the
crystalline state until a single crystal is reached. The typical crystallization tem-
perature is about 500 — 600K [45]. In the SET operation, it is possible to program
multiple resistance levels by varying the width of the pulse. In general, PCM-based
artificial synapses have exhibited large scale integration, high scalability, and good
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stability, making them promising candidates for neuromorphic platforms. However,
the amorphization mechanism results in an inherently asymmetric weight update
in PCM synapses due to the abrupt RESET that can not be easily gradually im-
plemented. This may significantly affect network performances.

Conductive-Bridging RAM

The basic cell of CBRAMs, is a metal-ion conductor-metal system [46]. If an
oxidation reaction occurs (i.e. loss of electrons) at an electrode, then the electrode
is classified as an anode. If instead a reduction reaction (i.e. gain of electrons)
occurs, then the electrode is classified as a cathode. Active electrodes are metals
that participate in reactions that occur in the electrolyte in order to transport the
electricity. Inert electrode are instead metals that do not interfere in any chemical
reaction. The working principles of these synaptic devices rely on the formation
and rupture of conduction channels composed of metal. During the potentiation
process, a positive voltage is applied to the active electrode to oxidize metal into
ions and electrons. Following the electric field, cations migrate toward the cathode
and get reduced inside the electrolyte leading to different filament growth modes.
During depression, a negative potential is applied to the active electrode, and the
metal conduction channel destabilizes and breaks. CBRAMs have demonstrated
to be promising candidates as next-generation non-volatile memory devices due to
their fast speed, scalability, and ultra-low power consumption. However, they may
suffer from limitations in terms of weight precision and update linearity /symmetry
due to their inherent stochasticity.

Resistive RAM

Resistive RAM (ReRAM) is a non-volatile memory similar to CBRAM, except
that the filament through the insulating thin-film is a chain of defects within an
oxide [47]. The underlying metal-insulator-metal structure is compact, CMOS-
compatibile and highly scalable, and the energy consumption per synaptic oper-
ation and programming currents can be made ultralow. However, the filament
formation process is difficult to control: large variability through Poissonian statis-
tics is inevitable. Once the filament is formed, it may be broken resulting in an high
resistance state or re-formed resulting in a lower resistance state by triggering an
electrical field and/or a local temperature increases. To date, ReRAM-based mem-
ristors are commercially available memory chips but similar to CBRAM devices,
the fundamental filament formation and dissolution processes lead to unavoidable
device variations, and the weight update linearity /symmetry requires optimizations
for neuromorphic systems.
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Figure 2.1: Illustration of a 3 x4 memristive crossbar used to perform matrix-vector
multiplication.

2.1.2 Crossbars

The product of a matrix and a vector is a fundamental operation widely used
in a large variety of tasks that make use of linear algebra computing. However,
in digital computing system this computation is a tedious and hardware intensive
task. Its computation complexity grows as O(nm), where n and m are the ma-
trix dimensions. In contrast to using digital binary numbers, an analog accelerator
encodes numbers using the continuously real valued circuit voltages and positive
conductances of programmable resistive devices. The computation complexity can
be reduced from O(nm) to O(1). The use of memristors for performing Matrix-
Vector Multiplications (MVMs) is depicted in Fig. 2.1. An n x m crossbar array
consists of n horizontal wires (word lines) and m vertical wires (bit lines). Each
bit line connects to each word line through a memristor cell for a total of nm inter-
sections. Let Rj; and G, denote the resistance and conductance of the (jk)—cell,
where G = 1/R;. Let the cells of the k—th column be programmed to their
conductance values Gig, Gag, ..., Gnr. As a result of the Ohm’s Law, by apply-
ing the voltages vy, vs,...,v, to the n rows, a current of G,v; passes from the
(jk)—th cell into the bit line. Then, from Kirchhoff’s law, the total current from
the k—th bit line is the sum of currents flowing through the column, as shown in
Fig. 2.1. The output current i is the dot-product of input voltages at each row
v = (v1, 09, ...,v,)T and cell conductances Gy, = (G, Ga, - . ., Gni) T in a column,
that is, 7, = va. The total current i is the vector whose components correspond
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to each bit line current ix Yk = 1,...,m and i = G'v where G € R™™. For con-
struction, the crossbar performs the product between the transpose of the matrix
G and the column vector v. For this reason, this operation may also be referred to
as Vector-Matrix Multiplication (VMM), i.e. i’ = v7'G.

The current output can be either converted into voltage by a transimpedance
amplifier (TTA), or digitalized by ADCs for usage in digital systems, or forwarded
to other analog systems. It is important to highlight that as opposed to traditional
application specific integrated circuit (ASIC) matrix multipliers, the MVM and the
matrix entries’ storage take place in the same location. Thus, computation using
memristor crossbars can be significantly faster and more power efficient compared

to conventional digital computation due to this high intrinsic parallelism [48, 49,
50, 51, 52, 53].

2.2 Conductance Range

A challenge in crossbar computing is that a memristor can only be programmed
within an available conductance range, i.e. Gij € Grange = [Gmins Gmaz| Vi =
1,...,n, Vi =1,....,m. G and G4, are the available minimum and the max-
imum memristor conductances. Currently, there are two different approaches to
map matrices A € R™*" into the so-called conductance matrix G € R™™ [48, 50].

The matrix A can be transformed into the conductance matrix using the fol-
lowing linear transformation:

_ Gmaac _ Gmin
B Amax - Amm
0= Gmaac - f}/Amar (23)

G =~A" + 61,17

where A,,;, and A,,.,; correspond to the minimum and maximum entries in the
matrix A and 1, is a column vector of k ones. This linear transformation can be
done in a digital system before the analog computation.

Once the output vector from the crossbars shown in Fig. 2.1 is measured, one
can get the correct result by means of the following inverse operations:

Proposition 2. Let A e R™" vy e R". Ifi= Av and i = G" v then

i— (5 Xk: vk> 1]

.1
i=—
v
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Proof. Let us use the definition of the conductance matrix G and get:

i=G'v=(nAT +61,17)"v =
= vAv + 51,,"13;V =
=i+ 61,17V = (2.4)

k=1

where 1Tv = (37_, vx). Let us now solve for the correct output i and find the

recovering linear transformation:
[ (5 > vk> ] (2.5)

QIH

Thus, after the analog to digital conversion, the output of the MVM can be recov-
ered using Prop. 2 in a digital system.

Alternatively, a second approach usually employed is to represent one matrix
element using the conductance difference of two memristors, i.e. a differential pair.
The input voltage signals on two adjacent rows must have the same amplitude with
opposite polarity. The differential calculation is performed by the direct current
summation:

Zk—ZGJkU]+G => (G Giv; Vk=1,...m (2.6)

j=1 j=1

where G;rk — G, is the scaled mapped matrix element Ay; of the matrix A. Observe
that this method enables to have negative values and provides a level of defect tol-
erance to the calculation: mitigate stuck device issues by adjusting the conductance
of the coupled device. However, the use of differential pairs doubles the number of
required memristor cells and thus the chip area.

The next sections show how memristive crossbars can be used to implement
equilibrium point learning in dynamic neural networks.

2.3 Continuous-time Recurrent Neural Networks

Let us consider the nonlinear system defined in Eq. (1.40). It determines a
continuous-time Recurrent Neural Network that can be implemented by an ana-
log RC network circuit at the input of each amplifier [54] as shown in Figure 2.2.
Here, the system state variable is directly fed back as input by a connection be-
tween the neurons’ outputs and the input lines. Most of the algorithms used to
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train neural networks require both positive and negative synaptic weights. This
can be easily handled by doubling the crossbars in the network, as highlighted in
Section 2.2 and shown in Fig. 2.2(a). This approach requires the use of the dual
output neurons y, = g(vx), k = 1,...,n, with the two output terminals providing
yr and —y, as exemplified in Figure 2.2(b). The crossbar representing positive
weights {G;:]} kj=1,..n is connected to the positive output’s neurons while the nega-
tive counterpart {G,;j} kj=1,..n 18 connected to the complementary neurons outputs.
Let vx be the input voltage of the k-th neuron, one may write the current equation
of the input node of the k-th neuron using Kirchhoft’s current law as follows:

dvk Vi N 4 _
“a TR > (G5 = Gy + I (2.7)

=1
By defining the neural weights Wy, = G, — G; one would get:

dvk Uk N
T s > Wigy; + I (2.8)

J=1

which corresponds to the k-th component of system (1.40) with Cy, = R, = 1 and
Vg = Ty, Vk = 1,...,n.

N o —9(Vs)
(@) :
Figure 2.2: a) An example of a 3 x 3 Recurrent Neural Network with dual-crossbar

bipolar weights implementation. b) A simple neuron implementation. Taken from
[41] ©2021 IEEE.

Equilibrium Propagation relies on two different phases, a free phase and a forced
phase. For the sake of implementation, it is advantageous to have a unique dynam-
ical system that alternates between the two stages. This can be realized by means

34



2.3 — Continuous-time Recurrent Neural Networks

of a digital clock with suitable frequency, range and duty cycle which alternates be-
tween the two dynamics. This is formally equivalent to considering the parameter
[ to be a time-dependent function

0, free phase
Bt) = g (2.9)
[, forced phase

that implements the desired clock.

Memristor-based neural networks allows to adapt the synaptic weights W;; con-
tinuously during an online training phase. Memristors’ tunability is met by in-
creasing the architecture complexity and adding appropriate supplementary circuit
elements which enable the application of a series of discrete programming pulses
that perform the weights update [55, 56].

IMECITIFErE

Figure 2.3: Dataset of the 10 different resized 8 x 8 images taken from MNIST
dataset [57].

2.3.1 Associative Memory

The memories/patterns to learn are the m = 10 different resized 8 x 8 images
taken from MNIST dataset [57] depicted in Fig. 2.3. The network architecture
consists of a fully connected neural network with no self-loops as shown in Fig. 2.4.
Each image is reshaped into the column vectors Ty Vk = 1,...,m of size n = 64.

Generally, a standard recurrent neural network model is trained using the un-
supervised Hebbian learning rule:

1 m
W = — S U(TRT) — Lixn)

k=1

where m is the number of memories and Ty € R"™ is the k—th image. The resulting
weight matrix is symmetric and the network defines a Hopfield model. This kind
of model trained on uncorrelated patterns has an approximate capacity of 0.14n
but this factor decreases significantly when patterns are correlated. Storkey [58]
overcome this problem by introducing a correction in the update rule that reduces
the correlation among patterns by recursively building W = W,,, | as follows:

1
Wi = Wy + ;[(TkT;‘f —Luxn) — T T{ Wi — W, T, T} ]
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Figure 2.4: (a) Illustration of a fully connected neural network with 5 nodes. (b)
Weights matrix W representing each edge influence in the network.

for each £ = 1,...,m. The Storkey rule equally distributes the memories in the
parameter space increasing the capacity of the network. The asymptotic capacity
is n/v/21Inn, which represents an improvement over the Hebbian rule.

A small amount of noise can be useful for escape from local minima (i.e. spu-
rious state) and look for the global minimum of the system. A popular approach
for accelerating the learning is to start with a large contribution of noise and grad-
ually decreases it as the learning proceeds. This process of adaption is similar to
that in simulated annealing [59]. However, such addition of noise does not change
dramatically the qualitative performance of the network for large dimensions.

From a different perspective, as described in Section 1.2, gradient descent offers
a more sophisticated technique that provides to the system some guiding directions
to reorganize the connections changes throughout the network. As described in
Section 1.2.3, Equilibrium Propagation provides a more flexible learning technique
compared to Recurrent Back-Propagation and Contrastive learning, thus Eqs (1.34)
and (1.39) are used to descend along the gradient. The update of the weights is
performed after each epoch by averaging the weight changes by the total number of
examples m. This approach aims to avoid getting stuck in local minima and allows
to reduce the total number of weights” updates. This is of particular interest in the
case of in-situ learning in hardware implementations.

The activation function used is the hyperbolic tangent and the gains of the
units are kept constant to 0.45. The learning rate is n = 0.45. In these simulations,
patterns are presented by means of a constant input vector I in a cyclic fashion
since random presentation of the patterns did not show any particular improvement.
The teaching parameter is set to f = 0.1 and the number of epoch is 50. Time
spans for the simulation of the dynamic system are chosen in order to guarantee
the convergence of the state variables.

In order to assess the validity of the novel supervised algorithm for solving
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associative memory’s tasks, the same neural network was used and trained using
Hebbian, Storkey, Symmetric and Asymmetric Equilibrium Propagation learning
rules. Fig. 2.5(a) shows that the symmetric update rule easily recovers the target
patterns already in the first 30 epochs. On the contrary, the asymmetric technique
results in a slightly slower convergence. As shown in Fig. 2.5(b), results provide
evidence that Equilibrium Propagation is perfectly able to reconstruct even in the
presence of correlated patterns whereas the two unsupervised techniques converge
to some local minima.

Corrupted Hebbian Storkey EP Symmetric EP Asymmetric

=
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Figure 2.5: (a) Comparison between the learning curves of a Recurrent Neural Net-
work trained with both the symmetric version of Equilibrium Propagation (in blue)
and with the asymmetric counterpart (in orange). (b) From the left column: ten
corrupted patterns with probability p = 0.1, reconstructed pattern with Hebbian,
Storkey, Symmetric and Asymmetric Equilibrium Propagation learning rules. The
last column shows the target patterns.
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2.3.2 Classification

The classification of the MNIST data-set [57] is a omnipresent standard for ass-
esing the correct functioning of a machine learning classifier. This dataset contains
60000 images of the ten classes of handwritten digits with size 28 x 28. The ob-
jective is to classify each image with the correct number class. For reducing the
computational burden and train the network within a reasonable time using the
whole dataset, a nearest-neighbor interpolation was performed to obtain 14 x 14
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Figure 2.6: (a) Illustration of recurrent neural network with 9 nodes used to solve
a classification task. (b) Weights matrix W representing edge’s influence between
neurons. This choice of matrix establishes a hierarchy between neurons: input

(b)

(green), hidden (blue) and output (red) nodes.

equivalent images. These images are then successively reshaped into column vector

of size 196 x 1.

Many different possible architectures can be used to solve this image classifica-
tion task, but all of them must be characterized by input, hidden and output layers

as shown in Fig. 2.6(a) with green, blue and red nodes, respectively.
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Figure 2.7: (a) Accuracy of the network trained with Symmetric Equilibrium Prop-
agation on the MNIST dataset. (b) Accuracy of the network trained with Asym-
metric Equilibrium Propagation on the MNIST dataset.

As proposed by the authors in [12], the network considered is a three layers
network with n = n; + n, + n, neurons, in which the n, = 196 input neurons are
fully connected to n;, = 128 hidden neurons, in turn fully connected to the n, = 10
output neurons as exemplified by the 9 x 9 weight matrix in Fig. 2.6(b). No
connections between the neurons in the same layer are considered. The activation
function used was the sigmoid and the hyperparameters n = 0.01 and = 0.2 were
optimized with a grid search approach. The network parameters were sampled using
a random uniform initialization and the model was trained on the whole dataset.
Images are introduced to the network by clamping the input nodes of the system
and the external input vector I is used as a bias term. In 10 epochs, the model
reaches an accuracy of 96.4%. In Figs. 2.7(a) and (b) are reported the accuracy
of the network trained with Symmetric and Asymmetric Equilibrium Propagation
over the different epochs. Even though the authors in [12, 20] achieved a better
accuracy with an analogous network, it is important to highlight that the proposed
system has the following differences with respect to the original model:

1. The dynamical system defined in Eq. (1.40) is different from the original
Energy-based model. This choice was dictated by the need of a Hopfield-like
neural network that could be easily implemented by an electric circuit [54];

2. The asymmetric version of Equilibrium Propagation is slightly different from
the original formulation in [20];

3. The network is trained on resized 14 x 14 images instead of the original 28 x 28
images to accelerate the calculations;

39



Dynamic Neural Networks and Brain-inspired Computing

4. A single learning parameter 7 is used for both layers;
5. A smaller amount of epochs is used to train the network;

6. The system dynamics is simulated using the built-in MatLAB routine ode45
instead of the Runge-Kutta numerical integration.

Table 2.1 shows the hyperparameters chosen to solve the MNIST classification
using both the hyperbolic tangent and sigmoid functions. In both simulations, the
network was trained on the entire dataset, (i.e. Nyqin = 60000 and Nies; = 10000).
For a fair comparison, the architecture used had 196 input nodes, 128 hidden nodes
and 10 output nodes. The training process was performed for 10 epochs, with
mini-batches of 20 data as suggested in [12]. As shown in the table, results do not
show any remarkable difference on the choice of the activation function.

g(+) n B Ngain Mini-batch  # of Epochs ACCy,pn ACChest
sigmoid 0.01 0.2 10000 20 10 97.5% 97.0%
tanh 0.005 0.1 10000 20 10 96.4% 96.1%

Table 2.1: Parameters and results of the optimized network with either sigmoid or
hyperbolic tangent activation functions for the MNIST classification task.

2.4 Weakly-Coupled Oscillatory Neural Network

Consider a network of n weakly connected van der Pol oscillators whose states
are individually controllable through the coupling with an additional driving oscil-
lator unit as shown in Fig. 2.8(a). The following analysis may be generalized to
other similar oscillators. Let us assume that each single nonlinear system admits an
asymptotically stable, T' periodic limit cycle. Let € < 1 be the interaction strength,
by applying Kirchhoff’s law to the network in Fig. 2.8(a), the following equation
yields:

Cd;t = _ik - iG(Uk) - 6f(vl’ LR UQn)
L —
aor . (2.10)
¢ a — kN — ic:(Vkin)
digsn
qul_? = Ugtn
where .
flor,o o svm) = 3 Gry(ve = v3) + Grn (Vg = Vkn)
j=1
is the coupling function describing the interactions. By assuming ig(vg) = —gavx +

t
LG>

Uk

gyvp and introducing the adimensional time 7 = and state variables x = o,
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ig(vk)
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Figure 2.8: (a) Master-slave configuration of the k-th van der Pol oscillator with the
corresponding (k+n)-th driving unit. The connection between the two oscillators is
unidirectional. (b) Illustration of the Kuramoto model with 10 nodes in a master-
slave configuration. Masters are connected to slaves with strength 5. (c) The
symmetric weights matrix W representing edge’s influence between the nodes.

Yr = E";—O, where G is a generic reference conductance and v is a reference voltage,

41



Dynamic Neural Networks and Brain-inspired Computing

the state equations can be rewritten in the adimensional form

Cidﬂ = —QUg +5$k _,yx:z _Gf(xlw"?xQn)

dyy

=
=3,

dr

dtpin _ 3
P = —Yin + 0Thin — Vit

Wiyn _
“ar = Thin

(2.11)

where N
]?(:1;1, cey o) = Z Ly — x5) + Dp(xg — Tpgn)
j=1

LG? _ LG _ 2LG _
et § = Ga=r 7 = GvV5 s ij =

is the normalized coupling function and o =
ij% and Fk = Gk—Q—N%-

As a result of a recently developed description of weakly-coupled oscillatory
neural networks dynamics in terms of amplitude and phase variables [60, 61, 62],
it is possible to show that the phase dynamics of the system defined in Eq. (2.11)
coincides locally in the neighborhood of the limit cycle with the asymptotic phase

dynamics defined by Kuramoto model described in Section 1.5.

One-to-one correspondence

////—\\\\‘ y

Limit cycle Stable equilibrium

Weakly-coupled oscillatory neural network Phase dynamics

Figure 2.9: The one-to-one correspondence between the oscillatory sinusoidal be-
haviors of a weakly-coupled oscillatory neural network with the stable equilibria of
the phase dynamics described the Kuramoto model.

The phase deviation equation for the k-th state:

{%%:@{ZlﬂrmﬁnWU—ﬁ%f+Fk$M¢mmr—¢Q] (2.19)

Lrtn — 0 = Py (t) = Vpgn(0)
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where € = e‘/Ta.

Assuming Wy; = €l'y;, 8 = €'y and ¢4,(0) = T}, Eq. (2.12) can be rewritten as:
Wi _ S s in (T — + 2.13
g—z kg Sin (¢ — i) + B sin (T, — ) (2.13)
j=1
which is equivalent to the Kuramoto model defined in Eq. (1.61) with ¢, = x
Vk =1,...,n. This important results allows to create a one-to-one correspondence
between the oscillatory sinusoidal behaviors of the system defined in Eq. (2.11) with
the stable equilibria of the phase dynamics described by system (2.13) as depicted
in Fig. 2.9. Therefore, the parameters of the oscillatory model can be update using
the equilibrium point learning algorithms defined in Section 1.5.

2.4.1 Associative Memory

The network architecture consists of a fully connected WCON with n = 64
oscillators and symmetric weights as described in Fig. 2.8(b). Weights are randomly
initialized by sampling from a uniform distribution and are mapped to desired
memductance values of the memristive interconnections. The update of the weights
is performed by averaging the back propagated errors over the total number of
training images shown in Fig. 2.3. This approach allows us to lower the amount
of total updates of the weight matrix. The learning rate is n = 0.0001 and it
decreases during the iterations using a step decay schedule. The forcing parameter
is set to § = 0.1 and the training process ends whenever a prefixed accuracy is
reached. Time spans for the simulation of the dynamic system are chosen in order
to guarantee the convergence of the state variables.

In the simulations, the driving unit oscillators have two different important
roles:

 to set the phase of each oscillator as equal to the perturbed/target pattern
(8> 0);

« to model the teaching signal of the second phase of Equilibrium Propagation
as defined in Eq. (2.13).

Since all target patterns are composed by 0 and/or 7, they represent equilibria of
the free dynamical system defined in Eq. (2.8) with 8 = 0. To let the system be able
to escape from a constant evolution of the phase dynamics, a small perturbation is
added to the phase initial conditions of the oscillators.

In order to evaluate the effectiveness of Symmetric Equilibrium Propagation for
training oscillatory networks in associative memory’s tasks, the novel algorithm is
compared with the unsupervised Hebbian learning rule:

m

W = =3 eos(T1) cos(T)” L)

1=1
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Figure 2.10: (a) Phase dynamics trajectories. (b) Accuracy of the network trained
with Equilibrium Propagation to reconstruct perturbed patterns taken from the
MNIST dataset. In blue, pixels are perturbed by flipping the pixels from white to
black and vice versa with probability p = 0.1. In orange, the same patterns are
corrupted with a Gaussian Noise.

where cos(T;) = [cos(T}),...,cos(T")]T. Patterns are corrupted using either a
uniform flipping of the pixels with probability p = 0.1 or an additive Gaussian
noise with standard deviation ¢ = 0.5. As can be observed in Fig. 2.10(a) phase
trajectories do not converge to multiple values of 0 and 7. This is probably due
to the cosinusoidal combination in the potential function that allows the system
to have many possible equilibria. However, as expected, simulations show that the
longer is the training, the smaller is the difference with the target patterns even
though the system is really sensible to perturbations. After convergence, the cosine
of the output phase differences is computed and results are saturated to the closest
values —1 or 1. A pattern is recognized as correctly reconstructed if the Hamming
difference between the reconstruction and the target image is zero. As shown in
Fig. 2.10(b), results provide evidence that the WCON trained with EP is perfectly
able to reconstruct the corrupted patterns. However, the network needs a larger
amount of epochs to be able to reach comparable results with the continuous-time
recurrent neural networks counterpart.

2.5 Conclusion

This chapter aimed at investigating dynamic neural networks in solving pattern
recognition tasks and validate the theoretical results found in Chapter 1. The use
of ideal resistive switching components to model synapses is extremely beneficial
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to be able to sequentially update and adjust the synaptic weights. Simulations
showed convincing results that the two learning rules have significant capabilities
in solving image reconstruction and classification tasks motivating further research
in this direction. The symmetric version of Equilibrium Propagation is also used to
train the phase dynamics of weakly-coupled oscillatory neural networks to perform
as associative memory model. Even though the training phase requires more iter-
ations compared to the conventional Hopfield neural networks, the system is able
to remarkably improve the current retrieval performance known in the literature.

From an implementation perspective, the symmetrical version of Equilibrium
Propagation could detrimentally limit the potential of the model in terms of analog
implementations due to the intrinsic stochastic asymmetry that may arise in the
programming phase. On the other hand, even though the asymmetric version is
potentially more general, the convergence of the system is not always guaranteed
and requires further assumptions. The next chapter aims to analyze systematic
and random errors arising from the use of memristive crossbars that can influence
the previously introduced neural systems’ performance.
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Chapter 3

Memristive Crossbars: System
Evaluation and Configurations

In-memory computing is a non-von-Neumann approach where certain opera-
tional tasks are performed directly at the memory level. Computing is carried out
by exploiting the physical properties of the memory devices and their array-level
organization. Besides reducing latency and energy cost associated with data mi-
gration, the massive parallelism obtained by dense arrays of nanoscale memory
devices have dramatically improved the computational time complexity associated
with certain tasks. However, despite their fascinating potential for neuromorphic
applications, memristive devices reveal undesirable properties due to their inher-
ently stochastic cycle-to-cycle and device-to-device variabilities. This limitation
combined with the physical properties of the circuit components further introduce
random fluctuations and systematic errors:

e the random noise limits the system precision,
o the systematic errors degrade the output accuracy.

In recent papers, different methods have been used to estimate the output precision
and accuracy of the memristor based crossbars, such as bit-precision [50], relative
error [63], and cosine similarity [64]. This chapter aims to provide a novel anal-
ysis of both random and systematic errors by presenting non-application specific
mathematical tools to systematically evaluate precision and accuracy of memristive
crossbars.

3.1 Active and Passive arrays

Sneak paths are undesired paths for current, which are parallel to the intended
target. This phenomenon causes cross-talk interference between adjacent memory
cells and result in distortions that influence the operation of memristor crossbars.
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Figure 3.1: (a) Illustration of a 3 x 4 passive crossbar used to perform matrix-vector
multiplication. (b) Illustration of a 3 x 4 active crossbar with 1T1R cells. (b) The
one-transistor one-memristor (1T1R) cell at each junction in a crossbar. GL: Gate
Line, RL: Row Line, CL: Column Line.

The conventional passive arrays have no transistors in the memristor crossbar as
shown in Fig. 3.1(a). Even though this characteristic is really attractive from a
circuit implementation perspective, sneak path current issues usually prohibit an
appropriate programming and/or reading of memristors’ conductances. Common
solutions to mitigate this problem is to engineer the memristor I-V non linearity
itself or to connect in series a two-terminal selector device in each cell (1S1R). In
the latter case, memristor and selector can be stacked on top of each other reducing
the cell footprint of 1T1R schemes [65].

Nowadays, the most practical approach to realize large memristor crossbars is
to integrate memristors with MOS transistors in active arrays as shown in Fig.
3.1(b). By connecting a transistor to a memristor in series (1T1R cell) as depicted
in Fig. 3.1(c), the current flowing through unselected cells can be effectively shrunk
to enable accurate memristors’ reading and programming. In addition, the third
terminal in the transistors offers the possibility to control the conductance’s update
in a linear and symmetric manner. During the inference process, all transistors
in the 1T1R array are in the ON state whereas during memristor conductance
programming, transistors are partially ON to allow for precise weight updating.
Even though this solution seems appealing, it increases both the power consumption
and the packing density.

3.2 Random Errors

Analog computation suffers from reduced robustness to noise as compared with
digital computation. This section focuses on the modeling of memristive device
stochastic noise including programming noise, thermal noise, and shot noise. These
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results enable computation of the system SNR and output bit precision providing
a comparison between the analog systems and their digital computing counterparts
[66]. The overall SNR for the k—th output is:

k-th output signal power

SNR, = , (3.1)

2
oToT,

where U%OTk is the k—th output noise power and the output bit precision can be
calculated from:

10log(SNRy) — 1.76

k—th Output Bit Precision =
utput Bit Precision 602

(3.2)

For evaluating the total output precision, we define a vector with all total output
noise standard deviations opor, Vi = 1,...,m and evaluate the relative output
dispersion from the ideal value x by means of the coefficient %ﬂ where || - ||
is a vector norm. This work assumes a%OTk as the sum of the output voltage
programming v%,, thermal v, and shot v%, noises. The next sections evaluate

the magnitude of these values. Other noise contributions can be also considered.
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Figure 3.2: Normally distributed programming noise model that illustrates the
intended write distribution between two conductance levels separated by the pre-
defined bit precision. Taken from [67] ©2021 IEEE.

3.2.1 Programming Noise

Memristors are programmable to any conductance in the range G4y4e, Within
a pre-defined tolerance [55, 68] determined by an iterative read-write process, with
improved precision coming at the expense of additional steps and energy expendi-
ture. In order to compare the analog precision to digital implementations, Gyange
is divided into 2™ intervals (levels) to compute the equivalent bit precision of the

49



Memristive Crossbars: System Evaluation and Configurations

programmable levels, where N, is the number of desired bits. At the time of writ-
ing, the best experimental results available in the literature reported up to 256 (8
bits) reliably programmable conductance levels [69].

The cycle-to-cycle programming variations of the memristor conductance yield
an essentially Gaussian distribution, and thus introduces a stochastic fluctuation
that further affects the system precision and will be referred to as programming
noise. Observe that whenever the devices are programmed, the error becomes con-
stant until the next programming stage. If the same conductance matrix is repeat-
edly used for an iterative calculation, the error can be considered as a systematic
level shift in the mean conductance affecting the output accuracy.

In most experimental reports, the programming noise is modeled by a normal
distribution with a standard deviation op [48, 49, 50, 64]. To study the effects
of the programming noise on output precision, a normal distribution N(0, 0%) was
used to perturb each ideal memristor conductance. The programmed levels of the
memristor should be distinct from each other with high confidence as in Fig. 3.2,
in other words +30p should be found in each interval of width AL = gﬁ%f) For
this reason, op = AL/6.

Let us assume a random perturbation of the matrix G by sampling from a
Gaussian distribution with zero mean and variance o%:

G=G+Zp (3.3)

where Zp = (Zi;) ~ N(0,0%). Thus the ideal computation i = G”v transforms
into the perturbed system

i=G'v=(G+7Zp) V. (3.4)

where i is the perturbed output. The k-th component of Eq. (3.4) is a linear
combination of independent Gaussian random variables and therefore it holds [70]:

Ek—ik:Zlkvl%—...—i—anvn:
~viN(0,0%) + ... +v,N(0,0%)

~ N(0,v30%) + ...+ N(0,v20%) = (3.5)
~ N, (v +...+v})op) =
~ N(0,||v]503) VE=1,...m

where || - ||2 is the euclidean norm. This means that if one randomly perturbs all

the entries of a matrix by sampling from a Gaussian distribution N (0, 0%), then the
k-th output current noise will be normally distributed. Since the output variance
is given in terms of current noise, it can be then converted into output voltage
noise by multiplying it by the square of the feedback resistance: v}, = ||[v|30% R}
Vk=1,...,m.
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Figure 3.3: A schematic illustration of a 4 x 4 crossbar with the associated noise
sources.

3.2.2 Thermal Noise

Thermal agitation of charged particles in a resistive device gives rise to random
fluctuations in the voltage across its terminals, known as thermal noise. As shown
in Fig. 3.3, the root mean square current noise 4, j, generated in a single memristor
with conductance G, is given as follows [71]:

in,jk == \/4KBTijk, (36)

where f is the operating frequency of the crossbar, K5 is the Boltzmann constant,
T is the temperature in Kelvin. The thermal noise is modeled as a Gaussian
distribution with zero mean and standard deviation i, j;. Then, the equivalent
standard deviation of the (jk)—th memconductance can be described as:

oo — in,jk B 4KBTfG]k
- _
|vj1 v

(3.7)

where v; is the voltage drop across the two terminal. In the case of active crossbars,
transistor thermal noise in the 1T1R structure can be neglected with proper sizing
[72].
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Let us assume a random perturbation of the matrix G by sampling from a
Gaussian distribution with zero mean and variance o7

G=G+Zr (3.8)

where Zr = (Z;;,) ~ N(0,0%). Thus the ideal computation i = G’v transforms
into the perturbed system

i=G'v=(G+2Z) V. (3.9)

where i is the perturbed output. The k-th component of Eq. (3.9) is a linear
combination of independent Gaussian random variables and therefore it holds [70]:

gk—ik:Zlkvl—i‘...—FanUn:
~ v N(0,07) + ... +v,N(0,07) =
AKgT fG AKgT fG,
BQf 1k>++N<0UTQL B f k>:

V1 vz

~ N (0,4K5Tf||Ggll)) Vhk=1,...m

where ||Ggllr = - |G| = >j-; Gjr is the 1-norm of the k — th column of
the conductance matrix G. This means that if one randomly perturbs all the
entries of a matrix by sampling from a Gaussian distribution N(0,0%), then the
k-th output current noise will be normally distributed. Since the output variance is
given in terms of current noise, it can be then converted into output voltage noise by
multiplying it by the square of the feedback resistance: vi,, = 4KpT f| G R} +
AKgETf Rfc Vk = 1,...,m where the last term is the voltage noise variance of the
feedback resistor.

~ N (0, V3
(3.10)

3.2.3 Shot Noise

Shot noise is an electronic noise that originates from the discrete independent
charged particles in the current flow. Roughly speaking, electrical current does not
behave like water: uniform flow and smooth variation in time. Since the motion of
individual electrons is unpredictable, it is commonly computed the average number
of electrons drifting past a particular section per time interval. The variation about
the mean value of this quantity is defined as shot noise. For large numbers, the
Poisson distribution approaches a normal distribution about its mean as a result
of the central limit theorem and the equivalent standard deviation of the (jk)—th
memconductance can be described as:

B J 20fGylv;| J 2qfGi
Og = | ———— =

: v

(3.11)

Uj
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where ¢ is electron charge, and v; is the voltage drop across the generic memristor
with conductance Gj.

Let us assume a random perturbation of the matrix G by sampling from a
Gaussian distribution with zero mean and variance o%:

G=G+1Zs (3.12)

where Zg = (Z;z) ~ N(0,0%). Thus the ideal computation i = G'v transforms
into the perturbed system

i=G'v=(G+2Zs V. (3.13)

where i is the perturbed output. The k-th component of Eq. (3.13) is a linear
combination of independent Gaussian random variables and therefore it holds [70]:

%k—z’k:Zlkvl—i—...%—anvn:
~ v N(0,02) + ... +v,N(0,0%) =

201G 2q G,
NN<0,Uf af By 4+ N, qu; | ’“):

(3.14)

|v1]

Jj=1

~ N (0,2qf2|ijk|> Vk=1,...m

where ij;, is the current flowing out from the (jk)—th memristor. This means that if
one randomly perturbs all the entries of a matrix by sampling from a Gaussian dis-
tribution N (0, 0%), then the k-th output current noise will be normally distributed.
Since the output variance is given in terms of current noise, it can be then con-
verted into output voltage noise by multiplying it by the square of the feedback
resistance: vg, = 2qf >y likg| + 2qu3c Vk = 1,...,m where the last term is the
voltage noise variance of the feedback resistor.

3.3 Systematic errors

Precision is insufficient to describe the system performance. To measure the
discrepancy between the ideal and the corrupted results, the overall output accuracy
can be computed in terms of the normwise relative error. Let || - || be a vector
norm, the normwise relative error E, between the measured output vector x and
the output provided by a digital software x can be defined as:

E, = (3.15)

Common norms used are the euclidean norm, 1—norm and co—norm.
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Recently, [49] proposed to reduce wire resistances effect by estimating linear
scaling factors for each column output. This method may be used to compensate
further systematic contributions. In general, other systematic errors such as finite
gain, input and output resistance and capacitance of the op-amp, voltage offsets and
op-amp non-linearity can affect system accuracy. The next sections focus on the
analytical computations of the wire resistance and op-amp’s finite gain systematic
contributions.

3.3.1 Wire Resistance

Let us consider the MVM operation using a memristive crossbar with conduc-
tance matrix G € R™™ and introduce the following notation for each column
k=1,....,m:

i = (i1k, - - - ,ink)T the vector of n currents through the n memristors in the
k—th column with the presence of wire resistances;

ey = (e1x, ..., enx)’ the vector including the potentials of nodes corresponding
to the upper terminals of memristors in the k—th column;

& = (C1k, - - -, énk)T the vector including the potentials of nodes corresponding
to the lower terminals of memristors in the k—th column;

R is the wire resistance;

'y = RGy = diag(Gyy, ..., Gpi) a diagonal matrix where each entry is the
product of the wire resistance and the memductance G, of the k—th column’s
memristors.

A circuital analysis of the k—th column depicted in Fig. 3.4 gives

where

Ve, = LI é, — LT
. €k kCk R K€k (3.16)
i, = Gp(er — &)
1 0 .0 -1 1 0
I 1 1 . vV — o -1 . (3.17)
N T |
1 1 ... 1 o ... 0 -1

Solving the first equation of the system (3.16) in terms of €, it yields:

ék = (er — V)_lLI‘kek
= ék = (ann - F]ZIL_IV>_lek (318)
= &8, = (Lyn + T VIV) ey
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Figure 3.4: The schematic of a memristive crossbar with the presence of wire resis-
tance R. Wire resistance is modeled by small-value resistors on vertical lines and
horizontal lines.

where L' = — V7T, The Woodbury formula [73] and Eq. (3.18) allow us to calcu-
late the potential distribution over the vertical wire connecting the k—th column’s
memristors to the operational amplifier:

ék: = [I[nxn - (ann + LTLFk)_l]ek
(I[nxn + LTer)_lek
= e — ék = (I[nxn + LTLFk)_lek

By substituting Eq. (3.19) in the second equation of the system (3.16), it follows
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that the vector of memristor currents is
ir = Gi(Lixn + L'LLy) ey
iy = [(Luwn + LTLTL) G, ey, (3.20)
ir = (G;' + RL"L) ey

This analysis yields for each column of a two dimensional crossbar G € R"*™. Let
us now analyse the horizontal wire effect by introducing the following notation:

o Ggigy = diag(Gy,. .., G,,) € Rumxnm,
« e=(eg...,e,)" € R"™;

e u=(v,0,...,0)7 € R"™;

o i=(iy,...,ip)" e R™.

The circuital analysis of the circuit shown in Fig. 3.4 gives:

)
en_1 = Ri,, +e,

eno=R@n+in1)+ten

: (3.21)
er =R, +...+i2) +e
e=Ri,+...+1) +e

where ey = v. This set of m vector equations can be written in matrix form by
introducing the following matrices:

Iixn O ... 0
(L ® :[[nxn) — ]Ian Han
: : 0
ann ann e ann
_I[nxn I[nxn 0
(VoL =| 0 Tl
Lxn
A 0 0
0 A - 0
(I[nxn ® A) = . . i . 7VA S R™"
0 0 - A

where ® is the kronecker product notation.
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Remark 2. The kronecker product has the following properties:
(A2 B)T = (AT  BT)
(AxB)'=(A"'xw B (3.22)
(A®B)(C®D)=(AC®BD)

From Remark 2, it follows that (3.20) and (3.21) can be rewritten as:

3.23
i=H"! e ( )

{( ®Hn><n) R(L ®Hn><n> —u

where H = diag(G;' + RLL,..., G! + RL"L).
From the second equation of system (3.23) it yields that e = Hi and by substituting
this equality in the first equation one gets:
Hi = R<VT ® ann>_1<LT ® ann>i - (VT ® ann>_1
= —R(LL" @ I,,,)i+ (L ® Lix,)u (3.24)
[H + R(LLT X ann)]l = (L & ann)ﬂ

Observing that

Liww 0 ... 0 v v
Losxn Taxn 0 A4
(L ® Lixp)u = =1 =X (3.25)
: . . 0 : : -
I[an II:TZXTZ LR I[TZXTZ 0 !
we have that system (3.24) can be simplified in:
i=[Gyh, + R(lywm ® L'L) + R(LLT ® L1y,)] v (3.26)
or in the compact form:
i=[G, +Rwl| ™'y (3.27)

where Ry = R(Iyxm @L"L)+ R(LL” ®1,.,,) represents the vertical and horizontal
wire resistance contribution in a memristive crossbar. Figure 3.5 shows an example
with R = 1. In conclusion, the k—th component of the current output vector i is

ir =afi=af |Gy, + Ryl 'y (3.28)
where the column vector a, = [0%,...,07, 15, ol,...,0T]" € R"™.

kth

Remark 3. If R — 0 then Ry = 0 and i = Gyj,,v or equivalently i = GTv.
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Figure 3.5: The 100 x 100 block matrix Ry, representing the horizontal and vertical
wire resistance contribution.

3.3.2 Finite gain of the Op-Amp

The current output can be converted into voltage by using transimpedance
amplifiers (TTAs). A TIA is required instead of a resistor for current to voltage
conversion in order to decrease the impedance seen from the crossbar with the
following equation [74]:

_ Ry By

YA+ T A,

where A, is the op-amp’s gain and R; is the input resistance of the TIA. In com-

putation mode, the memristors should be operated in their linear range [49]. The

voltage drop on the memristors, v,,, should also be kept well below the switching
threshold voltage

(3.29)

U, < Vj — Vpey (3.30)

where v; is the crossbar input voltage for the j-th row and v,.s is the TIA virtual
reference voltage. Because of the op-amp’s finite gain, a systematic error will be
introduced on each output voltage. This is caused by the virtual reference node
of each TIA not being equal to v..s. A post-measurement error correction can
be implemented to compensate for this systematic error. This is found from the
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analysis of a non-ideal voltage adder. After measurement, the k-th output voltage
can be corrected by the multiplicative correction factor

(X721 Gir + Gin + Gy) (G + Gy)
GA, G,

G r+ (3.31)
where 77, Gy is the sum of the memristor conductances connected to the k-th

TIA, G;, and G, are the op-amp’s input and output conductances respectively, and
Gy is the TIA feedback conductance.

3.4 Feedback Loops

Memristive crossbars enable fast MVMs calculation in one step using Ohm and
Kirchhoff’s laws. On the other hand, recent works have taken this a step further
by demonstrating that linear algebraic systems can also be solved in a single time
step using similar hardware with feedback [64, 75, 76]. Hereinafter, the crossbar
depicted in Fig. 3.1 will be referred to as open-loop crossbar to discriminate it from
crossbars that make use of feedback loops.

3.4.1 Linear Systems x = A~'b

The feedback crossbar in Fig. 3.6 can be used to solve systems of linear equations
such as
Ax=Db (3.32)

in which A € R™"™ and b € R"™ are known but x € R" is an unknown vector to be
determined. In this structure, TIAs formed by an op-amp and crossbar resistances
in feedback are used for two purposes. They create a virtual reference node that
enables the distribution of input current i over the crossbar in the feedback path
and perform current to voltage conversion. As a result of Kirchhoff’s Current Law,
the following relation will hold at the outputs of the TIAs”:

G'v=i (3.33)

where G is the memristor conductance matrix of the crossbar.

In Fig. 3.6, resistors R, are used as voltage to current converters to provide the
input vector i. The output voltage v in (3.33) is the result of the multiplication of
the inverse of the matrix G and the input current vector i = R.v;. The advantage
of using a crossbar to solve a linear equation is the fact that the computation of
A~ is not required. This significantly reduces the computational complexity.

To avoid doubling the crossbar using differential pairs whenever matrices have
both positive and negative values, it is possible to rely on the linear transformation
defined in Eq. (2.3). Unfortunately, the simple closed form relation between the
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Figure 3.6: A schematic illustration of a 4 x 4 crossbar with feedback loops.

measured and the correct outputs defined in Eq. (2.5) can not be easily generalized
to the case of linear systems. However, the following results show that the correct
output can still be retrieved by simply adding a proper calibration step:

Proposition 3. Let A € R™" ~,6 € R. Then:

1 6 (AT'1,17A7!
G '==-A"-- L 3.34
Gy = a2 (A A ) (330
Proof. Let us observe that
[GT]7" = [(vA" +01,1;)"] 7" = (A +01,1;) 7" (3.35)
The thesis simply follows from the application of the Shermann-Morrison formula
[73] to Eq. (3.35). [ |
Theorem 6. Let A € R, v € R" and i € R". I[fv= A" and v = [G'] "4
then: -
_ ~ i=1 Vi
v="r ('v+ =05, o w) (3.36)

where w = [GT]7'1,,.
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Proof. Let us first consider an additional linear system w = A~'1,, and its linearly
transformed W = [G”]~'1,. By applying Prop. 3 we get:

1 5 ( A7'1,17A!
X o— GT_l]_n: _A—l__ n-+tn 1n:
&] l’y ~ <7+51£A11n>]

Let us now apply Prop. 3 to the linear system

17 1T A1
v=[GT] = lA—l_é % i—=
Y 0 v+01,w
:1V—§< Wn )1£V:
vy \Y O w
1
:—V—év?de:
g
——1@—5wrﬂv
/y n

It follows that v = (I — éwll)~!'v. By further applying Shermann-Morrison
formula we get:

(e WL owi1l .
v=a 1 —901Tw -
B + 5W1T B
. -~ 52” 1{}2 -~
_’7<V—|— 1_521 i W>

This proposition shows that for computing the recovering step of the linear trans-
formation (2.3), it is necessary to perform a calibration step, i.e. W = [G”]7'1,,
whose result can be then used to find the correct solution of the computation.

In contrast to the open-loop crossbar, a careful gain and stability analysis must
be performed for the feedback crossbar. The loop gain analysis of the circuit shows
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that the diagonal elements of the inverse matrix A~! must be positive. This ensures
a negative gain for each loop and thus prevents the system from operating in an
unstable positive feedback region [75]. The class of matrices that satisfy this con-
straint are M —matrices and positive definite matrices. To be able to provide the
correct distribution of the currents over the crossbar, positive terminal of the op-
amp needs to be as close as possible to the virtual reference voltage, thus requires
a high open-loop gain.

The feedback crossbar depicted in Fig. 3.6 differs from the open-loop structure
because it uses current instead of voltage inputs, which requires current noise vari-
ances to obtain the output distribution. Moreover, the magnitude of the random
fluctuations strongly depends on the conductance matrix itself. If we consider the
system (G +Z)T(v+€) = (i+n) and assume that ||Z||||G™"|| < 1 for any induced

norm, then:

€] K(G) (IIZH ||"7||>

< + (3.37)
vl = 1= ZIIGH G ]

where K(G) = ||G||||G™!|| is the condition number [77] and €, € R". Equation
(3.37) states that if the matrix G is well-conditioned (i.e. K(G) is close to 1), then
small changes in G and i produce correspondingly small changes in the solution
v. If, on the other hand, G is ill-conditioned (i.e. K(G) is large), then small
changes in G and i may produce large changes in v. This implies that the system
precision strongly depends on the nature of the application [67]. Moreover, matrix
properties also affect the convergence time and accuracy [78]. Thus, the same
circuit can converge with different accuracy using different matrices. However, a
high GBW (gain-bandwidth product) provides faster convergence for the case of
badly conditioned matrices.

3.4.2 Linear transformation z = BA 'c

In some applications that make use of linear algebra operations, another expen-
sive computation relies on the following computation:

« solving a linear system x = A 'c,
o computing the MVM z = Bx.

Hereinafter, we define the combination of these two steps as the single Matriz-
Inverse-Vector Multiplication (MIVM):

z=BA 'c (3.38)

with known A € R™" B € R™"™ and ¢ € R".
Thus feedback and open-loop crossbars can be used to perform inference process
together and avoid the expensive computation of the inverse matrix A~'. In Fig.
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Figure 3.7: A schematic illustration of a 3 x 4 open-loop crossbar combined with
with a 3 x 3 feedback crossbar.

3.7, feedback and open-loop structures are connected back-to-back where feedback
crossbar solves the linear system x = A ~'c and open-loop crossbar uses this result
as an input to compute the MVM z = Bx.

As it is required by the feedback crossbar, the recovery step for this novel
structure due to the linear transformation defined in Eq. (2.3) takes a two-step
calculation as described in the following result:

Theorem 7. Let G defined as in Eq. (2.3) and

Gmax - Gmm
H = aBT + Blnlz;p o = ﬁa B - Gmam - aBmax

The MIVM z = BA ™ 'c with known A, B and ¢ can be solved by performing the
following two steps:

1) Solve g = [H"|[G"|' 1, with y=[G"]71, (calibration step)
2) Solve z= [H"][G"] "¢ with = [G"] ¢ (inference)
The correct solution z can be found by performing the following recovering step
im
1=y
Proof. Let x = A7 'c and z = Bx. From Theorem 6 we know that
oY T .
x =1 (5& + —Z"nl o y)
L =229
63
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z=—[z+(0k)g— (Bk) In], K (3.39)



Memristive Crossbars: System Evaluation and Configurations

where ¥ = [G']7'1,,. We know that

1
H=oB" + 1,15, = B = — (H' - 51,17
(6]

It follows that:

2 =B <x TREES\L N 9)

1 =>4
=7 (H" - p1,17) (x + m—i}xy> =
«Q 1 =309
S F o n Y Y,
=2 (s PRI ny - g0y, - gt Ry )
« 1 =305 i=1 =209
= L2+ (5K)a — (5})L]

In the two-steps recovery process, the only important information provided by
vector ¥ and X is their sums as shown in Eq. (3.39). By introducing an additional
column line in the open-loop crossbar that works as an adder (e.g. Hpj = Gin,
Vj =1,...,nis the m—th row of H), the combination of the two structures can be
used to perform the MIVM operation in a single platform.

The main bottleneck of the two structures is the feedback crossbar. The con-
vergence time is a function of the matrix condition number and varies for each
application. More details can be found either in Section 3.4.1 or in [67].

The open-loop structure is easier to implement compared to feedback crossbar.
It is inherently stable, does not require a very high performance op-amp and its
performance is not affected by the condition number.

3.5 Conclusion

The aim of this chapter was to provide a novel analysis of both random and
systematic errors to establish the basis for future comparisons with similar systems
that make use of linear algebra applications. It introduced the mathematical tools
to compute the SNR and determine the output precision of the system. This
method is non-application specific and allows the users to have a valid comparison
between crossbars and their analog and digital counterparts for any practical use.
The key contributions of this chapter are:

1. The unified formulation of the output noise distributions produced by the
programming noise in Eq. (3.4), the thermal noise in Eq. (3.9) and the shot
noise in Eq. (3.13);
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2. The closed mathematical expression of the wire resistance contribution when
solving a MVM operation defined in Eq. (3.27);

3. The formulation of a calibration stage for the recovering steps defined in
Props. (6) and (7) for the feedback loops circuits depicted in Figs. 3.6 and
3.7, respectively.
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Chapter 4

Analog Implementation of
Probabilistic Models

This chapter aims to validate the theoretical results found in Chapter 3. The
systems performance is evaluated in solving different applications of famous prob-
abilistic models whose inference relies on linear algebra computations: Markov
Chains (MCs) and Gaussian Processes (GPs). The different systems are evaluated
using SNR, accuracy and energy efficiency. The results show how discrete MCs and
GPs can meet the different circuit requirements by providing a detailed theoretical
background to support the design study of the analog memristor crossbar. In par-
ticular, the goal is to provide a complete end-to-end description to rigorously map
the inference operations characterizing these two probabilistic models into memris-
tor crossbars and find their solutions. This approach enables the reader to clearly
see the linear and inverse transformations, the output precision in terms of bits, and
how MC and GP properties satisfy the feedback structure’s requirements. The first
part of this chapter is based on the article "Analog Solutions of Discrete Markov
Chains via Memristor Crossbars" by Zoppo et al [67].

4.1 Discrete-Time Markov Chains

This section introduces discrete-time MCs, with the main focus on the Markov
property and transition probability matrices. Further details can be found in [79].
A discrete random variable with finite state X is a measurable function X : Q — I’
where  is the set of possible outcomes and I' = {1,...,m}. A discrete time
stochastic process with finite state is a sequence {Xy : k € N} of discrete random
variables with finite state.

Definition 3. A first-order (time) homogeneous MC with finite state is a discrete
time stochastic process that for all k, h € N satisfies:
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Chain Step

Figure 4.1: Graphical representation of a generic regular three-state MC together
with Power Method iterations. Black dashed lines correspond to the limiting dis-
tribution. Taken from [67] ©2021 IEEE.

o Markov property:
P(Xi+1 = Tp1| Xi = 2, ., Xo = 39) = p(Xp1 = Tp|[ X = 1) (4.1)
o Time homogeneity property:
P(Xk41 = Tpy1| Xp = k) = p(Xpt1 = Tp|Xn = ) (4.2)

The transition probabilities can be represented in a compact form by the tran-
sition matrix M:

Mij = p(Xyyr = j|Xi = ). (4.3)

M is a m X m non-negative probability matrix for which the column elements sum
to 1. The matrix size denotes the number of states m of the MC. Starting from
an initial distribution p, = [p(Xo = 1),...,p(Xo = m)]?, the k—th distribution
p;. can be deduced from the previous k£ — 1 distributions by simply performing the
following MV Ms:

p, = Mp,_; = p, = M'p, (4.4)

where MF is the k-th power of M.

Definition 4. A finite MC with transition matriz M is said to be irreducible if for
all pairs of states (i,7), there exists some v = r(i,j) € N such that Mj; > 0.

Irreducibility guarantees that every state can be reached from any other state. A
MC with transition probability matrix M is said to have a stationary distribution

Poo = [Phos- - P2t if
P = Mp_, pr)o =1. (4.5)
i=1
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Whenever the chain starts in the stationary distribution, it remains in that dis-
tribution at any subsequent timestamp. There could be more than one stationary
distribution corresponding to the eigenvectors of the transition matrix eigenvalue of
1. However, when the chain is irreducible, the uniqueness of the stationary distri-
bution p., is guaranteed and for every state i, p._ corresponds to the mean return
time to that state. Each component of the stationary distribution can be regarded
as the proportion of time spent by the chain in a given state.

Depending on the initial distribution, an irreducible MC does not necessarily
converge towards its stationary distribution. Thus, it is necessary to introduce the
concept of regular MCs.

Definition 5. A matriz M is said to be primitive if there exists r € N such that
Mi; > 0 for all pairs of states (i,j). A finite MC with a primitive transition matriz
M is reqular.

Regular MCs are always irreducible, but the reverse requires a further constraint:

Definition 6. The period d; of the state i is given by d; = ged{r > 1: M], > 0}
where ged denotes the greatest common divisor. A state 1 is said to be aperiodic if
d; = 1. The finite MC and its transition matrix M are called aperiodic if all states
are aperiodic.

Proposition 4. The following properties hold:
a) A finite MC is irreducible and aperiodic if and only if it is reqular;

b) Let us consider an irreducible finite MC with transition matriz M and assume
there exists © € I' such that My > 0, then the MC' is reqular;

c¢) If a finite MC is reqular then it holds lim, . p(X,, = i| X, = j) = p' V7.

For further details on the proofs, see [79]. Whenever a limiting distribution exists,
the chain converges to it regardless of the initial condition. Each component of
the limiting distribution can have two different meanings: long-run probabilities or
proportion of time spent by the chain in a given state. The discrete-time evolution
of a finite MC can be studied by successively iterating Eq. (4.4). Starting from an
arbitrary initial state, one can predict the next most probable state of the chain by
performing a MVM operation. By repeating this process, one can infer the most
probable state after k steps. Figure 4.1 shows the evolution of the distribution vec-
tor of a generic regular MC at each iteration. After a certain number of transitions
the distribution does not change. For this reason, it is interesting to analyse the
stationary /limiting distribution of the chain.
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4.1.1 Solving Discrete-Time Markov Chains

As can be inferred from Eq. (4.5), the stationary distribution of a MC can
have two different interpretations: the solution of an eigenvector problem or of a
linear system. As a result of this duality, a large variety of algorithms are available
for solving finite MCs: direct and iterative methods [80]. The first class mostly
requires the whole coefficient matrix to be stored and applications are often lim-
ited by storage capacities and computational efficiency (Gaussian Elimination, LU
decomposition, GTH-algorithm, etc). The second class is preferable when dealing
with large problems (Gauss-Seidel, Power Method, etc). Nevertheless, the time
complexity is a polynomial function of the matrix size for both classes. Further
details on space and time complexity can be found in [77].

Traditionally, the stationary distribution of a MC has been regarded as an
eigenvector problem and the Power Method has been the popular method of choice.
This algorithm starts with an initial distribution vector p,, which may be either
random or an approximation to the dominant eigenvector. At every iteration k,
the algorithm is a MVM between the transition matrix M and the current state p,
until a stopping criterion is satisfied.

Recently, a closed-loop circuit implementation was proposed that computes the
dominant eigenvector of a matrix in a single time step [64]. This bypasses the
successive MVMs characterizing the Power Method, but it precludes the possibility
to compute the k-th step prediction that sometimes arises in MC applications.
The irreducibility of the transition matrix M guarantees the existence of a unique
stationary distribution. However, the convergence of both the closed-loop circuit
implementation and the iterative Power Method is influenced by the primitivity of
M. If the stochastic matrix is not primitive, then it may have several eigenvalues on
the unit circle, causing convergence problems. This results in long-run probabilities
of the chain that strongly depend on the initial condition. For primitive matrices,
the convergence to the unique dominant eigenvector is guaranteed. This class of
matrices has only one eigenvalue on the unit circle and all other eigenvalues have
modulus strictly less than 1. For this reason, starting from any probability vector,
the iterative process is guaranteed to converge.

Remark 4. One way to ensure that the problem has a solution when the primitivity
condition is not verified is to consider a modified transition matriz Q = al,, + (1 —
a)M where 0 < a < 1 and 1,,, is the m x m identity matriz. If p., = Mp,, then

Qp. = [al, + (1 — a)M]p,, =
- aI[mPoo + (1 - a)Mpoo =
= 0P + (1 - a>pm =
:apm+pw — QP = Poo-

Thus, the two chains with transition matrices M and Q share the same stationary
distribution. Nevertheless, the latter is now a reqular MC as highlighted in Prop.
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4(b) and therefore has a unique limiting distribution with the accuracy of the results
influenced by the choice of a.

The alternative approach to the iterative method is the direct calculation of the
eigenvector p., by solving an associated linear system as shown in the following:

Proposition 5. Let M be the transition matriz of a finite irreducible MC with
stationary distribution p. .

Let A = (I, — M + 1,,4m) where 1,xm is the matriz with all entries equal to 1
and 1,, is the column vector of ones. Then:

a) A is non-singular and A;' > 0Vi=1,...,m;
b) p.. is the unique solution of the system

Az =1, (4.6)

c) The linear system defined in Eq. (4.6) is equivalent to the following system
G"v=(v+ )1,
where G is defined in Eq. (2.3).

Proof. a) For details see [81, 82].
b) The objective is to find p., such that Mp__ = p_, subject to 7, p'_ = 1. This
constraint can be written as

1nxmPo = Lin- (4.7)

By summing p_, — Mp_, = 0 to (4.7) and by collecting p_,, the claim is obtained.
For a), the irreducibility assumption ensures the non-singularity of the matrix, thus
the uniqueness of the solution.

c¢) Consider the linear system Ax = 1,,. By multiplying both sides by v and then
adding the vector d1,,.,,X, one obtains the equality:

YAX 4+ 010X = Y1, + 01X (4.8)
By collecting x and observing that 1,,,X = 1,,,, one gets GTx = (y +0)1,,. N

In conclusion, (4.5) and (4.6) share the same solution. However, a direct compu-
tation of the linear system in (4.6) avoids the possible convergence issues arising
in the iterative algorithms. Proposition 5(a) guarantees that the feedback system
defined in Section 3.4.1 has a negative gain for each loop avoiding the system from
operating in an unstable positive feedback region. Proposition 5(c) allows to cir-
cumvent the necessity of considering a recovering step to find the correct solution
of the linear system (4.6) as defined in Prop. 6. In addition, the output can be
obtained in two different ways:
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o for an input vector (v + §)1,,, the circuit will provide the normalized eigen-
vector as the solution;

o for an input vector 1,,, the correct solution can be recovered by normalizing
the output voltage vector.

The (v40) term in the first approach can become a very small number based on the
selection of memristor conductance range and matrix A. This can impose physical
limitations to circuit design. However, the second approach can be used for any
conductance range. Thus, in the next section, an input vector 1,, is introduced
and the correct solution is obtained by normalizing the output voltage vector.
Both configurations require ADCs (Analog-to-Digital Converters) after the crossbar
TTAs to perform post-processing operations such as normalization and inverse linear
transform in digital domain.

To review, the open-loop crossbar can be used either to predict the next state
distribution vector via a simple MVM operation or to compute the stationary distri-
bution of the regular chain by performing sequential updates by the Power Method.
However, if the evolution of the system is not necessary, one can compute the sta-
tionary distribution of a MC in a single step using the feedback configuration.

4.1.2 Case Studies

In this section, two examples are illustrated in order to show systems perfor-
mance on different applications. The two systems are evaluated using SNR, accu-
racy and energy efficiency. In the next results, the wire resistance contribution is
assumed to be negligible since by performing the pre-processing proposed in [49]
the errors can decreases as low as 5%. This allows to highlight the contribution
given by the finite gain and the programming error.

Mouse in a Maze

The mouse in a maze shown in Fig. 4.2(a) is a classic example of a MC problem.
Here there are nine rooms and each of them is connected to the adjacent rooms. At
each timestamp, the mouse chooses the next room to visit based on the probability
columns of the transition matrix shown in Fig. 4.2(b). Each room/state is labeled
with numbers between 1 - 9 and the mouse is initially in room 3. Iterating Eq.
(4.4), one can compute the probability distribution of the system and infer the
most likely position of the mouse after 6 moves as shown in the histogram plotted
in Fig. 4.2(c).

The mouse can only go from an odd-numbered room to an even-numbered room,
and vice versa. Hence, the chain is not aperiodic: from any initial condition, the
chain will alternately be in even- or odd-numbered states. However, the mouse is
able to reach all the possible rooms, implying that the chain is irreducible. This
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Figure 4.2: (a) Example of a mouse trapped in a maze. (b) Transition matrix
representing the probability that the mouse goes from one room to another. (c)
Comparison between the 6-th step probability distribution using MatLAB and the
proposed open-loop crossbar with 8-bits precision memristors. (d) Comparison be-
tween the stationary distribution using MatLAB and the proposed feedback crossbar
with 8-bits precision memristors. Taken from [67] ©2021 IEEE.

guarantees the uniqueness of the stationary distribution. By solving Eq. (4.6), one
can analytically find

11111111 17"
Pe= 75375323 19° o (49)

plotted in the histogram of Fig. 4.2(d). Since the chain is not regular, the resulting
vector does not coincide with the limiting distribution but provides the mouse’s
mean occupation times in each room.

The 6-th step probability distribution computation was implemented on the
open-loop circuit in Fig. 3.1(b) using 8-bit precision memristors and [100—1000]u.S
as memristor conductance range. The system was simulated in the Cadence/Spectre
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software with default convergence settings, corner conditions, and a temperature
of 27°C'. The MatLAB software was used to both implement the iterative process
and normalize the collected results. The probability distribution vector is given
in Fig. 4.2(c). The normwise relative error between the measured output and the
true output given in Eq. (4.9) was measured to be 0.82%. The computation of
the stationary distribution problem was implemented on the feedback circuit in
Fig. 3.6. The stationary distribution p_, is given in Fig. 4.2(d). The normwise
relative error of 0.61% was obtained from the circuit simulations. The accuracy for
both architectures shows promising results, mainly due to the use of a small matrix
and crossbar. The accuracy can be further improved by decreasing the systematic
errors with higher gain op-amps and higher precision memristors. The SNR and
energy efficiency for this type of random matrix problem will be evaluated in the
next subsection by considering larger matrix sizes.

The Pagerank Algorithm

A very different type of MC problem is the core of Google’s search engine [83].
Among all the different ranking algorithins [84], Pagerank considers a random walk
on the web graph. It assigns a score that is proportional to the probability of
being on that page after a large number of moves, i.e. the limiting distribution of
the MC. Assuming there are m pages, one can generate an adjacency matrix A
by setting each entry equal to 1 if node 5 has a link to node 7, and 0 otherwise.
Then, the transition matrix W can be constructed by normalizing each entry of
the matrix to get sums of 1 for each column. Columns having all zeros entries
(i.e. dangling nodes) are replaced by a uniform distribution vector in order to
make W a well-defined stochastic matrix. This construction does not guarantee
the MC’s irreducibility and therefore the uniqueness of the stationary distribution.
This happens when the web graph has some sinks: not all pages are reachable from
any given arbitrary node. One way to implement this property consists in allowing
the web surfer to jump from the current website to a new random website. The
strategy is to perturb W in terms of a damping factor a that uniformly spreads
part of the rank. This results in M = aW + (1 — a)R, where R is the matrix in
which all entries are --. The irreducible transition matrix M is generally called the
Google Matrix and a typlcal value for a is 0.85. M is now an entrywise positive
matrix and thus primitive, but it is far from 'random’ This yields two possible
interpretations of the Pagerank: long-run probabilities or mean occupation times.

The pagerank algorithm was implemented on both open-loop and feedback cir-
cuits using 8-bit precision memristors and [100—1000]uS as memristor conductance
range. In order to perform a realistic comparison with the current literature, the
publicly available Mathworks dataset [85] was chosen. The adjacency matrix is
shown in Fig. 4.3(a). The Cadence/Spectre software was used to simulate the
circuit and collect the results.
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Figure 4.3: (a) Adjacency matrix representing the links between the 100 pages of
Mathworks dataset. (b) Transient behavior of the feedback system converging to
the limiting distribution of the chain. (c) Simulated pageranks provided by the

feedback crossbar. Taken from [67] ©2021 IEEE.

To compute the Pagerank with the open-loop crossbar, the Power method was

applied to the Mathworks transition matrix. For a fair comparison with the feed-
back system, the same op-amp was used. The transistor level of the op-amp given
in [67] was used in the simulations with a gain of ~ 86d B, gain-bandwidth-product
of 1.1GHz and a power consumption of 163uW with a 0.9V power supply. Since
the open-loop crossbar op-amp does not require the gain or GBW to be as high as
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the feedback crossbar, relaxing the requirements of the op-amp can improve energy
efficiency. The total power consumption of the open-loop crossbar is:

100
j=1,k=1

where i;, and R, are the current and resistance values of each memristor, re-
spectively, and iy is the total current flowing through the feedback resistor. The
convergence time is independent of the matrix properties. The SNR is calculated
to be 56dB for the open-loop configuration. This approximately corresponds to 9
bits output precision per iteration. Percent normwise relative errors are shown in
Table 4.1, and in the case of the open-loop crossbar they refer to a single iteration.

The iteration process implemented in the open-loop crossbar can be performed
in two ways: transferring output voltages to the digital domain using ADCs [86, 87],
performing recovery and normalization steps in a digital computer, and applying
them to the crossbar inputs using DACs for the next iteration; or designing analog
recovery and normalization circuitry. Registers, which can be either digital or
analog sample and hold circuitry, are needed to apply previous iteration outputs as
subsequent inputs. In both approaches, there will be a power penalty in addition
to the computation time delay. The use of digital systems at each iteration will
also introduce quantization noise and further decrease the final output precision.
The number of iterations depends on the application and desired output accuracy.
The corresponding time and energy penalties to perform k iterations can be found
in Table 4.1.

The PageRank computed as the solution of the linear system defined in Eq.
(4.6) was simulated in the feedback circuit. The transient response of the system’s
outputs is shown in Fig. 4.3(b). These results were collected and normalized using
MatLAB software. The importance score of the pages is given in Fig. 4.3(c). To
quantify the accuracy, a normwise relative error of 4.2% was obtained from the
simulations. Figure 4.3(b) shows that the op-amps have settled within 0.1% error
of their final value in 552ns. The total power consumption of the crossbar, input
resistors and op-amps is:

100
> (i3, Ry + i3, Re + Pamp) ~ 28 mW (4.11)

J=1

where R,,; is the parallel combination of memristor resistances on the j—th row
and 4;, is the input current for each row. More than 90% of the power is consumed
by the input resistors R. and op-amps. The power consumption of the op-amp can
be decreased with a more advanced technology node. However, the efficiency of the
feedback crossbar may be limited because of the high gain and GBW requirements
of the system.
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4.1 — Discrete-Time Markov Chains

The SNR analysis is performed for this application using (3.1). The mean of
the signal-to-noise ratio for 100 outputs was calculated as 32d B, which corresponds
to an output precision of 5 bits.

The minimum eigenvalue of the transition matrix in the Mathworks application
is very small, i.e. \,;, = 0.0028, which results in a longer convergence time.
However, for higher values of \,,;,, the convergence time can decrease significantly
(67, 78].

In summary, the feedback crossbar usually offers better energy efficiency be-
cause it is a one-step system, limited by the convergence time of the circuit. The
use of the same input current for all rows in the feedback structure provides fur-
ther potential power efficiency through the input peripheral circuitry compared to
the open-loop crossbar in a higher level system design. The feedback crossbar can
be used in MC applications that only require moderate to high output precision,
i.e. 4 to 8 bits. If higher precision is demanded (> 9 bits), the use of an open-
loop crossbar may yield the desired results after a sufficient number of iterations.
To dramatically reduce the number of steps required for the Power Method and
improve the precision of the feedback crossbar, one can use the stationary distribu-
tion estimated by the feedback crossbar as the initial condition for the open-loop
crossbar. Both structures outperform their digital counterparts [88] in terms of
solutions/s/W (solutions per Joule) as illustrated in Table 4.1.

Open-Loop Crossbar**  Feedback Crossbar Google TPU [8§]

Time-to-solution k x 6 ns 552 ns 10.9 ns
Power 51 mW 28 mW 40 W
Energy k x 0.31 nJ 15.5 nJ 436 nJ
Solutions/s/W 32 x10° / k 6.5 x 107 2.3 x 10°
Solutions/s/W*** 1.9 x 10° / k 4.4 x 107 2.3 x 106
Accuracy (% Error) 0.69 % 4.19 % N/A
Precision (% Error) 0.13 % 219 % N/A
Precision (bits) 9-bits 5-bits 8-bits

Table 4.1: Summary of Results and Performance Comparison. ft

* Memristor conductance range: 100 — 100045, memristor precision: 8 bits, op-amp
gain: 88dB, op-amp GBW: 1.2GHz.

** L is the number of iterations.

1 Including ADC power consumptions ([86] for open-loop and [87] for feedback
crossbars).

1 The individual memristor precision does not affect “time-to-solution”, “power”
or “energy consumption”. However, it influences the overall system precision and
accuracy. Results for 100 x 100 random matrices are shown in Figs. 5 and 8 in [67],
respectively. Taken from [67] ©2021 IEEE.
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4.2 Gaussian Process

Over the last decade, GPs have become popular in the area of machine learning
and data analysis for their flexibility and robustness. Often cited as a competitive
alternative to neural networks because of their rich mathematical and statistical
underpinnings, GPs provide a probabilistic approach to learning in kernel machines.
This gives advantages with respect to the interpretation of model predictions and
provides a well founded framework for learning and model selection. For a thorough
introduction on GPs see [89].

Despite their attractive formulation, practical use in large-scale problems re-
mains out of reach due to computational complexity. Existing direct computational
methods for manipulations involving large-scale n x n covariance matrices require
O(n?) calculations. Among others, Cholesky decomposition is one of the most used
in this setting. To address this persistent challenge, several approximation tech-
niques have been proposed and grouped in two categories: local approximations and
global approximations (including low-rank approximations) [90]. In this section, we
present the design and evaluation of a simulated computing platform for exact GP
inference, that achieves true model parallelism using memristive crossbars.

Let us denote the input vector as x € R”, and the output, or target, as y.
The target y may either be continuous as in the regression case, or discrete as
in the classification case. Given a training data D = {(x;,y;)[i = 1,...,n} of n
observations, we wish to make predictions for new inputs x, that we have not seen
in the training set. To do this we must make assumptions about the characteristics
of the underlying model. A GP is a generalization of the Gaussian probability
distribution over functions. Whereas a probability distribution describes random
variables which are scalars or vectors in case of multivariate distributions, one can
loosely think of a function as a very long vector, each entry in the vector specifying
the function value f(x) at a particular input x. The function is therefore a sample
from a GP with specified mean and kernel functions as shown in Fig. 4.4(a).

Formally, a GP is a collection of random variables such that the joint distribution
of every finite subset of them is multivariate gaussian. A GP is completely specified
by:

« a mean function m(x) = E[f(x)]

« a covariance function Cov(f(x;), f(x;)) = k(xi,x;)

and we will write f(x) ~ GP(m(x), k(x;,%;,)). Often, Gaussian processes are de-
fined over time, i.e. where the index set of the random variables is time. This is
not the case in our use of GPs; here the index set X is the set of possible inputs,
which could be more general, e.g. R with D > 1. The mean function encodes the
central tendency of the function, and is often assumed to be a constant or zero [89].

The covariance function k£ : R” x R” — R defines the entries of a positive
definite (symmetric) covariance matrix and encodes information about the shape
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Figure 4.4: (a) Sample from the Gaussian Process prior distribution. (b) Mean (in
red) and covariance (in grey shade) functions of the Gaussian Process posterior.
Black dots correspond to the training observations. (c) Samples from the Gaussian
Process posterior distribution.

and structure the function is expected to have. For each x;,x; € R”, some examples
are:

B

+ Gaussian kernel k(x;,x;) =ae™ 2z, a €R;

« Dot kernel k(x;,x;) = X;X] ;

e Matern kernel, constant kernel, etc.

4.2.1 Non-linear Regression

Let f(x) be some unknown smooth function. Suppose to have access to some
noisy function values y; = f(x;) + ¢ with ¢ S A'(0,02). The goal is to derive a
probabilistic model p(y|D) for recovering the systematic component f from noisy
data. Since f is a continuous function, thus having infinitely many dimensions,
the goal of GP regression is to avoid parametric assumptions and set a distribution
over functions to define the nonlinear model. Suppose we have selected a GP
prior GP(m(-), k(-,-)) for the function f. Let D be the set of training points and
X, = {x},...,x},} the set of test points. The joint distribution of the training
outputs, y = (yy,--.,¥,)", and the test outputs y, = (y3,...,y5)" according to

the prior is:
Yy K K. 2
ol Eor)

where 021, xnm is a diagonal matrix representing the contribution of the noisy
data. If there are n training points and m test points then:
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o K denotes the n x n matrix of the covariances evaluated at all pairs of training
points;

o K., denotes the m x m matrix of the covariances evaluated at all pairs of test
points;

o K, denotes the n x m matrix of the covariances evaluated at all pairs of
training and test points.

To get the posterior predictive distribution of the GP evaluated at the m test
points, the joint prior distribution needs to be restricted to contain only those
functions which agree with the observed data points. Figure 4.4(b) shows the
mean and covariance functions of the posterior predictive distribution and Fig.
4.4(c) depicts some sample from it. This corresponds to conditioning the joint
Gaussian prior distribution on the observations to give

v XD~ N (K*TK‘ly, K.. - K:{K_lK*> (4.13)

where K = K 4 021 and K,, = K,, + 02I. The case where o = 0 provides the
noise-free posterior predictive distribution.

For the case of a single test point x,, the matrix K, reduces to the vector k,
and the scalar k., represents the variance at the test point. Using this compact
notation, Eq. (4.13) reduces to

v D~ N (kf Ky, e — kZK‘lk*> . (4.14)

4.2.2 Case study

Let us consider a regression problem with a training set X of n = 32 noisy points
evaluated at the unknown function f(z). Given the training set, the objective is
to use a GP to model and predict the behavior of the function f(z) on a test set
X, of m = 128 points depicted in Fig. 4.5. The GP prior mean is assumed to
be zero. The prior’s covariance is specified as a Radial Basis Functions kernel and
the hyperparameters of the kernel are optimized during fitting by maximizing the
log-marginal-likelihood.

In GP inference, the main expensive computation relies on finding the posterior
predictive mean and covariance defined in Eq. (4.13). This operation can be
performed in the circuit defined in Section 3.4.2 and shown in Fig. 3.7. Computing
the predictive posterior covariance matrix can be recast into the computation Z =
BA™'C where C € R™™. Each column [Z]; Vj = 1,...,m can be computed by
solving m times:

Z]; = BA™'[C];
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for each j-th column of matrix C. In the context of crossbar implementations, this
means that for each application, matrices A and B are fixed and the calibration
step can be computed only once. The only changing factor in the system is the
input vector to the linear system. Thus, the mean and covariance of the Gaussian
Process can be computed in m+1 operations in addition to a single calibration step.
This dramatically reduces the number of operations and avoids the computation of
the covariance matrix’s inverse.

f(z)
- Training Samples
25 N —Xbar Mean |
A —Exact Mean
20 on Xbar
B 20 on Exact
—~ 2 =
B
S
1.5F
1r 1
|
| | | | | | |
-20 -15 -10 -5 0 5 10 15 20

Figure 4.5: Gaussian Process used to solve a nonlinear regression problem with a
training set of 32 noisy points evaluated at an unknown function f(z).

To prevent parasitic resistances caused by high conductance memristors, low
conductance memristors (Ag-Si) with a conductance range [1 —10]uS are used [91].
It is possible to program these devices up to 97 different conductance states which
provides a precision of 6/7 bits. Stochastic noises were carefully analyzed for the
case of MC applications and further results on the influence on the matrix size
can be found in [67]. For this reason, this section focuses on the systematic error
contribution provided by a finite gain, wire resistance and programming error.

The open-loop structure is inherently stable and does not require a very high
performance op-amp. The parallel combination of the memristors in a single col-
umn and feedback resistor of the TIA sets the closed-loop gain of the open-loop
crossbar and thus the bandwidth. To decrease the input resistance of the TIA seen
by the crossbar, a moderate to high gain op-amp is required. To ensure high accu-
racy and high speed operation, the same op-amp was used for both open-loop and
feedback crossbars. Since the designed op-amp has a low output resistance, buffers
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between the two structures are not necessary. However, whenever high conductance
memristors are chosen, then buffers should be used.

Figure 4.5 shows the mean vector of the GP posterior defined in Eq. (4.13)
computed by MatLAB (in blue) and Cadence (in pink). The green line is the target
function to infer and the black dots represent the training set. As shown in the
plot, the two simulated curves perfectly overlap with a normwise relative error of
0.66%. The uncertainty region (gray shade area in figure) boundaries are defined
with a distance of +2¢ from the mean vector. The standard deviation vector o was
computed as the square root of the covariance matrix’s diagonal defined in (4.13).
Each entry o? of the variance vector o2 corresponds to the model uncertainty
at the test points x; V& = 1...,m. Note, that the uncertainty does not fall to
zero at the training points since the model takes into account the possibility of
noisy data. Moreover, regions of high uncertainty correspond to interval where
no training points are provided. The normwise relative error between the two
simulated covariance matrices is 2.05%.

4.3 Conclusion

The solution to MC and GP problems using memristor crossbars was described.
For the case of discrete MC, the open-loop crossbar can be used to implement itera-
tive computations and find the k—th distribution in a sequence, while the feedback
crossbar directly finds the stationary distribution problem and avoids the possible
convergence issues arising in iterative algorithms. A detailed circuit analysis was
performed and a variety of circuit trade-offs were discussed. The effect of memristor
precision on the output accuracy and precision was demonstrated using SNR, out-
put bit precision and normwise relative error metrics. The Mathworks dataset was
used to demonstrate the effectiveness of the modeled architecture for ill-conditioned
matrices.

Results were extended to the case of nonlinear regression using GPs by inter-
connecting the open-loop and feedback configurations into one single circuit. Sim-
ulations show that analog crossbars are promising computing platforms that can
have advantages over conventional digital computing in terms of energy efficiency
while maintaining a competitive output precision. This is particularly attractive
from the algorithmic point of view since GPs represent an ambitious alternative to
neural networks and currently large-scale problems remain out of reach due to the
computational complexity.
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Chapter 5

Conclusions

5.1 Summary

Learning algorithms are based on the minimization of a cost function. Most
optimization problems are solved numerically by iterative methods that can be
considered as the discrete-time realizations of continuous-time dynamical systems.
Even though the capabilities of current AI models constantly increase, the von Neu-
mann architecture adopted by the current computers is extremely power-hungry.
The advantage of using systems that can be described by continuous-time differen-
tial equations results in:

« massively parallel operations;
« avoiding finite precision arithmetic issues;
e real-time signal processing.

One of the most popular method used in optimization and deep neural networks,
namely gradient descent algorithm, makes use of the discrete-version of a gradient
system. Besides its extraordinary ability, the learning process is computationally
demanding and energy consuming. This motivated the exploration of local learning
rules that could make use of analog implementations for accelerating the training
and inference process. The content of the thesis are summarized as follows.
Chapter 1 gives a mathematical treatment of gradient descent learning algo-
rithms for neural networks using the general framework of nonlinear dynamical
systems. Whenever the network is a gradient-like (or gradient) system, the conver-
gence to one of the possibly many minima of the objective function is guaranteed.
These stationary points are stable equilibria of the dynamical system. In case the
system does not admit a similar gradient representation, other assumptions can be
made to let the system converge and avoid oscillatory or chaotic behaviors. For
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instance, the jacobian matrix of the neural network must verify all the hypothe-
ses defined in the Corollary 1 of the Gershgorin Circles Theorem to admit stable
equilibria.

This thesis focuses on equilibrium point learning, i.e. the system’s parameters
update depends only on the output of the system evaluated at equilibrium. Since
the system parameters are functions of the fixed points for fixed external inputs, the
aim is to find the most suitable parameters so that the output approaches a desired
target. Three different learning rules, Recurrent Back-Propagation, Contrastive
Learning and Equilibrium Propagation are analyzed and rewritten in a unified
formulation. Depending on the characteristics of the weights matrix, the learning
rules are divided into symmetric and asymmetric updates. Due to the novelty
of the Equilbrium Propagation algorithm, a particular attention has been paid
to the generalization of this learning rule to systems that can be easily mapped
into hardware platform. Proposition 1 shows that the asymmetric version of the
weight change is justified from a simple geometric manipulation of the optimization
problem. Theorem 5 generalizes Equilibrium Propagation from gradient systems to
the case of gradient-like dynamics by considering a modified version of the energy
used in [12]. This choice was dictated by the need of removing the dependence
on the activation function’s derivative characterizing the dynamics provided in the
original formulation of the algorithm. A Hopfield-like neural network can be easily
implemented by an electric circuit and has been deeply analyzed in the literature.

Chapter 2 aims at investigating dynamic neural networks in solving pattern
recognition tasks and validate the theoretical results found in Chapter 1. Ideal
resistive switching components are used to model synapses and sequentially update
and adjust the synaptic weights. Simulations of continuous-time recurrent neural
networks trained with Equilibrium Propagation showed convincing results that the
two learning rules have significant capabilities in solving image reconstruction and
classification tasks motivating further research in this direction. Moreover, the
algorithm is even able to improve the current poor retrieval capabilities of the
Kuramoto model to solve the same problem of pattern restoration. From a first
analysis, the training process seems to be slower compared to the conventional
neural architecture but this is probably due to the multi-modal characteristic of
the associated potential function.

Despite the fascinating potential for neuromorphic applications of memristive
devices, their intrinsic characteristics reveal undesirable properties when it comes
to programming their conductance. These effects combined with the physical prop-
erties of the circuit components can be mitigated by either performing complex
tuning protocols or offline training on conventional computers. The symmetric ver-
sion of Equilibrium Propagation could be detrimentally limited due to this intrinsic
stochastic asymmetry. On the other hand, the asymmetric version is potentially
more suitable for VLSI implementation even though the system stability may need
a careful analysis to avoid undesirable behaviors. Since the fundamental building
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block of most neural network is a MVM operation, a thorough analysis of both
random and systematic errors arising from a circuital implementation of memris-
tive crossbars is therefore necessary to establish system’s performance. Chapter 3
introduces the mathematical tools to compute the SNR and determine the output
precision of the system in computing linear algebra operations. This method is
non-application specific and allows the users to have a valid comparison between
crossbars and their analog and digital counterparts for any practical use. This chap-
ter provides the formulation of the output noise distribution produced by the sum
of programming, thermal and shot noise contributions and gives an exact formula
to evaluate the wire resistance influence when solving a MVM operation.

Chapter 4 evaluates the system in performing the inference step of probabilistic
models that rely on linear algebra computation: Markov Chains and Gaussian
Processes. For the case of discrete MC, the open-loop crossbar is used to implement
iterative computations and find the k—th distribution in a sequence, while the
feedback crossbar directly finds the stationary distribution of the chain solving an
associated linear system. Results were extended to the case of nonlinear regression
using GPs by interconnecting the open-loop and feedback configurations into one
single circuit. Simulations show that analog crossbars are promising computing
platforms that can have advantages over conventional digital computing in terms
of energy efficiency while maintaining a competitive output precision.

5.2 Future Works

Further studies are needed to analyze the behavior of the physical implemen-
tation of continuous-time dynamical system exposed to noise perturbations. It is
well known that conventional neural networks are prone to fail to generalize well
from the training data to the test data. This is because traditional neural network
models are not able to provide estimates with uncertainty information. Nowadays,
it is becoming increasingly evident that organisms acting in uncertain dynamical
environments often employ exact or approximate Bayesian statistical calculations
in order to continuously estimate the environmental state, integrating information
from multiple sensory and noisy inputs. For this reason, the investigation to link
neural networks to probabilistic models has become a broad area of research [92,
93] and the exploitation of non-idealities and intrinsic stochasticity of memristive
devices have started to catch neuromorphic researchers’ interest [94, 95, 96, 97,
98]. Future works aim to provide computing platform that incorporates nonlinear
dynamics and bayesian integration from the very beginning directly into hardware
with the aim of performing complex tasks in a large variety of applications: medical
treatment follow-up, human-robot interaction, etc.
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