
Doctoral Dissertation
Doctoral Program in Electronics and Telecommunications (DET) (33thcycle)

Autonomous Navigation for
Unmanned Aerial Systems
Visual Perception and Motion Planning

By

Osman Abdalla Sidahmed Osman

Supervisor(s):
Prof. Alessandro Rizzo, Supervisor

Prof. Marcello Chiaberge, Co-Supervisor

Doctoral Examination Committee:
Prof. Elisa Capello
Prof. Marina Indri
Prof. Lucia Pallottino
Prof. Domenico Prattichizzo (Reviewer)
Prof. Kimon Valavanis (Reviewer)

Politecnico di Torino

2022

Declaration

I hereby declare that, the contents and organization of this dissertation
constitute my own original work and does not compromise in any way the
rights of third parties, including those relating to the security of personal
data.

Osman Abdalla Sidahmed Osman
2022

* This dissertation is presented in partial fulfillment of the requirements for
Ph.D. degree in the Graduate School of Politecnico di Torino (ScuDo).

Acknowledgements

Foremost, I would like to express my sincere gratitude to Prof. Alessandro
Rizzo and Prof. Marcello Chiaberge, my supervisors, for their continuous
support, patient guidance and motivation. Their guidance and critical judg-
ment was keeping the thesis schedule on track and on target.
I am particularly grateful to Dr. Stefano Primatesta for his valuable techni-
cal support and their help in conducting the research. His experience and
constructive recommendations made it possible to cover a wide range of
issues and applications. My grateful thanks also goes to the the colleagues at
PIC4SeR and the Complex Systems Laboratory for the support and friendly
environment. It made the research and the PhD period both joyful and rich.
I would like also to express my heartfelt thanks to my family and my friends
whom were the eminent source of motivation through these studies.

Abstract

Unmanned Aerial Systems (UAS) have attracted a great deal of attention
in recent years. UAS Autonomous Navigation is often split into four main
tasks: Perception, Localization, Motion Planning and Motion Control.

This Ph.D. dissertation focuses on two of those tasks: Perception and
Motion Planning, specifically in the context of the UAS.

The first part of the thesis focuses on perception. We investigate the
design characteristics that influence the quality of the 3D environment mod-
elling generated by a vision system on-board a UAS, including the camera
design and configuration in addition to the flight plan parameters (speed
and altitude). The 3D environment model richness and accuracy were used
as quality indicators. We present design scheme highlighting a method to
navigate the trade-offs during the design phase, grouping the design factors
into requirement parameters, selection parameters and configuration, and
we further map the design factors’ inter-dependencies.

Moreover, we further analyse the effect of geo-tags uncertainty on the
quality of the 3D environment model. ASONY ILCE-QX1L camera with
20.1MP was utilized on-board a UAS capturing images while descending
and ascending in altitude range of 60 - 20 m. We evaluate the use of two
different GPS data sets as initials for the camera extrinsic parameters in
order to determine their accuracy. The design trade-offs between the various
camera parameters and the flight plan under specific requirements like the
final object resolution, the UAS speed and the required images’ overlap is
evaluated. The inter-dependencies and relations between these parameters
and the number of quality matches are mapped and a structured compu-
tation and trade-off workflow was recommended for terrestrial mapping
applications.

v

Finally, an industrial solution for a challenging object recognition, local-
ization and assembly supervision is implemented and evaluated. Using an
FPGA programmable industrial camera, the developed solution enables the
detection and localization of the target parts, and supervision over the of
the parts’ feeding, conveying and heuristic orientation manipulation system.
The vision system is further integrated with a FANUC industrial robotic arm,
which is used to perform the pick-and place operations. The final solution is
successfully implemented in a manufacturing facility resulting in processing
time of less than 200ms between image capture and the declaration of the
found parts, while complying with the reliability, robustness and process-
ing time defined by the application. The solution developed can be useful
for UAS perception, it enables fast object detection and localization with
minimal computational cost using images processing techniques.

The second part of the thesis focuses on Motion Planning. We develop a
novel kinodynamic sampling-based motion planning algorithm called MP-
RRT# , which builds on the existing RRT# by augmenting it with a Model
Predictive Control method used to compute the optimal trajectory for UAS.
The use of the MPC ensures the feasibility and applicability of the resulting
trajectory, as both the obstacles constraints (which restrict the feasible states
to the free space) and the vehicle constraints (which limit the control input
constraints) are taken into consideration by the MPC during the design
process. Similar to other RRT-based algorithms, MP-RRT# explores the map
constructing an asymptotically optimal graph. In each iteration the graph
is extended with a new vertex in the reference state of the UAS. Then, a
forward simulation is performed using a Model Predictive Control strategy
to evaluate the motion between two adjacent vertices, and a trajectory in
the state space is computed. As a result, the MP-RRT# algorithm eventually
generates a feasible trajectory for the UAS satisfying dynamic constraints.
Simulation results obtained with a simulated drone controlled with the PX4
autopilot corroborate the validity of the MP-RRT# approach.

Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Trends in Robotics . 1

1.2 Autonomous Navigation . 5

1.2.1 Perception and Localization 7

1.2.2 Motion Planning and Control 10

1.3 Objective . 15

1.4 Outline . 16

I Perception 17

2 3D Environment Modelling 19

2.1 Introduction to Visual Perception 21

2.2 UAS Vision System for 3D Environment Modelling 24

3 Visual Perception for Mobile Robots 27

3.1 Visual Perception Design Process 27

3.1.1 Operational parameters’ configuration 29

Contents vii

3.2 Use of Additional Data Sets . 29

3.2.1 Quality Indicators . 30

3.2.2 Results and Discussion 31

3.2.3 Conclusion . 33

3.3 Industrial Visual Perception . 34

3.3.1 Industrial Visual Perception Solution 35

3.3.2 Calibration . 44

3.3.3 Robot Interaction . 45

3.3.4 Robustness Evaluation 47

3.3.5 Feeder Control . 49

3.3.6 Remarks . 51

II Motion Planning 52

4 Motion Planning State-of-Art 54

4.1 Background . 54

4.2 Methods for Motion Planning 57

4.2.1 Roadmaps . 59

4.2.2 Heuristic Methods . 63

4.2.3 Evolution Methods . 67

4.2.4 Sampling-Based Methods 69

4.3 RRT-based Algorithms . 79

4.3.1 Problem Formulation 79

4.3.2 Basic RRT Algorithm . 80

4.3.3 RRT∗ Algorithm . 81

4.3.4 RRT# Algorithm . 86

4.4 Motion Planning Constraints 88

viii Contents

5 The MP-RRT# Algorithm 92

5.1 Problem Definition . 92

5.1.1 UAS Model . 92

5.1.2 UAS Model Lineraization and Discretization 97

5.1.3 Problem Statement . 99

5.2 The MP-RRT# strategy . 100

5.2.1 Model Predictive Control 106

5.3 Technological Tools . 110

5.3.1 OMPL . 110

6 Experiment and Results 114

6.1 Experiment . 114

6.1.1 MPC Optimization Object 115

6.2 Results . 122

6.2.1 Implementation . 122

6.2.2 Simulation results . 124

7 Discussion and Conclusion 133

7.1 Conclusions . 133

7.1.1 Perception . 133

7.1.2 Motion Planning . 137

References 139

List of Figures

1.1 Generic Robots Classification 3

2.1 Structure from Motion Workflow 24

2.2 Vision System Design parameters inter-dependencies and the
way they affect the final 3D reconstruction through affecting
the number of quality matched features 26

3.1 (a) Focal length deviation from the nominal value, the two
data sets with the same large uncertainty bounds (standard)
gives the same calibration results which is also equal to the
calibration without any additional data. (b) Distribution of
the residual of the estimated camera positions deviation from
the initial data . 32

3.2 (a) Number of 3D points reconstructed with each additional
data set as a measure of the richness of the resulting 3D model.
(b) Deviation of the Ground Control Point in each 3D recon-
structed model as a measure of the accuracy of the environ-
ment model. 32

3.3 Topics investigated and their place in the SfM framework . . . 34

3.4 Algorithm Top Level Structure. 38

3.5 Image processing: binary filter and noise cancellation 39

3.6 Full/Limited search Decision Flowchart 40

3.7 Saving/Latching ready parts’ list 41

x List of Figures

3.8 Full Search . 42

3.9 Limited Search . 42

3.10 Camera-Robot Calibration . 45

3.11 In/OUT FOV monitoring . 46

3.12 Robustness Evaluation . 48

3.13 Feeder control logic flowchart. 50

5.1 Example of graphs constructed with MP-RRT#. The graph
GY consists of vertices (in black) and edges (in blue) in the
reference state. Instead, the graph GX consists of trajectories
(in magenta) obtained through evaluating the edges of GY

using the MPC strategy. An edge of GY is labeled as invalid if
its corresponding trajectory in GX crosses an obstacle. 105

5.2 Example of reference trajectory computed using Dubins curves
and connecting two adjacent vertices. The green line is the
reference trajectory, whereas magenta arrows are the state
trajectory computed using MPC. 109

5.3 Open Motion Planning Library (OMPL) object-oriented structure113

6.1 The roll and pitch control inputs computed by MPC to follow
the trajectory of Figure 5.2. 125

6.2 The construction of the exploration tree using the MP-RRT#

algorithm. The start and target positions are in green and
in red, respectively. The graph GY in the reference space is
colored in blue, while the computed path obtained from the
graph GX in the state space is colored in magenta. In (a), the
graph consists of 10 vertices rooted from the start pose finding
an initial solution in the map with a cost (i.e. the path length)
of 66.44 m. In (b), the graph with 20 vertices, in which the
solution is improved with a cost of 45.09 m. In (c), the graph
consists of 60 vertices, but the solution is not improved. In
(d), the graph has 100 vertices obtaining a solution with cost
38.70 m. 126

List of Figures xi

6.3 The average cost of the solution path against the number
of vertices in the MP-RRT# algorithm. The average cost is
computed running the algorithm 50 times in the same scenario
of Figure 6.2. 127

6.4 The average tracking error for 20 trajectories running the same
scenario of Figure 6.2. 129

6.5 Trajectories computed with the MP-RRT# by constructing a
graph with 400 vertices. The start and target positions are in
green and in red, respectively. 130

6.6 Example of trajectory computed with the MP-RRT# by con-
structing a graph with 400 vertices. The start and target posi-
tions are in green and in red, respectively. 131

6.7 In (a), the trajectory computed with the MP-RRT# algorithm
by constructing a graph of 100 vertices. In (b) the computed
trajectory is executed by the PX4 autopilot in a simulation. . . 132

7.1 Vision System Design parameters inter-dependencies and the
way they affect the final 3D reconstruction through affecting
the number of quality matched features 135

7.2 Topics investigated and their place in the SfM framework . . . 136

List of Tables

3.1 Typical Camera and Flight Design Flow 28

6.1 Parameters used for the UAS model. 123

6.2 Trajectory tracking performance indices collected over 20 tra-
jectories. 128

List of Algorithms

1 RRT . 81

2 RRT* . 84

3 Parent . 84

4 Rewire . 85

5 Body of the RRT# Algorithm . 89

6 Extend Procedure . 89

7 Replan Procedure . 90

8 The MP-RRT# algorithm . 102

9 The Extend procedure . 103

10 The FindParent procedure . 104

11 The Replan procedure . 105

Listings

6.1 initializeParameters() method 117

6.2 Computation of the integral of the system matrices through
an incremental approach . 118

6.3 Cost computation using the linear approximation of the Eu-
clidean Distance . 121

6.4 2D linear distance computation 122

Chapter 1

Introduction

1.1 Trends in Robotics

The advancement of robotic technology has occurred throughout the years
since its inception, and robots are now an essential component of a wide
range of industries and businesses across the world. Automotive manufac-
turers, appliance makers, food and beverage processing, distribution and
warehousing, healthcare, law enforcement, and security services are just a
few examples of organizations that sell, operate, and develop robots.

The adoption of modern day robots can be witnessed in many operations
from weed control in agriculture [1] to securing vacant properties [2] to man-
ufacturing vehicles [3], to state a few operations among others. Notably, the
use of industrial robots is becoming ubiquitous in a wide range of applica-
tions, including material handling, welding, assembly of parts and products,
spray painting and dispensing of coatings, and packaging of materials and
commodities. Whereas in sectors like nursing homes, hospitals, and hospital-
ity, some robots are working alongside humans [4]. The complexity of some
applications, on the other hand, has necessitated the development of new
technologies that substantially improve the interaction between robots and
humans even more. For example, [5] showed that robotic surgeries can assist
in complex procedures while incurring less risk than human surgeons.
It is expected that these advancements in robotics will only continue to grow

2 Introduction

in the next decade. In recognition of the way that our population is becoming
older and that the number of wage workers is becoming a smaller percentage
of our overall population, it is evident that robots will be expected to fill the
void in our society in the near future. Robots in the industrial sector, and to
a greater extent, robots in the service sector, have the potential to bridge this
gap in the years ahead.

In order to fully understand the robots’ capabilities that are both defin-
ing the challenges and opportunities in this growth trend, it is necessary
to categorize the robots in a logical manner. A Robot, as defined by ISO
8373 [6], is an “actuated mechanism, programmable in two or more axes, with a
degree of autonomy, moving within its environment, to perform intended tasks”.
This broad definition reflects the reality that robots have grown to include
a diverse range of technologies that are being used in an ever-expanding
number of applications. However, robots are often classified into: industrial
robots and service robots, which are distinguished by the tasks they perform
and the market requirements for which they are developed. For their part,
in research and development, robots are principally differentiated based on
the capabilities they possess as well as the environment in which they work.
Figure 1.1 illustrates such a classification, which can be described as follows:

1. Stationary robots: The vast majority of industrial robotic manipulators
have a permanent base and operate in environments that have been
specifically designed for robots to execute particular repetitive tasks
in a consistent manner. Typically, they are capable of handling objects
or carry out activities such as welding, painting, assembling, and ma-
chining, just to highlight a few examples. As sensors and human-robot
interface technologies advance, these stationary robots are increasingly
being deployed in less controlled environments, such as high-precision
surgery, to assist surgeons in performing precise operations.

2. Mobile robots: They must be able to explore and carry out tasks in broad,
ill-defined, and unknown environments which are not specifically de-
signed for robots and may contain unforeseen moving or static entities.

1.1 Trends in Robotics 3

For performing a task, mobile robots must be capable of gathering
information from their environment, perceiving the information gath-
ered, and taking actions (including their own mobility) to complete the
task. We can further divide mobile robots into two types:

• Remote-controlled robots: They operate exclusively under the direct
supervision of an operator. That makes them less demanding in
terms of perception and intelligence.

• Autonomous robots (Unmanned Systems): They perform the tasks
on their own, without the assistance of external human operators,
in an environment that is unknown, partly known, or constantly
changing. They can be distinguished from other robots by their
ability to move autonomously, with enough intelligence to react
and make decisions based on the perception they receive from
the environment. Autonomous mobile robots (also known as Un-
manned Systems) can be further categorised by the environment
in which they operate:

– Air – aerial robots are usually called Unmanned Aerial Vehi-
cles (UAVs);

– Water – underwater robots are referred to as Autonomous
Underwater Vehicles (AUVs);

– Land – waling, rolling, climbing robots; Unmanned Ground
Vehicles (UGVs).

Fig. 1.1 Generic Robots Classification

4 Introduction

The previous categorization is often used in research and development
because it helps to differentiate between the technological requirements of
the many robotic applications that are being studied. As a matter of fact,
stationary robots are usually mounted to a permanent base on the ground,
allowing them to infer their position using their inner state representation,
while mobile robots must infer their location dynamically from sensory in-
put.
A comprehensive framework for mobile robots is also necessary in order to
coordinate all of the subsystems of sensing and perception, motion planning,
and control [7].
Mobile robotics is now one of the most rapidly growing areas of scientific
study, and it is anticipated to continue to grow in the future, propelling the
whole field of robotics into new markets and applications as a result.
Mobile robots have the potential to replace humans in a wide range of fields,
including surveillance, planetary exploration, emergency rescue operations,
reconnaissance, industrial automation, construction, museum guides, per-
sonal services, transportation, and medical care, among a variety of other
industrial and nonindustrial applications.

Throughout the robotics community, Unmanned Aerial Systems (UASs)
have attracted a great deal of attention in recent years. Photographic and
cinematographic operations, precision agriculture, power line and structural
inspection, surveying, infrared and multi-spectral imaging as well as natural
disaster recovery are just a few of the applications for the Unmanned Aerial
Systems that are becoming more commonplace.
As noted by [8], aerial robots in most of their applications are expected to
have some degree of autonomy in order to self-navigate in challenging envi-
ronments where human operators may be at danger or unable to complete
the job at hand. Fortunately, in recent decades, advances in computer vision,
artificial intelligence, and micro electro-mechanical sensors (MEMs) have
made the control, estimation, and perception of motion all more dependable
and applicable. As a result, it has become possible to develop a reliable level
of autonomy matching the required robustness and effectiveness of motion
planning in real-world scenarios. A growing number of academics are start-
ing to focus on higher-level tasks such as navigation and motion planning in
unmanned aircraft systems (UAS) as a consequence of this trend, according

1.2 Autonomous Navigation 5

to [9]. However, UAS have demonstrated extra challenges in developing
autonomous navigation skills when compared to other autonomous vehicles
on land or in water. The particular nature of UAS as resource-constrained
systems in terms of energy, computational capacity, and payload constraints,
as well as the limited hardware-set available onboard, poses many challenges
for autonomous skills’ development.
In particular, unmanned aerial systems have a variety of challenging at-
tributes in common, including non-trivial dynamics, three-dimensional en-
vironments, shocks, and uncertainty in state information. These special
characteristics of UAS make it essential to develop autonomous solutions
and motion planning methods that adhere to more rigorous standards as
compared to the requirements for other kinds of mobile robotic systems.

1.2 Autonomous Navigation

In the area of robotics, some of the most challenging open research prob-
lems are those involving autonomous navigation. Research on mobile robot
navigation systems, in general, involves developing appropriate systems for
gathering adequate sensory information, using that information to plan the
robot’s motion along a suitable trajectory, and tracking the planned trajectory
safely within its environment without colliding with anything. However,
Autonomous Navigation development is often segmented into four building
blocks: perception, localization, planning, and motion control.

1. Perception is the set of skills that enables the mobile robot to acquire
knowledge about its work environment and itself. Hence, the key com-
ponents of a perception system are essentially sensory data processing
and data representation (environment modeling). This is generally
achieved through a set of comprehensive sensors that acquire informa-
tion from the robot’s environment, and subsequently implementing
various sensor fusion techniques in order to construct an environment
model that describes the robot surroundings. The environment model
must fulfill the navigational requirements of the intended application
in terms of the model richness, accuracy and update rate. All those

6 Introduction

requirements reflects on further requirements on the type of sensor set
used and algorithmic solutions employed to compute the environment
model.

2. Localization refers to the ability of the robot to determine its position
with respect to the environment. This skill is tightly connected to
the perception and environment modelling skill previously described.
However, in addition to the exteroceptive sensory information, local-
ization makes use of various interoceptive sensors such as IMU’s and
odometery.

3. Planning refers to the ability of the robot to decide how to act to achieve
its goals. This skill relies more than the rest on what can be define
as "intelligence" in general terms; i.e. the ability to reason an optimal
decision given limited knowledge about the environment and the robot
internal state. However, for autonomous navigation this takes a more
specific definition since the goal to achieve is to navigate through the
environment respecting some defined criteria such as obstacle avoid-
ance, optimizing the energy or distance or controls or time to reach
destination or any other application-specific criterion. Hence, planning
in autonomous navigation refers to the process of making purposeful
decisions in order to bring the vehicle from a start location to a goal
location while avoiding obstacles and optimizing over predefined per-
formance criteria.

4. Motion Control refers to the robot’s ability to execute the planned navi-
gational strategy or actions that have been generated in the planning
stage. Motion Control is tightly coupled with Motion Planning and
their specific interaction/integration is governed by the nature of the
application. In applications where the environment is dynamic, motion
planning and control are tightly coupled in a cyclic manner in which
the motion control feeds back some knowledge to the planning of the
next processing cycle. Whereas in the applications where the robot
is navigating through a static environment, motion planning can be

1.2 Autonomous Navigation 7

highly independent from the motion control. And between those two
scenarios various degrees of environment characteristics and applica-
tion requirements defines different degrees of integration between the
motion planning and motion control.

1.2.1 Perception and Localization

Robotic perception is related to many applications in robotics such as object
detection, environment modelling, scene understanding, human/pedes-
trian detection, activity recognition, semantic classification, object modeling,
among others. The fusion of vision sensors with IMU’s and odometery data
to provide a better robotic localization has led to interesting breakthrough
in obstacle avoidance and autonomous navigation applications. However,
as pointed out recently by Sünderhauf et al. [10], robotic perception (also
designated robotic vision in [10]) differs from traditional computer vision
perception in the sense that, in robotics, the outputs of a perception system
will result in decisions and actions in the real world. Therefore, perception
is a very important part of a complex, embodied, active, and goal-driven
robotic system. As exemplified by Sünderhauf et al. [10], robotic perception
has to translate images (or scans, or point-clouds) into actions, whereas most
computer vision applications take images and translate the outputs into
information. Hence, in particular, Autonomous Navigation requires both a
precise and robust environment perception and localization. Representing
the environment model with a map, the robot will be able to detect free
spaces, obstacles, and different semantics and signs which will all be the
bases on which the motion planning will be performed.

Among the numerous approaches used in environment modelling for
mobile robotics, and for autonomous robotic-vehicles, the most influential
approach is the occupancy grid mapping [11]. This 2D mapping is still used
in many mobile platforms due to its efficiency, probabilistic framework, and
fast implementation. Although many approaches use 2D-based representa-
tions to model the real world, presently 2.5D and 3D representation models
are becoming more common. The main reasons for using higher dimensional
representations are essentially twofold: (1) robots are demanded to navigate

8 Introduction

and make decisions in higher complex environments where 2D representa-
tions are insufficient; This is particularly true for UAS. (2) current 3D sensor
technologies are affordable and reliable, and therefore 3D environment rep-
resentations became attainable.

Currently used sensors’ sets includes conventional optical cameras, Light
Detection and Ranging (LiDAR) and Red,Green,Blue-Depth (RGB-D) cam-
eras. The later two (LIDAR and RGB-D) are scanners in the sense that they
scan the scene sequentially using IR or Laser beam to obtain the depth infor-
mation in addition to the 2D plain images. Although they directly measure
the depth information (which is missing in conventional cameras) they suffer
form other shortcomings when it comes to deploying them on board the
UAS, in terms of payload and power consumption.

Particularly in the recent years, with the introduction of the Microsoft
Kinect, many projects have been under development, such as those from the
Microsoft KinectFusion and MIT [12] where the RGB-D sensory was used.
However, RGB-D sensors like Microsoft Kinect are heavy, demanding in
energy terms and not suitable for outdoor environments. The depth data
is normally acquired using IR (infrared) sensors which the sunlight heavily
interferes with their measurements. On the other hand, the LIDAR sensors
are heavy and costy that deploying them on board a drone is not feasible.
In addition to this they normally suffer from unavoidable severe occlusions.
Hence although many modern high definition 3D environment modelling
solutions employs RGB-D cameras or LIDAR, conventional cameras comes
more handy when considered for UAS.

Small cameras have become widespread throughout industry and house-
hold devices. They are cheap, light weight and can provide high quality and
intense data as a great source of information. In particular, monocular vision
techniques are attractive because they require only a single, lightweight
camera which is readily available and easy to deploy on board. Nevertheless,
the challenge of retrieving the missing depth measurements remains the core
objective of the vision algorithms to be used. For acceptable final results the

1.2 Autonomous Navigation 9

employed algorithms should be computationally efficient in a post process-
ing offline scenario at least.

One of the technologies used are the Embedded optical flow techniques
which rely on hardware to compute the inter-frame changes between images
to extract depth information. These techniques have worked well on UAS,
demonstrating autonomous takeoff, landing [13] and obstacle avoidance
[14]. This technology has been successful for aircraft flight control and is
now available commercially. Embedded optical flow, however, is limited in
its resolution, providing only general guidance about obstacles. For more
sophisticated functionalities like the 3D environment modelling, we must
look beyond embedded optical flow techniques for solutions that provide
greater resolution.

3D point clouds are playing a central role in robotics perception in general
and more specifically in Simultaneous Localization and Mapping (SLAM)
and augmented reality. SLAM is the process by which a robotic system
constructs a map of the environment using different kinds of sensors while
estimating its own position in the environment simultaneously. SLAM has
been widely studied and applied with various kinds of sensors and for a
multitude of robotic platforms. Although various SLAM algorithms are
considered mature, such approaches are still very dependent on the platform,
on the environment, and on the parameters that have to be tuned.

The fundamental idea behind the SLAM is the use of landmark corre-
lations to improve the solution, and the implementation of an Extended
Kalman Filter (EKF) to reduces the uncertainties. Using a probabilistic
model, the EKF guarantees convergence and the consistency of the map.
While relying on data associations, SLAM solutions can perform loop clo-
sure to reduce the uncertainties of every pose of the map. This makes the
algorithms very sensitive to data association errors, which can originate
either from the uncertainty of the sensors used in the estimation or from
the performance of landmark recognition technique. Current state-of-the-art
approaches solve this MAP problem thanks to optimization techniques such

10 Introduction

as Bundle-Adjustment (BA). Most recently, state-of-the-art Bundle Adjust-
ment, Structure-from-Motion methods have been the standard platform for
3D environment modelling in post processing solutions [15]. The Bundler,
the Clustering Views for Multi-view Stereo (CMVS) and the Patch-based
Multi-View Stereo (PMVS) packages, first published at the University of
Washington, provide an offline solution for creating dense 3D point clouds
given a set of unordered overlapping images [16]. Bundle Adjustment and
Structure-from-Motion are used to perform dense reconstruction given a
large set of unordered images with multiple views of the same scene, com-
pute the correspondences between the overlapping portions in those images
and then compute sparse point cloud, followed by a dense reconstruction
of the image set, generating a dense 3D point cloud. They have produced
compelling results from large sets of unordered images collected from the
Internet. These same tools can be utilized and applied to the images from
the drones to generate 3D reconstruction of target objects or terrains.

Given all these techniques each with their advantages and shortcomings,
further studies on the effects of the various parameters affecting the quality
of the resulting 3D environment model is needed in order to inform the
perception system design choices.

1.2.2 Motion Planning and Control

As part of the navigation system, the motion planning and control problem
is defined as the computation of the control inputs capable of driving the
robot from an initial state to a target state satisfying the vehicle kinematic
and dynamic constraints, as well as avoiding obstacles and other forbidden
zones [17]. In addition to being complicated and computationally expensive,
these problems are compounded when the robot is expected to operate in
a range of demanding environments, which is the case when developing
a generic motion planner. In particular, avoiding obstacles is a significant
challenge to overcome. Therefore, significant number of techniques were
developed for obstacle avoidance [18], [19], [20].

1.2 Autonomous Navigation 11

For the most practical complete solutions, the motion planning and con-
trol problem is typically composed of a motion planner that works in conjunc-
tion with an on-board controller that follows the planned path. For example,
the authors in [21] present a framework for path planning and tracking for an
autonomous vehicle collision avoidance system where a 3D hazardous poten-
tial field is used to plan a real-time collision-free trajectory, then, the planned
trajectory tracking problem was formulated as an optimal problem using the
MMPC technique. The authors in [22] propose a two-stage approach where
path planning is computed by leveraging the Rapidly-exploring Random
Tree (RRT) algorithm, associated with a Linear Quadratic Regulator (LQR)
controller for the tracking of the resulting reference trajectory.
Similarly, in [23] the RRT (Rapidly-exploring Random Tree) algorithm is
used to compute an initial trajectory in a 3D environment, then the planned
trajectory is post-optimized in order to satisfy the state constraints using
MPC resulting in a feasible trajectory plan. However, none of the two-stage
methods described above can ensure that the computed trajectory is dynami-
cally feasible.

Alternatively, a classical approach to motion planning and control parti-
tions the problem into two phases: in the first phase, a continuous collision-
free path is generated, and in the second phase, a low-cost trajectory is
constructed along the previously established path while taking into account
dynamic constraints. However because of the potential that the cost functions
being incompatible between the two-staged optimization, this method may
result in an infeasible or inefficient trajectories. For example, minimizing the
Euclidean length in the first phase may result in a continuous collision-free
path that is incompatible with the dynamic constraints of the second phase.
Specially in scenarios when motion planning is supposed to navigate obsta-
cles in a time-varying environment, this becomes even more evident. As a
result, it would be advantageous to include both the kinematic and dynamic
constraints at the same time, rather than separately, while constructing the
trajectory during the planning phase.

In general terms, the motion planning algorithm is expected to optimize
the computed path in terms of an execution model (such as energy, time,

12 Introduction

distance, the amount of braking or the amount of turning), while respecting
robot kinematic and dynamic constraints, as well as avoiding both static and
dynamic obstacles of the environment, in order to achieve the best possible
performance. Existing literature has a multitude of methods that are tailored
to specific scenarios involving a particular set of constraints. Various meth-
ods to mobile robot motion planning have been thoroughly studied in recent
years:

The roadmap path-planning method: Before searching for a feasible trajec-
tory, the continuous environment model (search space) is transformed into
a discrete map. Although these methods are computationally efficient for
lower-dimensional spaces, the discretization of the search space renders
them expensive for higher-dimensional spaces. Therefore, due to the high
computational cost of these approaches, techniques such as Cell Decompo-
sition methods [24][25], Delaunay Triangulations [26], and Dynamic Graph
Search methods [27][28] are only suitable for low-dimensional spaces [29].

The Artificial Potential Field method: creates a virtual potential field in the
search space with repelling fields representing the obstacles and the attract-
ing field representing the goal configuration. Using techniques such as hill
climbing and gradient descent, it is plausible to navigate the potential field
formed by the forces acting on the configuration space. However, The disad-
vantage of APF, as discussed in [30], is that it is vulnerable to drifting into
a local minima [31], which may cause the robot to get trapped oscillating
between obstacles, where the resultant force of the robot is zero and the
desired configuration cannot be achieved. Furthermore, in order to represent
dynamic obstacles, it is necessary to make substantial changes to the poten-
tial field method.

The Dijkstra’s method evaluates the vertices in a graph iteratively to find
the shortest path.However, despite the fact that it is well-known to be very
quick and computationally simple, it loses time for performing a "blind"
search.

1.2 Autonomous Navigation 13

The A* Search Algorithm Although similar to Dijkstra’s algorithm, the A*
Search Algorithm is distinguished by the fact that it directs its search towards
the most promising configurations leveraging weighted graphs. Because of
the implementation of weighted graphs, there are many significant benefits,
such as the capacity to find solutions in a relatively short period of time.
Furthermore, A* has the capability of including time, energy consumption,
and safety as measurements. Conversely, the A* Search Algorithm does not
always provide the shortest path since it heuristically computes the cost of
navigating from a specific node on the grid to a final destination.

The Genetic Algorithm (GA) The Genetic Algorithm (GA) is an optimiza-
tion technique based on genetic algorithms. It is a mix of the survival of the
fittest and a random data generator, and it is used to find the best solution.
However, although this approach is effective for trajectory planning in sce-
narios where the obstacles are static, it is inadequate of taking into account
the robot’s dynamic constraints or the existence of dynamic obstacles in the
surrounding environment.

The Probabilistic RoadMap (PRM) It is possible to tackle motion planning
problems with more than four dimensions by using Probabilistic RoadMap
(PRM), which is a multiple-query planner. Although PRM is capable of han-
dling multiple queries, it requires a large number of connections in order to
operate effectively. When dealing with single queries that have specific start
and goal configurations, PRM may not be the most efficient planner available.

Recently, it has been demonstrated that kinodynamic motion planning
algorithms may be used to satisfy both the kinematic and the dynamic re-
quirements of the motion planning model at the same time [32]. In particular,
the use of incremental sampling-based planners to solve the kinodynamic
motion planning problem as a two-point boundary value problem in the
dynamic state space of a robot system was shown to be effective. To address
motion planning problems, sampling-based planners such as the Rapidly
Exploring Random Tree (RRT) are used even in high-dimensional environ-
ments [33].

14 Introduction

LaValle and Kuffner proposed the first sampling-based kinodynamic algo-
rithm in [34], in which an RRT algorithm samples the control input of the
vehicle and, then, predicts its corresponding motion in order to construct a
tree of trajectories in the state space.
As a consequence, the computed trajectory satisfies by design the constraints
imposed by the vehicle dynamics and can be readily implemented by the
vehicle with relative ease. Since then, several sampling-based planners have
been developed by broadening and refining such a method,such as [35] and
[36] among several others.

The authors in [37] proposed the RRT∗ algorithm, one of the most widely
used sampling-based approaches today.
RRT∗ constitutes an improvement of the original RRT algorithm towards the
attainment of a near optimal solution. Further improvement has been made
to the RRT∗ algorithm for specific applications such as real-time path plan-
ning [38], anytime planning [39], multi-agent planning [40], and others [41].
RRT∗ has improved the path quality of the original RRT through employing
two new major mechanisms: rewiring and best neighbor search. RRT∗ incre-
mentally adds new connections to the existing tree whenever a new sample
is generated. Such a rewiring procedure gives RRT∗ the chance to gradually
improve its path-cost, asymptotically approaching the lowest-cost path as
the number of iterations increases.
However, this rewiring is performed on a local basis, preventing a global
propagation of the changes in the graph and the consequent optimization at
the global level. An improvement is constituted by RRT#, which generates a
guaranteed asymptotically optimal graph that always contains the lowest-
cost path [42].

Another common concern in sampling-based approaches is related to the
random sampling of the control space, instead of the random sampling of
the reference space of the robot [43].
While sampling in the reference space always generates feasible trajectories,
sampling in the control space may often result in the selection of control
inputs that can lead to infeasible trajectories, due to the presence of dynamic
constraints.

1.3 Objective 15

This typically yields longer execution times and an inefficient management
of the algorithm. To address this problem, the authors in [43] proposed the
closed-loop RRT (CL-RRT), in which the samples are drawn from the reference
space instead of the control space.
The sampled reference is then used to compute a trajectory using the closed-
loop model of the robot.

Hence, a more efficient kinodynamic motion planning strategy based on
RRT-class of planners is a promising improvement that would be suitable for
UAS in particular. The desired kinodynamic strategy should guarantee the
feasibility of the trajectory for each sample, and uses as minimal samples as
possible to build the feasible trajectory by sampling in the reference space
instead of the control space.

1.3 Objective

This research focuses on the Perception and the Motion Planning of Unmanned
Aircraft Systems for Autonomous Navigation purposes.

In perception the objective is segmented into two parts. The first one
deals with the vision sensory system design choices. The objective here
is to analyse the various design parameters that affect the quality of the
3D environment model generated from a vision system. This will include
the camera design and configuration parameters in addition to the flight
plan parameters (speed and altitude). In addition to analysing the effect of
geo-tags uncertainty on the quality of the 3D environment model. Whereas,
the second part deals with the algorithmic solution for an industrial setup
where a challenging object recognition and localization is considered. The
objective in this part is to develop an industrial solution that complies with
the reliability, robustness and processing time defined by the application.

In motion planning the objective is to investigate the motion planning
strategies currently available in the literature with the objective of developing
a novel kinodynamic sampling-based motion planning algorithm capable

16 Introduction

of effectively addressing motion planning problems under differential con-
straints. The algorithm must be applicable to the commercially available
Unmanned Aircraft Systems (UAS) equipped with a professional autopilot.
The resulting trajectory computed must be at least a near-optimal trajectory
that respects both the kinematic and dynamic constraints of the UAS.

1.4 Outline

This Ph.D. dissertation is split into two parts.

The first part deals with Perception, and includes two chapters. Chapter
2 investigates the UAS on-board vision system design characteristics that
influence the quality of the 3D environment modelling. Whereas in Chapter
3 we further extend the analysis to the design trade-offs between the various
camera parameters and the flight plan under specific requirements like the
final object resolution, the UAS speed and the required images’ overlap.

The second part presents the work done in Motion Planning, which is fur-
ther split into three chapters (4, 5 & 6). Chapter 4 covers the literature review
and background about motion planning methods used for autonomous navi-
gation. Whereas Chapter 5 presents the problem definition and the proposed
motion planning solution (MP-RRT#). Chapter 6 details the experiment and
discuss the simulation results of the MP-RRT# proposed motion planning
solution.

Finally in Chapter 7 presents the research conclusion for both parts and
highlights some prospective future work.

Part I

Perception

Chapter 2

3D Environment Modelling

The set of capabilities reputed as perception enables robotic systems to
comprehend their surroundings and internal dynamics. In particular, ac-
curate and reliable environment sensing and localization are essential for
autonomous navigation. Using a map to represent the environment model,
the robot will be able to recognize open areas, obstacles, and diverse seman-
tics and signs, all of which could serve as the groundwork for undertaking
motion planning. The resultant environment model must, in terms of model
richness, accuracy, and update rate, fulfill the navigational requirements of
the target application. All of those requirements have an impact on subse-
quent specifications for the kind of sensor set and algorithmic techniques
employed to obtain the environment model. This is typically performed
using a combination of sensors to collect information from the robot’s envi-
ronment, followed by the utilization of advanced sensor fusion techniques
to produce an environment model that depicts the robot’s surroundings.
Particularly, the integration of vision sensors with IMUs and odometery data
to improve robotic localization has delivered intriguing headway in obstacle
avoidance and autonomous navigation applications. The algorithms used in
such applications should be computationally efficient at the very least in a
post-processing offline scenario.
Out of the various sensors used for perception, small cameras have become
widespread throughout industry and household devices. They are cheap,
light weight and can provide high quality and intense data as a great source
of information. In particular, monocular vision techniques are attractive

20 3D Environment Modelling

because they require only a single, lightweight camera which is readily avail-
able and easy to deploy on board. Nevertheless, the challenge of retrieving
the missing depth measurements remains the core objective of the vision
algorithms to be used.

In this chapter, we present an introduction to visual perception covering
the state-of-the-art, and we explore the design parameters of the mobile robot
visual-perception system, as well as their impact on the quality of the resul-
tant 3D environment model in terms of richness and accuracy. We investigate
the 3D environment model and aerial mapping solutions based on Structure-
from-Motion (SfM) and bundle adjustment were identified. Despite the
fact that this application is a post-processing visual-perception application,
the choice of this application was motivated by the goal of investigating the
trade-offs in vision system design that would have an impact on the resulting
environment model in terms of accuracy and richness, as well as the overall
quality of the resulting environment model. Because they are more algorithm
reliant than sensory system dependent, the computational cost and real-time
features were not taken into account. This application especially provides us
with the opportunity to investigate the trade-offs involved in vision system
design and their impact on the quality of the perception model. Precision
flight planning and precise equipment selection/configuration (camera, op-
tics, and imaging parameters’ settings) are required for 3D environment
modeling and aerial mapping solutions based on the Structure-from-Motion
(SfM) and bundle adjustment techniques (number of images and their over-
lap percentage).

More specifically, we investigate the design trade-offs between the cam-
era and flight plan attributes, as well as the impact of these trade-offs on
image quality, as well as the quantity and quality of matched features that
are subsequently used in the 3D environment model of aerial mapping so-
lutions based on the Structure-from-Motion (SfM) and bundle adjustment
techniques. Section 2.2 addresses the design phase trade-offs between the
camera selection/configuration parameters and the flight plan parameters
for the UAS 3D environment modelling applications. The camera selection/-
configuration and flight planning dependencies are presented in a structured

2.1 Introduction to Visual Perception 21

map facilitating the trade-offs between the various design parameters (cam-
era sensor size, optics focal length, flight altitude, overlap percentage and
UAS speed) during the design process.

2.1 Introduction to Visual Perception

For an autonomous mobile robot to successfully perform the navigation task,
it must know its position relative to the position of its goal. Furthermore, it
must take into account the hazards of the external environment and readjust
its operations in order to increase the probability of reaching its destination.
Specifically, an autonomous mobile robot must have the ability to recognize
and represent its environment in an environment model that encompasses
key entities such as: the target to be reached, the location of static obstacles,
the ongoing and prospective location of moving obstacles, recognition of var-
ious extracted features, and classification of the collected data according to
its semantic interpretation, in addition to the vehicle’s present state (position,
speed, and so on).
Perception is the expression used to designate the problem of extracting a
contextual comprehension of one’s surrounding. Perception of the surround-
ing environment encompasses data acquisition, which would be attained
through the use of exteroceptive sensors with a wide range of capabilities
and attributes, and data processing in order to generate the knowledge re-
quired to produce an environment model, which will be used to plan and
carry out behaviour in the future. The kind of model and the design of the
sensory subsystem are determined by the application and the configuration
of the vehicle. For a mobile robot to be equipped with the adequate sensory
subsystem capable of supporting a rich perception adequate for navigation
planning whilst still complementing its design and intended uses, a holistic
and diverse collection of multiple sensors is often utilized. In this framework,
the fusion of complementary information supplied by multiple sensors is a
fundamental problem to be addressed.

Nonetheless, vision systems standout among the sensory subsystems that
are deployed in autonomous navigation strategies. The integration of vi-

22 3D Environment Modelling

sion sensors with inertial measurement units (IMUs) and odometery data to
enhance robotic localization has ultimately results in some significant break-
throughs in obstacle avoidance and autonomous navigation systems. With
imaging sensors, mobile robots can develop a greater understanding of their
surroundings through images and videos, which have been shown to be par-
ticularly effective due to a number of advantages such as their capabilities to
provide distinctive viewing angles, high resolution data, and extensive cov-
erage data about the surrounding environment. Those qualities are useful in
a wide variety of applications because they provide efficient, quick, and cost-
effective solutions. For example, following Hurricane Katrina, unmanned
aerial vehicles (UAVs) were dispatched to look for individuals or groups who
were being trapped by flooding substantially more swiftly than emergency
personnel who went out in rowboats. Following the massive earthquake that
devastated Japan in 2011, unmanned aerial vehicles (UAVs) were employed
to perform reconnaissance and assess environmental parameters at the devas-
tated Fukushima Nuclear Power Plant, which was too dangerous for humans
to approach. An unmanned aerial system fitted with vision systems can also
be used to inspect power plants and other sites for vulnerabilities that might
constitute a threat to the environment. Vision-enabled UAS have also become
more widespread in agriculture, where they allow for more accurate crop
management, which can increase yield whilst saving producers millions of
dollars in time and resources. Farmers are also using UAS to control for pests
and pathogens, oversee their crops, and inspect for symptoms of dryness
and disease, all at a reduced cost than they could normally spend. Those
and other emerging applications are made possible by breakthroughs in
vision-enabled unmanned aerial systems technology, which makes use of
state-of-the-art image sensory and computer vision algorithms for percep-
tion, as well as environment modeling, to provide a more realistic view of
the world. Among the most important vision-enabling technologies is 3D
environment modeling, which has the capability of providing the spatial
distribution of data and is thus very significant. Besides being effective for
navigation, digital 3D models of urbanized areas are suitable for a variety of
activities, including urban planning, virtual reality, and entertainment.

2.1 Introduction to Visual Perception 23

Particularly for autonomous navigation systems, 3D point clouds are play-
ing an important part in the perception of mobile robots, as is the case with
the Simultaneous Localization and Mapping (SLAM) system (SLAM). The
overall topic of Video-Based Navigation (VBN) includes space-applications,
which are attempting to extract such breakthroughs and tailor them for space
applications such as autonomous landing. VBN may be used to improve the
accuracy of the landing operation during the Entry, Descent, and Landing
(EDL) phase of space modules (for example, space-crafts). For example, in
the historic space research missions Spirit, Opportunity, and Curiosity, the
descending trajectory and landing site were pre-computed and calculated
with a maximum landing point accuracy of 20 kilometers. It is possible to
lower the landing ellipse through using VBN-assisted EDL technologies in
their development, hence boosting the accuracy of the landing.

In general, computer vision solutions may be thought of as a spectrum,
with the VBN and obstacle avoidance at one end and the post-processing 3D
model reconstruction at the other end of the spectrum. Navigation and ob-
stacle avoidance are examples of solutions that are designed and optimized
for computational efficiency, real-time responsiveness, and reliability. There
are no stringent requirements for a detailed representation of the environ-
ment because the primary goal is to provide sufficient situational awareness
for localization and environment modeling. However, when it comes to post
processing (3D environment model), the solutions are built and tuned to
enable a thorough, rich, and exact representation of the environment. This
takes more time and computational resources and is not as efficient as the
first method. Throughout this chapter, the section ?? will investigate the
design parameters of the mobile robot visual-perception system, as well
as their impact on the quality of the resultant perception model in terms
of richness and accuracy. This will be investigated by exploring the use of
3D environment modeling in the UAS environment. Whereas section 3.3,
on the other hand, will further develop a computer vision solution for a
manufacturing line in an industrial setting. The performance requirements
in this application are the solution computational cost, dependability, and
reaction time.

24 3D Environment Modelling

2.2 UAS Vision System for 3D Environment Mod-
elling

Structure from Motion and Bundle adjustment techniques are used in a broad
range of applications, including photogrammetric survey, the automated
reconstruction of virtual reality models from video sequences, and the de-
tection of camera motion, among others. The process of the SfM and the
bundle adjustment framework is shown in Figure 2.1 in which the multi-view
photos’ set – which is the sole mandatory input – is utilized to extract the dis-
tinguishing features and match them across the whole collection of images. It
is from this list of matching characteristics that all subsequent computational
blocks are constructed (camera calibration and point cloud generation). Ac-
cording to the amount of features recovered from each frame as well as the
overlap between images, the number of excellent quality matched features is
determined. This encourages us to describe the design phase in terms of two
parameters: extractable number of features per image and the overlap between the
images.

Fig. 2.1 Structure from Motion Workflow

Camera selection and Configuration

The images acquisition system characteristics can be grouped into the three
sets:

• The Optics: the focal length and the lens Modulation Transfer Function
(MTF) which describes the performance of the optical system.

• The sensor: the sensor size and the Pixel size.

2.2 UAS Vision System for 3D Environment Modelling 25

• The operational configuration: the focus, shutter speed and exposure
time, ISO and the aperture settings.

The real object resolution and the contrast level of the photographs are the
two most important specifications for the images’ set that determine their
overall quality. However, among other characteristics, the actual object reso-
lution of the photos is dependent on both the camera object and the height
at which the photographs are taken. The camera object resolution is also
dependent on the sensor resolution and the optical quality of the camera lens
(MTF).
In this case, selecting the sensor for the needed camera object resolution and
then selecting optics -by evaluating their MTF- that can maintain that sensor
resolution while providing acceptable contract performance is a sound strat-
egy. However, The object resolution of the generated photos, on the other
hand, is not solely dependent on the camera’s object resolution, but is also
directly influenced by the flight altitude and the camera field of view (FOV).
Those factors are also interdependent and are influenced by the amount of
overlap required between the photos and the velocity of the UAV. Hence,
there is no explicit way to quantify or choose such parameters in the design,
whereas it is typical to have limitations on the flight plan (altitude range,
UAV speed and overlap), as well as on the imaging system (altitude range,
imaging system overlap, focal length and sensor size). Figure 7.1 depicts
the inter-relatedness between the various factors and groups them into three
categories: requirement parameters, selection parameters, and configuration
parameters. Figure 7.1 scheme may be utilized to reason about the many
trade-offs involved in the design phase.

26 3D Environment Modelling

Fig. 2.2 Vision System Design parameters inter-dependencies and the way they
affect the final 3D reconstruction through affecting the number of quality matched
features

Chapter 3

Visual Perception for Mobile
Robots

The UAS visual perception system can be seen as two processes: visual data
collection, and the transformation of the collected data to useful information.
In the first two sections of this chapter we evaluate the design aspects of
the first process (visual data collection), while in the third section we de-
velop a solution for object recognition and localization (transforming data
into information). The first two sections deals with the UAS vision system
design and configuration including the sensory system design and the use of
additional GPS data to further improve the quality of the data extracted from
the vision system. Then, the third section presents the object recognition
and localization solution for an industrial setup. Although the developed
solution was implemented in an industrial setup instead of a UAS, neverthe-
less, the solution presented is built with UAS limitations in mind. Limited
computational power and the reliability and response time requirements.

3.1 Visual Perception Design Process

The following design route is recommended for a typical design process in
which criteria such as the object resolution (Objres), UAV speed (UAVsp),
time between captures (Tc), and overlap percentage (Ov%):

28 Visual Perception for Mobile Robots

1. In order to determine the desired field of view(FOV), one must take
into consideration the UAV speed, duration between captures, and
overlap percentage as follows:

FOV =
UAVsp × Tc

100 − Ov%
(3.1)

2. The sensor and pixel sizes should be carefully selected from the com-
mercially available options in order to achieve the necessary object
resolution and the previously calculated field of view:

Objres

FOV
=

Pixelsize

Sensorhor

3. Make a conscious choice from among the commercially available focal
lengths for the optics in order to maintain a suitable flying altitude
while still respecting the sensor specifications and the calculated FOV
that have been defined previously:

Sensorhor
FOV

=
Fc

WD

Table 3.1 depicts a typical design parameters computed with the above
described scenario:

Requirements Computed parameters Selection
Time between Captures = 12 s FOVmin = 3.6 m FOV = 4m

Object Resolution = 2 mm
UAV speed = 3m/s Object

Maximum Sensor ratio:
Pixel_size
Sensor_hor = 0.5 x 10−3

Sensorhor = 5.6 mm
Pixelsize = 2.2 um
Actual ratio =0.4* 10−3

overlap% = 90% Fc
WD =1.4 x 10−3 Fc = 25 mm

WDmax = 17.8 m
Table 3.1 Typical Camera and Flight Design Flow

3.2 Use of Additional Data Sets 29

3.1.1 Operational parameters’ configuration

Changing one of these factors (aperture, shutter speed, or ISO), it will have a
direct effect on the magnitude of detected light intensity at each given pixel
under identical lighting circumstances. The aperture has an influence on
the Depth of Field (DOF) and the exposure, but has no effect on the Field
of View (FOV), (AFOV), or the effective focal length. The shutter speed has
an impact on the exposure time and the capability to trace rapidly moving
objects, and consequenty has an impact on the designed maximum velocity
of the unmanned aerial vehicle. When changing the aperture for purposes
of depth of field (DOF) or the shutter speed for purposes of flight speed
and moving objects in the scene, the ISO can be used as a compensation
variable to modify the sensitivity of the sensor cells in order to manipulate
the contrast for a given shutter and aperture settings. The configuration
guidelines for defining these settings that have been learned via experience
are listed below:

• Focus: should be set for the distance between the drone and the highest
point in the terrain.

• Aperture: should be set to have enough depth of field, equal to or
greater than the distance between the highest point in the terrain and
its base (ground). The best corresponding f-stop value can be extracted
from the MTF curves of the lens or by trial before the actual flight.

• ISO: should be set to automatic allowing the software can adjust for the
lighting conditions by altering the pixels’ sensitivity.

3.2 Use of Additional Data Sets

This research was previously initiated by evaluating the performances of
real-time vision-based navigation and autonomous landing algorithms that
were used for the validation of the Mars lander mission at the Vision-based
Terrain Navigation Facility in Thales Alenia Space Italy. During the Entry,
Descending, and Landing phases of the mission, an unmanned aerial vehicle
(UAS) flying over a scaled Mars environment is utilized to locate safe landing

30 Visual Perception for Mobile Robots

locations autonomously and in real time. During a subsequent stage, an
outside landing scenario was to be performed in order to determine the
impact of extra data (such as GPS data) on the resultant 3D point cloud and,
ultimately, the 3D environment model.
Despite the fact that nadir and oblique flight plans are the most typically
employed in "earth" applications, certain requirements and methodologies
from this space application may be applied in traditional mapping applica-
tions. This includes the evaluation of the use of any extra information about
the environment to be recreated, such as geo-localization data or any other
geometrical limitations. An on-board camera (SONY ILCE-QX1L camera
with 20.1MP) was utilized to record photographs while descending and
ascending in the altitude range of the flight test (vertical flight) on an agri-
cultural terrain in order to mimic a landing situation (vertical flight) on an
agricultural terrain (60 - 20 m).

When the UAV was flying, two GPS data sets were utilized to record the
geotags of the UAV when the images were captured (one conventional GPS
used by the UAV autopilot and another L1/L2 GPS corrected using PPK) to
ensure that each picture was geotagged.

Each of these two data sets was then used with the same images set
as inputs to the PIX4Dmapper (a professional 3D environment modelling
software) as initial guess for the camera extrinsics with various uncertainties
to investigate the effect of two GPS data sources “Geotags” with various un-
certainties on the CAMERA CALIBRATION and resulting 3D environment
modelling.

3.2.1 Quality Indicators

In order to assess the overall quality of each 3D environment model, various
indications were created for both evaluating the Camera Calibration results
and judging the 3D environment model.
Camera Calibration:
Focal length deviation from nominal value: variation in focal length is used as
a quality control measure for the calibration results because the focal length

3.2 Use of Additional Data Sets 31

nominal value is well-known to the manufacturer and changes in focal length
under typical working circumstances are assumed to be restricted. When
doing an adequate camera calibration, it is assumed that the focal length will
stay within a 5 percent range of its nominal value.
3D environment model:

• Number of densified 3D points.

• Ground Check Points deviation: the discrepancy between the calcu-
lated coordinates of a reference ground point and the actual coordinates
of that ground point.

3.2.2 Results and Discussion

Figure 3.1(a) depicts the geo-localization relative error distribution, which is
used to assess the validity of the calibration results. The results show that
the calibration estimates from the L1/L2 GPS with 20cm & 5cm uncertainties
resulted in a poor coverage of the error which indicates that those uncertain-
ties are stricter than what is compatible with the images.

Figure 3.1(b) shows that although the L1/L2 GPS is intrinsically more
precise, when used with standard uncertainty (L1/L2_stnd) produces the
same results as the conventional GPS (GPS_stnd). This is because when us-
ing larger uncertainties, the software optimization algorithms will have way
more confidence on the image driven data (matched features) than on the
Geotags, which will result in having almost the same quality of the project
eventually for conventional GPS, the L1/L2 GPS and even without Geotags.

32 Visual Perception for Mobile Robots

(a) (b)

Fig. 3.1 (a) Focal length deviation from the nominal value, the two data sets with the
same large uncertainty bounds (standard) gives the same calibration results which
is also equal to the calibration without any additional data. (b) Distribution of the
residual of the estimated camera positions deviation from the initial data

(a) (b)

Fig. 3.2 (a) Number of 3D points reconstructed with each additional data set as a
measure of the richness of the resulting 3D model. (b) Deviation of the Ground
Control Point in each 3D reconstructed model as a measure of the accuracy of the
environment model.

Figure 3.2(a) indicates that the 3D points reconstructed without geo-tags
were noticeably higher than the reconstruction with any additional local-
ization data sets. This shows that the use of localization data leads to mark
some matched features as inconsistent, but due to the good images’ quality
the number of reconstructed 3D points was sufficiently high in all cases.
We notice also that the use of different GPS data sets results in a limited
difference in the number of reconstructed 3D points, which is reduced with

3.2 Use of Additional Data Sets 33

stricter uncertainty bounds.

Figure 3.2(b) indicates that the Ground check points’ deviation from the
3D model was significantly less for the L1/L2 GPS with respect to the con-
ventional GPS. Novatel with 35cm uncertainty had the best overall results for
both camera location estimation and 3D reconstruction location referenced
to the ground check points.

3.2.3 Conclusion

Using the 3D environment model richness and accuracy as quality indicators,
we realized that they are a function of the quality of the camera calibration
– which is a self-calibration process in the SfM framework (3.3) – and the
amount of quality matched features. When it comes to the camera self-
calibration process, the quality of the initial values and the data set utilized
have a significant impact since it is a non-linear optimization problem (which
is the matched features in this case). In order to assess their contribution to
the total 3D quality indicators previously specified, we evaluated the use
of two different GPS data sets as initials for the camera location (extrinsic
parameters) in order to determine their accuracy.
The comparison of the resulting 3D environment models revealed the use of
additional data sets will have a limited effect when it is used with a stated
uncertainty bounds higher than the actual ones. The use of smaller uncer-
tainty limits on the other hand results in inferior camera calibration and,
thus, worse reconstruction outcomes.
This emphasizes the need of determining the real uncertainty limits of any
extra data sets, which are often not the same as the nominal ones but are
rather impacted by system factors such as camera capture/GPS synchro-
nization. The design trade-offs between the various camera parameters and
the flight plan under specific requirements like the final object resolution,
the UAS speed and the required images’ overlap was addressed. The inter-
dependencies and relations between these parameters and the number of
quality matches was mapped and a structured computation and trade-off
workflow was recommended for terrestrial mapping applications.

34 Visual Perception for Mobile Robots

Fig. 3.3 Topics investigated and their place in the SfM framework

3.3 Industrial Visual Perception

In this part, we will investigate and design a visual perception solution for
an industrial robot that will be used in a manufacturing process. When used
in an industrial setting, more than often, the visual perception algorithm is
expected to be integrated with an industrial robotic arm that performs some
pick and place operations. The objective is to develop a robust detection and
localization algorithm using only visual sensory. The developed solution
must also have computational cost, reliability and response time relevant to
UAS application scenarios. This means that the computer vision algorithm
should be robust, reliable to work in continuous mode and with frame
throughput that is way less than the robotic arm assembly cycle-time. The
application setup includes the following systems:

• Vision System: a programmable camera that serves as the primary
controller utilized to detect the pieces that are in the proper orientation
to be handled by the robotic arm, as well as to provide the coordinates
of the pieces to the robot for picking. When none of the pieces are
available, the camera should decide whether to signal a feeder with
the adequate command in order to further increase the parts’ density

3.3 Industrial Visual Perception 35

on the conveyor, or whether to signal the conveyor with the adequate
command in order to shake the existing parts in order to change their
orientation, whichever is more best suited. This feature places the
vision system at the core of the solution, not only identifying and lo-
calizing the components, but also determining why there are no parts
available for assembly at the time of recognition (do we need to add
more parts or shake the existing parts or both).

• Feed system: when it is instructed by the vision system to deliver
more pieces or to start shaking the conveyor (flip) in a preconfigured
mode. The feed system is capable of dispensing different amounts
and shaking the conveyor in different configuration modes depending
on the command it receives from the vision system. It is constantly
transmitting its current state to the camera for control purposes.

• Robot: commanded by the vision system to pick ready pieces. The
robotic arm is also needed to continually transmit its status (whether it
is inside or outside of the camera’s field of view) to the vision system
for control purposes.

The solution should be dependable, resilient to variations in lighting con-
ditions and minor dimension variations in the pieces of interest. And most
importantly, it should be multiple times faster than the robotic arm assembly
operation in order to avoid increasing the total production cycle-time in the
manufacturing process.

3.3.1 Industrial Visual Perception Solution

Using edge-based pattern training, the suggested solution is implemented.
The algorithm in the training phase is manually tweaked to identify the
edges of each piece, with the defining edges then being used to train a sparse
search algorithm based on these edges’ patterns . In this case, the camera is
a 5MP programmable camera with a global shutter and a frame rate of 16

36 Visual Perception for Mobile Robots

frames per second. The camera optical settings (FC, FOV, focus, and depth of
field) are set in order to get the maximum sensor resolution (magnification
ratio and focus for the conveyor area). The algorithm is described in further
detail below.

Solution WorkFlow

According to a minimal success factor criteria, each raw acquired image is
utilized to search for/recognize up to 20 pieces. When the system is first
starsd, this pattern recognition function will be performed in FULL-SEARCH
mode, which implies that it will process the whole frame of the raw image
being processed. Once successfully identified, pieces that have been found
in a region of interest, those pieces are passed on to the other four particular
recognition processes, where they are designated as completely recognized
parts. These four distinct recognition functions are as follows:

• Front/Back orientation check: to differentiate between the head and
tail of the part;

• Up/Down orientation check: i.e. the part is not upside down with
respect to the default picking configuration;

• Gripper Clearance check: i.e. the gripper can reach the parts without
collision;

• Robot Reachability Check: i.e. the part is within the robot working
area.

Parts successfully passing all those recognition functions are then ranked
according to their success-rate and the best will be selected. The selected
part origin coordinates in the camera frame is then processed to compute the
picking point coordinates in the world frame through relative transformation
and camera/world frame calibration functions.

If the list of successfully recognized parts remains non-zero for a pre-
defined number of samples (robustness threshold), then the selected part
will be considered as robustly found and the picking coordinates will be
sent to the robot whenever the robot is ready. On the other hand, if the list

3.3 Industrial Visual Perception 37

of successfully recognized parts remains zero for a pre-defined number of
samples (feeder threshold), then a properly defined command (depending
on the number and distribution of parts in the shaker bed) will be send to the
feeder to either dispense more parts or perform a specific shake operation.

The remaining parts in the successfully recognized parts list are then
latched to the next sample time. As long as this list has more than a single
part, the next sample operation will run the raw pattern recognition function
in LIMITED-SEARCH mode. In this mode, pattern is searched for only in
selected areas around the previously saved parts’ list instead of searching
the full frame image. This way we perform FULL-SEARCH only once every
while and in between we perform LIMITED-SEARCH which is way faster
working on less image area. This eventually has a significant effect on
reducing the mean cycle time of the overall operation.

The Scenario described above can be logically segmented into the follow-
ing functional parts:

• Image Processing: Images filtration to be used in the different recogni-
tion functions giving some degree of robustness against dust (dynamic
noise) and lighting conditions.

• Full Search: Part Recognition in Full image

• Limited Search: Part Recognition in small regions around previously
found parts.

• Calibration: Camera to World frame transformation of target parts.

• Robustness evaluation: Evaluate the part Robustly-Found and Robustly-
Not-Found state before using it for either picking or feeder command
respectively.

• Feeder Control: Sending the proper Shake/Dispense command to
maintain reasonable number of parts in the camera FOV, monitoring
the Feeder status.

• Robot Interaction: Sending coordinates of target parts and monitor the
Robot state (IN/OUT camera FOV).

38 Visual Perception for Mobile Robots

Fig 3.4 depicts a top-level structure of the workflow:

Fig. 3.4 Algorithm Top Level Structure.

Image Processing

As described previously, captured images are used through several recogni-
tion functions which collectively will decide the best recognized part. The
final quality of those pattern recognition functions depends greatly on the
quality of the images they process. To this end various combinations of filters
were implemented to furnish different images suitable for every specific
pattern recognition function. Filters’ types and configurations depend on
several factors which can be categorized into static factors and dynamic
factors. The static factors include the geometry and material reflection of the
part to be recognized. Whereas the dynamic factors include the variability
of lighting conditions and the image dynamic background noise resulting
from the d debris accumulation in the Feeder shaker bed through time. The

3.3 Industrial Visual Perception 39

dynamic background noise was by far the most dominant factor affecting the
image quality and consequently the part recognition hit rate. Hence, filters’
combinations were repeatedly tested and configured to give satisfactory
performance in extreme background noise conditions -kindly refer to the test
videos.

In addition to the raw captured image, another filtered image was con-
figured by implementing a binary filter followed by a noise cancellation
(close) filter, 3.5. The resulting image is a high contrast noise free image that
produces satisfactory results in Front/Back orientation check, Up/Down
orientation check and Gripper Clearance check operations.

Fig. 3.5 Image processing: binary filter and noise cancellation

Full/Limited Search Decision

The decision whether to process the full image FULL-SEARCH or LIMITED-
SEARCH on specific areas depends on the number of found parts in the
previous sample. Starting from initial conditions where no parts were found
previously, FULL-SEARCH will be enabled. If the FULL-SEARCH finds only
one ready part, then this part shall be picked leaving empty list and hence
the next sample shall be processed in FULL-SEARCH mode too. However, if

40 Visual Perception for Mobile Robots

the FULL-SEARCH finds more than a single ready part, then the best part
shall be picked, and the rest of the list shall be saved/latched to be used
by the LIMITED-SEARCH mode in the next sample. This logic is depicted
in Fig 3.6 flowchart. The final outcome of this logic is to enable one of the
two modes and disable the other one (Full/Limited) which shall be used
consequently by the rest of the application.

Fig. 3.6 Full/Limited search Decision Flowchart

Both search modes have the same structure the only difference is that the
LIMITED-SEARCH mode limits the search area while the FULL-SEARCH
mode process the full camera frame. This difference practically translates
to that in FULL-SEARCH mode we will use a single pattern recognition
function whereas in LIMITED-SEARCH we will use 20 pattern recognition
functions each for a small area around a previously found part. The rest of
the recognition steps (Front/Back orientation check, Up/Down orientation
check, Gripper Clearance check operations and Robot Reachability Check)
are identical. For the LIMITED-SEARCH to work it needs a previously saved
list of ready parts. This list is provided by the previous sample whether it

3.3 Industrial Visual Perception 41

was LIMITED-SEARCH or FULL-SEARCH. Fig 3.7 describes the process of
saving/latching the ready parts’ list for the next sample, whereas Fig 3.8
and Fig 3.9 describes the FULL-SEARCH and LIMITED-SEARCH overall
recognition logic respectively.

Fig. 3.7 Saving/Latching ready parts’ list

42 Visual Perception for Mobile Robots

Fig. 3.8 Full Search

Fig. 3.9 Limited Search

3.3 Industrial Visual Perception 43

Full Pattern

To compensate for the camera optics prospective, some scale variance was tol-
erated (95% – 120%). The number of recognized parts were further improved
by tolerating 8 overlap between recognized parts.

Robot Reachability

Parts found by the Full Pattern recognition function are evaluated against
the robot workspace. The Full Pattern function delivers the pattern origin
for every successfully recognized part. This origin is then transformed
using fixed user-defined angle and distance to obtain the picking point. The
resulting picking point is evaluated if it lies within the robot work space
which is user-defined too.

Up/Down Orientation

The feature used to differentiate between the up versus down orientation is
the square hole in the middle of the part. In the binary filtered image this
square appears black for the down orientation due to the shadow it makes
whereas it appears white for up orientation. To check the square region only,
the origin coordinates given by the Full Pattern Function Is used to build
a square area of interest (through fixed transformation). This square area
includes the square hole at the centre of the part. A blob is used to evaluate
each square area to check if it is black (indicating down orientation) or white
(indicating up orientation). The shadow might appear partially due to the
filter operations, so further blob features (elongation) are used to make the
final judgement about the orientation.

Gripper Clearance

The gripper approaches the target part while open and closes only when
it has reached the part already, Hence, the robot needs a clearance around
the part to be picked. This clearance (shape and size) is user-defined for the
specific part and gripper. The result is a geometry around the picking point

44 Visual Perception for Mobile Robots

that should be clear of obstacles. In the application a gripping clearance area
is drawn around ever found part and a blob is used to check that this area is
clear.

Front/Back Orientation

This part is meant to determine the head from tail of the part because some-
times the part is recognized but the angle orientation is missed by 180 degrees
which result in wrong picking coordinates sent to the robot. A circle area
around each picking point is drawn and further evaluated using a blob to
make sure it contains the head.
For a part to be included in the Ready-Parts-List it should pass all the above-
mentioned steps (AND function). If any of the previous steps failed (down
orientation, back orientation, out of robot workspace, no enough gripper
clearance) then the part found by the Full-Pattern function will be discarded.

3.3.2 Calibration

Depending on the recognition mode (FULL-SEARCH or LIMITED-SEARCH)
the calibration process selects the best part from the Ready-Parts’-List of the
corresponding recognition mode. This part is defined by its origin in in the
camera frame, the calibration process was implemented to first compute the
picking point coordinates given the origin coordinates and then calibrate the
picking point coordinates from the camera frame to the world frame. The
resulting coordinates are the ones that shall be sent to the robot eventually.
The calibration process depends on a user-defined saved calibration object
that correlates the camera coordinates to the robot ‘’world” coordinates. Fig
3.10 shows the calibration process flowchart.

The remaining segments of the application are three sections which are
inter-related, i.e. Robustness evaluation, Feeder Control and Robot Inter-
action. Their operations are inter-related because the interaction with the
Robot and the Feeder depends simultaneously on the robustness evaluation

3.3 Industrial Visual Perception 45

in addition to their states which are monitored continuously.

Fig. 3.10 Camera-Robot Calibration

3.3.3 Robot Interaction

The picking point coordinates computed by the calibration step is sent to the
robot if and only if the following conditions were met simultaneously:

1. Robot has made the transition from IN to OUT state; i.e. it made the
transition from inside the camera FOV to out of the FOV. Here the
transition is used instead of simply the OUT state to ensure that the
robot gets the coordinates of the part only once. In early trials the
condition used was the robot being in OUT state (state not transition)
and the result was that the robot received the same coordinates more

46 Visual Perception for Mobile Robots

than once, which drove the robot back to the same point where he
already picked the part previously.

2. A part has been Robustly Found; this is a result from the Robustness
evaluation segment. This condition ensures that the part found is
steady and not still moving or vibrating. The condition is crucial
because each part type requires a certain amount of time before it
settles with no apparent vibration after a shake operation. Without this
condition the application might find a part which is still on the move
or vibrating.

The actual robot interface is configured as a TCP/IP device with a
String+Carriage_Return message format. Two functions (write & read) are
used to send coordinates and receive robot state respectively. The write func-
tion takes the picking point world coordinates (x,y, angle) and formulate a
string with a comma separator. On the other hand, the Robot is programmed
to continuously send the IN state whenever it is inside the camera FOV and
send OUT otherwise.

Fig. 3.11 In/OUT FOV monitoring

3.3 Industrial Visual Perception 47

3.3.4 Robustness Evaluation

This segment of the application was implemented to increase the overall
application reliability. The entire part recognition result is assessed as being
trustworthy based on the reliability. That is to say when the application
indicates that it did recognize a part, or it cannot find any part, those state-
ments should be reliable and trustworthy since they will be used to either
command the robot for picking or to command the feeder for a shake of
dispense operation with specific configuration. Poor reliability will lead to
more feeder operations that the optimum and less parts picked by the robot
which eventually translated to longer mean cycle time.
Robustness is measured by counting in a history timeline (3 previous sam-
ples and the current sample) the number of samples where we found parts
and the number of sample where we did not find any part. To work with a
timeline, a script object is more efficient than normal cell logic and latching
operations. So, the robustness evaluation logic was implemented using a
script object that takes the following inputs:

1. From Robot Interaction segment: Signal indicating the robot IN-OUT
state transition.

2. From Full & Limited Search segments: the total number of found parts.

3. From feeder control segment: feeder ready signal.

The final outputs of the script object are the following:

1. Robustly Found signal: used as a condition (among others) to send the
coordinates to the robot.

2. Robustly Not Found signal: used as a condition (among others) to
command the feeder in the feeder control segment.

48 Visual Perception for Mobile Robots

Fig. 3.12 Robustness Evaluation

As illustrated In Fig 3.12, the found threshold used depends whether
the feeder is active or not (shake or dispense operation). If the feeder is
active (not ready) then we set a higher threshold, i.e. the part should be
found in more samples because when the feeder is active the parts are
moving/vibrating. On the contrary, if the feeder is not active (ready) then
we set a lower threshold because the parts are assumed already settled.

3.3 Industrial Visual Perception 49

3.3.5 Feeder Control

The feeder controller main function is to maintain suitable parts’ density in
the feeder bed, not too much that its not possible to recognize individual
parts nor too few that requires dispense operations more often. The feeder
has three main operations (Flip, Flip forward, Flip backward & Dispense).
Each of those operations has two parameters to be set defining the operation
interval and intensity. To this end the image was divided into two segments
(Back & Front). This way we can better address the frequent situation where
a dispense operation accumulates much parts in the back of the feeder bed
with very few parts in the front segment. In such case, knowing the parts’
density of the two segments separately, the feeder controller will be able
to request a feeder forward flip operation to spread the parts more evenly
across the feeder bed. Similarly, knowing the parts’ density of the two seg-
ments, any other in-homogeneous distribution of parts shall drive the feeder
controller to request the suitable feeder operation. The parts’ density is mea-
sured practically by the image histogram. Hence, for each segment we have
a histogram measured value and user-defined desired range.
Comparing a segment (Front or Back) measured value to its desired range
can give one of three states (Higher, Within, Lower). The feeder command
request depends on the resulting combination of comparison results of the
two segments. Each combination was assigned to a proper feeder operation
(flip, Dispense...).
The above detailed logic describes the way the application selects the feeder
operation request. However, this feeder operation request will be communi-
cated to the feeder under some specific conditions that ensures the proper
functioning of the feeder and not interruption of robot picking operations.
This feeder operation request shall be communicated to the feeder if and
only if the following conditions are satisfied:

1. The robot is out of the FOV (Automatic).

2. Enough time delay has elapsed since the last command sent to the
feeder; without this condition consecutive feeder commands will phys-
ically overlap causing unpredictable feeder operations like violent flips
causing the parts to fly out of the working area. This is practically

50 Visual Perception for Mobile Robots

implemented through monitoring the feeder state, when the feeder re-
ceives a command a timer is set off. Only when this timer has elapsed,
and the feeder motor drives are back to idle this condition is set.

3. Robustly Not Found signal from the robustness evaluation segment.

The feeder physical interface is a serial port through which it receives and
echoes every message received and some specific codes describing the state
of its two motor drives. Through those echo & state messages, the feeder
state is continuously monitored to ensure that the commands sent were
successfully received and executed. Fig 3.13 describes the feeder controller
logic.

Fig. 3.13 Feeder control logic flowchart.

3.3 Industrial Visual Perception 51

3.3.6 Remarks

In this application we have used state-of-the-art image processing techniques
to implement pattern recognition. The core innovation in this application was
the manipulation of those image processing techniques in order to respect
the application requirements in terms of cycle time, precision and robustness
of recognition. The staging of the pattern recognition (Full Search Limited
Search and robustness evaluation) was crucial in meeting those application
requirements.

Part II

Motion Planning

Chapter 4

Motion Planning State-of-Art

This chapter presents a broad literature review for motion planning methods
used for autonomous navigation.

4.1 Background

Unmanned aerial vehicles (UAVs) have recently attracted the public’s atten-
tion due to their potential for use in a variety of applications. However, in
order for UAVs to be effective in unstructured environments, they ought to
be able to operate independently and with high availability and reliability,
while also demonstrating great flexibility in order to adapt to changing cir-
cumstances. They are not, however, insurmountable, even when faced with
such strict standards.
Technology advances in a number of relevant fields, such as optimal con-
trol methods, machine learning and efficient computing capabilities, have
not only made it possible to develop cutting-edge capabilities for improved
performance, but they have also created new opportunities for developing
autonomous capabilities for a wide range of unmanned systems, such as
UAS.

Unmanned vehicles can be divided into several categories based on the
environment in which they operate, including unmanned aerial vehicles

4.1 Background 55

(UAVs), unmanned ground vehicles (UGVs), unmanned surface vehicles
(USVs), and autonomous underwater vehicles.

Unmanned aerial vehicles (UAS) are best described in the aviation in-
dustry as aerial aircraft that do not need human navigation or control but
have a high level of operational efficiency, allowing them to operate in haz-
ardous environments where personnel would otherwise be at risk of injury
or death. As a result of these characteristics, they are becoming increasingly
popular for a wide range of applications such as remote sensing, search and
rescue, security and surveillance, precision agriculture (including precision
agronomy), infrastructure inspection and urban planning, space exploration,
bomb detection, and even recreational activities, such as drones, to name a
few. Unmanned aerial systems (UAS) have significant hurdles in developing
autonomous navigation skills as compared to other autonomous vehicles
on land or in water. Due to the unique characteristics of unmanned aerial
systems (UASs), which are resource-constrained systems in terms of energy
consumption, computational capacity, and payload limits, as well as the
restricted hardware-set available onboard, a number of challenges must be
overcome. Unmanned aerial systems (UAS) also include a range of char-
acteristics, such as nonlinear dynamics, three-dimensional environments,
shocks and errors in state information, to mention a few examples. Hence, a
more stringent set of criteria must be met in the development of autonomous
solutions and motion planning techniques than are necessary for typical
mobile robots or manipulators.
According to [8], as a result of the rising use of unmanned aerial systems
(UAS), resource constraints, and other inherent issues in the UAS, several
associated academic fields have experienced an increase in popularity, with
autonomous flying leading the way.

Intelligent solutions in a variety of domains, including perception, lo-
calization and mapping, motion planning and control, and navigation, are
required to address the challenging problem of autonomous flying. Auto-
matic motion planning, in particular, continues to be one of the most difficult
difficulties that autonomous robots must overcome presently. The topic
of motion planning is well-known in a variety of areas, including robotics
[33][17], assembly maintenance [44], computer animation [45], computer-
aided surgery [46] and manufacturing [47] is that of motion planning.

56 Motion Planning State-of-Art

A motion planner’s overall goal is to enable users to describe operations
using high-level languages and have the robot turn those descriptions into a
collection of low-level motion primitives, or feedback controllers, that are
necessary for the job to be successfully completed. The ability of a robot to
change configurations while avoiding impediments is critical for the correct
operation of any robot, whether it is an arm or a mobile robot. This is the most
fundamental function performed by all robots. This subject areas, however,
been enlivened by the introduction of new challenges such as uncertainty,
an enormous number of entities, and the dynamic behavior of the entities
themselves. Motion planning, among other things, includes the planning of
movements among obstacles as well as the synchronization of movement
with other mobile robots, among other things.
For instance,when it comes to autonomous cars, motion planning entails con-
siderably more than simply the identification of objects in the road. People’s
intuitive interaction with their environment, as well as the sort of operational
intelligence necessary for sensing and motion planning, are challenging to
mimic in a computer program, according to [17]. Conversely, motion plan-
ning can be defined as "the computation of the control input required to drive a
vehicle from a starting state to an end state while complying with the kinematics
and dynamics constraints of the vehicle and avoiding obstacles or driving through
otherwise prohibited areas." As a result, motion planning may be thought of as
a challenge that addresses the three problems listed below.

• The best way to move from one configuration to another while mini-
mizing the length of the path, the amount of energy expenditure (or
whatever measure may be of relevance to the application in question);

• On the path, keep clear from obstacles and restricted areas.;

• Find the path as rapidly as possible with the least amount of computing
effort.

Furthermore, the motion planning problem can be contextualised in
different environments dealing with obstacles of various characteristics, as
follows:

• Motion planning in a known environment with static obstacles;

4.2 Methods for Motion Planning 57

• Motion planning in a known environment with dynamic obstacles;

• Motion planning in an unknown or partially known environment with
static obstacles;

• Motion planning in an unknown or partially known environment with
dynamic obstacles.

4.2 Methods for Motion Planning

First and foremost, in order to navigate through the motion planning ap-
proaches available in the literature, we must establish certain nomenclature
that will be used throughout, notably the robot configuration and the config-
uration space.

• Robot configuration: The configuration of a robot system is a complete
specification of the position of every point of that system.

• Configuration space: The configuration space, also known as the C-
space, of a robot system is defined as the space containing all potential
configurations of the system.

// In recent years, a number of different approaches to mobile robot motion
planning have been researched and tested. In the literature, there are many
types of motion planning techniques from which to choose. For starters, as
numerous authors have pointed out, separating them into off-line and online
categories is a useful overall distinction to make.

• Offline path planning is defined as follows: Creating a plan in advance,
based on a known model of the environment, and then passing it on to
an executor is referred to as offline route planning. In some instances,
if thorough information on both static and moving impediments is
available, this strategy may be utilized efficiently to overcome such hur-
dles. This approach creates a complete path from the robot’s starting

58 Motion Planning State-of-Art

point to its ultimate destination before the robot starts to move, allow-
ing the robot to arrive at its goal faster. For example, service robots,
autonomous guided vehicles, and other similar devices in which the
acquired environment map is not susceptible to change are examples
of off-line route planning.

• On-line path planning: Whenever the planner produces the plan grad-
ually while the robot executes, the planning environment is said to be
"on-line." In this case, the planner may be sensor-based, which means
that it will be able to combine sensing, computing, and action into a
single bundle of functionality. This type of navigation is used to travel
in scenarios when the environment is entirely unknown, courses have
been planned, and the robot is moving at the same time.
Its course changes as it travels as a result of changes in the environment
detected by sensors in the environment, which cause it to modify its
path. The most fundamental kind of online planning starts in offline
mode and transforms to online mode when new changes in the status
of obstacles are detected, as described above. As examples of path
planning in online context, [48] and [49] provide the examples of recon-
naissance robots and planet exploration, respectively. As a consequence
of technology advances, many formerly offline techniques are now as
On-line planners.

A significant number of researchers have created techniques that have
been tested in a range of circumstances with both dynamic and static limita-
tions in trying to address the motion planning problem.
When Nils John Nilsson presented a mobile robot system with basic motion
planning capabilities in the late 1960s, it marked the beginning of the field.
He was also the first person to use the visibility graph approach in the world.
In contrast, while it became a research topic in the 1970s, it was only in the
1980s that considerable active development began, owing to the introduction
of computers in the workplace.
There has been a huge increase in the number of techniques created during
the last two decades. When dealing with the high dimensionality of configu-
ration space C-space, which was a source of difficulties for academics in the
1990s, planners resorted to randomization to help them cope.

4.2 Methods for Motion Planning 59

The methodology and algorithms for current motion planning may be di-
vided into four categories: classical approaches, probabilistic approaches,
heuristic approaches, and evolutionary approaches. Classical approaches
are those that are based on mathematical formulas, while probabilistic ap-
proaches are those that are based on probability.

4.2.1 Roadmaps

Roadmaps are a generic term that refers to the creation of a graph in the
configuration space that specifies how different configurations are connected
to one another rather than a specific path planning method in and of itself.
As a general rule, the initial step in any roadmap path-planning method
is to transform a continuous environmental model or search space into a
discrete map that is appropriate for the path-planning technique that has
been selected. The discretization of the search space makes the method
computationally costly for higher-dimensional spaces since it increases the
number of possibilities.
A road map is made up of a sequence of paths, each of which connects the
starting points to the destination without colliding into any obstacles. A
usable trajectory may be identified if all of the configurations of a roadmap
are connected together, as well as the start and goal configuration being
connected to the roadmap. Furthermore, a roadmap may be used to an-
swer a variety of questions concerning the search space if they are needed.
Among them, indeed is the shortest path between source and destination
included in the visual graph or the roadmap. Thus, the path used is often
longer than necessary, but it is also more secure. The visibility graph and the
Voronoi diagram are the two most well-known types of road maps [50] [51],
respectively. To deal with optimality problems, Bhattacharya and Gavrilova
[52] suggested utilizing a Voronoi diagram to provide a safe clearing path.
Furthermore, techniques such as Cell Decomposition methods [24][25], De-
launay Triangulations [26], and Dynamic Graph Search methods [27][28]
are only suitable to low-dimensional spaces [29] due to the high computa-
tional cost of these approaches. The negative effects of discretization also
affected algorithms such as [53][54][55], which combine the set of allowed

60 Motion Planning State-of-Art

movements with graph search techniques to create state lattices, resulting in
a reduction in performance.

Artificial Potential Fields (APF)

The Artificial Potential Field [56] is a well-known path planning method
that was originally suggested by O. Khatib in 1986 and has since gained
widespread acceptance. They are a family of path planning algorithms that
rely on attracting and repellant forces to steer an object across as it moves
through the configuration space.

A potential function is a differentiable real-valued function. The value
of a potential function may be thought of as energy, and the gradient of a
potential function can be thought of as force. The gradient is a vector defined
as the following equation:

∇U(q) =




∂U
∂x1

(q)
...

∂U
∂xn

(q)


U : Rm → R (4.1)

This principle is based on the idea of creating a virtual potential field in
the configuration space that repels obstacles while simultaneously attracting
the robot to the desired configuration. By using methods such as hill climbing
and gradient decline, it is possible to evaluate the potential field produced
by the forces acting on the configuration space. An artificial intelligence
robot is driven by a potential function, much like a particle moving through
a gradient vector field.
In order to find a collision-free path, the robot must first follow the downward
gradient of the staged potential function in the descending direction of the
potential function in order to bypass the obstacles and move from its starting
location to its destination location under the influence of these two forces.
When the robot reaches the point q where U(q) = 0, it comes to a complete
stop.
The most critical points in U are the points where q is a maximum, minimum,
or saddle point. This method has been extensively used because because

4.2 Methods for Motion Planning 61

of its simple structure, high computational efficiency and ability to regulate
processes in real time.

Some navigation issues may be solved by designing the potential field
in such a manner that following the gradient always results in the robot
reaching the objective. This is known as gradient following. Nevertheless,
it has the drawback of being susceptible to falling into a local minimum
point [31], where the resulting force of the robot is zero and the desired
configuration cannot be attained. As described in [57], the robot may get
stuck by oscillating between obstacles. This technique also does not work
well in environments with small passageways, as previously stated.
As an alternative, in the event that computing such a potential field is diffi-
cult or impossible, researchers instead employ one that is simple to calculate
but may have the undesired characteristic of local minima, which are places
where the robot becomes “stuck". In this instance, researchers also might
simply utilize the prospective field to direct a search-based planner, which is
a straightforward solution.
Many scholars have proposed solutions to this problem, such as introduc-
ing virtual target points [58] or instructing robots to move randomly [59],
employing the simulated annealing algorithm [60], employing the adding
extra control force method [61], incorporating the genetic algorithm into the
artificial potential field method [62], incorporating the gain factor [63], incor-
porating a virtual obstacle concept [64], or incorporating a virtual obstacle
concept [65]. Jinseok Lee developed an internal state model to solve the local
minimum challenge at a low computing cost [66], which is considered to be
a breakthrough in the field.
Zhang Tao and associates [67] presented an enhanced wall-following method
as well as path memory. The vector potential function was suggested by Anu-
grah K and associates [68]. Ya-Chun Chang and associates [69] integrated
the Artificial Potential Field technique with the Voronoi diagram method to
enhance the movement quality of mobile robots. Rahman suggested that
each agent be assigned a fixed path, thus eliminating the need to change the
trajectory [70].
Qinzhao Wang developed a technique of gravity field rotation and virtual
obstacle filling [71], which was later used by other researchers. In his paper
[72], Chen JinXin proposed a repulsion deflection model. It is also essen-

62 Motion Planning State-of-Art

tial to note that integrating the time-based element of the problem with a
potential approach is not straightforward since a force does not take into
consideration if an obstacle is moving. As a result, the trajectory of a moving
obstacle cannot be predicted using a force, which means that a potential field
technique may not be feasible or may need significant modifications.
However, despite the fact that these drawbacks make the development of
a potential field algorithm very unappealing, there are certain benefits to
doing so, as shown in [73]. As an example, take into account the fact that
these techniques generate smooth, curved trajectories on their own, which
may be desired at a later stage.

Cell Decomposition

These methods are founded on the concept of splitting the configuration
space into simple cells, which are then connected to one another in order to
create a roadmap of the configuration space.
In this way, precise cell decomposition structures represent free space by
combining simple regions known as cells into a more complex structure.
The shared boundaries of cells often have a physical significance, such as a
change in the proximity of the nearest obstacle or a change in the line of sight
to surrounding obstacles, among other things. If two cells have a shared
border, they are said to be neighboring.
It is named after the adjacency graph, which is a kind of data structure that
stores the adjacency connections between cells. A node corresponds to a cell,
and an edge links nodes of neighboring cells.
Assuming that the decomposition has been calculated, path planning using
a cell decomposition is often done in two stages: first, the planner identifies
the cells that include the start and goal, and then the planner searches for a
path inside the adjacency graph, which is generally done in two steps.
It should be noted that the adjacency graph may also be used as a map of the
available free space. As a result, mapping may be accomplished by building
the adjacency graph in small steps over time.

Cell decomposition, on the other hand, differ from other techniques in
that they may be utilized to obtain complete coverage of the target area. A
coverage path planner is an algorithm that calculates a path that passes an

4.2 Methods for Motion Planning 63

effector (such as a robot or a detector) across all of the locations in a free area.
Given the simplicity of each cell’s construction, basic movements such as
back-and-forth forming operations may be used to cover each cell; once the
robot visits each cell, coverage is complete. In other words, coverage may
be simplified to the task of locating an exhaustive walk across the adjacency
network of nodes.
Sensor-based coverage is accomplished by concurrently covering an un-
known area and building the space’s adjacency graph. Another essential
characteristic of this family of algorithms is that they ensure completeness,
which implies that if a solution exists, it will always be discovered.

Despite this significant benefit, cell decomposition methods are associated
with a significant number of drawbacks as well.
For instance, they will get increasingly more difficult to execute as the number
of dimensions of the problem increases, which may cause difficulties in the
future if somehow the problem is broadened.
The second point to mention is that cell decomposition methods may take a
long time to process since the whole configuration space is indexed, which
may not always be required.

The grid method is a popular cell decomposition method that was used
for the compilation of the environment map, among other things. The more
difficult it is to define the grid’s size, the smaller the grid’s size must be, and
the more precise the environmental representation, the smaller the grid size
must be.
A new molecular decomposition strategy is developed when obstacles, goals,
sensor platform and field of vision (FOV) are provided as limited and closed
subsets related to Euclidean workspace [50], [74].
Some of the issues posed in this method need the use of a large amount of
memory for the analysis of the environment, resulting in significant compu-
tational complexity.

4.2.2 Heuristic Methods

Previous motion planning techniques relied on an explicit representation of
the geometry of an obstacle-free environment, which was not always attain-

64 Motion Planning State-of-Art

able or practical. As a result, as the size of the configuration space expands,
these planners become unfeasible.
However, although heuristic planning methods have only recently gained
popularity in contrast to conventional approaches, they are very important
owing to the fact that they are based on human-like behavior and therefore
learn as they go.
Various path-planning applications are studied using heuristic motion plan-
ning techniques, which use a range of various methodologies for generating
samples (collision-free configurations of the robot) and connecting the sam-
ples with trajectories in order to find solutions.
The Dijkstra algorithm and the A* algorithm are the two most often used
algorithms. Both algorithms may be thought of as special types of dynamic
programming [75].

Dijkstra algorithm:

Although its not a heuristic method, the Dijkstra’s algorithm is the base
behind the A* algorithm. Hence we will start by discussing the Dijkstra
algorithm before we discuss the first heuristic method A*. Dijkstra algorithm
is one of the most historical algorithms for determining the shortest path
between vertices in a network, and it is still in use today.
It was proposed in 1956 by the computer scientist Edsger W. Dijkstra, who
devised an algorithm to discover very short paths between the nodes in a
graph that may represent a road map. This method is capable of finding a
path based on the cost of edges, which may be thought of as a "cost-to-go"
from a starting node to a destination node. The algorithm’s goal is to find
the shortest path between any two vertices in a network, regardless of their
location.
Dijkstra’s algorithm, given a collection of vertices, first reports the vertex
with the smallest distance from the preceding vertex (i.e. the lowest cost for
connecting the current vertex to another vertex). It is feasible to evaluate the
shortest-path-to-take in order to reach the target vertex in this manner.
Iteratively repeating the following stages until all vertices have been visited
once a starting vertex has been defined is how the method works:

4.2 Methods for Motion Planning 65

• Visit the vertex that is the least distant from the starting vertex and has
not been visited yet;

• Examine the vertices that are the unvisited neighbours of the current
vertex;

• Calculate the distance (cost) of each neighbour from the starting vertex;

• Keep a record of the distance (cost) that each neighbor has to go from
the starting vertex.;

• For each of the newly updated distances, update the preceding vertex
to reflect the new distances;

• Mark the current vertex as visited;

• Proceed to the next unvisited vertex in the list.

However, despite the fact that it is very quick and computationally sim-
ple, Dijkstra’s algorithm wastes time by conducting a "blind" search and
performing needless computations.
Furthermore, Dijkstra’s algorithm has the capability of returning the global
optimum solution with regard to a quantifiable variable, such as length or
another cost variable. The minimization of multivariable functions is, on the
other hand, expected in a same situations. This method has been updated to
account for these limitations by using certain heuristics to make the process
more efficient.

Algorithm A*

The A* Search Algorithm is one of the most often utilized techniques in path
finding and graph traversals because of its simplicity and ability to find
solutions in a very short amount of time. When this algorithm is run, it
searches for all possible paths that lead to the goal and evaluates which path
incurs the least amount of cost (i.e., minimal time, minimal distance traveled,
and so on).
The method selects the path or pathways that are most likely to result in a
quick solution out of all of the potential alternatives.

66 Motion Planning State-of-Art

The method works via the use of weighted graphs: starting from the first
graph node, construct a path tree that begins from that node, observing
potential paths one by one, until it reaches the point where one of its paths
ends up ending up at the targeted node. For the most part, A * is comparable
to Dijkstra’s capabilities with the exception that it directs its search towards
the most promising states and can save a considerable amount of time in
the computation process. Consider a square grid with a large number of
obstacles, ideally, the optimum path from a starting cell to a goal cell should
be planned in the shortest amount of time.
The A* Search Algorithm selects a node x at each computational step by
calculating the cost f(x), which is equal to the sum of two functions, g(x) and
h(x). At the end of each iteration step, the node/cell with the lowest f (x)
value is selected. The values of g(x) and h(x) are defined as follows:

• g(x): calculates the cost of moving from a starting point to a particular
cell on the grid by following the path that was created to get there. This
is the same cost as is calculated in the Dijkstra’s Algorithm.

• h(x): The estimated cost moving from a particular node on the grid to
a final destination. In order to ensure that the optimal solution in the
graph is ultimately reached, the heuristic must be admissible, which
means that it must never overstate the cost of advancing toward the
target node.

For this method, the most significant benefit is in its ability to accept, modify,
or add another distance to the distances used as a metrics. This enables a
broad variety of changes to be made to this fundamental concept, allowing
for the inclusion of time, energy usage, and safety in function f (x).
Furthermore, due of the heuristic that has been established, it is possible
to take into consideration global information [76]. It is not necessarily the
shortest path that is found by using the A* Search Algorithm since it largely
depends on heuristics/approximations to compute h(x). As previously
stated in [77], this method provides a solution, which is a series of vertices
that must be followed in order to navigate from a start point to a target
position.

4.2 Methods for Motion Planning 67

In the end, all of the methods mentioned above have been successfully
applied to the new robot systems that have emerged on the platform in the
last several years, such as space rovers and humanoid robots.
However, the previously discussed techniques are often restricted to a feasi-
ble local optimal solution, which may be considerably smaller than the global
solution in terms of size and complexity. Furthermore, when the environment
is dynamic, the task becomes much more difficult to implement. Because of
these drawbacks, such techniques are ineffective in complex situations.

4.2.3 Evolution Methods

The evolutionary process and methodological approach have developed
over the last two decades, and "evolution algorithms" have been created as a
result of these developments.
These algorithms have been extensively utilized in a variety of applications,
including path planning and the management of complicated and dynamic
obstacle hazards in the environment. As a result, many kinds of evolutionary
methods have emerged, including:

Genetic Algorithm (GA)

The Genetic Algorithm (GA) is an optimization method that is based on
genetic selection and genetic engineering. The search algorithm they’re
employing to come up with solutions to search problems is a hybrid of
the survival of the fittest and a random data generator. After generating a
random population, crossover, mutation, and selection are used to create
feasible paths in GA [50], [78], [79],[80].
In order to reach the goal in a complex environment, chromosomes of varying
lengths are needed to do the task. Ismail et al. [78] presented binary coding
of various lengths of GA, in which the gene encodes both the direction of
movement and the distance traveled by the organism during its movement.
[79] created a path-planning algorithm based on genetics that has been
adopted by populations, even those overcoming obstacles (and illegal paths
also). Following that, the penalty function is assessed using an erroneous
path sequence of procedures, which increases the computational burden as

68 Motion Planning State-of-Art

well as the execution time of the algorithm.
For their part, Chaymaa et al. [80] used a genetic algorithm to obtain an
optimum reaction that was controlled by the best available information. The
cost of each ideal response is calculated, and the most cost-effective one is
selected for the next phase. This process will be continued until the expenses
are lowered to a manageable level.

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is another evolutionary technique that is
widely utilized in path planning. Using the simplicity of a social program
as a starting point, the method’s idea aspires to simulate the unexpected
movements of a flock of birds or a school of fish.
Several years of study into animal dynamics has resulted in the possibility of
harnessing this behavior as a tool for success in a variety of fields. The PSO
has the advantage of being simpler to use than the GA, as well as having a
smaller number of repair parameters [7], [50], [81],[82], [83] compared to the
GA. It has been proposed by Nasrollahy and Javadi [81] to use a PSO-based
dynamic area system in which populations are created via defective paths
and their validity is checked using a penalty function.
Gong et al. [84] also presented a model that coupled a multi-objective PSO
with a mutation operator that was similar to that of genetic algorithms.
The wrong paths were created using the mutation operator in [82], while
in [83], variables length were used to construct the improper pathways
depending on the number of vertices of the polygonal obstacles. The binary
PSO is used in conjunction with a genetic-like mutation operator to achieve
direction optimization.

Ant Colony Optimization (ACO)

In 1992, Marco Dorigo proposed the above algorithm, which is a member
of the colonial family of algorithms, into the swarm intelligence approach,
which was then adopted by other researchers.
First, using the ants’ actions as a guide, determine the shortest path from
their current location to the food supply using a first method called seek

4.2 Methods for Motion Planning 69

the best path in the graph (or search the best path in the graph). It has been
shown that the ACO may be used to identify a global optimal path from a
set of sub-optimal pathways [85] [86].
Using the ACO and Artificial Potential Field (APF), Mei et al. [85] presented a
novel hybrid method for dynamic environments that combines the ACO with
the APF. For the planning of the global path, the ACO has been employed,
and the APF has been used for directing the robot. It is possible to fulfill the
obstacle avoidance in both a global optimum and real-time manner using
this hybrid method.
Nevertheless, the ACO’s primary problems are the difficulties in obtaining
fast solution convergence and the difficulty in applying to complicated maps,
both of which are very big. As a result, Lee et al. [86] enhanced ACO
and presented it using a potential field technique in order to get a fast
convergence solution by changing ACO control settings in order to obtain
a quick convergence solution. The advanced ACO updates the vector of
the position vector using a conventional pheromone selectivity (a chemical
produced by the ants) as opposed to the more advanced ACO.

4.2.4 Sampling-Based Methods

The development of sampling-based planners took place at a period when
many complexity findings for the path-planning issue were known to be
valid.
Reif [87] demonstrated that the generalized mover’s problem, in which the
robot is composed of a collection of polyhedra that are freely connected
together at different vertices, is PSPACE-hard. Additional research into
exact path-planning methods for the generalized mover’s issue led to the
development of an algorithm by Schwartz and Sharir [88] that was double
exponential in the number of degrees of freedom of the robot. This method is
based on a cylindrical algebraic decomposition of semi-algebraic descriptions
of the configuration space [89].
Recently published work in real algebraic geometry has shown that the
method is singly exponential [90]. Canny’s method [91], which constructs a
roadmap in the robot’s configuration space, is also singly exponential in the
number of degrees of freedom that the robot has.

70 Motion Planning State-of-Art

In addition, Canny’s work shown that the generalized mover’s issue is
PSPACE-complete [92], [93],[94],[95],[92],[96]. In path-planning research, the
difficulty of path-planning algorithms for the generalized mover’s issue has
driven a number of recent advancements.
There were several of these, including the search for sub-classes of the prob-
lem for which complete polynomial-time algorithms existed (e.g., [97],[98]),
the development of methods that approximated the free configuration space
(e.g., [99],[100],[101][102]), heuristic planners (e.g., [103]), potential-field
methods (e.g., [59],[104]), and the early sampling-based planners ((e.g.,
[104],[105],[106],[107], [108], [109],[110]).

However, because sampling-based methods only deal with configuration-
to-configuration connections, they are easily adapted to higher dimensions.
Because the amount of work required is proportional to the number of con-
figurations that are added, sampling-based methods have the advantage
of being simple to adapt to higher dimensions. This is in contrast to, for
example, cell decomposition techniques or grid-based approaches, where
the complexity increases exponentially with the number of dimensions used
in the calculation.
When it comes to configuration-to-configuration connection, it’s up to the
local planner to decide whether or not a path can be traversed within the
constraints of of the application, such as obstacles or differential constraints.
Local planners often rely on a linear interpolation between two configu-
rations, but their capabilities may be extended to cope with any kind of
interpolation as well. When a local planner is included in the motion plan-
ning algorithm, it has the advantage of not requiring adaptation when the
problem’s dimensionality changes.
Because the local planner can simply be replaced with one that is capable of
dealing with the new dimensionality without changing the algorithm’s over-
all performance. Compared to the other classes of path planning algorithms,
sampling-based approaches perform much better in the overall evaluation
process.

In order to get the desired performance, sample-based methods make
use of a graph or tree that is expanded by attempting to connect and add
randomly chosen configurations to it in order to achieve it. The obvious
implication of this is that sampling-based methods do not guarantee that

4.2 Methods for Motion Planning 71

data is reliable and complete in the first place.
Nevertheless, it is possible to demonstrate that sampling-based techniques
are probabilistically complete as the number of additional configurations
approaches infinity. If at least one viable solution exists, the probability of
finding that solution will converge to one as the number of new configu-
rations approaches infinity. Despite the fact that they are not exact, many
of these methods are demonstrated to be probabilistically complete in their
application.
They will come up with a solution that has a fair probability of success,
provided they have enough time. Because of advances in computational
capacity in mobile robots, such algorithms have become widely used.

To find solutions to path-planning problems, sampling-based techniques
use various ways for generating samples (i.e., collision-free configurations
of the robot), connecting the samples with paths, and connecting the paths
with the samples. There is a variation among these planning algorithms in
terms of the heuristics they use to govern where and how the tree is grown.
In certain algorithms, two trees are grown: one from the starting and one
from the end.
Comparatively, while roadmap algorithms begin by sampling states and
building a road map of the whole environment, which is then used to search
for paths that connect a new configuration, expanding tree methods begin
by building a tree of states that are connected by valid movements.
To create a collision-free path, the motion planner uses the random sampling
technique, which performs random sampling in the free configuration space
of the robot, then builds the connection graph from sample points, and then
searches for the collision-free path using graph searching. For the most
part, sampling-based Methods may be broadly divided into two categories:
the Probabilistic Roadmap Method PRM [111] and the Rapidly Exploring
Random Tree RRT [112].

Probabilistic RoadMap (PRM)

The probabilistic roadmap (PRM) (Kavraki et al., 1996) [113] is a well-known
sampling-based motion planning technique that has shown the great po-
tential of sampling-based approaches. It is possible to manage numerous

72 Motion Planning State-of-Art

inquiries using this technique by building a roadmap in the state space,
which means that there are not just one but several starting locations from
which the queries are issued.
PRM takes full advantage of the fact that it is inexpensive to evaluate whether
a single robot configuration is in Q free mode or not. PRM generates a
roadmap (graph) in Q free by uniformly coarse sampling the nodes of the
roadmap during what is known as the preprocessing phase, which is where
the nodes of the roadmap are obtained. An additional node is only added to
the graph if the sampled configuration does not fall inside the obstacle space;
this is done in a stepwise manner.
In addition, it conducts a very fine sampling to get the roadmap edges, which
are free paths between node configurations, from which it may derive the
roadmap. During the second phase, each pair of nodes sampled is connected
together to create the edges of the graph, which is then reported.
Planning queries may be addressed after the roadmap has been created by
connecting the user-defined starting and goal configurations to the roadmap
and solving the path-planning problem that has been presented. The solution
is a network of straight segments, or arcs, which join in the nodes. Initial
node sampling in PRM was carried out using a uniform random distribution
to ensure that all nodes were sampled equally. Basic PRM is the name given
to this planner.
Random sampling was shown to be very effective for a broad range of issues
[114], [113], [115] and to guarantee the probabilistic completeness of the
planner [113], [116]. In [114] it was also shown that random sampling is just
a baseline sampling for PRM and that many alternative sampling methods
are beneficial and bound to be efficient for various planning problems, as
shown by the analysis of the planner. These sampling methods now vary
from deterministic sampling schemes such as quasi-random sampling and
sampling on a grid, which are used to identify regions of significance that
are difficult to evaluate throughout the course of computations, to proba-
bilistic sampling schemes such as importance sampling. PRM was originally
intended to be used as a multiple-query planner.
PRM is modified when it is used to answer a single question: the initial
and goal configurations are added to the roadmap nodes, and the roadmap
is constructed gradually and only halted when the query at hand can be

4.2 Methods for Motion Planning 73

answered successfully. The effectiveness of this method may be attributed
to the fact that it is resilient in high-dimensional search fields. This method
was the first to tackle motion planning problems with more than four dimen-
sions, making it a significant milestone. However, because of its multiple
query nature, PRM was originally intended for holonomic environments and
requires thousands of connections between the nodes to function properly.
As a result, it was necessary to develop a new class of sampling-based mo-
tion planning algorithms. Furthermore, PRM may not be the most efficient
planner when dealing with single queries. The Rapidly-exploring Random
Tree planner (RRT) [117], [118] is found to be a sampling-based planner that
is remarkably successful in terms of planning efficiency. These planners have
shown outstanding experimental performance.

Rapidly-exploring Random Tree (RRT)

Rapidly-exploring Random Trees (also known as Rapid Random Trees) are
a class of probabilistic path planning that is designed to search non-convex
high-dimensional spaces as efficiently as possible. RRT was developed by
Steven M. LaValle and James Kuffner [117] to operate in non-holonomic
environments, and it is still in use today [111].
In his book Planning Algorithms [33], LaValle provides a detailed presen-
tation of the RRT method, demonstrating the method’s potential in a wide
range of applications and modifications. A single-query planning algorithm,
RRTs, was introduced as a way of efficiently covering the space between
qinit and qgoal [117], [118], [34], [119]. There is only one starting point for a
Rapidly-Exploring Random Tree (RRT), and previous queries are not taken
into account when searching the state space of the tree.
A single-query algorithm attempts to answer each query by starting from the
inital configuration. As a result, RRTs are constructed incrementally in such
a way that the expected distance between a randomly chosen point and the
tree is reduced as quickly as possible. When it comes to the fundamental RRT
algorithm, its incremental and single-query nature was specifically designed
to be capable of incorporating differential constraints as well as managing
non-holonomic environments. So RRT planners were initially developed for
kinodynamic motion planning, where a single tree is built.

74 Motion Planning State-of-Art

Although they are useful for kinodynamic planning problems, their applica-
bility is much broader. When it comes to path planning problems involving
obstacles, differential constraints, as well as robot kinematic and dynamic
constraints, RRTs are particularly well suited. They can be thought of as a
technique for generating open-loop trajectories for nonlinear systems with
state constraints that can be applied to any nonlinear system.

Another important notion to note is that a random sequence generated
by the RRT method is almost certainly dense. When used to its maximum
extent, RRT will densely cover the state space; as a result, the class of RRT is
sometimes referred to as Rapidly-Exploring Dense Tree (RDT).
When the number of samples drawn approaches infinity, the trees that are
constructed resemble space-filling curves in their appearance. RRT, on the
other hand, is comprised of shorter paths, and there is a path from each node
in the tree to the starting, or root, node of the tree.

The fundamental concept of RRT is to explore the configuration space in a
non-greedy manner in order to construct a graph that connects the start and
goal configurations. In the motion planning problem, RRT-based algorithms
build a space-filling tree by obtaining a sample from the space in order to
identify a goal while taking into account the constraints of the problem.
Specifically, this is accomplished by beginning with the start configuration
and continuously inserting a randomly selected configuration within a spec-
ified distance from the closest configuration in the graph, after which an
attempts are made to connect the two configurations together. Eventually, as
the algorithm proceeds through the configuration space, it will approach the
goal with a high probability of being successful.
When this occurs, the process of adding nodes is halted, and the graph may
be explored in search of the solution.The fundamental concept of RRT is to
explore the configuration space in a non-greedy manner in order to construct
a graph that connects the start and goal configurations.
In the motion planning problem, RRT-based algorithms build a space-filling
tree by obtaining a sample from the space in order to identify a goal while
taking into account the constraints of the problem. Specifically, this is accom-
plished by beginning with the start configuration and continuously inserting
a randomly selected configuration within a specified distance from the clos-
est configuration in the graph, after which an attempts are made to connect

4.2 Methods for Motion Planning 75

the two configurations together.
Eventually, as the algorithm proceeds through the configuration space, it
will approach the goal with a high probability of being successful. When this
occurs, the process of adding nodes is halted, and the graph may be explored
in search of the solution.

Despite the fact that the RRT algorithm has been demonstrated to be
probabilistically complete [118], an RRT alone is commonly insufficient to
solve a planning problem and find an optimal solution. This component
may therefore be seen as an add-on that can be used in the development of a
wide range of planning algorithms [120]. The use of additional algorithms
for smoothing the result trajectory or other enhancements to the solver’s per-
formance is highly recommended to improve its convergence to the goal (for
example, optimizing random sample generation to generate biased samples
while taking into account the goal’s configuration or another meaningful
heuristic). Therefore, the development of RRT-class variations has been
accelerating since 2010, and the class is increasingly being used in robotic
tasks.

As we will see in section 4.3 on algorithms, there are a number of different
modifications that can be made to this algorithm, resulting in a number of
different variants that attempt to improve on some of the shortcomings that
we will encounter along the way as well.

Comparing PRM to RRT

The most significant distinction between RRT and PRM is that RRT employs
non-greedy exploration, which sacrifices speed for a greater likelihood of
adding a new node to the graph. PRM establishes a direct connection to the
new candidate node, while RRT takes a more conservative approach. With
the introduction of this characteristic comes the introduction of a new notion
known as Voronoi Bias, which may be defined as the likelihood of exploring
a previously unknown region of space being proportionate to the size of the
chunk of space in question.
This can be visualized by imagining a graph and dividing all of the space
according to a Voronoi diagram using the nodes of that graph as its seeds.

76 Motion Planning State-of-Art

Due to the fact that each cell has precisely one node and therefore bigger cells
are less explored, it may be argued that a larger cell in this figure represents
an undiscovered area of space.
A cell’s size divided by the entire space determines the chance of selecting a
random configuration from inside it, thus cells that have been less examined
have a greater probability of containing the next random configuration and,
as a result, have a higher probability of being explored. A Voronoi bias is the
term used to describe this phenomenon.
Furthermore, since RRTs are created using non-greedy exploration, the graph
of an RRT usually includes shorter edges than the graph of a roadmap created
with PRM. Considering that in certain instances longer trajectories with fewer
edges are favored than shorter ones, this may be considered a disadvantage
of RRT.

Another distinction is that PRM usually connects to a newly added node
several times. Because PRM is a multiple-shot method, which means that
a roadmap may be utilized many times because it is not committed to a
particular combination of start and goal configurations, as opposed to RRT,
which is a single-shot approach.
In addition to the fact that RRT attempts to link the start and goal configura-
tions, another benefit of RRT over PRM is the fact that RRT may be utilized
by adding a bias towards the goal in the sampling of the new randomly
selected nodes, or even growing two graphs towards each other [121].
However, this is more difficult with PRM since a roadmap is, by definition,
a multi-shot method, which cannot be skewed towards a goal because a
multi-shot technique does not take a goal configuration into account. Having
a goal bias is a heuristic that may be used to decrease the amount of time it
takes to find a solution [122].
Despite the fact that both RRT and PRM have shown the ability to deal with
greater dimensionality, RRT has the benefit of being a single-shot method,
which implies that the graph may be steered in one direction. Since the
graph of most RRTs is a tree, this is already true, but it becomes much more
essential when applying RRT to kinodynamic or other time-involved path
planning problems [123], [124],[34], even though PRM has been used for
these types of problems as well [125].

4.2 Methods for Motion Planning 77

Another significant feature of sampling-based planners is their ability to
attain a certain level of completeness in their solutions.
For a planner to be considered complete, it must always provide appropriate
response to the path-planning problem within an asymptotically limited time.
Due to the enormous combinatorial complexity of complete planners, they
cannot be implemented in reality for robots with more than three degrees
of freedom in the real world. However, there are somewhat weak, but still
significant, versions of completeness, which can be described as follows: if a
feasible solution path exists, the planner will ultimately find it.
This kind of completeness is referred to as probabilistic completeness for
those sample-based planner where the sampling is done in a heuristic man-
ner.
However, if the sampling is deterministic, such as quasirandom or sampling
on a grid, this kind of completeness is referred to as resolution completeness
with regard to the sample resolution. The Randomized Path Planner (RPP)
[104], [126], one of the first sampling-based planners, was proven to be prob-
abilistic complete, establishing a precedent for sampling-based techniques in
general. It has also been shown that PRM is probabilistically complete [127],
[114],[128], [129], [130],[131], as we as RRT planners.

In general, we may list the following characteristics of RRT that have
made it appealing for a range of motion planning problems, as follows:

• The RRT method almost-sure will converge to a suboptimal path.

• RRT is probabilistically complete under the assumptions of the general
path-planning problem formulation. In other words, the chance of
finding a solution increases progressively as time goes on.

• The RRT algorithm does have a few parameters and heuristics to work
with.

• In the case of a node v ∈ V, there is always a path between it and
xinit, since it is required that xinit ∈ V and that each node has only one
parent.

• RRTs are quickly expanding into previously unknown areas of Xf ree.

78 Motion Planning State-of-Art

• The distribution of V tends to converge towards the sampling distribu-
tion, resulting in a basically complete filling of the search space with
nodes.

The first property of RRT tells us that it will almost certainly converge
to a suboptimal path. Despite the fact that the RRT algorithm is simple
to implement, explores its space quickly, and is capable of dealing with
high-dimensional environments, it is not without its shortcomings. RRT is
suboptimal, which can be translated into the assertion that the generated
graph does not improve on the previously computed solution. As a result,
with the various existing constraints represented in the search space, it is
possible that the RRT method will become stuck with the first solution that
is computed.
However, despite the fact that several algorithms have been proposed to
guide the growth of an RRT towards finding an optimal path, using heuristics
[122] or simply by exploiting the Voronoi diagram of the search, the quality
of the solution found has fallen short, particularly when an optimal path to
the goal is required.
The problem is primarily caused by RRT’s failure to take into account the
costs of the path. However, due to the rapid exploration of the state space
and the uniform sampling distribution, the paths in RRT are very close to the
true shortest paths, resulting in the identification of a suboptimal solution at
some point in the process.
Furthermore, because the state space is explored uniformly, it is possible
that the system will reach the goal at a slow (or premature) pace. Further-
more, with each iteration, the set of nodes grows in size, which means that
the search for the nearest neighbour becomes increasingly time-consuming
and expensive. Numerous solutions, such as the use of an alternative data
structure (a Kdtree [132]), rather than a naive implementation, have been
proposed, including the use of Kdtree [132].
Additionally, excellent results have been obtained using an approximate
nearest neighbour search method ([133]; [134]; [112]) instead of taking a me-
thodical approach According to [122], the growth of an RRT graph is guided
by the evaluation of the path to a node with the least amount of cost, as well
as the use of a quality measure that is defined for each node.
Additionally, instead of computing only the nearest neighbour from V, the

4.3 RRT-based Algorithms 79

k-nearest neighbours can be used to provide a more accurate evaluation of
the neighbours. At the end of the day, even after the path costs are taken into
account and even after the guidance produces better results, this RRT variant
retains its inherent probabilistic sub-optimality.

These characteristics, particularly the probabilistic completeness, are what
allows for viable planning, which has been used in a variety of applications
throughout the years [33]. Some examples of this include a spacecraft operat-
ing in a simulated world that must travel over hazardous terrain while also
taking gravity into consideration [119]. Because of all of the characteristics
listed above, RRT is not limited to the field of robotics or path planning; it
can also be used as a modeling tool for Diffusion Limited Aggregation (DLA)
[135]; [119], in which particles perform what appears to be a random walk,
resulting in a tree that is similar to the tree generated by RRT.
RRT shown positive prospects in a broad range of challenges, including
robotic arms, pianos in motion, and satellite docking maneuvers, among
others [119]. RRT was shown to be asymptotically suboptimal despite these
findings [136], and it was found to be unsuitable for certain situations where
an optimum solution was required. As a consequence, additional develop-
ment of the fundamental RRT technique was proposed, which resulted in
the introduction of RRT∗ and RRT# [112],[137].

4.3 RRT-based Algorithms

It is the intention of this section to discuss the algorithms of the RRT class,
as well as some of their variants and the characteristics that they exhibit.
RRT, RRT∗, and RRT# are the three primary variations of the RRT class
that are discussed. However, we need to formally define the problem of
path-planning first.

4.3.1 Problem Formulation

A motion planning problem for RRT, RRT∗, and RRT# is often characterized
by the following characteristics: the following description:

80 Motion Planning State-of-Art

1. The state space ,or search space or configuration space, has the defi-
nition X ⊆ Rd, where d is the dimension of the state space. X is made
up of two parts: Xf ree, which represents the search area that is free of
obstacles, and Xobs which represents the search area that is populated
with the obstacle.

2. The starting configuration from which the RRT grows the graph is
represented by xinit, and the goal region is represented by Xgoal, which
both must be found inside the X f ree set. Although the goal configura-
tion may consist of a single configuration, it is preferable to add a little
region surrounding the goal in the simulation.

3. ϵ > 0 denotes the predefined step-size, which corresponds to the maxi-
mum distance between any existing node and a newly connected one

4. The maximum number of iterations for an RRT is denoted by the letter
K.

given the above definitions, the path planning algorithm aims to solve
the following problem:

• find a path σ∗ starting from σ(0) = xinit ending in σ(s) ∈ xgoal, with
minimum cost c between xinit and xgoal such that
c(σ∗) = min


c(σ)|σ ∈ Xf ree


.

4.3.2 Basic RRT Algorithm

To summarize, the RRT algorithm’s main goal is to build a space-filling tree
by incrementally biasing the search towards empty spaces. Additionally,
with each iteration, the algorithm attempts to add potential new nodes in the
graph/tree moving away from the nodes that have already been added to V
in previous iterations. In the beginning, a specified point in the configuration
space (xinit) is added to V, and the set of edges E is empty due to the fact that
only one node has been evaluated so far (xinit). The Sample function is used
to sample a point xrand from a uniform distribution. Hence, this randomly
generated sample is used to search for the nearest node xnearest in the V with
respect to xrand.

4.3 RRT-based Algorithms 81

Finally, a new node xnew is identifed by reducing the distance between xrand

and xnearest to its shortest distance respecting the predefined step-size ϵ. In
other words, xnew is the new node created by executing one step with a
distance less or equal to ϵ in the direction of xrand, and the result is a new
potential node xnew. If the global constraints are satisfied, then the new node
xnew is added to V and a new edge from the nearest neighbour to the new
node is added to E. If, however, the global constraints are not satisfied, then
the new node xnew is removed from V and the new edge from the nearest
neighbour to the new node is consequently removed from E.

Algorithm 1: RRT
1: Input: initial node xinit, max nodes K ← N

2: V ← {xinit}; E ← ∅;
3: for i = 0 to K do
4: xrand ← Sample(i);
5: xnearest ← Nearest(V, xrand);
6: xnew ← Steer(xnearest, xnew);
7: if ObstacleFree(xnearest, xnew) then
8: V ← V ∪ {xnew};
9: E ← E ∪ {(xnearest, xnew)};

10: end
11: end
12: return (V, E)

4.3.3 RRT∗ Algorithm

RRT (Rapidly Exploring Random Tree) is a method that is similar to RRT in
that it rapidly explores a random tree. RRT∗ is a path-planning algorithm
that connects two robot configurations (stat and goal) through form a tree
that navigates the free configuration space X f ree by progressively adding
randomly chosen robot configurations (nodes) from the obstacle-free set
X f ree. The RRT∗ algorithm operates in a similar way as the RRT algorithm in
that it searches the configuration space gradually, with a bias for traversing
open spaces. RRT∗, however, differs from the standard RRT in that it is an
incremental sample-based approach that splits the path planning problem
into two phases: the exploration phase and the exploitation phase.

82 Motion Planning State-of-Art

Consequently, an initial path is found very quickly, and the path is then
optimized as the execution continues [37], resulting in a rapid optimal path
realization. It is because of this that the RRT∗ algorithm has an advantage
over the RRT algorithm in that it has a high chance of ultimately arriving at
an optimal solution [112].
This is accomplished via the application of a cost function in the assessment
of path segments between any two nodes in the tree. Specifically, in order
to improve the rate of convergence of the RRT algorithm, RRT∗ was pro-
posed [112]. This method is based on the RRG 11 algorithm [137], which is
a graph-based algorithm with the feature of asymptotic optimality, which
RRT∗ inherits.
The introduction of the path cost function into the RRT∗ algorithm, which
results in significantly improved performance than the original RRT method,
may be ascribed to this improvement. The cost of a path is taken into con-
sideration in order to choose the node with the lowest cost from xinit among
the k-nearest neighbours defined by a region with radius r centered around
the node in question. To compare path costs, the idea behind RRT∗ is to
construct an array of surrounding nodes near the new node that are built
on the basis of RRT, that is, walking through these surrounding nodes to
determine whether or not a better path exists and, if so, replacing the existing
path with the better path in order to improve the existing search tree. Indeed,
new sample nodes are not connected to the closest node, but rather to the
least expensive of the nodes in the network. The cost of the connection,
specified by a cost function c(t), is calculated for each additional node that
is added. This way, each node in the graph is labeled with a cost that is
proportional to the distance between it and the parent node. Thus, with each
new connection, the overall cost of the graph (i.e. the total of each node’s
cost) is updated, and the graph is considered updated.
Furthermore, the RRT∗ method also takes into consideration collision avoid-
ance as criterion to decide wether to add a new node to the existing tree or
not. Hence, adding a new robot configurations to the growing tree is only
done if the connection to the parent node is collision-free and with a minimal
cost.
To implement this logic, RRT∗ introduces two new procedures that examine
the cost of the path. In the case of a new node, the Parent procedure selects the

4.3 RRT-based Algorithms 83

appropriate parent from within a specified radius, and the Rewire procedure
restructures the tree in order to identify less expensive paths that take into
account the new node. Eventually, after a predefined maximum solve time
or after a predefined number of nodes are sampled, the algorithm terminates
delivering a graph that connects the start and goal configurations with the
lowest cost path, as determined by the cost function c.

The RRT∗ algorithm, as a result, behaves in a similar manner to the
RRT algorithm in the sense that it generates its tree in a similar manner to
RRT; at each iteration, the values assigned to the variables xrand, xnearest, and
xnew are assigned in the same manner as it has been discussed previously
for RRT only this time considering the cost function. The RRT∗ algorithm,
therefore, contains three novel processes that enable it to achieve its superior
performance:

• The Near function: A function that computes a set of nodes V′ ⊆ V
containing the closest neighbours within a region of radius r centered
around the node x. In order to ensure the almost-sure convergence
to an optimal solution characteristic of the algorithm, the radius r is
computes according to the following equation:

ri = min

(

γ

ζ

log(n)
n

)
1
d ,η


(4.2)

Where η is a predefined maximum radius, n is the length of V , ζd is the
volume of the neighborhood region of radius, γ > 0 a constant, such
that

γ ≥ 2d(1 +
1
d
)µ(X f ree) (4.3)

where mu denotes the size of the free space available in the configura-
tion space, whereas ri can be fixed with a predefined constant at the
expense of the asymptotic optimality.

• The Parent function: A function used to select the parent node which
has the lowest cost-to-go from the new candidate node xnew, from the
set of neighboring node.

84 Motion Planning State-of-Art

• The Rewire function: A function used to remove the discarded nodes
which were found to have higher than the minimum cost.And conse-
quently adds the winning candidate node to the tree

Algorithm 2: RRT*
1: Input: initial node xinit, max nodes K ← N

2: V ← {xinit}; E ← ∅;
3: for i = 0 to K do
4: xrand ← Sample(i)
5: xnearest ← Nearest(V, xrand)
6: xnew ← Steer(xnearest, xnew)
7: V ← V ∪ {xnew}
8: if ObstacleFree(xnearest, xnew) then
9: Xnear ← Near(V, xnew)

10: Xnearest ← Parent(Xnear, xnearest, xnew)
11: E ← E ∪ {(xnearest, xnew)}
12: E ← Rewire(Xnear, E, xnew)
13: end
14: end
15: return (V, E)

Algorithm 3: Parent
1: Input: Xnear, xnearest, xnew
2: for xnear ∈ Xnear do
3: if ObstacleFree(xnear, xnew) then
4: c′ ← xnear.cost + c(Line(xnear, xnew))
5: if c′ < xnew.cost then
6: xnearest ← xnear

7: return xnearest

When the new randomly generated node xnew is available, the Near
function computes the neighboring subset the contains the closest nodes in
the existing tree V to the values of the xnew. After which, a parent is selected
from among this neighborhood subset by computing the node xnear that is at
a distance bounded by the predefined size-step and having the minimum
path cost to the new node xnew. Afterwards, the tree is rewired in order
to identify a possibly cheaper path towards xnew. This is accomplished by

4.3 RRT-based Algorithms 85

Algorithm 4: Rewire
1: Input: Xnear, E, xnew
2: for xnear ∈ Xnear do
3: if ObstacleFree(xnear, xnew) and xnear.cost > xnew.cost +

c(Line(xnear, xnew)) then
4: xparent ← xnear.parent
5: E ← E\{(xparent, xnear)}
6: E ← E ∪ {(xnew, xnear)}

7: return E

analyzing the present cost of the path to xnear and comparing it with the cost
of the path to xnear in the event that it would be connect through xnew. It turns
out that the Parent and Rewiring functions gradually improve the path cost
of RRT∗ as the number of nodes in the tree grows, resulting in asymptotic
optimality.

Properties of RRT∗

With the introduction of the previously discussed functions, the RRT∗ algo-
rithm adds the following properties on top of the properties it inherts from
the basic RRt algorithm mentions earlier:

• RRT∗ asymptotically converges to an optimal solution

• RRT∗ retains the same time requiremets (computational complexity) of
the basic RRT; the generation of the tree in both algorithms costs O(n
log n) while the path query part of the algorithm costs (Karaman &
Frazzoli, 2010) and (Karaman & Frazzoli, 2011).

In order to evaluate the asymptotic optimality of the RRT∗, Professor
Emilio Frazzoli and colleagues [137] utilized the algorithm to park an au-
tonomous forklift in front of a truck while the vehicle avoided obstacles.
Because of an obstruction along the track, the forklift had to circle around
the truck in order to locate a suitable parking space.
In this planning problem, the RRT successfuly found a path that was subop-
timal. In order to improve the solution reaching the optimality, RRT∗ was

86 Motion Planning State-of-Art

implemented, which in turn corrected the loop that RRT generated in order
to locate a shorter path to park the forklift. Hence, The RRT’s jumbled and
chaotic pathways were adjusted by the team implementing RRT∗.

Limitations: Despite its advantages of the basic RRT algorithm, the RRT∗

suffers a number of limitations nevertheless. The most obvious one is the can
only reach an optimal solution after an infinite number of iterations ideally.
The means that, in practice, the RRT∗ will converge to the optimal solution in
an infinite time. Nevertheless, because RRT∗ continues to search the whole
state space, the rate of convergence is still slow.
There are several variants of RRT∗, each of which attempts to improve on the
convergence rate by looking for shorter paths utilizing techniques like the
triangle inequality and intelligent sampling. In some variants, some nodes
are employed as beacons, and the growth is skewed even more towards
the goal configuration. However, such improvements comes always at the
expense of additional memory requirements.

4.3.4 RRT# Algorithm

RRT# was proposed by Arslan et al. [138] as a modified version of the
incremental Rapidly-exploring Random Graph (RRG) that guarantees the
generation of a globally optimum graph in the search space.
For the underlying graph, a spanning tree with a root at the starting node
is generated, that guarantees all the information needed to identify the the
best possible path connecting the starting node to the goal.This information
set includes the cost-to-come values for a subset of vertices that are potential
candidates for the optimal path, including the goal.

Such informative graph gives rise to the main advantages of the RR# over
other variants of RRT. Given this informative graph, the algorithm is able
to provide the shortest path possible at every iteration given the nodes that
have been identified so far.
The fact that this kind of data is available on top of the network also allows
the algorithm to classify the current vertices according to their probability of
becoming a component of an optimal path at some point in the future.
As a result, such classification may be useful in increasing the convergence

4.3 RRT-based Algorithms 87

rate by prioritizing the assessment of the vertices with the highest probability
first during the exploitation phase of each iteration. The algorithm starts
with the exploration phase which implements the extension process of the
RRG algorithm, followed by the exploitation task, which implements the
Gauss-Seidel version of the BellmanFord algorithm.

Exploration: A random sample is selected from the obstacle free set Xf ree

at this step, which is then utilized to expand the current graph.

Exploitation: This step involves re-calculating the cost-to-come values of
the existing vertices in order to reflect the information from the newly added
vertex on the whole graph at the same time. In addition, the priority queue is
updated with the most promising vertices. RRT∗ The RRT# algorithm ensures
that the maximal amount of information available at each iteration is used
by repeatedly performing the exploration and exploitation stages for each
new sample. One of the most significant differences between RRT# and RRT∗

is that, in the RRT∗ algorithm, all vertices in the tree are computed based
on their cost-to-come value, whereas in the RRT# algorithm, the vertices are
classified into various types based on their estimated cost-to-come value.
The RRT# algorithm convergence rate was significantly improved as a result
of the innovation of calculating the cost-to-come value one step ahead of the
current iteration. Based on the values of its (g(v), lmc(v)) pair, each vertex v
is categorized into one of four categories in the RRT# algorithm. These are as
follows:

• stationary with finite key value (g(v) < ∞, lmc(v) < ∞ and
g(v) = lmc(v));

• stationary with infinite key value (g(v) = ∞, lmc(v) = ∞);

• nonstationary with finite key value (g(v) < ∞, lmc(v) < ∞ and
g(v) ̸= lmc(v));

• nonstationary with infinite g-value and finite lmc-value
(g(v) = ∞, lmc(v) < ∞).

This categorization is used in the Replan method in order to iteratively
update the graph.

88 Motion Planning State-of-Art

When compared to the other RRT-variants, particularly the previously
presented RRT∗ algorithm, the RRT# method, as given in 1, has a similar
overall structure to the RRT# algorithm. Starting from an initial configura-
tion xinit, the algorithm incrementally expands the graph, as described in 2,
navigating the obstacle-free space Xf ree through randomly sampling xrand

from the configuration space. Once this is done, the whole existing graph is
updated in order to optimize for cost-to-come of all the nodes in the graph
while taking into consideration the extention made by the Extend function.
It is important to note that the steps mentioned above form a single iteration,
which will be continued until the specified number of iterations has been
reached or the desired goal configuration has been achieved. The resultant
graph will include the information about the lowest cost path information
for the promising vertices and v∗goal.

TheExtend procedure given in 2 is responsible for extending the existing
graph in the direction of the newly sampled xrand. The extension computes
xnearest denoting the nearest node in graph to xrand, then defines xnew with
a maximum predefined distance from xnearest along the path to xrand. Upon
identifying the set of the neighboring node to xnew, the parent node is selected
to attain the minimum cost-to-come. In the end of this procedure, the new
vertex is decided to be inserted in the priority queue or not based on its
stationarity in the UpdateQueue procedure.

Following that, the Replan process, described in 3, updates the graph by
propagating the g-value of the selected vertex to all of its neighbors, utilizing
the list of promising vertices in the priority queue.

4.4 Motion Planning Constraints

Path planning techniques may be divided into two categories based on the
nature of the constraints: kinematic planners and kinodynamic planners.
The kinematic planners take into account only the Kinematic Constraints of
the rigid bodies while creating their models [139]. These may represent joint
constraints of a (mechanical) system, or they could be obstacles in the system.
The kinodynamic class, on the other hand, takes into account the dynamic
constraints imposed on the rigid bodies. In most cases, they are second order

4.4 Motion Planning Constraints 89

Algorithm 5: Body of the RRT# Algorithm

1: RRT#(xinit,χgoal,χ)
2: V ← {xinit}; E ← ∅;
3: G ← (V, E)
4: for k = 1 to N do
5: xrand ← Sample(k);
6: G ← Extend(G, xrand);
7: Replan(G,χgoal);
8: (V, E)←G; E′ ← ∅;
9: foreach x ∈ V do
10: E′ ← E′ ∪ {(parent(x), x)}
11: return T (V, E)

Algorithm 6: Extend Procedure
1: Extend(G, x)
2: (V, E)←G; E′ ← ∅;
3: xnearest ← Nearest(G, x);
4: xnew ← Steer(xnearest, x);
5: if ObstacleFree(xnearest, x) then
6: Initialize(xnew, xnearest);
7: χnear ← Near(G, xnew, |V|);
8: foreach xnear ∈ χnear do
9: if ObstacleFree(xnear, xnew) then
10: if lmc(xnew) > g(xnear) + c(xnear, xnew) then
11: lmc(xnew)= g(xnear) + c(xnear, xnew);
12: parent(xnew) = xnear;
13: E′ ← E′ ∪ {(xnear, xnew), (xnew, xnear)};
14: V ← V ∪ {xnew};
15: E ← E ∪ E′;
16: UpdateQueue(xnew);
17: return G ← (V, E)

90 Motion Planning State-of-Art

Algorithm 7: Replan Procedure
1: Replan(G,χgoal)
2: while q. f indmin() ≺ Key(v∗goal) do
3: x = q. f indmin();
4: g(x) = lmc(x);
5: q.delete(x);
6: foreach s ∈ succ(G, x) do
7: if lmc(s) > g(x) + c(x, s) then
8: lmc(s)= g(x) + c(x, s);
9: parent(s) = x;

10: UpdateQueue(s);

differential constraints operating on the body, such as the torques, velocities,
or accelerations [33].

Typically, the kinematic constraints are classified into two types: holo-
nomic constraints and non-holonomic constraints.
A holonomic kinematic constraint is one that can be described by: f (qi, t) = 0,
where qi represents the spatial coordinates of the point, and t denotes the
time. Whereas, any other kinematic constraint that is not possible to put
in the previous form is said to be non-holonomic. These non-holonomic
restrictions may result from the velocities of the rigid bodies, but they could
also result from limitations on the state space of the rigid bodies.
For the most part, issues described inside non-holonomic systems are those
in which mechanical or differential restrictions must be taken into account.
More importantly for our motion planning purposes is the fact that the
kinematic approach disregards forces that cause the inhibition of motion.

On the other hand, the kinodynamic method is more comprehensive
than the kinematic approach in that it incorporates kinematic constraints as
well as the dynamic constraints which might represent dynamic obstacles or
intrinsic constraints on the vehicle dynamics.
However, when three or more dimensions are taken into consideration, the
class of kinodynamic problems has been demonstrated to be NP-hard [32].
For high dimentional problems with non-holonomic constraints, algorithms
that attempt to approximate solutions, such as PRM, does not give satisfac-

4.4 Motion Planning Constraints 91

tory results. Despite this, there have been methods that use PRM to address
issues in non-holonomic systems that have been successful [140], [141], [142].

In order to overcome these challenges, kinodynamic motion planning
algorithms may be used to fulfill both the kinematic and the dynamic re-
quirements of the motion planning model model [32]. Such kinodynamic
algorithms are typically formulated as a two-point boundary value problem
in the dynamic state space of the robot system. To that end, a significant
number of kinodynamic methods make use of different basic curves to es-
tablish a reference path, including Bezier curves [143], harmonic potential
fields [144], and learning approaches [145] to name a few. Several techniques
of determining the shortest path between configuration pairs for wheeled
vehicles are presented in [33]. There are many different techniques for find-
ing optimum paths for a basic vehicle model, including Dubins curves and
the Dubins car, which are both named after Dubins. [146] extend this model
even further by include all three dimensions in three dimensions in three
dimensions, allowing them to discover the optimum paths for a basic aircraft
model.

One of these primitive curves is the Dubins curves defines by Dubins
[147]. Dubins curve defines the shortest path connecting two configurations
of a wheeled vehicle with constant velocity model through a combination of
three primitive motions S, L and R.

The S motion drives the car straight forwards, while the L and R motions
turns the car left and right, respectively. Hence, the shortest paths can be
formulated as a set of specific sequences of these primitive motions. The
possible sequences are: LRL, RLR, LSL, RSR, LSR, RSL

Chapter 5

The MP-RRT# Algorithm

In this chapter we present the motion planning problem definition and the
proposed motion planning solution (MP-RRT#).

5.1 Problem Definition

As stated in the section 1.3, the study performed in this chapter aims to
develop an algorithm for kinodynamic motion planning for an Unmanned
Aerial System (UAS). As we go through this Chapter, we will establish the
UAS model, then provide the technical tools that will be utilized to construct
the suggested motion planner, and lastly we will describe the proposed
solution in more detail.

5.1.1 UAS Model

Unmanned Aerial Vehicle (UAV) systems have been introduced to the market
in recent years, and there is a vast variety of options available. Fixed-wing
aircraft vehicles and multi-rotor aircraft vehicles are the two most common
types of aviation vehicles on the road today. Fixed-wing unmanned aerial
vehicles (UAVs) often have longer flight endurance capabilities and can
cover large areas in a single trip, according to the [148]. While multi-rotor
aircraft are more expensive than fixed-wing aircraft, they offer a number of

5.1 Problem Definition 93

advantages over them, the most significant of which being the ability to take
off and land vertically. Furthermore, the multi-rotor has the capability of
hovering, similar to that of a helicopter. More importantly, due to the large
number of rotors on it, it is capable of supporting far larger weight loads
when compared to its own weight [149]. A tiny-sized multi-rotor is also
nimble, highly maneuverable, and naturally more stable due to the design
of numerous rotors with counter rotating props, which reduce the need for
a tail rotor and results in the aircraft being intrinsically more stable due to
its small size. As a consequence of these advantages, a growing number of
practical applications for the multi-rotor have emerged, and the multi-rotor
has risen to the status of a key research focus. Hence, the UAS vehicle that
will be considered in this study will be a multi-rotor type.

UAS Sysytem Model

We apply the same method as in [150] to describe the vehicle location and
speed with respect to the world fixed inertial frame W. Further we define
a body fixed frame B attached to the UAS CoG. Both reference frames are
of the right-handed kind. In particular, the location of the UAS Center of
Gravity CoG in the inertial frame PB ∈ R3, the vehicle velocity in the inertial
frame v, the vehicle orientation RWB ∈ SO(3), and the body angular rate ω

are used to characterize the vehicle configuration. We define the velocity
vector as the derivative of the position vector at a particular point in time
along the model’s trajectory. According to geometrical principles, given a
point in three-dimensional space, the following equation may be defined:

PB =




xB

yB

zB


 = vAB · t + PA =




vAB,x

vAB,y

vAB,z


 · t +




xA

yA

zA


 (5.1)

A particular representation of the Euler angles, ardan angles convention,
will be used to describe the orientation of the UAS in space. Keeping in mind

94 The MP-RRT# Algorithm

that the vehicle is specified in a three-dimensional right-handed reference
frame, the rotations may be designated as follows:

• Roll ϕ: Rotation around the vehicle longitudinal axis;

• Pitch θ: Rotation around the vehicle transverse axis;

• Yaw ψ: Rotation around the vehicle vertical axis passing through its
center of mass.

It is necessary to perform rotations in order for information to be ap-
propriately translated from the inertial world frame to the vehicle body
frame B. From a geometric standpoint, these transformations are done by
pre-multiplying the drone body frame orientations by the rotation matrices
before to applying the transformations that are in concern.

The following are the most often seen UAS maneuvers:

• Hovering: When an unmanned aerial system (UAS) hovers at a certain
altitude, it is referring to the condition of stationary flight at a specific
height, suggesting that the drone maintains a constant altitude without
altering its angle of attack. In order to do this, all four rotors must be
activated to spin at the same speed, with each rotor compensating for a
fourth of the drone’s total weight.

• Move Up and Move Down: It is necessary to change the spins of all four
rotors in order to raise or reduce the altitude of a UAS; raising the
rotational speeds of the four rotors while in an ascension maneuver
and reducing them while in a descent maneuver are examples of such
variations.

• Roll: When the aircraft’s rotors are rotated at different speeds on each
side of its lateral axis, it is possible to perform roll maneuvers. For
the drone yaw to be unaltered, the UAS rotors on the same axis must
be synced so that whenever the speed of one drone rotor is increased
in order to perform the needed maneuver, the speed of the opposing
drone rotor is reduced.

5.1 Problem Definition 95

• Pitch: The pitch maneuver is conducted in the same manner as the roll
maneuver, with the exception that the rotational speeds of the rotors
are raised or lowered along the longitudinal axis of the aircraft.

• Yaw: A pair of rotors that are opposite each other’s rotational speeds
are raised in order to conduct this move, whereas the rotary speeds
of the two other rotors are reduced. Hence, a rotation about the verti-
cal axis occurs as a consequence of the entire imbalance of moments
present.

As a consequence, the propellers are responsible for the vast majority
of the forces acting on the vehicle. Each propeller generates thrust that is
proportional to the square of the propeller rotation speed, as well as angular
moment, in a proportionate manner. When we examine at the ith propeller,
we can denote the generated thrust and moment thrust using the variables
FT,i and Mi as follows:

FT,i = knn
2

i ez (5.2)

Mi = (−1)i−1kmFT,i (5.3)

where ni denotes the ith rotor velocity, kn and km denote positive con-
stants, and ez denotes a unit vector pointing in the direction of z.

To account for certain factors which becomes significant in some scenarios,
it is necessary to represent additional force which impact the UAS dynamics.
Specific examples of these impacts include the flapping of the blades and
the resulting drag as a consequence of this. The sum of these aerodynamic
factors has a different force acting as a damping force on the UAS, which
we need take into consideration while developing our model of the UAS.
Typically, these forces are combined into a single lumped drag coefficient,
denoted by the symbol kD. As a result, the aerodynamic force Faero,i is:

Faero,i = fT,iKgragRT
WBv (5.4)

96 The MP-RRT# Algorithm

where Kdrag = diag(kD,kD,0) and fT,i is the z component of the ith thrust
force.

In addition to the forces acting on the UAS, it is plausible to simulate the
velocity of the vehicle using the equations shown below:

P· = v (5.5)

v· =
1
m


RWB

Nr

∑
i=0

FT,i − RWB

Nr

∑
i=0

Faero,i + Fext


+




0
0
−g


 (5.6)

R·
WB = RWB[ω] (5.7)

Jω· = −ω × Jω + A




n2
1

...
n2

Nr


 (5.8)

m denotes the mass of the vehicle. Fext denotes the external aerodynamic
forces operating on the vehicle. The inertia matrix is denoted by J, while the
allocation matrix is denoted by A, and the number of propellers is denoted
by Nr.

Typically, while building the higher-level attitude controller, it is critical to
take into consideration the inner loop system of the attitude model in order
to achieve better control quality when following a predefined trajectory.
In accordance with the [150], the inner-loop attitude dynamics are then
expressed as follows for our purposes:

ϕ· =
1

Tϕ
(kϕϕcmd − ϕ) (5.9)

θ· =
1
Tθ

(kθθcmd − θ) (5.10)

ψ· = ψ·
cmd (5.11)

where kϕ denotes the roll angle gain, kθ denotes the pitch angel gain.
Tθ and Tϕ are the time constants for the pitch and the roll respectively.

5.1 Problem Definition 97

ϕcmd and θcmd are the commanded roll and pitch angles and ψ·
cmd is com-

manded angular velocity of the vehicle heading.

5.1.2 UAS Model Lineraization and Discretization

We linearize the dynamic motion model around its hovering condition as
in [150], in which tiny fluctuations of the attitude angle (ψ = 0) are assumed
and the vehicle heading is aligned with the x-axis of the mult-irotor inertial
frame. We define the following state vector:

x =


pT vT Wϕ Wθ
T

(5.12)

where p is the position vector of the UAS in the three-dimensional space, v is
the velocity vector, Wϕ and Wθ are the roll and pitch angles in the inertial
frame W.

Whereas We define the following control vector:

u =


Wϕd
Wθd T

T
(5.13)

Where Wϕd and Wθd are the roll and pitch control commands in the in-
ertial frame and T is the thrust control command, which presume that this
can be accomplished instantly since the dynamics of the motors are normally
fairly rapid.

However, the transformation between attitude angles and heading free
attitude angles may be calculated using:


ϕ

θ


=


cosψ sinψ

−sinψ cosψ


ϕW

θW


(5.14)

98 The MP-RRT# Algorithm

Where Iϕ, Iθ are the roll and pitch angles which we denote in inertial
frame to get rid of the vehicle heading ψ from the model.

It is possible to reform the pose and velocity equations in the following
way after discretizing the system:

P(t + 1) = v(t) · Ts + P(t) (5.15)

where P(t + 1) and P(t) are the positions at time t + 1 and t, v(t) is the
vehicle speed at time t, and Ts is the sampling time.

The following linear state-space model is produced after linearization and
discretization of the model, while also neglecting exterior forces, which are
represented by the wind forces Fext. The model is linearized and discretized
as follows:

ẋ(t) = Acx(t) + Bcu(t) (5.16)

where Ac is the state matrix in continuous time

Ac =




0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 −ax 0 0 g 0
0 0 0 0 −ay 0 0 −g
0 0 0 0 0 −az 0 0
0 0 0 0 0 0 − 1

τϕ
0

0 0 0 0 0 0 0 − 1
τθ




(5.17)

5.1 Problem Definition 99

Bc is the input matrix in continuous time

Bc =




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
kϕ

τϕ
0 0

0 kθ
τθ

0




(5.18)

where ax, ay and az are the drag coefficients, g is the gravity acceleration, τϕ

is the roll time constant, τθ is the pitch time constant, kϕ is the roll gain and
kθ is the pitch gain.

Since we will be utilizing a controller that acts in discrete time, we have
discretized the UAS model as follows:

A = eAcTs , (5.19)

B =
 Ts

0
eAcdτdτBc, (5.20)

where Ts is the sampling time.

5.1.3 Problem Statement

For a generic UAS dynamic model described by 5.16, where x(t) ∈ Rnx is
the system state with dimension nx, and u(t) ∈ Rnu is the control input
with dimension nu. Both states and control inputs should respect specific
constraints. Specifically, the vehicle state must belong to the free state space
Xfree =X \Xobs, in order to navigate through an obstacle-free trajectory. This
constraint is expressed by

x(t) ∈ Xfree, (5.21)

100 The MP-RRT# Algorithm

where X is the state space and Xobs is the space occupied by obstacles.
Moreover, the system input is constrained as

u(t) ∈ U , (5.22)

where U is the space of the admissible inputs (roll, pitch and thrust com-
mands) in order to consider the vehicle specifications.

Given the initial state of the UAS x0 = x(0) at time t = 0 and the target
state defined by the goal region Xgoal ⊂ Rnx , the aim of the motion planning
problem is to compute an optimal state trajectory x∗ : [0, t f] ∈ Xfree and an
optimal control input sequence u∗ : [0, t f] ∈ U over a finite time horizon from
0 to t f able to drive the vehicle from the initial state x(0) = x0 to a final state
within the goal region x(t f) ∈ Xgoal.
x∗ and u∗ are computed minimizing a cost function Cost(·) while satisfying
the constraints imposed by Equations (5.21) and (5.22). Hence, the optimal
motion is the solution of the following problem

x∗,u∗ = argmin Cost(x(t),u(t))

subject to x(0) = x0

x(t f) = xgoal ∈ Xgoal

x(t) ∈ Xfree, ∀t ∈

0, t f



u(t) ∈ U , ∀t ∈

0, t f


.

(5.23)

5.2 The MP-RRT# strategy

This section introduces the proposed MP-RRT# algorithm (Model Predictive
Rapidly-exploring Random Tree "sharp"). The core planner upon which the
proposed algorithm is built is the RRT# [42]. The MP-RRT# improves on the
RRT# by incorporating an MPC strategy to compute a near-optimal trajectory
for a UAS while taking into account dynamic and kinematic constraints and
avoiding obstacles. The RRT# is a particular version of the Rapidly-exploring
Random Graph (RRG) that guarantees that the graph in the search space is
the most optimum graph in the world.

5.2 The MP-RRT# strategy 101

Like other kinodynamic RRT-based algorithms, our MP-RRT# method
explores the search space by building an incremental network that is rooted
at the start of the search procedure. Specifically, the MP-RRT# generates two
graphs simultaneously:

1. GY in the reference space Y : consists of vertices and edges in the
reference space Y . It is constructed incrementally by sampling vertices
and growing the graph to uniformly explore the reference space. This
is equivalent to any other graph generated to other algorithms of the
RRT family.

2. GX in the state space X : consists of a graph of trajectories computed
through MPC. GX is built concurrently with GY and, practically, it is
used to evaluate the motion between vertices of GY , generating a graph
of feasible trajectories in the state space.

The main pseudocode of MP-RRT# is defined in Algorithm 8. The inputs
of the algorithm are the initial state x0, the goal region Xgoal, the reference
space Y and the state space X in which the motion planning searches for a
feasible solution.
First, both graphs GY and GX are initialized (from lines 2 to 4). In particular,
the initial vertex in the reference state is defined using the initial state x0

(line 3). In fact, we assume that the reference space Y is a subset of the state
space X and, as a consequence, an element r ∈ Y can be derived from a state
x ∈ X . Then, the iterative procedure of the construction of the graph starts
and continues until a certain number N of vertices are sampled and added
to the graph (lines 5 to 8). Specifically, a vertex rrand is randomly sampled
(line 6) and both graphs GX and GY are extended by adding the new vertex
(line 7). The Replan() function propagates this update on the graphs (line 8).
Both the Extend() and Replan() functions are detailed in Algorithms 9 and
11, respectively. Finally, the branch T X connecting the initial and the target
states is extracted from the graph GX (line 9) and returned as the solution of
the algorithm.

The Extend procedure is a crucial element for the proposed approach; it
is responsible for the expansion of both graphs by adding a new vertex, after
which the cost of the state trajectory is computed using MPC. This procedure

102 The MP-RRT# Algorithm

Algorithm 8: The MP-RRT# algorithm

1: MP-RRT#(x0,Xgoal,Y ,X)
2: GX ← {x0};
3: r0 ← x0;
4: GY ← {r0};
5: for i = 0 to N do
6: rrand ← Sample();
7: GX ,GY ← Extend(GX ,GY ,rrand);
8: Replan(GX ,GY);
9: T X ← SpanningTree(GX);

10: return T X

is detailed in Algorithm 9. Initially, the new vertex r is connected to the
nearest vertex rnearest in the graph GY (line 2). Then, the Nearest() function
finds the vertex with the minimum Euclidean distance from r.
Hence, the states xnearest and x are defined from rnearest and r, respectively
(lines 3 and 4). The ComputeTrajectory() function (line 5) uses MPC to
compute the optimal state trajectory x moving from xnearest to x. Then, if
the computed trajectory is valid, i.e. it does not collide with obstacles, the
cost-to-come of vertex r, denoted by g(r) is computed by adding the cost at
the previous vertex to the cost of the trajectory x, denoted by c(x) (line 7).
In line 8 all the neighbor vertices of r are added to the neighbor set N and,
then, the vertex r is included in the neighbor set of its neighbors (lines 8 to
10).

The Near() function selects the M-nearest vertices as defined in [37].
Specifically, the number M of neighbors evaluated is defined as

M = e(1 + 1/d) log |V|, (5.24)

where d is the dimension of the reference space Y , and the notation |V|
defines the cardinality of the set of vertices, i.e. the number of vertices in
the graph GY . According to [37], Equation (5.24) ensures the asymptotic
optimality of the algorithm.

The FindParent() function searches for the neighbor vertex of r that pro-
vides the minimum cost-to-come g() including the vertex r to the graph GY

5.2 The MP-RRT# strategy 103

and, similarly, the corresponding state x to the graph GX (line 11). Then, the
vertex r is included in the priority queue q (line 12) used in the Replan() to
propagate any updated cost in the graph GY .

The FindParent() procedure is detailed in Algorithm 10. For each near
vertex of r, the state trajectory from x and xnear is computed to select the best
parent vertex (from lines 2 to 9). Then, the selected rnear is defined as parent
of r (line 8) and, similarly, xnear is defined as parent of x (line 9).

The priority queue has a crucial role in the RRT# algorithm [42] because it
is a queue of vertices that is evaluated in the Replan() procedure to propagate
any update on the graph. Vertices of the queue are ordered based on their
cost f (r) from the highest to the lowest. Specifically, the cost f (r) is the
estimated cost to reach the goal passing through the vertex r, inspired by the
well-known cost function define in the A∗ algorithm [151]:

f (r) = g(r) + ĥ(r). (5.25)

Function g(r) represents the cost-to-come at the vertex r, i.e. the cost of
moving between the start vertex r0 and r, with g(r0) = 0. Function ĥ(r) is the
estimated cost-to-go to reach the goal state, with ĥ(rgoal) = 0.

Algorithm 9: The Extend procedure

1: Extend(GX ,GY ,r)
2: rnearest ← Nearest(GY ,r);
3: xnearest ← rnearest;
4: x ← r;
5: x ← ComputeTrajectory(xnearest, x);
6: if isTrajectoryValid(x) then
7: g(r)← g(rnearest) + c(x);
8: N (r)← Near(GY ,r);
9: foreach rnear ∈ N (r) do
10: N (rnear)←N (rnear) ∪ {r};
11: FindParent(r, x);
12: UpdateQueue(r);
13: return GX ,GY

In particular, the Replan() procedure is detailed in Algorithm 11. This
procedure is based on an iterative loop that updates only promising vertices

104 The MP-RRT# Algorithm

Algorithm 10: The FindParent procedure
1: FindParent(r, x)
2: foreach rnear ∈ N (r) do
3: xnear ← rnear;
4: x ← ComputeTrajectory(xnear, x);
5: if isTrajectoryValid(x) then
6: if g(rnear) + c(x) < g(r) then
7: g(r) = g(r) + c(x);
8: P(r) = rnear;
9: P(x) = xnear;

(lines 2 to 15), i.e., vertices that can improve the current solution in the graph.
Specifically, the set of promising vertices Vprom ⊂ V contains vertices inside
the relevant region Yrel ∈ Y

Yrel = {r ∈ Yfree : f (r) < g(r∗goal)}, (5.26)

with r∗goal is the vertex in the goal region with the minimum cost-to-come.

Notably, the heuristic cost ĥ(r) used to compute f (r) must be admissible,
i.e., it should not overestimate the cost-to-go, discarding vertices that would
lead to the optimal solution. The evaluation of promising vertices is essential
to avoid the propagation toward vertices that cannot improve the current
solution, speeding up the algorithm. The first element of the queue is selected
(line 3) and removed from q (line 5). Then, the procedure verifies if the current
vertex can improve the cost-to-come of its neighbors (lines 6 to 15) as a new
parent vertex. This is verified by computing the cost-to-come of the resulting
state trajectory of moving from x to xnbh. Similar to Algorithm 10, line 10
checks if the neighbor vertex rnbh ∈ N is a promising vertex and, in line 11,
if r can be the new parent vertex of rnbh. If this condition occurs, the vertex
rnbh is included in q to be evaluated in the Replan() procedure. In particular,
rnbh is defined in the reference space, while xnbh is the corresponding state in
the state space.

Figure 5.1 shows a simple example of the proposed strategy, where the
graph GY in blue is constructed in the reference state, while the correspond-
ing graph GX in the state space is colored in magenta.

5.2 The MP-RRT# strategy 105

Algorithm 11: The Replan procedure

1: Replan(GX ,GY)
2: while f (q.top()) ≺ g(r∗goal) do
3: r = q.top();
4: x ← r;
5: q.pop();
6: foreach rnbh ∈ N (r) do
7: xnbh ← rnbh;
8: x ← ComputeTrajectory(x, xnbh);
9: if isTrajectoryValid(x) then
10: if g(r) + c(x) + ĥ(rnbh) < g(r∗goal) then
11: if g(r) + c(x) < g(rnbh) then
12: g(rnbh) = g(r) + r(x);
13: P(rnbh) = r;
14: P(xnbh) = x;
15: UpdateQueue(rnbh);

Fig. 5.1 Example of graphs constructed with MP-RRT#. The graph GY consists of
vertices (in black) and edges (in blue) in the reference state. Instead, the graph GX

consists of trajectories (in magenta) obtained through evaluating the edges of GY

using the MPC strategy. An edge of GY is labeled as invalid if its corresponding
trajectory in GX crosses an obstacle.

106 The MP-RRT# Algorithm

As can be observed in Figure 5.1, collisions with obstacles are accounted
for by graph GX . If a trajectory in GX enters the obstacle space, the corre-
sponding edge in GY will not be included in the resulting graph. On the
contrary, as can be observed in Figure 5.1, even if an edge in GY crosses an
obstacle, it is not discarded if its corresponding trajectory in GX does not
collide with obstacles. This choice is motivated by the fact that, in general,
the reference state has generally a lower dimension than the dimension of
the vehicle state. As a consequence, it is more efficient to generate a graph in
the reference space than in the state space.

5.2.1 Model Predictive Control

The cost of tracking the reference path is quantified using a LQR controller
in recently published research, such as in [152]. Local linearization of the
system dynamics was done in order to use linear quadratic regulation (LQR).
Trajectory tracking within sample-based motion planners is typically per-
formed for the linearized dynamics even though the actual UAS dynamics
are known to be nonlinear. This is because when the system dynamics are
linear, it is possible to solve for the optimal value function efficiently in
closed-form. Furthermore, it is possible to apply this approach to non-linear
systems by linearizing the nonlinear process dynamics about an operating
point.

By using RRT instead of RRT∗, the proposed sampling-based planner
gets over the local rewiring limitations of RRT∗ and, as suggested in [43],
obtains its samples from the reference space rather than the control space.
The proposed technique then uses MPC [153] to execute a forward simulation
to generate a state trajectory and the appropriate control input to track the
input sample of the closed-loop system, which is a reference r in the reference
space Y .

The proposed planner utilizes the linear MPC strategy to track the refer-
ence trajectory rather than the LQR, which optimizes across the entire time
window (horizon), because the MPC can be implemented incrementally, that

5.2 The MP-RRT# strategy 107

is, updated through each step while still keeping in view a horizon with a
configurable number of future steps sampled from the reference trajectory.

MP-RRT# use MPC to calculate the optimum state trajectory between
each newly added vertex and its neighboring vertices and, to compute the
cost of such a trajectory in order to gradually build the final trajectory graph
GX ∈ X . Based on the UAS model previously defined, in this work we
implement a Linear Model Predictive Control inspired by [150]. Specifically,
the MPC searches for an optimal trajectory by optimizing the cost function

J(x,u) =
Hp−1

∑
k=0

(xk − xref,k)
TQx(xk − xref,k)

+ (uk − uk−1)
TR∆(uk − uk−1)



+ (xHp − xref,Hp)
TQfinal(xHp − xref,Hp),

(5.27)

where Hp is the prediction horizon.

The control input vector is defined as u =

u0 u1 . . . uHp

T
, with uk ∈ R3,

for k = 0, . . . , Hp − 1.

The vehicle state vector is x =


x0 x1 . . . xHp

T
, with xk ∈ R8, for k =

0, . . . , Hp.

The reference state setpoint vector is defined as xref =


xref,0 xref,1 . . . xref,Hp

T
,

with xref,k ∈ R8, for k = 0, . . . , Hp.

However, the MPC weighting matrices Qx, R and Qfinal are positive
semidefinite matrices indicating the penalty matrix on the state error, the
penalty matrix on the variation of the control input, and the terminal cost
matrix on the last state error, respectively.

In order to compute Qfinal, it is necessary to iteratively solve an appropri-
ate Algebraic Riccati Equation [154] which is implemented as follows: The
computation of Qfinal is carried out by iteratively solving a suitable Algebraic
Riccati Equation [154]. Hence, the following convex optimization problem is

108 The MP-RRT# Algorithm

solved:

x∗,u∗ =min
U,X

J(x,u) (5.28)

subject to xk+1 = Axk + Buk (5.29)

uk ∈ U (5.30)

x0 = x(t0) (5.31)

It is necessary to have a reference trajectory xref in order to solve the
optimization issue posed by Equation (5.28). The reference trajectory is im-
plemented in this study using Dubins curve as defined in [147].

Dubins curves are the shortest route between two points in a two-dimensional
space when the curvature is constant. Because our solution will be imple-
mented in two-dimensional space, this approach is a great match for our
research. Nevertheless, due to recent developments in three-dimensional
space [155] and variable radius curvature [156], Dubins curves are now
possible to be utilized in more complicated situations as well.

Assuming fixed vehicle speed and two-dimentional position vector


px py pβ


,

The differential equation of Dubins curves can be defined as follows:

ṗx = cos(pβ), (5.32)

ṗy = sin(pβ), (5.33)

ṗβ = uc, (5.34)

As shown by [147], the maximum nubmer of combinations to express
the shortest path between two poses can have no more than three primitive
moves. Hence, only three values of uc are defined uc ∈ {−1,0,1}. The value
uc = 0 describes a straight motion (S), uc =−1 describes a right (R) turn, and
uc = 1 describes a left (L) turn, thus obtaining six possible curves:

{LRL, RLR, LSL, LSR, RSL, RSR} (5.35)

When compared to other primitive curves used to find the shortest path
between two configurations, and for our purposes of building the graph

5.2 The MP-RRT# strategy 109

Fig. 5.2 Example of reference trajectory computed using Dubins curves and connect-
ing two adjacent vertices. The green line is the reference trajectory, whereas magenta
arrows are the state trajectory computed using MPC.

iteratively from curve segments extending the existing path with a new ver-
tex, Dubins curves are a suitable solution to achieve flyable paths because
they are forward-only curves, whereas other curves such as Reeds-Shepp
require backward-motion [33]. Motion planning is typically influenced by
the Dubins curvature radius, with various curvature radii resulting in varied
planned trajectories. Curvature radius should be set to represent the small-
est amount of curvature that the vehicle is capable of executing while still
complying with kinodynamic restrictions. In this case, we are looking at a
multicopter with a curvature radius of zero, which is theoretically possible
(i.e., it can rotate around its axis in place). However, since we are assuming
a continuous nonzero cruising velocity in the motion planning, we must
provide a lower limit for the curvature radius.

The optimization problem of Equation (5.28) is solved following the
reference trajectory. Then, in accordance with the MPC philosophy, only the
first control input is applied and the optimization is solved iteratively. Figure
5.2 shows an example of reference trajectory generated using Dubins curves
and followed through MPC.

110 The MP-RRT# Algorithm

5.3 Technological Tools

5.3.1 OMPL

Using the Open Motion Planning Library (OMPL), which is an abstract
representation for all of the basic ideas in motion planning, it is possible
to construct motion planning implementations. State space representation,
control space representation, state validity, sampling, goal representations,
and planners can all be implemented as part of the OMPL representation
framework. OMPL is adaptable and may be utilized with a wide variety
of robotic systems, including industrial robots. Towards this rationale, the
library makes no specific reference of the geometry of a given workspace
or of a particular robot that functions inside it. The fact that in OMPL there
are so many file formats, data structures, and other ways of representation
accessible for robotic systems was done on purpose in order to accomodate
the enormous number of options available in the robotic field. As a result,
in order for the robot to work as intended in the OMPL framework, one
must choose a computational representation for the robot and implement
an explicit state validity/collision detection method. In the OMPL program-
ming language, there is no such fixed predefined or default collision checker.
However, with only a limited number of assumptions, the library is capable
of planning for a huge number of different systems while being lightweight
and portable.

OMPL sampling-based motion planners are composed of a series of
modules that all interact with one another to manage the motion planning
problems in a coordinated manner. There are a few essential parts that must
be used in order to handle a planning query across many sampling-based
motion planners: a sampler to compute valid configurations of the robot, a
state validity checker to rapidly assess a specific robot configuration, and a
local planner to interconnect samples along a collision-free path. The most of
of these components are furnished by OMPL in classes with the same names
as the components they represent. The notions used in OMPL’s classifications
are comparable to those used in traditional sampling-based motion planners,
and include the following:

5.3 Technological Tools 111

• StateSampler: The StateSampler class of OMPL is modular to be con-
figured to fit the vast majority of state space arrangements. It provides
uniform and Gaussian sampling algorithms, as well as a multitude of
other functionalities. For application scenarios where a combination
of functionalities is required, such as sampling in Euclidean spaces,
rotation spaces for 2D and 3D orientations, the CompoundStateSampler
comes handy in defining the specific sampling method. Moreover,
StateValidityChecker is used by the ValidStateSampler to identifying
valid state space configurations.

• NearestNeighbors: This abstract class can be utilized to define a com-
mon interface to the planners for the purpose of implementing a nearest
neighbor search among samples in the state space. Among the near-
est neighbor search algorithms available to the core library are the
Geometric Near-neighbor Access Tree and linear searches, and some
others. It is also possible to make use of an external data structure and
to supply an implementation of that data structure to the core library,
as an alternative.

• StateValidityChecker: When evaluating a single state, the StateValidity-
Checker will determine whether or not the configuration overlaps with
any obstacle and whether or not it complies with the robot’s constraint
needs before proceeding. Given that this structure is a crucial aspect of
sampling-based motion planning, it is vital for the user to provide the
planner with a callback to such a function in order for the planner to
check that all configurations are feasible for the robot.

• MotionValidator: When a robot moves across two configurations, the
MotionValidator class evalutates the validity of the planned motion.
For the MotionValidator, high-level criteria include the capacity to
identify whether or not a move between two states is collision-free
and whether or not the motion conforms with all of the robot’s motion
constraints.

112 The MP-RRT# Algorithm

• OptimizationObjective: motion planners are also required to optimize
the motion against some performance criterion. These performance cri-
terion is formulated in a cost function within this OptimizationObjective
class. In order to optimize the motion strategy, the OptimizationObjective
class offers an abstract interface to the processes and cost function for-
mulation that planners would ultimately employ in order to optimize
the strategy. Many cost functions are accessible in the library, includ-
ing an optimization of the route length PathLengthOptimizationObjective.

• ProblemDefinition: The ProblemDefinition object specifies the query to
be utilized for motion planning. Individual instances of this class
include information about the robot’s start state, goal configuration,
and optimization target, if any, as well as the robot’s start state and
goal configuration. There may be a single configuration or a region
that includes a certain state or territory that would be the goal. The
solutions to motion planning inquiries that are provided may also be
obtained via the usage of the MotionPlanning class.

OMPL’s object-oriented structure is one of its most significant advantages;
as a consequence, it is possible to inherit components that are already in
existence while also creating additional components. As a result, it is not
required to identify each and every object that is part of the OMPL structure
since, for ordinary motion inquiries, the most of of the objects can be used in
the their standard configuration.
In practice, the standard configurations of the large majority of these classes
are sufficient for the greater part of fundamental planning purposes in the
enormous circumstances.

5.3 Technological Tools 113

Fi
g.

5.
3

O
pe

n
M

ot
io

n
Pl

an
ni

ng
Li

br
ar

y
(O

M
PL

)o
bj

ec
t-

or
ie

nt
ed

st
ru

ct
ur

e

Chapter 6

Experiment and Results

This chapter details the experiment setup and discusses the simulation results
of the proposed MP-RRT# motion planning solution.

6.1 Experiment

Here we will detail specifically the ComputeTrajectory() function that is used
three times in every iteration, first to compute the trajectory and its cost
of moving from the xnearest to the the newly sample x (line 5 in 9), then to
evaluate the cost of the trajectory from every element in the near set xnear to
the sample x during the FindParent() function (line 4), and finally again used
to evaluate the trajectory from the xnew to each of the near set xnear in the
Replan() function in order to check if rewiring the new sample as a parent
of a neighbor node would improve the cost-to-come. The computed cost
of the trajectory between any two nodes passed to the ComputeTrajectory()
function uses the MPC controller that computes the trajectory respecting the
constraints on the state and control input.

6.1 Experiment 115

6.1.1 MPC Optimization Object

The trajectory cost calculation, which takes use of the MPC logic, is a unique
aspect of the proposed method that distinguishes it from others previously
given in the literature. It is necessary to construct a class called MPCOpti-
mizationObjective in order to complete this task. It is set as the default class
for performing the RRT# optimization through the OMPL default setOpti-
mizationObjective function, which is called by the setOptimizationObjective
function. It contains some methods that are required for effectively solving
the MPC optimization problem and for actually producing the recommended
trajectory. In the instance that a motion query is submitted, OMPL immedi-
ately triggers two methods for determining how much the motion will cost.
All of these methods should be available in the optimization class, including
the stateCost() function, which is used to calculate the cost of a state, and
the motionCost() method which is used to calculate the cost of transitioning
from an initial state to a final state.

This motionCost() method of the OMPL MPCOptimizationObject class
corresponds to the function named ComputeTrajectory() in the algorithm
previously mentioned. This function is used to compute the actual trajectory
while taking into account the obstacles constraints and the control input
constraints, and it is responsible for reporting the actual trajectory between
the two nodes that have been sent to the function as inputs, as well as the
cost of the computed trajectory. The outputs of this function are then used
to either FindParent or Replan the nearby nodes to the newly sampled node,
depending on which phase of the algorithm invoked the function in the first
place.

The MPC problem is defined by inspiring to [150], where a MPC-based
trajectory tracking is constructed using CVXGEN. CVXGEN is an abbrevia-
tion for Code Generation for ConveX Optimization. It is an online tool for
producing quick custom code for convex optimization problems that are
modest and QP-representable.

116 Experiment and Results

The CVXGEN [157] interface is used to define an optimization problem
using a simple and powerful language. This interface enables for the auto-
mated generation of library-free C code for a customized, high-speed solver
which can be downloaded straight from the CVXgen website. CVXGEN
offers solutions that are between twelve and one thousand times faster than
the solutions produced by the most popular optimizers when dealing with
the identical optimization challenges [158].

Assuming a disturbance free system model (i.e. d(t) = 0∀t ∈ [0, HP]), the
optimization problem can be defined as:

minU,X(
HP−1

∑
k=0

(xk − xre f ,k)
TQx(xk − xre f ,k) + (uk − uk−1)

TR∆(uk − uk−1))+

+(xP − xre f ,HP)
TQ f inal(xP − xre f ,HP)

Subject to

xk+1 = Axk + Buk

uk ∈ U

x0 = x(t0)

where HP is the prediction horizon, U is the input space U = [u0 u1 ... uHP−1]
T

with uk ∈ R3 for k = [0, ..., HP − 1], X is the state space Xre f = [x0 x1 ... xHP]
T

with xk ∈ R8 for k = [0, ..., HP], Qx is the penalty on the state error, R∆ is
a penalty on the control change rate and Q f inal is the terminal state error
penalty. The computation of the terminal cost matrix Q f inal is done by solving
the Algebraic Riccati Equation iteratively [154].

OMPL’s motionCost() method takes as input two states then instantly
convert them in ROS Pose2D format after initalizaing the MPC parameters.

initializeParameters()

The initializeParameters method is used in order to appropriately populate
the UAS model matrices, the optimization function matrices, and the refer-

6.1 Experiment 117

ence state vectors. Once the MPCOptimizationObjective class is created, this
method is invoked to complete the process. Since the initialization phase
takes significant time, and because the MPC tool configurations are constant
for the duration of the RRT# graph creation phase, the intialization of pa-
rameters is only applied once within the MPCOptimizationObjective class
constructor, rather than several times iteratively.
initializeParameters incorporates a ROS node handler that enables the func-
tion to read parameters from a launch file, which is useful for debugging.
The read parameters are then stored into global variables. Although the
OMPL class and MPCOptimizationObjective are meant to sample states in
a variety of state spaces, the reference trajectory is only derived for a x − y
plan for our testing purposes, with the z position and z speed presumed to
be equal to zero. Next we describe how the state matrix A and input matrix
B are populated:

1 Eigen::Matrix <double , StateSize , StateSize > Q;
2 Eigen::Matrix <double , StateSize , StateSize > Q_final;
3 Eigen::Matrix <double , InputSize , InputSize > R;
4 Eigen::Matrix <double , InputSize , InputSize > R_delta;
5

6 const double kGravity = 9.8066;
7

8 drag_coefficients_.push_back (0.01);
9 drag_coefficients_.push_back (0.01);

10 drag_coefficients_.push_back (0.0);
11

12 A_continuous_time (0, 3) = 1;
13 A_continuous_time (1, 4) = 1;
14 A_continuous_time (2, 5) = 1;
15 A_continuous_time (3, 3) = -drag_coefficients_.at(0);
16 A_continuous_time (3, 7) = kGravity;
17 A_continuous_time (4, 4) = -drag_coefficients_.at(1);
18 A_continuous_time (4, 6) = -kGravity;
19 A_continuous_time (5, 5) = -drag_coefficients_.at(2);
20 A_continuous_time (6, 6) = -1.0 / roll_time_constant_;
21 A_continuous_time (7, 7) = -1.0 / pitch_time_constant_;
22

23 B_continuous_time (5, 2) = 1.0;
24 B_continuous_time (6, 0) = roll_gain / roll_time_constant_;

118 Experiment and Results

25 B_continuous_time (7, 1) = pitch_gain / pitch_time_constant_;
26

27 model_A_ =(prediction_sampling_time_ *A_continuous_time).exp();
28

29 Eigen:: MatrixXd integral_exp_A;
30

31 integral_exp_A = Eigen :: MatrixXd ::Zero(StateSize , StateSize);
32 const int count_integral_A = 100;
33

34 for (int i = 0; i < count_integral_A; i++)
35 {
36 integral_exp_A += (A_continuous_time *

prediction_sampling_time_ *i / count_integral_A).exp()*
37 prediction_sampling_time_ / count_integral_A
38 }

Listing 6.1 initializeParameters() method

For computing B matrix in discrete time, it is necessary to compute the
integral through an incremental approach.
The MPC Objective function matrices are initialize as follows:

1 Q.setZero ();
2 Q_final.setZero ();
3 R.setZero ();
4 R_delta.setZero ();
5

6 Q.block(0, 0, 3, 3) = q_position_.asDiagonal ();
7 Q.block(3, 3, 3, 3) = q_velocity_.asDiagonal ();
8 Q.block(6, 6, 2, 2) = q_attitude_.asDiagonal ();
9

10 R = r_command_.asDiagonal ();
11

12 R_delta = r_delta_command_.asDiagonal ();
13

14 // Compute terminal cost
15 Q_final = Q;
16 for (int i = 0; i < 1000; i++)
17 {
18 Eigen:: MatrixXd temp = (model_B_.transpose () * Q_final *

model_B_ + R);

6.1 Experiment 119

19 Q_final = model_A_.transpose () * Q_final * model_A_ - (
model_A_.transpose () * Q_final * model_B_)* temp.inverse ()*
(model_B_.transpose () * Q_final * model_A_) + Q;

20 }

Listing 6.2 Computation of the integral of the system matrices through an
incremental approach

Motion Cost Computation

Some heuristics are used to early discard poor samples. The main heuristic
applied controls for the perpendicular of the initial pose yaw angle, it its
in the opposite direction then the sample is marked with infinite cost and
another sample is retrieved. The same is true for the final sampled poses with
orientations that are more than sixty degrees off from the line connecting
the initial and final postures, as well as for the first sampled poses. These
heuristics helps to eliminate non-promising samples and, as a result, to avoid
wasting time computing unnecessary MPC problem solutions, given that it is
well known that initial and final poses with opposite directions can result in
poor cost trajectories at the start and end of the process. This is implemented
in function motionCostHeuristic2D inside the MPCOptimizationObjective
class.

The output of this function is a Boolean parameter which is set to true
whenever a goal pose does not satisfy pre-configured heuristic checks, and
the cost computation is immediately stopped, returning an infinite cost. Al-
ternatively, if the function return false, the MPC solver, the input limits, the
initial position, and the reference states are set, and the optimization problem
solution is calculated utilising the MPC solver and the reference states.

MPC Solver Configuration

The setSolver function initialize the MPC with the default configuration,
however the solver generated by the CVXGEN tool can be customized. Of
much interest is the settings.eps settings which is used to configure the

120 Experiment and Results

solver duality gap for returning the MPC problem solution. The solver will
not declare a problem converged unless it is verified that the duality gap
is confined by settings.eps. More specificaly, the solver will not declare a
problem converged until the norm of the equality and inequality residuals
are both less than the value specified by settings.resid_tol. If settings.eps
and settings.resid_tol are not achieved, settings.max_iters is used to specify
the maximum number of iterations the MPC solver is permitted to perform
before delivering a solution. The MPC solver’s solution processing may be
significantly expedited by appropriately fine tuning the configuration set-
tings. For the purpose of this study, it has been chosen that the specifications
for these parameters would be retained. The setLimits function establishes
the boundaries of the input values. Limits are established in accordance with
the [150].

setReferenceLine To construct a reference trajectory xre f ,k with k ∈ [0, HP]

linking the two nodes in question, this function is utilized. Afterwards, the
MPC logic works on following this reference trajectory while also taking into
consideration the free space limits as well as the control input constraints.
The reference trajectory is generated using the Dubins curves described in
5.2.1. Nevertheless, since this trajectory will be utilized as a reference by the
MPC in the future, we sample/interpolate 12 points along the trajectory and
preserve them as the reference set-points that will be used by the MPC later
on in the process. It assumes constant speed module of the UAS, as well as
the sampling time, in order to sample/interpolate points along the trajectory
that are compatible with the discrete time model and the digital controller,
as well as the sampling time.

MPCSolver The MPC logic takes as input the whole set of setpoints sam-
pled along the reference trajectory of the Dubins curve and solves the opti-
mzation problem specified in 5.27 for the entire length of the 12 set-points.
However, instead of preserving the entire trajectory generated by the MPC
method, only the first optimized state x1 ∈ R8 is preserved as the current
starting point, hence reducing the amount of data stored. The MPC then
proceeds through the process of solving for the other setpoints recursively,
utilizing the initial answer as a starting point for each subsequent solution.
This mimics the online MPC behavior in which the controller utilises the

6.1 Experiment 121

measured value of its location at each sample time to generate the solution
for the remaining horizon.

Cost Upon the computation of the MPC trajectory which was tracking the
Dubins curve reference trajectory, this actual trajectory cost is then computed
and reported back along the trajectory. The cost can be measured in whatever
metrics of interest to the specific application at hand. However, for our
study purposes, we used the simple Euclidean Distance along the computed
MPC trajectory. Its however worth noting that the distance computed is
the linear distance between the sample points along the trajectory, although
the actual trajectory might be somewhat more curved. However, since we
are making all the computations with the temporal resolution of the system
sampling time, and given the constant speed of the vehicle, the linear distance
computer is a fair approximation of the actual distance.
Moreover, since the cost computed will be used to compare the trajectory
between two nodes against other trajectories,then given that all the costs are
computed the same way, the linear approximation of the Euclidean Distance
has no effect on the comparison among the trajectories.

1 double ompl::base:: MPCOptimization0bjective :: computeCost1(Eigen
:: MatrixXd matrix_x ,Eigen :: MatrixXd matrix_x_ref ,Eigen::
MatrixXd matrix_u , int it) const

2 {
3 double c1=0.0;
4 geometry_msgs :: Pose2D pose1 ,pose2;
5 for (size_t i = 1; i < it; i++) {
6 pose1.x=matrix_x(i-1,0);
7 pose1.y=matrix_x(i-1,1);
8 pose2.x=matrix_x(i,0);
9 pose2.y=matrix_x(i,1);

10 // distance Cost
11 c1+= computeDistance2D(pose1 ,pose2);
12 }
13 ROS_ERROR("size of ref = %f", matrix_x.rows());
14 return(c1);
15 }

Listing 6.3 Cost computation using the linear approximation of the Euclidean
Distance

122 Experiment and Results

1 double ompl::base:: MPCOptimizationObjective :: computeDistance2D(
geometry_msgs :: Pose2D pose1 , geometry_msgs :: Pose2D pose2)
const

2 {
3 float x1=pose1.x;
4 float y1=pose1.y;
5 float x2=pose2.x;
6 float y2=pose2.y;
7

8 float d = sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2));
9 return(d);

10 }

Listing 6.4 2D linear distance computation

6.2 Results

6.2.1 Implementation

The proposed strategy is implemented in C++ using the Robot Operating
System (ROS) [159] framework and using the Open Motion Planning Library
(OMPL) [160], which provides many state-of-the-art sampling-based algo-
rithms and many additional functionalities to facilitate the development of
new algorithms.

The MP-RRT# algorithm is implemented considering a two-dimensional
space, i.e., flying at a fixed altitude. Specifically, the Special Euclidean Group
SE(2) is used, in which each admissible configuration is a pose in the two-
dimensional space free to translate and rotate.
Hence, each reference sampled by the algorithm in the reference space Y
consists of three parameters, i.e., two defining the position of the UAS and a
third defining its orientation, corresponding to the flight direction. Each time
the MP-RRT# algorithm evaluates the motion between two states, a reference
trajectory is computed using Dubins curves and the MPC computes the
optimal state trajectory and control input to track it.

6.2 Results 123

Parameter Value
ax 0.01
ay 0.01
az 0
kϕ 0.9
kθ 0.9
τϕ 0.250 s
τθ 0.255 s

Table 6.1 Parameters used for the UAS model.

The motion-cost of the trajectory is computed considering the path length
of the resulting trajectory:

c(x,u) =
M

∑
i=1

∥xi − xi−1∥2, (6.1)

with xi ∈ x, and M is the size of the trajectory. On the other hand, the cost-to-
go ĥ(r) is computed as the distance of the Dubins curve between the vertex r
and the goal region Xref.

The optimization problem of the MPC is solved using CVXGEN [157], a
tool for code generation for convex optimization. CVXGEN can be used to
generate fast custom code for small, QP-representable convex optimization
problems. The mathematical problem is translated into a high speed solver
that is twelve-to thousand-times faster than other popular optimizers [157].
Hence, the linear model of the UAS and the Linear MPC problem of Equa-
tions (5.27) and (5.28) are included and solved with CVXGEN.

Experimental tests are performed considering the multicopter Asctec
Firefly and using the parameters listed in Table 6.1.

The MP-RRT# is executed considering a maximum cruise velocity of
2.5m/s and the reference trajectory is computed with Dubins curves with a
curvature radius of 2m. The admissible control input is defined through the

124 Experiment and Results

following constraints:

−0.436 rad ≤Wϕd ≤ 0.436 rad (6.2)

−0.436 rad ≤Wθd ≤ 0.436 rad (6.3)

−4.80 N ≤ T ≤ 10.19 N (6.4)

The MPC is manually tuned by setting matrices Qx and R through trial-
and-error to attain a satisfactory behavior in tracking the reference trajectory.
Hence, Qx and R are defined as follows:

Qx =




40 0 0 0 0 0 0 0
0 40 0 0 0 0 0 0
0 0 60 0 0 0 0 0
0 0 0 20 0 0 0 0
0 0 0 0 20 0 0 0
0 0 0 0 0 25 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




, (6.5)

R =




0.3 0 0
0 0.3 0
0 0 0.0025


 . (6.6)

Moreover, Qfinal is computed by iteratively solving the Algebraic Riccati
Equation [154].

Figure 5.2 illustrates an example of reference trajectory computed with
Dubins curves and connecting two vertices. The trajectory is followed by
the MPC that reaches the target vertex computing the roll and pitch control
commands plotted in Figure 6.1.

6.2.2 Simulation results

The proposed MP-RRT# algorithm is tested in different scenarios to evaluate
its behavior in computing UAS trajectories.

6.2 Results 125

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
Time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Co
nt
ro
l C
om
m
an
d
(ra
d)

Roll
Pitch

Fig. 6.1 The roll and pitch control inputs computed by MPC to follow the trajectory
of Figure 5.2.

Figure 6.2 shows the evolution of the graph during the exploration of the
reference space (i.e., the map). Specifically, in Figure 6.2(a), the algorithm
computes a graph with 10 vertices finding an initial solution that is far
from the optimal one. In Figure 6.2(b), the graph consists of 20 vertices,
improving the solution path. On the contrary, the solution is not improved in
Figure 6.2(c), with a graph with 60 vertices. Finally, in Figure 6.2(d), a better
solution is found with a graph with 100 vertices.
The previously described test highlights the ability of the proposed algorithm
to explore the map and to compute a feasible trajectory for the UAS. The
quality of the computed trajectory increases with the number of vertices in
the graph, converging toward the optimal solution. In order to demonstrate
the above mentioned pattern, we performed 50 tests using the same scenario
of Figure 6.2. The average cost of the resulting solution path against the
number of iterations of the MP-RRT# algorithm is shown in Figure 6.3.

Considering the same scenario of Figure 6.2, we evaluate the ability of
the MPC in tracking the reference trajectory defined using Dubins curves.
Table 6.2 reports the average trajectory tracking error in 20 tests. The average
tracking error is the average Euclidean distance between the setpoints of the
reference trajectory defined using Dubins curves and their corresponding
states in the actual state trajectory computed using the MPC and satisfying

126 Experiment and Results

(a) (b)

(c) (d)

Fig. 6.2 The construction of the exploration tree using the MP-RRT# algorithm. The
start and target positions are in green and in red, respectively. The graph GY in the
reference space is colored in blue, while the computed path obtained from the graph
GX in the state space is colored in magenta. In (a), the graph consists of 10 vertices
rooted from the start pose finding an initial solution in the map with a cost (i.e. the
path length) of 66.44 m. In (b), the graph with 20 vertices, in which the solution is
improved with a cost of 45.09 m. In (c), the graph consists of 60 vertices, but the
solution is not improved. In (d), the graph has 100 vertices obtaining a solution with
cost 38.70 m.

6.2 Results 127

0 20 40 60 80 100
Number of Vertices

40

45

50

55

60

65

70

75

Av
er
ag
e
Co
st

Fig. 6.3 The average cost of the solution path against the number of vertices in the
MP-RRT# algorithm. The average cost is computed running the algorithm 50 times
in the same scenario of Figure 6.2.

128 Experiment and Results

dynamic constraints.
The average tracking error along the whole path was found to be reasonably
small, being always smaller than 0.05 m along trajectories with a length
ranging between 43 and 51 m. Figure 6.4 illustrates the average tracking
error for each of the 20 tests.

Trajectory Length [m] Vertices Avg Tracking Error [m]
1 47.178677 17 0.04951
2 43.488594 17 0.04924
3 49.000358 16 0.04934
4 48.921484 16 0.04940
5 48.720384 18 0.04930
6 47.986777 19 0.05003
7 46.894054 16 0.04931
8 44.604293 15 0.04949
9 51.149531 16 0.04875

10 45.98843 15 0.04938
11 48.523593 18 0.04869
12 47.661833 15 0.05003
13 43.958282 16 0.04825
14 43.825664 14 0.04939
15 49.610042 16 0.04799
16 48.843731 15 0.04838
17 49.636594 17 0.04898
18 45.822011 15 0.04950
19 45.370298 16 0.04885
20 45.527057 16 0.05007

Table 6.2 Trajectory tracking performance indices collected over 20 trajectories.

Other tests in more complex maps are shown in Figures 6.5 and 6.6. In
particular, Figure 6.5 shows an interesting scenario, in which Figures 6.5(a)
and 6.5(b) present the target in similar positions but with opposite directions.
As a consequence, the algorithm computes different solutions in order to
reach the target with the desired flight direction.

Similarly, in Figure 6.7(a), the MP-RRT# algorithm explores a map with a
graph of 100 vertices computing a solution. The trajectory computed in Fig-

6.2 Results 129

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Experiment

0.0475

0.048

0.0485

0.049

0.0495

0.05

0.0505
Av
g
Tr
ac
ki
ng
Er
ro
r [
m
]

Fig. 6.4 The average tracking error for 20 trajectories running the same scenario of
Figure 6.2.

ure 6.7(a) is also executed in a realistic simulation performed using Gazebo
and SITL frameworks.
Gazebo is an open-source multi-robot simulator fully compatible with ROS [161]
able to simulate robots, sensors, and rigid body dynamics.
SITL (Software In The Loop) [162] is a software to execute an autopilot on a
computer, without using a specific and dedicated hardware. In this work,
the simulation uses the PX4 autopilot [163], an open-source flight control
software for drones and other autonomous vehicles.

In particular, the state trajectory computed with MP-RRT# is uploaded on
the PX4 autopilot and, then, executed as shown in Figure 6.7(b). Although the
environment of Figure 6.7(b) does not correspond to the map of Figure 6.7(a),
the executed trajectory in Figure 6.7(b) is the same generated in Figure 6.7(b).

130 Experiment and Results

(a)

(b)

Fig. 6.5 Trajectories computed with the MP-RRT# by constructing a graph with 400
vertices. The start and target positions are in green and in red, respectively.

In blue, the graph GY in the reference space, while in magenta, the
computed path obtained from the graph GX in the state space. In (a) and (b)

the target is in a similar position, but with opposite orientation. As a
consequence, the solution is completely different, yielding different paths.

6.2 Results 131

Fig. 6.6 Example of trajectory computed with the MP-RRT# by constructing a graph
with 400 vertices. The start and target positions are in green and in red, respectively.
In blue the graph GY in the reference space, while in magenta the computed

path obtained from the graph GX in the state space.

132 Experiment and Results

(a)

(b)

Fig. 6.7 In (a), the trajectory computed with the MP-RRT# algorithm by constructing
a graph of 100 vertices. In (b) the computed trajectory is executed by the PX4
autopilot in a simulation.

Chapter 7

Discussion and Conclusion

7.1 Conclusions

For the purposes of autonomous navigation, this study focuses on Perception
and Motion Planning for Unmanned Aircraft System (UAS).

7.1.1 Perception

In perception, we have investigated the many design characteristics that
influence the quality of the 3D environment model generated by a vision
system, using the richness and accuracy of the 3D environment model as
quality indicators. If one tweaks one of these parameters (aperture, shutter
speed, or ISO), it will have a direct impact on the quantity of detected light
intensity at each given pixel under identical lighting circumstances. The
aperture has an influence on the Depth of Field (DOF) and the exposure, but
has no effect on the Field of View (FOV), the Aperture Field of View (AFOV),
or the effective focal length. While the shutter speed has an impact on the
exposure period and the capacity to record rapidly moving objects, it also
has an impact on the speed of the Unmanned Aerial Vehicle. When chang-
ing the aperture for purposes of depth of field (DOF) or the shutter speed
for purposes of flight speed and moving objects in the scene, the ISO can
be used as a compensation parameter by altering the sensitivity of the sen-

134 Discussion and Conclusion

sor cells in order to alter the contrast for a given shutter and aperture settings.

The configuration recommendations are summarized below:

• Focus: should be set for the distance between the UAS and the highest
point in the terrain.

• Aperture: should be set to have enough depth of field, equal to or
greater than the distance between the highest point in the terrain and
its base (ground). The best corresponding f-stop value can be extracted
from the MTF curves of the lens or by trial before the actual flight.

• ISO: should be set to automatic allowing the software can adjust for the
lighting conditions by altering the pixels’ sensitivity.

The various design parameters, including the camera design and con-
figuration parameters in addition to the flight plan parameters (speed and
altitude), should be designed as per the following dependency graph:

7.1 Conclusions 135

Fig. 7.1 Vision System Design parameters inter-dependencies and the way they
affect the final 3D reconstruction through affecting the number of quality matched
features

A further investigation was conducted into the usage of two GPS data
sets as initials for the camera location (extrinsic parameters) in order to assess
their contribution to the total 3D quality indicators that had previously been
defined. The comparison of the resulting 3D environment models revealed
that the usage of extra data sets would have a limited influence when they
are utilized with claimed uncertainty limits that are larger than the actual
uncertainty bounds. On the contrary, utilizing them with lower uncertainty
limits results in worse camera calibration and, thus, poorer reconstruction
outcomes.

This emphasizes the need of determining the real uncertainty limits
of any extra data sets, which are often not the same as the nominal ones
but are rather significantly affected by system parameters such as camera
capture/GPS synchronization. Considering the design trade-offs between

136 Discussion and Conclusion

different camera characteristics and the flight plan under certain criteria
such as the final model resolution, the UAS speed, and the needed images’
overlap, we identified the inter-dependencies and relationships between
these parameters and their relationship to the number of quality matches.

Fig. 7.2 Topics investigated and their place in the SfM framework

In addition, in part two, we have developed an industrial solution for a
real-world manufacturing line, in which a challenging object detection and
localization task is implemented and evaluated. With the help of an FPGA
programmable industrial camera, the developed solution enabled the detec-
tion and localization of the target pieces, and then the control of the pieces
feeder and conveyor shaker. The vision system was also integrated with a
FANUC industrial robotic arm, which was used for component picking and
assembly tasks. In a manufacturing facility, the solution has been successfully
implemented, and the production cycle time has been significantly reduced.
The time between image capture and the declaration of the found parts is
less than 200ms, and the overall solution meets the reliability, robustness,
and processing time requirements of the application.

7.1 Conclusions 137

7.1.2 Motion Planning

In the area of motion planning, we have developed a novel kinodynamic
sampling-based motion planning algorithm known as MP-RRT#, which
builds on the existing RRT# by augmenting it with a Model Predictive Con-
trol method used to compute the optimal trajectory for Unmanned Aerial
Vehicles. The use of the MPC ensures the feasibility and applicability of
the resulting trajectory, as both the obstacles constraints (which restrict the
feasible states to the free space) and the vehicle constraints (which limit the
control input constraints) are taken into consideration by the MPC during
the design process. Furthermore, the usage of a primitive curve such as
the Dubins curve as a reference for the MPC to follow results in a smoother
trajectory as a consequence of the MPC following a basic curve.

The proposed algorithm build two graphs are concurrently: GY and GX .
First, the graph GY explores the reference space of the UAS. Then, the MPC
strategy is used to iteratively evaluate the feasibility of each newly added
vertex and to compute the cost of its corresponding edge constructing a
graph GX of feasible trajectories in the state space. The resulting trajectory
computed by the proposed MP-RRT# algorithm is a near-optimal trajectory
that respects both the kinematic and dynamic constraints of the UAS.

The proposed MP-RRT# algorithm differs from other kinodynamic RRT-
based algorithms in sampling the input reference of the closed loop system
instead of directly sampling the control input. This gives rise to considerable
advantages, especially when dealing with vehicles with complex dynamics
where the reference space dimension is considerably smaller than the control
space and state space of the vehicle. The simulation results obtained from
the implementation of the proposed MP-RRT# algorithm demonstrate good
trajectory quality even for complex maps. Moreover, the computed trajectory
is executable by a UAS equipped with a professional autopilot.

Although the proposed algorithm is tested in a simplified scenario, i.e., in
a two-dimensional space using a linearized model of the UAS, the proposed

138 Discussion and Conclusion

MP-RRT# algorithm can be extended to more complex scenarios by increasing
the complexity of the algorithm. Moreover, although the work presented
here focuses on UAS, the proposed motion planning strategy has a general
validity, and can be easily adapted to other kinds of robots, such as ground
robots, autonomous cars and underwater vehicles.

References

[1] Robert Bogue. Robots poised to revolutionise agriculture. Industrial
Robot: An International Journal, 2016.

[2] Suraj Ashwath Rajiv and Ahmad Anwar Zainuddin. Review of new
trends and challenges of android-based home security robot. Malaysian
Journal of Science and Advanced Technology, pages 103–108, 2021.

[3] R Wolny. Robots in technological process of painting. DAAAM Interna-
tional Scientific Book,(Austria), pages 195–204, 2011.

[4] Torbjørn S. Dahl and Maged N. Kamel Boulos. Robots in health and
social care: A complementary technology to home care and telehealth-
care? Robotics, 3(1):1–21, 2014.

[5] Azad Shademan, Ryan S Decker, Justin D Opfermann, Simon Leonard,
Axel Krieger, and Peter CW Kim. Supervised autonomous robotic soft
tissue surgery. Science translational medicine, 8(337):337ra64–337ra64,
2016.

[6] International Organization for Standardization. Technical Committee
Automation systems, integration. Subcommittee Robots, and robotic
devices. ISO 8373: Robots and Robotic Devices - Vocabulary. ISO, 2012.

[7] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. A re-
view of mobile robots: Concepts, methods, theoretical framework,
and applications. International Journal of Advanced Robotic Systems,
16(2):1729881419839596, 2019.

[8] Nicoletta Bloise, Stefano Primatesta, Roberto Antonini, Gian Piero Fici,
Marco Gaspardone, Giorgio Guglieri, and Alessandro Rizzo. A survey
of unmanned aircraft system technologies to enable safe operations
in urban areas. In 2019 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 433–442. IEEE, 2019.

[9] Chun Fui Liew, Danielle DeLatte, Naoya Takeishi, and Takehisa Yairi.
Recent developments in aerial robotics: A survey and prototypes
overview, 2017.

140 References

[10] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter
Fox, Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard,
Michael Milford, et al. The limits and potentials of deep learning for
robotics. The International Journal of Robotics Research, 37(4-5):405–420,
2018.

[11] Hans Moravec and Alberto Elfes. High resolution maps from wide
angle sonar. In Proceedings. 1985 IEEE international conference on robotics
and automation, volume 2, pages 116–121. IEEE, 1985.

[12] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, and Andrew W. Fitzgibbon. Kinectfusion: Real-
time dense surface mapping and tracking. 2011 10th IEEE International
Symposium on Mixed and Augmented Reality, pages 127–136, 2011.

[13] D Blake Barber, Stephen R Griffiths, Timothy W McLain, and Randal W
Beard. Autonomous landing of miniature aerial vehicles. Journal
of Aerospace Computing, Information, and Communication, 4(5):770–784,
2007.

[14] Jean-Christophe Zufferey, Antoine Beyeler, and Dario Floreano. Near-
obstacle flight with small uavs. Technical report, Springer Verlag,
2008.

[15] Noah Snavely, Steven M Seitz, and Richard Szeliski. Modeling the
world from internet photo collections. International journal of computer
vision, 80(2):189–210, 2008.

[16] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust
multiview stereopsis. IEEE transactions on pattern analysis and machine
intelligence, 32(8):1362–1376, 2009.

[17] Jean-Claude Latombe. Robot motion planning, volume 124. Springer
Science & Business Media, 2012.

[18] Pinghai Gao, Daibing Zhang, Qiang Fang, and Shaogang Jin. Obstacle
avoidance for micro quadrotor based on optical flow. In 2017 29th
Chinese Control And Decision Conference (CCDC), pages 4033–4037. IEEE,
2017.

[19] Kimberly McGuire, Guido De Croon, Christophe De Wagter, Karl
Tuyls, and Hilbert Kappen. Efficient optical flow and stereo vision for
velocity estimation and obstacle avoidance on an autonomous pocket
drone. IEEE Robotics and Automation Letters, 2(2):1070–1076, 2017.

[20] Pengyue Li, Xiangyang Hao, Junqiang Wang, Youyi Gu, and Gaojie
Wang. Uav obstacle detection algorithm based on improved orb sparse
optical flow. In 2019 IEEE 4th Advanced Information Technology, Electronic

References 141

and Automation Control Conference (IAEAC), volume 1, pages 562–569.
IEEE, 2019.

[21] Jie Ji, Amir Khajepour, Wael William Melek, and Yanjun Huang. Path
planning and tracking for vehicle collision avoidance based on model
predictive control with multiconstraints. IEEE Transactions on Vehicular
Technology, 66(2):952–964, 2016.

[22] Yuxiao Chen, Huei Peng, and Jessy W Grizzle. Fast trajectory planning
and robust trajectory tracking for pedestrian avoidance. Ieee Access,
5:9304–9317, 2017.

[23] Penghong Lin, Songlin Chen, and Chang Liu. Model predictive control-
based trajectory planning for quadrotors with state and input con-
straints. In 2016 16th International Conference on Control, Automation and
Systems (ICCAS), pages 1618–1623. IEEE, 2016.

[24] D. Kuan, J. Zamiska, and R. Brooks. Natural decomposition of free
space for path planning. In Proceedings. 1985 IEEE International Confer-
ence on Robotics and Automation, volume 2, pages 168–173, 1985.

[25] Rodney A. Brooks and Tomás Lozano-Pérez. A subdivision algorithm
in configuration space for findpath with rotation. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-15(2):224–233, 1985.

[26] Gene Eu Jan, Chi-Chia Sun, Wei Chun Tsai, and Ting-Hsiang Lin. An
O(n logn) shortest path algorithm based on delaunay triangulation.
IEEE/ASME Transactions on Mechatronics, 19(2):660–666, 2014.

[27] P.C. Chen and Y.K. Hwang. Sandros: a dynamic graph search algorithm
for motion planning. IEEE Transactions on Robotics and Automation,
14(3):390–403, 1998.

[28] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz,
and Sebastian Thrun. Anytime search in dynamic graphs. Artificial
Intelligence, 172(14):1613–1643, 2008.

[29] Mohamed Elbanhawi and Milan Simic. Sampling-based robot motion
planning: A review. IEEE Access, 2:56–77, 2014.

[30] Jian-ying Zhang, Zhi-ping Zhao, and Dun Liu. A path planning
method for mobile robot based on artificial potential field. Journal
of Harbin Institute of Technology, 38(8):1306–1309, 2006.

[31] Y. Koren and J. Borenstein. Potential field methods and their inherent
limitations for mobile robot navigation. In Proceedings. 1991 IEEE
International Conference on Robotics and Automation, pages 1398–1404
vol.2, 1991.

[32] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic
motion planning. Journal of the ACM (JACM), 40(5):1048–1066, 1993.

142 References

[33] Steven M LaValle. Planning algorithms. Cambridge university press,
2006.

[34] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic
planning. The international journal of robotics research, 20(5):378–400,
2001.

[35] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Real-time motion
planning for agile autonomous vehicles. Journal of guidance, control, and
dynamics, 25(1):116–129, 2002.

[36] Thomas M Howard and Alonzo Kelly. Optimal rough terrain trajectory
generation for wheeled mobile robots. The International Journal of
Robotics Research, 26(2):141–166, 2007.

[37] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for
optimal motion planning. The international journal of robotics research,
30(7):846–894, 2011.

[38] Kourosh Naderi, Joose Rajamäki, and Perttu Hämäläinen. Rt-rrt* a
real-time path planning algorithm based on rrt. In Proceedings of the 8th
ACM SIGGRAPH Conference on Motion in Games, pages 113–118, 2015.

[39] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the rrt. In 2011 IEEE
International Conference on Robotics and Automation, pages 1478–1483.
IEEE, 2011.

[40] Michal Čáp, Peter Novák, Jiří Vokřínek, and Michal Pěchouček. Multi-
agent rrt*: Sampling-based cooperative pathfinding. arXiv preprint
arXiv:1302.2828, 2013.

[41] Iram Noreen, Amna Khan, Zulfiqar Habib, et al. Optimal path plan-
ning using rrt* based approaches: a survey and future directions. Int.
J. Adv. Comput. Sci. Appl, 7(11):97–107, 2016.

[42] Oktay Arslan and Panagiotis Tsiotras. Use of relaxation methods in
sampling-based algorithms for optimal motion planning. In 2013 IEEE
International Conference on Robotics and Automation, pages 2421–2428.
IEEE, 2013.

[43] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio
Frazzoli, and Jonathan P How. Real-time motion planning with ap-
plications to autonomous urban driving. IEEE Transactions on control
systems technology, 17(5):1105–1118, 2009.

[44] Hsuan Chang and Tsai-Yen Li. Assembly maintainability study with
motion planning. volume 1, pages 1012–1019, 1995. cited By 96.

References 143

[45] Michael Girard and A. A. Maciejewski. Computational modeling for
the computer animation of legged figures. SIGGRAPH Comput. Graph.,
19(3):263–270, July 1985.

[46] Robert D. Howe and Yoky Matsuoka. Robotics for surgery. Annual
Review of Biomedical Engineering, 1(1):211–240, 1999. PMID: 11701488.

[47] J.-C. Latombe. Motion planning: A journey of robots, molecules, digital
actors, and other artifacts. International Journal of Robotics Research,
18(11):1119–1128, 1999. cited By 185.

[48] Herath MPC Jayaweera and Samer Hanoun. Uav path planning for
reconnaissance and look-ahead coverage support for mobile ground
vehicles. Sensors, 21(13):4595, 2021.

[49] Martin Johannes Schuster. Collaborative localization and mapping for
autonomous planetary exploration : Distributed stereo vision-based
6d slam in gnss-denied environments, 2019.

[50] Purushothaman Raja and Sivagurunathan Pugazhenthi. Optimal path
planning of mobile robots a review. International journal of physical
sciences, 7(9):1314–1320, 2012.

[51] Anantha Sai Hari Haran V Injarapu and Suresh Kumar Gawre. A
survey of autonomous mobile robot path planning approaches. In
2017 International conference on recent innovations in signal processing and
embedded systems (RISE), pages 624–628. IEEE, 2017.

[52] Priyadarshi Bhattacharya and Marina Gavrilova. Roadmap-based path
planning - using the voronoi diagram for a clearance-based shortest
path. Robotics Automation Magazine, IEEE, 15:58 – 66, 07 2008.

[53] Thomas M. Howard, Colin J. Green, and Alonzo Kelly. State Space
Sampling of Feasible Motions for High Performance Mobile Robot Navigation
in Highly Constrained Environments, pages 585–593. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[54] Mihail Pivtoraiko, Ross A. Knepper, and Alonzo Kelly. Differentially
constrained mobile robot motion planning in state lattices. Journal of
Field Robotics, 26(3):308–333, 2009.

[55] Mihail Pivtoraiko and Alonzo Kelly. Kinodynamic motion planning
with state lattice motion primitives. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2172–2179, 2011.

[56] Oussama Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. The International Journal of Robotics Research, 5(1):90–98,
1986.

144 References

[57] Howie M Choset, Kevin M Lynch, Seth Hutchinson, George Kantor,
Wolfram Burgard, Lydia Kavraki, Sebastian Thrun, and Ronald C
Arkin. Principles of robot motion: theory, algorithms, and implementation.
MIT press, 2005.

[58] W. Ji, F. Cheng, D. Zhao, Y. Tao, S. Ding, and J. Lü. Obstacle avoidance
method of apple harvesting robot manipulator. Nongye Jixie Xuebao/-
Transactions of the Chinese Society for Agricultural Machinery, 44:253–259,
11 2013.

[59] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential
field techniques for robot path planning. IEEE Transactions on Systems,
Man, and Cybernetics, 22(2):224–241, 1992.

[60] Pei-Yan Zhang, Tian-Sheng Lü, and Li-Bo Song. Soccer robot path
planning based on the artificial potential field approach with simulated
annealing. Robotica, 22:563–566, 09 2004.

[61] J.-Y Zhang, Z.-P Zhao, and D. Liu. Path planning method for mo-
bile robot based on artificial potential field. Harbin Gongye Daxue
Xuebao/Journal of Harbin Institute of Technology, 38:1306–1309, 08 2006.

[62] Qing Li, Lijun Wang, Bo Chen, Zhou Zhou, and Yixin Yin. An improved
artificial potential field method with parameters optimization based
on genetic algorithm. Journal of University of Science and Technology
Beijing (Chinese Edition), 2, 02 2012.

[63] L. Tun. Optimized path planning of mobile robot based on artificial
potential field. 2007.

[64] Min Cheol Lee and Min Gyu Park. Artificial potential field based path
planning for mobile robots using a virtual obstacle concept. In Proceed-
ings 2003 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM 2003), volume 2, pages 735–740 vol.2, 2003.

[65] Min Gyu Park and Min Cheol Lee. Real-time path planning in un-
known environment and a virtual hill concept to escape local minima.
In 30th Annual Conference of IEEE Industrial Electronics Society, 2004.
IECON 2004, volume 3, pages 2223–2228 Vol. 3, 2004.

[66] Jinseok Lee, Yunyoung Nam, Sangjin Hong, and Weduke Cho. New
potential functions with random force algorithms using potential field
method. Journal of Intelligent and Robotic Systems - JIRS, 66, 05 2012.

[67] Tao Zhang, Yi Zhu, and Jingyan Song. Real-time motion planning for
mobile robots by means of artificial potential field method in unknown
environment. Industrial Robot: An International Journal, 37(4):384–400,
Jan 2010.

References 145

[68] Anugrah K. Pamosoaji and Keum-Shik Hong. A path-planning al-
gorithm using vector potential functions in triangular regions. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 43(4):832–842,
2013.

[69] Ya-Chun Chang and Yoshio Yamamoto. Path planning of wheeled mo-
bile robot with simultaneous free space locating capability. Intelligent
Service Robotics, 2:9–22, 01 2009.

[70] Md Rahman and Md Azad. To escape local minimum problem for
multi-agent path planning using improved artificial potential field-
based regression search method. pages 371–376, 12 2017.

[71] Qinzhao Wang, Jinyong Cheng, and Xiaolong Li. Path planning of
robot based on improved artificial potentional field method. In Pro-
ceedings of the 2017 International Conference on Artificial Intelligence, Au-
tomation and Control Technologies, AIACT ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[72] Wang Siming, Zhao Tiantian, and Li Weijie. Mobile robot path planning
based on improved artificial potential field method. In 2018 IEEE
International Conference of Intelligent Robotic and Control Engineering
(IRCE), pages 29–33. IEEE, 2018.

[73] Giannis P Roussos, Dimos V Dimarogonas, and Kostas J Kyriakopou-
los. 3d navigation and collision avoidance for a non-holonomic vehicle.
In 2008 American Control Conference, pages 3512–3517. IEEE, 2008.

[74] Anantha Sai Hari Haran V Injarapu and Suresh Kumar Gawre. A
survey of autonomous mobile robot path planning approaches. In
2017 International Conference on Recent Innovations in Signal processing
and Embedded Systems (RISE), pages 624–628, 2017.

[75] David Ferguson, Maxim Likhachev, and Anthony (Tony) Stentz. A
guide to heuristic-based path planning, June 2005.

[76] František Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin
Florek, Tomáš Fico, and Ladislav Jurišica. Path planning with modified
a star algorithm for a mobile robot. Procedia Engineering, 96, 12 2014.

[77] E. Frazzoli, M.A. Dahleh, and E. Feron. Real-time motion planning for
agile autonomous vehicles. In Proceedings of the 2001 American Control
Conference. (Cat. No.01CH37148), volume 1, pages 43–49 vol.1, 2001.

[78] Ismail Altaharwa, Alaa Sheta, and Mohammed Alweshah. A mobile
robot path planning using genetic algorithm in static environment.
Journal of Computer Science, 4, 01 2008.

[79] Yang Wang, David Mulvaney, and Ian Sillitoe. Genetic-based mobile
robot path planning using vertex heuristics. In 2006 IEEE Conference on
Cybernetics and Intelligent Systems, pages 1–6, 2006.

146 References

[80] Chaymaa Lamini, Said Benhlima, and Ali Elbekri. Genetic algorithm
based approach for autonomous mobile robot path planning. Procedia
Computer Science, 127:180–189, 2018.

[81] Amin Zargar Nasrollahy and Hamid Haj Seyyed Javadi. Using particle
swarm optimization for robot path planning in dynamic environments
with moving obstacles and target. In 2009 Third UKSim European
Symposium on Computer Modeling and Simulation, pages 60–65. IEEE,
2009.

[82] Dun-wei Gong, Jianhua Zhang, and Yong Zhang. Multi-objective
particle swarm optimization for robot path planning in environment
with danger sources. J. Comput., 6(8):1554–1561, 2011.

[83] Zhang Qiaorong and Gu Guochang. Path planning based on improved
binary particle swarm optimization algorithm. In 2008 IEEE Conference
on Robotics, Automation and Mechatronics, pages 462–466. IEEE, 2008.

[84] Yong Zhang, Dun-wei Gong, Xiao-yan Sun, and Yi-nan Guo. A pso-
based multi-objective multi-label feature selection method in classifica-
tion. Scientific reports, 7(1):1–12, 2017.

[85] Hao Mei, Yantao Tian, and Linan Zu. A hybrid ant colony optimization
algorithm for path planning of robot in dynamic environment. Int J
Inform Technol, 12, 01 2006.

[86] Joon-Woo Lee, Jeong-Jung Kim, Byoung-Suk Choi, and Ju-Jang Lee.
Improved ant colony optimization algorithm by potential field con-
cept for optimal path planning. In Humanoids 2008 - 8th IEEE-RAS
International Conference on Humanoid Robots, pages 662–667, 2008.

[87] John H Reif. Complexity of the mover’s problem and generalizations.
In 20th Annual Symposium on Foundations of Computer Science (sfcs 1979),
pages 421–427. IEEE Computer Society, 1979.

[88] Jacob T Schwartz and Micha Sharir. On the “piano movers” problem.
ii. general techniques for computing topological properties of real
algebraic manifolds. Advances in Applied Mathematics, 4(3):298–351,
1983.

[89] George E Collins. Quantifier elimination for real closed fields by
cylindrical algebraic decompostion. In Automata theory and formal
languages, pages 134–183. Springer, 1975.

[90] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms
in Real Algebraic Geometry (Algorithms and Computation in Mathematics).
Springer-Verlag, Berlin, Heidelberg, 2006.

[91] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms
in Real Algebraic Geometry (Algorithms and Computation in Mathematics).
Springer-Verlag, Berlin, Heidelberg, 2006.

References 147

[92] John Canny. The complexity of robot motion planning. MIT press, 1988.

[93] John Canny. Constructing roadmaps of semi-algebraic sets i: Com-
pleteness. Artificial Intelligence, 37(1-3):203–222, 1988.

[94] John Canny. Computing roadmaps of general semi-algebraic sets. The
Computer Journal, 36(5):504–514, 1993.

[95] John F Canny and Ming C Lin. An opportunistic global path planner.
Algorithmica, 10(2):102–120, 1993.

[96] John Canny. Some algebraic and geometric computations in pspace.
In Proceedings of the twentieth annual ACM symposium on Theory of com-
puting, pages 460–467, 1988.

[97] Dan Halperin and Micha Sharir. A near-quadratic algorithm for plan-
ning the motion of a polygon in a polygonal environment. Discrete &
Computational Geometry, 16(2):121–134, 1996.

[98] Jacob T Schwartz and Micha Sharir. On the piano movers’ problem: V.
the case of a rod moving in three-dimensional space amidst polyhedral
obstacles. Communications on Pure and Applied Mathematics, 37(6):815–
848, 1984.

[99] Rodney A Brooks and Tomas Lozano-Perez. A subdivision algorithm
in configuration space for findpath with rotation. IEEE Transactions on
Systems, Man, and Cybernetics, (2):224–233, 1985.

[100] Rodney A Brooks. Solving the find-path problem by good representa-
tion of free space. IEEE Transactions on Systems, Man, and Cybernetics,
(2):190–197, 1983.

[101] Bruce R Donald. A search algorithm for motion planning with six
degrees of freedom. Artificial Intelligence, 31(3):295–353, 1987.

[102] Tomas Lozano-Perez. A simple motion-planning algorithm for general
robot manipulators. IEEE Journal on Robotics and Automation, 3(3):224–
238, 1987.

[103] K.K. Gupta and Zhenping Guo. Motion planning for many degrees
of freedom: sequential search with backtracking. IEEE Transactions on
Robotics and Automation, 11(6):897–906, 1995.

[104] Jérôme Barraquand and Jean-Claude Latombe. Robot motion planning:
A distributed representation approach. The International Journal of
Robotics Research, 10(6):628–649, 1991.

[105] Planning in a continuous space with forbidden regions: The ariadne”s
clew algorithm. Algorithmic Foundations of Robotics, 1995.

148 References

[106] Pang C Chen and Yong K Hwang. Sandros: A motion planner with
performance proportional to task difficulty. 9 1991.

[107] B. Glavina. Solving findpath by combination of goal-directed and
randomized search. In Proceedings., IEEE International Conference on
Robotics and Automation, pages 1718–1723 vol.3, 1990.

[108] L.E. Kavraki. Part orientation with programmable vector fields: two
stable equilibria for most parts. In Proceedings of International Conference
on Robotics and Automation, volume 3, pages 2446–2451 vol.3, 1997.

[109] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580,
1996.

[110] K. Kondo. Motion planning with six degrees of freedom by multistrate-
gic bidirectional heuristic free-space enumeration. IEEE Transactions
on Robotics and Automation, 7(3):267–277, 1991.

[111] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for
path planning. Technical report, 1998.

[112] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based
algorithms for optimal motion planning. Robotics Science and Systems
VI, 104(2), 2010.

[113] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
Probabilistic roadmaps for path planning in high-dimensional configu-
ration spaces. IEEE transactions on Robotics and Automation, 12(4):566–
580, 1996.

[114] Lydia E. Kavraki. Random Networks in Configuration Space for Fast
Path Planning. PhD thesis, Stanford, CA, USA, 1995. UMI Order No.
GAX95-16854.

[115] Mark H Overmars and Petr Svestka. A probablisitic learning approach to
motion planning, volume 1994. Unknown Publisher, 1994.

[116] Lydia E. Kavraki, Jean-Claude Latombe, Rajeev Motwani, and Prab-
hakar Raghavan. Randomized query processing in robot path planning.
Journal of Computer and System Sciences, 57(1):50–60, 1998.

[117] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to
single-query path planning. In Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), volume 2, pages 995–1001
vol.2, 2000.

References 149

[118] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. In
Proceedings 1999 IEEE International Conference on Robotics and Automation
(Cat. No.99CH36288C), volume 1, pages 473–479 vol.1, 1999.

[119] Steven M LaValle and JJ Kuffner. Rapidly-exploring random trees:
Progress and prospects: Steven m. lavalle, iowa state university, a
james j. kuffner, jr., university of tokyo, tokyo, japan. In Algorithmic and
Computational Robotics, pages 303–307. AK Peters/CRC Press, 2001.

[120] Dave Ferguson and Anthony Stentz. Anytime rrts. pages 5369 – 5375,
11 2006.

[121] Florent Lamiraux, Etienne Ferré, and Erwan Vallée. Kinodynamic
motion planning: Connecting exploration trees using trajectory op-
timization methods. In IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004, volume 4, pages 3987–
3992. IEEE, 2004.

[122] Chris Urmson and Reid Simmons. Approaches for heuristically biasing
rrt growth. In Proceedings 2003 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), volume 2,
pages 1178–1183. IEEE, 2003.

[123] Léonard Jaillet, Judy Hoffman, Jur van den Berg, Pieter Abbeel,
Josep M. Porta, and Ken Goldberg. Eg-rrt: Environment-guided ran-
dom trees for kinodynamic motion planning with uncertainty and
obstacles. In 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2646–2652, 2011.

[124] M. Kalisiak and M. Panne. Rrt-blossom: Rrt with a local flood-fill
behavior. pages 1237 – 1242, 06 2006.

[125] R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock. Kinodynamic mo-
tion planning amidst moving obstacles. In Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics and Au-
tomation. Symposia Proceedings (Cat. No.00CH37065), volume 1, pages
537–543 vol.1, 2000.

[126] F. Lamiraux and J.P. Laumond. On the expected complexity of random
path planning. In Proceedings of IEEE International Conference on Robotics
and Automation, volume 4, pages 3014–3019 vol.4, 1996.

[127] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock.
Randomized kinodynamic motion planning with moving obstacles.
The International Journal of Robotics Research, 21(3):233–255, 2002.

[128] L.E. Kavraki, M.N. Kolountzakis, and J.-C. Latombe. Analysis of proba-
bilistic roadmaps for path planning. In Proceedings of IEEE International
Conference on Robotics and Automation, volume 4, pages 3020–3025 vol.4,
1996.

150 References

[129] L.E. Kavraki, M.N. Kolountzakis, and J.-C. Latombe. Analysis of
probabilistic roadmaps for path planning. IEEE Transactions on Robotics
and Automation, 14(1):166–171, 1998.

[130] Lydia E. Kavraki, Jean-Claude Latombe, Rajeev Motwani, and Prab-
hakar Raghavan. Randomized query processing in robot path planning.
In Proceedings of the Twenty-Seventh Annual ACM Symposium on The-
ory of Computing, STOC ’95, page 353–362, New York, NY, USA, 1995.
Association for Computing Machinery.

[131] A.M. Ladd and L.E. Kavraki. Measure theoretic analysis of probabilistic
path planning. IEEE Transactions on Robotics and Automation, 20(2):229–
242, 2004.

[132] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, September 1975.

[133] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman,
and Angela Y Wu. An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. Journal of the ACM (JACM),
45(6):891–923, 1998.

[134] Cong Fu and Deng Cai. Efanna : An extremely fast approximate
nearest neighbor search algorithm based on knn graph, 2016.

[135] Thomas A Witten Jr and Leonard M Sander. Diffusion-limited aggrega-
tion, a kinetic critical phenomenon. Physical review letters, 47(19):1400,
1981.

[136] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion
planning using incremental sampling-based methods. In 49th IEEE
conference on decision and control (CDC), pages 7681–7687. IEEE, 2010.

[137] Sertac Karaman and Emilio Frazzoli. Sampling-based motion planning
with deterministic µ-calculus specifications. In Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, pages 2222–2229. IEEE, 2009.

[138] Oktay Arslan and Panagiotis Tsiotras. The role of vertex consistency
in sampling-based algorithms for optimal motion planning. 04 2012.

[139] Martin Swaczyna. Several examples of nonholonomic mechanical
systems. Communications in Mathematics, 19(1):27–56, 2011.

[140] Sertac Karaman and Emilio Frazzoli. Sampling-based optimal motion
planning for non-holonomic dynamical systems. In 2013 IEEE Inter-
national Conference on Robotics and Automation, pages 5041–5047. IEEE,
2013.

[141] A. Sanchez, J. Arenas, and R. Zapata. Nonholonomic motion planning
for car-like robots. 2002.

References 151

[142] Petr Švestka and Markus Hendrik Overmars. Probabilistic path plan-
ning. In Robot motion planning and control, pages 255–304. Springer,
1998.

[143] Boris Lau, Christoph Sprunk, and Wolfram Burgard. Kinodynamic
motion planning for mobile robots using splines. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2427–
2433. IEEE, 2009.

[144] Ahmad A Masoud. Kinodynamic motion planning. IEEE Robotics &
Automation Magazine, 17(1):85–99, 2010.

[145] Linjun Li, Yinglong Miao, Ahmed H Qureshi, and Michael C Yip.
Mpc-mpnet: Model-predictive motion planning networks for fast,
near-optimal planning under kinodynamic constraints. arXiv preprint
arXiv:2101.06798, 2021.

[146] Hamidreza Chitsaz and Steven M LaValle. Time-optimal paths for a
dubins airplane. In 2007 46th IEEE conference on decision and control,
pages 2379–2384. IEEE, 2007.

[147] Lester E Dubins. On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents. American Journal of mathematics, 79(3):497–516, 1957.

[148] M. A. Boon, A. P. Drijfhout, and S. Tesfamichael. COMPARISON OF
A FIXED-WING AND MULTI-ROTOR UAV FOR ENVIRONMEN-
TAL MAPPING APPLICATIONS: A CASE STUDY. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLII-2/W6:47–54, August 2017.

[149] Jinho Kim, S. Andrew Gadsden, and Stephen A. Wilkerson. A com-
prehensive survey of control strategies for autonomous quadrotors.
Canadian Journal of Electrical and Computer Engineering, 43(1):3–16, 2020.

[150] Mina Kamel, Thomas Stastny, Kostas Alexis, and Roland Siegwart.
Model predictive control for trajectory tracking of unmanned aerial
vehicles using robot operating system. In Robot operating system (ROS),
pages 3–39. Springer, 2017.

[151] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[152] Alejandro Perez, Robert Platt, George Konidaris, Leslie Kaelbling,
and Tomas Lozano-Perez. Lqr-rrt*: Optimal sampling-based motion
planning with automatically derived extension heuristics. In 2012 IEEE
International Conference on Robotics and Automation, pages 2537–2542.
IEEE, 2012.

152 References

[153] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control.
Springer science & business media, 2013.

[154] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive
control for linear and hybrid systems. Cambridge University Press, 2017.

[155] Timothy McLain, Randall W Beard, and Mark Owen. Implementing
dubins airplane paths on fixed-wing uavs. 2014.

[156] Karl D Hansen and Anders la Cour-Harbo. Waypoint planning with
dubins curves using genetic algorithms. In 2016 European Control
Conference (ECC), pages 2240–2246. IEEE, 2016.

[157] Jacob Mattingley and Stephen Boyd. Cvxgen: A code generator for
embedded convex optimization. Optimization and Engineering, 13(1):1–
27, 2012.

[158] Michael Grant and Stephen Boyd. Cvx: Matlab software for disciplined
convex programming, version 2.1, 2014.

[159] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5, 2009.

[160] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine, 19(4):72–82,
December 2012. http://ompl.kavrakilab.org.

[161] Nathan P Koenig and Andrew Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In IROS, volume 4,
pages 2149–2154. Citeseer, 2004.

[162] SITL contributors. SITL guide. http://ardupilot.org/dev/docs/
sitl-simulator-software-in-the-loop.html, 2020.

[163] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. Px4: A node-
based multithreaded open source robotics framework for deeply em-
bedded platforms. In 2015 IEEE international conference on robotics and
automation (ICRA), pages 6235–6240. IEEE, 2015.

http://ompl.kavrakilab.org
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html

	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Trends in Robotics
	1.2 Autonomous Navigation
	1.2.1 Perception and Localization
	1.2.2 Motion Planning and Control

	1.3 Objective
	1.4 Outline

	I Perception
	2 3D Environment Modelling
	2.1 Introduction to Visual Perception
	2.2 UAS Vision System for 3D Environment Modelling

	3 Visual Perception for Mobile Robots
	3.1 Visual Perception Design Process
	3.1.1 Operational parameters’ configuration

	3.2 Use of Additional Data Sets
	3.2.1 Quality Indicators
	3.2.2 Results and Discussion
	3.2.3 Conclusion

	3.3 Industrial Visual Perception
	3.3.1 Industrial Visual Perception Solution
	3.3.2 Calibration
	3.3.3 Robot Interaction
	3.3.4 Robustness Evaluation
	3.3.5 Feeder Control
	3.3.6 Remarks

	II Motion Planning
	4 Motion Planning State-of-Art
	4.1 Background
	4.2 Methods for Motion Planning
	4.2.1 Roadmaps
	4.2.2 Heuristic Methods
	4.2.3 Evolution Methods
	4.2.4 Sampling-Based Methods

	4.3 RRT-based Algorithms
	4.3.1 Problem Formulation
	4.3.2 Basic RRT Algorithm
	4.3.3 RRT* Algorithm
	4.3.4 RRT# Algorithm

	4.4 Motion Planning Constraints

	5 The MP-RRT# Algorithm
	5.1 Problem Definition
	5.1.1 UAS Model
	5.1.2 UAS Model Lineraization and Discretization
	5.1.3 Problem Statement

	5.2 The MP-RRT# strategy
	5.2.1 Model Predictive Control

	5.3 Technological Tools
	5.3.1 OMPL

	6 Experiment and Results
	6.1 Experiment
	6.1.1 MPC Optimization Object

	6.2 Results
	6.2.1 Implementation
	6.2.2 Simulation results

	7 Discussion and Conclusion
	7.1 Conclusions
	7.1.1 Perception
	7.1.2 Motion Planning

	References

