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Abstract

The widespread adoption of advanced metering infrastructures based on Internet of
Things (IoT) could enable the development of Energy Management and Information
Systems (EMIS) capable to leverage useful knowledge extracted from building re-
lated data. This dissertation focuses on a specific category of EMIS technologies
called Automatic System Optimization (ASO). The purpose of ASO tools is to
actively manage the control strategies responsible for the operations of building
energy systems with the aim of enhancing energy usage. Among building sub-
systems, Heating Ventilation and Air Conditioning (HVAC) systems are rated among
the most energy-intensive end-uses. The non-linear and stochastic nature of these
systems makes the definition of robust and effective control strategies particularly
challenging. In the current paradigm of smart buildings, building managers and
owners can leverage ASO tools to automatically optimize the performance of their
systems. However, the management of HVAC systems is mainly based on classical
approaches characterized by different drawbacks including a reactive approach, lack
of an optimization process and impossibility to handle multiple objectives at the same
time. To overcome these limitations the application of advanced control strategies
based on predictive and adaptive approaches represents a promising direction. In
this dissertation four different applications of deep reinforcement learning based
control strategies were conceived and tested. Deep Reinforcement Learning (DRL)
is a model-free approach in which a control agent leveraging deep neural networks
directly learns an optimal policy from interacting with the controlled environment.
The developed applications were carried out in a co-simulation environment combin-
ing Python and EnergyPlus specifically developed in the context of this dissertation.
Each application was designed to address different challenges and questions related
to the application of DRL controllers to HVAC systems. In the first application, DRL
is implemented to control the supply water temperature setpoint to terminal units
of a heating system. The performance of the agent is evaluated against a reference
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controller that implements a combination of rule-based and climatic-based logics.
As a result, when the set of variables are adequately selected a heating energy saving
ranging between 5% and 12% is obtained with an enhanced indoor temperature
control with both static and dynamic deployment. In the second application a DRL
agent was trained employing a data-driven model of the building dynamics. The
trained agent was statically deployed on a calibrated Eplus model of the building
to evaluate its performance. The agent was conceived to control the supply water
temperature setpoint of the heating system of an office building achieving a reduction
in the energy consumption of 18% while improving indoor temperature control of
5% with respect to a baseline rule-based controller. In the third application, was
investigated the potentialities of DRL strategies for the management of integrated
energy systems in buildings with on-site electricity generation and storage technolo-
gies. The controller is tested considering various configurations of battery energy
storage system capacities, and thermal energy storage sizes. Results show that the
proposed control strategy leads to a reduction of operational energy costs respect to a
rule-based controller ranging from 39.5% and 84.3% among different configurations.
The last application introduces a comparison between an online and offline DRL
with a Model Predictive Control (MPC) architecture for energy management of a
cold-water buffer tank linking an office building and a chiller subject to time-varying
energy prices, with the objective of minimizing operating costs. Simulation re-
sults showed that the online-trained DRL agent, while requiring an initial 4 weeks
adjustment period achieving a relatively poor performance (160% higher cost), it
converged to a control policy almost as effective as the model-based strategies (3.6%
higher cost in the last month). Findings and outcomes of the present research study
are discussed providing a robust reasoning about the application of DRL control
strategies to HVAC systems. Eventually, a wide overview on the lessons learned
throughout this research study is proposed to outline the future opportunities and
barriers to the adoption of advanced control strategies in the energy and building
sector.
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Chapter 1

Introduction

Building sector accounts for more than 40% of global energy consumption, playing
a pivotal role in the energy transition and global warming mitigation processes
[1]. Thanks to the complicity of incentive programs (such as "20-20-20") [2], the
progressive introduction of renewable energy sources and storage technologies to
support the effort for decarbonisation raised several challenges for the definition of
cost-effective energy management strategies in buildings.

In this context, the widespread adoption of Advanced Metering Infrastructures
(AMI) based on Internet of Things (IoT) and Information Communication Technolo-
gies (ICT) could enable the development of Energy Management and Information
Systems (EMIS) [3] capable to leverage useful knowledge extracted from building
related data [4]. EMIS can be categorized into three main families: Energy Informa-
tion Systems (EIS), Fault Detection and Diagnosis (FDD) systems and Automatic
System Optimization (ASO) tools. EIS and FDD systems operate passively, em-
ploying data-driven and Artificial Intelligence (AI) techniques to provide actionable
insights to the end users, highlighting anomalous energy behaviours and alerting
about their potential causes [5]. The effectiveness of these tools strongly depends on
the engagement and responsiveness of the users to rapidly act once information are
delivered. On the other hand, ASO tools are designed to directly act on the control
strategies responsible for the management of building energy systems, automatically
enhancing their performance during operation.

Among building sub-systems, Heating Ventilation and Air Conditioning (HVAC)
systems are rated among the most energy-intensive end-uses. In non-residential facil-
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ities they account for more than an half of the energy demand of the whole building.
The non-linear and stochastic nature of HVAC systems makes the definition of robust
and effective control strategies particularly challenging. The main purpose of an
HVAC system is to guarantee adequate levels of micro-climate conditions within
a building. An advanced control strategy should seek to meet indoor environment
requirements while maximizing, at the same time, different and often contrasting
objectives such as the reduction of energy consumption and the minimization of
energy-related costs. Moreover, the interaction of the building occupant and the influ-
ence of electrical grid requirements by means of Demand Response (DR) programs
furtherly increase the complexity of the whole system.

In this perspective, the energy flexibility of building and HVAC systems has been
recognized as a key resource to be exploited [6]. The flexibility has been defined as
the ability to manage a building according to grid requirements, climate conditions
and occupant needs [6, 7]. Advanced control strategies for HVAC systems should
be capable to leverage building features (i.e. thermal mass) and equipment (i.e.
renewable energy sources and storage solutions) to enhance the flexibility potential
during operation while dynamically adapting to evolving conditions of external
forcing variables (i.e. weather and electricity prices). Eventually, modern controls
should be capable to take into account human feedback in their control logic [8].

Figure 1.1 shows the hierarchical structure of control strategies for HVAC sys-
tems. The first layer includes monitoring infrastructure which allows the collection
of:

• External disturbances: comprise weather variables like air temperature, solar
radiation, humidity and wind speed. Moreover, external disturbances may
include external factors such as energy prices which strongly affect system
performance.

• Indoor variables: comprise all the variables related to the quality of indoor en-
vironment such as temperature, humidity and pollutant concentrations. More-
over, indoor variables include information about occupant presence, behavior
and, eventually, occupant feed-backs.

• Plant variables: comprise variables monitored on the different components
of HVAC systems including temperatures, flow rates, pressures and energy
consumption. Plant variables like energy consumption or power demand can
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be collected at different levels of aggregation (i.e. component, system or whole
building level).

The information collected by the monitoring infrastructure are forwarded to the
different layers in order to enable the decision and automation process.

Fig. 1.1 Hierarchical structure of HVAC control.

The first layer placed at the bottom of the hierarchical structure is the local
control layer. The aim of local controllers is to manage the positioning of low-level
actuators responsible for the correct operation of the HVAC system. [9]. Examples
of local controllers are the strategies employed to adjust fan or pump speeds and
damper or valve positions to ensure that the heat carrier fluid (water or air) meet a
desired set-point. Above local control layer is placed the supervisory control layer.
The objective of supervisory controllers is to perform optimal management strategies
fulfilling predefined goals defined at system or whole building level. Supervisory
control can be performed at medium or high level and commonly involves the
definition of operational set-points successively employed as a reference by low
level controllers. Medium level strategies refers to supervisory controllers regulating
set-points on component or system level. Typical implementations of medium level
controllers are employed to manage settings of supply water/air temperatures and
mass/volume flow rates. On the other hand, high level strategies are employed to
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manage set-points (i.e. temperature and humidity) directly at zone or building level
[8]. A substantial difference between local and supervisory controllers is the number
on input on which these solutions base their decisions. While local controllers usually
observe one input relative to a specific subsystem or process, supervisory controllers
integrates a more comprehensive view of the HVAC system collecting information
from multiple processes or subsystems. The final layer of the hierarchical structure
of HVAC control showed in 1.1 is building energy management performed by an
human operator (i.e. energy managers, energy service companies and building
professionals). Building operators can design and tune local and supervisory control
strategies based on their expertise and information opportunely gathered through the
monitoring infrastructure.

Local controllers represent the first and essential layer of HVAC control systems.
As a consequence, many efforts have been made in the previous years to develop
cost-effective solutions for local control [10, 11], which have rapidly become the
standard at industry level. On the other hand, the design of supervisory control
strategies is a complex and time consuming task which is commonly performed
directly by human operators based on domain expertise. This process often results in
the implementation of standard and static rules systems based on typical schedules
or operating patterns, without the support of technologies that could enable an
automated, dynamic and optimized processing of this task.

In recent years, the development of advanced controllers based on forecasting and
online analytics was supported by the recent advancements in Artificial Intelligence
(AI), algorithm design and cloud computing technologies. However, the implementa-
tion of advanced control strategies for HVAC systems is still limited due to a distrust
of building professionals and industry which prefer to stick with the application of
more traditional solutions [12]. This is mainly due to the lack of guidelines and case
studies which are capable to prove the effectiveness of advanced control strategies
and to provide clear frameworks for their cost-effective implementation.

This dissertation aims at analyzing the potential benefits provided by the imple-
mentation of advanced control strategies to enhance the energy flexibility in HVAC
systems. The main objective is to identify promising directions and potential barriers
for the applicability in real-world context of these techniques. In particular, the
developed controllers were mainly applied to a supervisory level. This choice was
motivated considering different aspects. As previously introduced, supervisory con-
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trol base their actions on multiple and heterogeneous inputs collected from different
sources. As consequence, the adoption of AI-based algorithms capable to automati-
cally process complex data can results in a consistent increase of the performance
which could compensate the greater implementation effort and cost. Furthermore, the
complexity and the potential failures brought by the adoption of advanced techniques
can be handled more effectively in the supervisory layer through the implementation
of safety constrains ensuring the operation of low level controllers.

1.1 Motivations of the research

In the current paradigm of smart buildings, building managers and owners can lever-
age ASO tools to automatically optimize the performance of their systems. However,
the management of HVAC systems is mainly based on classical approaches such as
Rule-Based Control (RBC) and Proportional-Integrative-Derivative (PID) control
applied to both local and supervisory level. The main drawbacks of these strategies
lie in their reactive approach, lack of an optimization process and impossibility to
handle multiple objectives at the same time [12, 13]. These controllers are reactive
since they act only on past observations of a controlled variable, adjusting the con-
trol signal to track a pre-defined set-point. Generally, the settings and parameters
characterizing reactive controllers are not the result of an optimization process. As a
consequence, the implemented control policy may achieve sub-optimal actions in
the whole system perspective. Eventually, PID and RBC approaches usually do not
comprises methods and processes to automatically adapt to evolving conditions of
the forcing variables or to modifications in the controlled environment. Therefore,
the performance of these controllers are strongly affected by the initial tuning condi-
tions [14]. Moreover, the manual tuning of PID and RBC strategies based on domain
expertise may be a laborious and cost-intensive task [6].

To overcome these limitations the application of advanced control strategies based
on predictive and adaptive approaches has become an interesting topic to be explored
by the current scientific literature. In the last few years, different classifications of
HVAC control strategies have been published in numerous papers and textbooks
[12, 13, 15, 16]. The two main typologies of advanced control approaches for HVAC
systems can be identified as model-based and model-free methods which can be
described as follow:
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Model-based methods: the main components of model-based control systems
are a model of the controlled environment and an optimizer as shown in Figure 1.2.
The model of the system is employed along with forecast of external disturbances
to predict the future evolution of the system given a certain control policy. The
optimizer identifies the optimal policy given a certain objective function [17].

Fig. 1.2 Flowchart of a model-based control agent.

Model-free methods: model-free control methods do not require a model of
the controlled environment as illustrated in Figure 1.3. Instead, they directly learns
a near-optimal control policy directly interacting with the target system through a
trial-and-error process [8] based on experience.

Fig. 1.3 Flowchart of a model-free control agent.

This classification may be not too general since the boundaries between the two
approaches to advanced control are not perfectly clear. However, this classification
can provide an helpful basis for identifying the advantages and disadvantages of
the different frameworks. Different control strategies can be classified as hybrid
methods employing a combination of model-based and model-free methods to
achieve an optimal control policy. For example, adaptive controllers estimating
unknown parameters in real time through a parameter estimator, which provides to
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the controller the capability to adapt to time-varying disturbances and to account for
uncertainty [18, 19].

Among model-based control methods, Model Predictive Control (MPC) aims at
facing the main challenges of HVAC system control such as non-linear and time-
varying dynamics and disturbances through an optimisation process performed over
a receding time horizon [17, 20]. However, the complexity of the model chosen
affects the type of optimization method that has to be employed to formulate the
MPC controller, as well as the required computational time. Moreover, one major
drawback of Model Predictive Control implementations is the labour intensive
process necessary to build the model of the controlled system. This is particularly
relevant for HVAC systems, since each building is a quite unique entity, the required
control-oriented modelling of their envelope and energy systems is challenging,
as the model built for one would most likely not fit another one directly. As a
consequence, despite its robustness and advantages, MPC is still not widely adopted
in the building industry [21].

Model-free control methods aims at overcoming the intrinsic limitations of
model-based approaches. Reinforcement Learning (RL) is an interesting technique
belonging to this family which popularity have rapidly grown in the last few years
among HVAC control researchers. The RL framework is a branch of machine
learning in which a control agent directly learns an optimal (or near-optimal) policy
from its interactions with the environment through a delayed reward mechanism
without any prior knowledge of the environment [22]. The growing interest in this
technique was also supported by the evolution in the sector of artificial intelligence
which offers a multitude of effective algorithms capable to automatically extract
complex patterns from monitored data. In particular, a specific family of algorithms
identified as Deep Reinforcement Learning (DRL), which employ Deep Neural
Networks (DNN) as function approximators of the control policy, has been recently
developed and applied to solve extremely complex control problems with nearly-
human performances [23].

The ability to automatically improve system operations by considering multiple
objectives and autonomously adapting to mutable conditions, while requiring min-
imal human intervention, is an highly desirable feature for HVAC controllers. In
their formulations, reinforcement and deep reinforcement learning frameworks stand
among the best candidates to fulfill these requirements. However, the exploration of
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these control approaches is still in its infancy and effectiveness and limitations in
energy and buildings applications need to be further explored.

Due to these challenging opportunities, advanced control strategies for HVAC
systems based on model-free methods and, in particularly, reinforcement learning
frameworks are investigated throughout this research study.

1.2 Research Outline

In order to demonstrate the capabilities of model-free frameworks applied to HVAC
system control different case studies were investigated. As a preliminary step,
an innovative co-simulation environment combining Pyhton and EnergyPlus was
developed. This environment allows the user to simulate the effect on the building
system of any controller (e.g. RBC, MPC, RL) without being limited by EnergyPlus
capabilities. This environment was employed to deeply investigate the application of
DRL-based control strategies to HVAC systems. Figure 1.4 shows the flowchart of a
reinforcement learning control agent highlighting, in the side-panels, the different
aspects investigated through this dissertation.

Fig. 1.4 Outline of the aspects investigated in the developed applications with reference to
the reinforcement learning framework.

In the left panel the figure show the different features related to the controlled
environment that were investigated in this dissertation. As reported, both physics-
based and data-driven models of the controlled environment were tested. Moreover,
different levels of complexity (ranging from a simple heating system to an integrated
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energy system) were included in the investigation process. In the top-left panel
the figure reports the control objectives (i.e. reward) considered in the developed
applications. These objectives include optimization of indoor air temperature control,
energy minimization and cost minimization. The top-right panel shows the analyzed
features regarding the design of control inputs (i.e. state). A variable engineering
process was designed and implemented to enhance adaptability properties of DRL
controllers. This approach was tested against traditional frameworks in which
variables are provided to DRL agents without performing pre-processing in advance.
Eventually, the right panel lists the aspects related to the training, deployment
and benchmark processes of DRL control agents that were analyzed through this
dissertation.

These aspects were investigated through four main applications in which an DRL
controller was conceived and tested. In particular, the developed case studies dealt
with the following tasks related to the application of the reinforcement learning
framework to HVAC system control:

• Optimization of indoor temperature control and energy consumption in
heating systems. Water based heating system powered by gas fired boilers is
a common configuration in the Italian building stock. This control problem
is relatively simple as the only two features of the building that could be
exploited for optimization purposes are the building thermal mass and the tem-
perature acceptability range. Different sets of input variables (i.e. traditional
and variable-engineering) along with different and deployment scenarios and
methods (i.e. static and dynamic) were investigated and discussed to analyze
the adaptability capabilities of the DRL controller. The development of this
DRL controller is discussed in section 4.1.

• Effective pretraining a of DRL agent by means of data-driven models to
control HVAC systems in buildings. DRL agents have to perform several
interactions with the controlled environment before converging to the optimal
control policy. In this context, it is common practice to pre-train a DRL agent
offline in simulation environments based on engineering models of the real
building. Nonetheless, the development of physics-based models requires a
considerable effort beside an extensive domain expertise. Pre-training a DRL
agent on a data-driven model of the building can overcome this issues. This
training strategy is discussed in section 4.2.
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• Optimization of the management of integrated energy systems in buildings
with Deep Reinforcement Learning. The management of integrated energy
systems in buildings is a challenging task that classical control approaches
usually fail to address. In this context, DRL can achieve reduction of energy
cost through a comprehensive view of the whole integrated energy system.
The development of this controller is discussed in section 4.3.

• Comparison of DRL with MPC for thermal energy management. Although
the scientific literature is particularly prolific with respect to applications of RL
and DRL control techniques to HVAC system, the benefits brought by these
solution are frequently presented with respect to traditional control techniques.
In this dissertation a robust comparison between reinforcement learning and
MPC controller was conceived and discussed in section 5.1 with the aim of
analyzing strengths and weaknesses of the two approaches.

All the developed applications leveraged deep reinforcement learning frameworks
based for the effective implementation of advanced control strategies in HVAC
systems to analyze and discuss their effective adoption in the energy and building
field.

To this purpose, the developed methodological frameworks were conceived
following the perspective of an energy and building engineer providing more effort
on the definition of the control problem and objectives rather than algorithmic
features. In this way the result of the analysis can be translated into useful guidelines
and case studies for future researchers and building professional aiming at increasing
the performance of their system through the adoption of advanced control strategies.

1.3 Objectives of the thesis and novelty

As introduced in the previous sections reinforcement learning is a branch of machine
learning which have proved to be very effective in solving various control problems.
It owns interesting features, such as adaptability potential and self-learning properties
implying minimal human intervention, making it suitable as advanced controller for
HVAC systems. However, it presents some major drawbacks which are emphasized
by the intrinsic slowness of the building dynamics. In particular, reinforcement
learning algorithms require a considerable amount of time before converging to near
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optimal solutions. These aspect make their deployment in real buildings extremely
challenging. In this sense, the combination between building physics expertise and
artificial intelligence can support the development of more cost-effective and robust
DRL-based solutions. In this perspective the main objectives of the thesis can be
summarized as follows:

• Demonstrate the necessity of evolving from traditional, reactive control ap-
proaches leveraging the opportunity provided by advanced control strategies
based on predictive and adaptive paradigms. Beside introducing the benefits of
advanced control strategies, this process aims to highlight the features of case
studies and control problems for which the application of these techniques is
more advantageous.

• Demonstrate the fundamental role of building physics expertise. Domain
knowledge is a crucial aspect to consider for the definition of the control
problem, the identification of the control objectives and the selection of the
variables involved in the decision making process.

• Critically analyze the different development steps defining a reinforcement
learning agent for HVAC system control. These steps comprise the correct
tuning of hyper-parameters, the design of training strategies and the effective
deployment of the controller.

• Address the need of defining proper benchmarks. Producing robust compar-
isons between model-free and model-based control strategies highlighting
their relatives strengths and weaknesses in order to guide future researchers
and practitioners to the approach best suited to their needs.

• Rationalize and discuss the concept and the meanings behind the model-free
nature of reinforcement learning frameworks applied to HVAC systems control.

The main objective of this research study is to demonstrate the effectiveness
of advanced model-free strategies applied to HVAC systems control. To this aim,
different case studies were conceived and the performance of the proposed controllers
were properly benchmarked against both traditional solutions and among each other.
The novelty of this research work is not related to the development of novel control
algorithms which are all taken from existing scientific literature, but it is associated
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on how these approaches can be effectively implemented in HVAC systems from
the perspective of energy engineers. In all the applications presented the domain
expertise has been used as a reference to derive innovative approaches in the selection,
design and implementation of advanced control strategies.

1.4 Organization of the thesis

The whole dissertation is divided into 6 chapters organized as shown in Figure 1.5.
The main content of each chapter is summarized as follows.

Fig. 1.5 Conceptual organization of the thesis.

Chapter 1 presents the motivation, the outline and the organization of the thesis.

Chapter 2 presents the literature review. The chapter is organized into two main
sections. The section 2.1 introduces the reinforcement learning framework describing
the main algorithms and approaches employed in this work. The section 2.2 reviews
the applications of reinforcement learning control to HVAC systems.

Chapter 3 presents the architecture of the co-simulation environment developed in
the context of this dissertation and employed to carry out the presented experiments.
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Chapter 4 presents the developed applications of DRL control in HVAC sys-
tems. In particular section 4.1 presents and discusses the development of a DRL
agent for controlling the heating system of an office building. Section 4.2 presents
and discusses the applicability of data-driven models to pre-train a DRL control
agent. Section 4.3 presents and discusses the application of DRL control to manage
integrated energy systems in buildings.

Chapter 5 presents and discusses an application where DRL was tested and
benchmarked against MPC.

Eventually Chapter 6 summarizes the work presented in this dissertation and
gives an overview about opportunities and future research directions of reinforcement
learning applied to HVAC system control.



Chapter 2

Literature Review

The scope of the present chapter is to investigate the findings achieved so far in the
scientific literature about the use of reinforcement learning frameworks and their
application to HVAC systems control. This chapter provides an extensive overview
on reinforcement learning and deep reinforcement learning approaches applied in
the context of building energy management. The chapter is organized in two main
sections. On one hand, section 2.1 presents and discusses the main concepts behind
reinforcement learning algorithms employed in this work. On the other hand, section
2.2 reviews all the applications of reinforcement learning for HVAC system control.

Portions of the present Chapter were already published in the following scientific
papers:

• Brandi S., Piscitelli M.S., Martellacci M., Capozzoli A. 2020. Deep rein-
forcement learning to optimise indoor temperature control and heating energy
consumption in buildings. Energy and Buildings 224, 110225. [24]

• Coraci D., Brandi S., Piscitelli M.S., Capozzoli A. 2021. Online Implementa-
tion of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and
Energy Efficiency in Buildings. Energies 14, 997. [25]

• Brandi S., Gallo A., Capozzoli A. 2022. A predictive and adaptive control
strategy to optimize the management of integrated energy systems in buildings.
Energy Reports 8, pp: 1550-1567. [26]
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• Brandi S., Fiorentini M., Capozzoli A. 2022. Comparison of online and offline
deep reinforcement learning with model predictive control for thermal energy
management. Automation in Construction 135, 104128. [27]
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2.1 Reinforcement Learning: Concept and Formula-
tion

Reinforcement Learning (RL) is a branch of machine learning conceived to solve
control and sequential decision making processes. RL can be mathematically for-
malized as a Markov Decision Process (MDP) characterized by a 4-values tuple
including [22]:

• State (S): The state is a mathematical representation of the controlled environ-
ment which includes the set of features (defined as observation) that a control
agent receives in order to determine a control action. If the observation is
a subset of the state, this results in a Partially Observable Markov Decision
Process (POMDP). For the sake o simplicity, in this dissertation the term
state is adopted to indicate also observation since being a POMDP is quite
a common feature among problems involving HVAC system control. In the
context of HVAC system control typical examples of state variables are the
indoor air temperature or the temperature of the outside environment.

• Action (A): the action is the decision performed by the control agent. In
the context of HVAC systems control the action could be represented by the
set-point of supply water/air temperatures or pump/fan speeds.

• Reward (R): the reward is the feedback received by the control agent for
taking a specific action at in certain state st . The reward is calculated through
a function which depends by the objectives of the specific control problem.
In the context of HVAC system control the reward could be represented by a
combination between energy consumption and thermal comfort evaluation.

• Transition Probabilities (P): the transition probabilities describe how the
environment will evolve after taking action at at state st . In the context of
HVAC systems control transition probabilities are generally unknown since
this process will require the development of a detailed model of the controlled
environment.

Figure 2.1 shows the flowchart of the RL framework. The figure depicts the
interactions between the control agent and the controlled environment taking place



2.1 Reinforcement Learning: Concept and Formulation 17

through the four elements of the MDP. In each interaction, the control agent observes
the current state of the environment and picks a control action. The control action
induces a change in the environment which moves towards a new state. The goodness
of this change is evaluated through the reward which is successively forwarded to
the control agent along with the information about the new state of the environment.

Fig. 2.1 Flowchart of the Reinforcement Learning framework.

In the reinforcement learning framework the control agent directly learns the
optimal control policy (π) by interacting with the controlled environment through
the previously described trial-and-error process. The policy represents a mapping
between states and actions and is the core of a reinforcement learning agent [22]. The
optimal control policy is the mapping between states and actions which maximizes
the expected discounted return (i.e. cumulative discounted sum of future rewards).
The state-value function evaluates the expected return obtained by the agent when
starting from state s and following policy π:

vπ(s) = ∑
a

π(a|s)∑
s′,r

p(s′,r|s,a)[r+ γvπ(s′)] (2.1)

where r is the immediate reward received by the agent while transitioning from
state s to its successor state s′ after taking action a. γ [0,1] is the discount factor
for future rewards. An agent employing a discount factor equal to 1 will give
greater importance to rewards that can be obtained in the future. Whereas, an agent
implementing a discount factor of 0 will assign higher values to states that lead to
high immediate rewards.
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The optimal policy can be identified through different approaches. If the transi-
tion probabilities p and the rewards r are known, the solution can be found through
direct approaches such as policy or value iteration [28]. However, this occurrence
rarely arises for HVAC systems due to their intrinsic stochastic nature. RL can be
applied also in the case in which the dynamics of the environment are unknown. In
the model-based RL approach transition probabilities and rewards are firstly learnt
by means of a model and then employed to learn the optimal control policy. In this
formulation RL is very similar to MPC strategy since both approaches can make use
of physics-based and data-driven methods [8, 17]. In the model-free RL approach
the agent can learn the optimal control policy without explicitly identifying transition
probabilities.

There are two methods in the model-free RL approach to identify the optimal
control policy: value-based and policy-based. Value-based methods aim at learning
the value function which estimates the goodness of taking a specific action a starting
from state s. Policy-based methods do not employ the value function as a proxy
and directly try to learn the optimal control policy π [29]. In general, value-based
methods are more sample efficient while policy-based methods have better conver-
gence properties and are capable to handle continuous problems characterized by
high stochasticity.

Another aspect which characterizes RL algorithms is the difference between on-
policy and off-policy methods. On-policy RL algorithms directly try to improve the
policy that is used by the agent to generate decisions. Off-policy methods evaluate
a policy that is different from the one used to select actions allowing them to learn
from historical data and previous experience [22]. On-policy training is particularly
challenging to be carried out in a real buildings since it is not feasible to let an
RL agent to explore sub-optimal policies which may lead to undesired conditions.
However, on-policy learning is much more effective in converging to the optimal
solution since the state-action space can be better explored [8].

The scientific literature in this field is particularly prolific and innovative RL
algorithms are constantly introduced. In the following subsections the algorithms
employed in this work are briefly presented and described.
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2.1.1 Q-learning

Q-learning is one of the most widely applied RL algorithms owing its popularity
to its simplicity [30]. Q-learning is a value-based and off-policy method aiming at
estimating state-action values (or Q-values) which represent the expected cumulative
discounted reward obtained by the agent for taking action a while the environment is
in state s [31]. In its most simple formulation Q-learning stores the Q-values into a
tabular structure (Tabular Q-learning). The Q-values are constantly updated during
agent training according to the following equation:

Qs,a← Qs,a +α[r(s,a)+ γmaxaQ(s′,a)−Q(s,a)] (2.2)

Where α [0,1] is the learning rate which determines with which extension
new knowledge overrides old knowledge. When α is equal to 1 new knowledge
completely substitutes old knowledge, instead, when, α is set equal 0 no learning
happens and new knowledge is not employed to update the control policy. The higher
the estimation of the Q-value for a specific state-action tuple (s,a) the higher is the
expected reward of the agent for taking that specific action a in the state s.

Figure 2.2 shows the flowchart of the framework of the Tabular Q-Learning
algorithm. As previously introduced, Q values relative to state-action tuples are
stored into tabular structures. At each interaction, the agent observes the actual state
s of the environment and selects an action a based on the Q values stored in the table
relative to the same state s. This action is forwarded to the environment which moves
to a new state s′ sending this information to the agent along with the reward signal r.
These information are employed to update the Q value relative to state s and action a
according to equation 2.2.
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Fig. 2.2 Flowchart of Tabular Q-Learning framework.

A key-aspect to consider is the strategy employed to select the action. In this
context, the identification of the optimal trade-off between exploration and exploita-
tion in order to guarantee the convergence of the Q-values. To maximize the rewards
stream, an agent must select actions previously tried that have been found to be
effective in obtaining high rewards (exploitation). However, to identify such actions
an agent is forced to pick actions never tried before (exploration). Two of the most
frequently used methods to select actions balancing exploration and exploitation are
the ε-greedy and the soft-max methods.

According to the ε-greedy method the agent acts greedy for most of the time
favoring exploitation by selecting actions characterized by the highest Q-values given
a certain state. The agent explores selecting a random action with a probability ε

which is generally a small probability [22]. ε-greedy assigns equal probabilities to
all non-optimal actions leading to poor results in some circumstances [32].

Contrarily to ε-greedy exploration in which all the actions are considered equal in
the Soft-max exploration, also known as Boltzmann exploration, actions are picked
according to Boltzmann distribution calculated as follows:

Pa =
eQs,a/τ

∑i eQs,i/τ
(2.3)

Where τ is the Boltzmann temperature constant. Soft-max exploration method
has shown different problems in converging to optimal control policy [32].
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Eventually, the Max-Boltzmann exploration method combines the two previously
mentioned approaches. According to this method, the agent acts almost determin-
istically when the estimations of the Q-values are not ambiguous (i.e. the Q-value
associated with the best performing action significantly differs from the others),
while it allows wider exploration in the region of the state-action space where the
Q-values estimations are more ambiguous [32].

2.1.2 Deep Q Learning

In its classical formulation, Q-learning algorithm employs lookup tables to store
and retrieve state-action values where each entry represents a state-action tuple (s,a).
However, adopting a tabular representation may be unfeasible in practical problems
where the state and action spaces are very large. A solution to this problem is to
represent Q-values through a function approximator that allows state-action values
to be represented by employing only a fixed amount of memory which depends
only by the function used to approximate the problem. In particular, Deep-Neural-
Networks (DNNs) have gained popularity due to their capacity to build an effective
representation of the problem through their hidden layer structure. RL frameworks
employing DNN as function approximators are known as Deep Reinforcement
Learning (DRL) algorithms. The first work implementing Q-learning and DNNs was
developed by Minh et al. [23]. In Deep-Q-Networks (DQN) the Q-value function is
parametrized by θ , where θ are the weights of the network. The number of neurons
in the input layer of the network is equal to the number of variables from which
a state is composed, while the output layer has many neurons as the number of
actions that the agent may take at each control interaction with the environment.
Through this structure, the network is used to learn the relation between states and
the Q-value for each action. However, in the RL paradigm, the true Q-value for each
state-action pair is not known a-priori but it is learnt over successive interaction with
the controlled environment. At each control step, the Q-values are updated according
to Equation 2.2 and used as targets to retrain the deep neural network.

Some improvements were introduced in literature in order to improve the DQN
formulation as shown in Figure 2.3. The figure shows the flowchart of the structure
of a Double Deep Q-Learning agent with Memory Replay.
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Fig. 2.3 Flowchart of the structure of a Double Deep Q-Learning agent with Memory Replay.

The first improvement involves the introduction of the replay memory to store
previous experience obtained by the agent. In the optimization process of the network
weights a random mini batch is extracted from the replay memory and used to fit
DNN-regression using as targets the Q-values updated according to Equation 2.2.
This process enables the re-utilization of previous experience collected by the agent
and overcome the problem of correlated observations while performing weights
optimization. The second improvement, which refers to Double-Deep Q Networks
(DDQN), involves the employment of two neural networks [33]. The first one, called
online network, is constantly updated and directly used in the interaction with the
environment; the second one, called target network, is updated after N iterations
and used to predict target values. The target network is an exact copy of the online
network and during the update the weights of the online network are simply copied
into the target network.

2.1.3 Soft-Actor Critic

Actor -critic frameworks are characterized by distinct memory structures to map
state-action and state-value spaces [34]. One of the main advantages of actor-critic
methods is that they can learn stochastic policies through a direct approach which
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represent an important advantage for stochastic processes such as HVAC control
[35].

In the scientific literature have been proposed several algorithms that belong to
the family of actor-critic methods, one of these, recently introduced, is the Soft-
Actor-Critic (SAC). Differently from other actor-critic methods, SAC is an off-policy
DRL algorithm which showed excellent performance in solving several control tasks
[36]. Differently from DQN methods SAC is capable to handle continuous action
spaces.

The Actor-Critic architecture employs two function approximators. The Actor
has the aim to determine the optimal action for a given specific state of the controlled
environment (policy-based), while the Critic evaluates the decisions made by the
actor (value-based). The actor and the critic are parametrized as DNN. The actor is
employed in both the control loop and learning loop while the critic is employed only
during learning. This framework is generally coupled with an off-policy implemen-
tation, enabling the re-utilization of the previous experience collected by the agent in
order to improve the control policy (i.e. replay memory). Moreover, the SAC policy
is trained to maximize the expected sum of future rewards and the expected entropy
of the policy at the same time, as defined in Eq.2.4:

π
∗ = argmaxπφ

E[
∞

∑
t=0

γ
t(rt +αHπ

t )] (2.4)

Where Hπ
t is the Shannon entropy term, which is a constant term which associates

to each state a probability distribution over the possible actions. Through this
approach, the agent has the possibility to explore during the training phase, while,
during the deployment phase, the mean value of the distribution is used to select
deterministic actions, ensuring a robust control policy. α is the entropy regularization
coefficient which indicates the relative importance of the entropy term with respect to
reward term. γ represents the discount factor for future rewards and rt is the reward
obtained by the agent at the time-step t.

Thanks to the previously introduced features, SAC showed an higher efficiency
in exploring state-action spaces compared to other algorithms such as Deep Deter-
ministic Policy Gradient (DDPG) which is very sensible to seed initialization and
explores deterministic policies and Trust-Region Policy Optimization (TRPO) which
is characterized by sample inefficiencies.
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A modified version of SAC was recently introduced in order to handle discrete
action spaces [37]. The framework of this algorithm is shown in Figure 2.4.

Fig. 2.4 Discrete SAC structure.

In the modified version of the SAC algorithm the critic network, also called
soft-Q network, outputs directly the Q-value of each possible action. The parameters
of the critic network are updated in order to minimize the error JQ expressed as
follows:

JQ(θ) = E(st ,at)∼D[
1
2
(Qθ (st ,at)− (r(st ,at)+ γEst+1∼p(st ,at)[Vθ

(st+1]))
2] (2.5)

where D is the replay buffer and V
θ

st+1 is estimated by means of a target network.
In practice two different critic networks are employed and the minimum of their two
outputs is employed to compute the above objective. The actor network, also called
policy network, directly outputs the action probabilities. The losses employed to
update the policy network are calculated according to the following formula:

Jπ(φ) = Est∼D[πt(st)
T [αlog(πφ (st))−Qθ (st)]] (2.6)
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2.1.4 Training and deployment strategies for RL agents in HVAC
systems

In ideal conditions, a model-free reinforcement learning agent should be directly
implemented in the physical system gradually learning the optimal control policy.
However, the learning of the optimal control policy is a process that may take
a considerable amount of time leading to poor control performance in the initial
implementation period.

The offline training framework, showed in Figure 2.5, was conceived to overcome
this problem.

Fig. 2.5 Offline training framework of RL control agents.

According to this approach, the control agent learns the optimal control policy
by interacting with the environment during multiple episodes. An episode is a period
of time characterized by a fixed length which is representative of the control problem
being analyzed (e.g., a thermal season). For example, if the control problem involves
the optimization of the operation of a chiller unit, the episode will be defined to
include the cooling season of the selected case study. An episode is presented
multiple times to the RL algorithm that in this way is able to refine its control policy
towards the optimal solution. This refinement process is carried out through two
loops: the control loop and the learning loop. The control loop is responsible of
selecting an action given a state according to the control policy. The learning loop is
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responsible of updating control policy parameters (e.g. DNN weights) according to
reward signal and previous experience. It is unfeasible, for HVAC control problems,
to carry out the offline training framework directly in a physical environment since it
may take many time before obtaining a trained agent. Moreover, it would be unsafe
from a performance point of view to let the agent to explore different policies during
training. For these reasons, this process is carried out in simulation environments
where time and low performance are not an immediate issue. These environments are
based on models of the system dynamics which are mainly based on a physics-based
or data-driven approaches. Further details about simulation environments and models
of the system dynamics are provided in the following section.

Once the training of the RL agent is completed, it can be deployed according to
two different strategies as illustrated in Figure 2.6:

• Static deployment: In the static deployment approach, the agent is imple-
mented as a static entity, meaning that the control policy is no longer updated,
and any learning goes on. As a consequence, as showed in the left panel of
Figure 2.6, the learning loop is not performed and the reward signal is not
actively employed by the control agent. The advantages of such approach are
the limited computational cost and the relative stability provided by a static
control policy. The disadvantage is that the agent is unable to automatically
adapt in the case key-features of the controlled system change (e.g. revamping
intervention) and may need to be retrained.

• Dynamic deployment: In the dynamic deployment approach, the controller
continuously learns from experience constantly updating the parameters of the
control policy. As a consequence, as showed in the right panel of Figure 2.6,
the learning loop is continuously performed and the reward signal is actively
employed by the control agent. Following this approach a RL agent can adapt
to a changing system at the expense of higher computational cost and with the
risk of stability issues for the control policy [38].
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Fig. 2.6 Static deployment and dynamic deployment frameworks of RL control agents.

Both static and dynamic deployment can be carried out in physical or simulation
environments. When the deployment is carried out in simulation environments the
episode (i.e. the period of time in which the simulation is carried out) may differ
from the episode employed during training.

Despite being successful and widely applied, offline training requires a con-
siderable effort in developing the surrogate model of the controlled environment
undermining the complete model-free nature of the RL approach.

An alternative is represented by the online training strategy where control agent
is directly deployed on the controlled HVAC system. The framework of this ap-
proach can be represented similarly to the dynamic deployment framework with the
difference that the employed control agent has not obtained prior knowledge of the
dynamics of the controlled environment through a pre-training process. The control
agent is forced to learn the parameters of the optimal control policy while actively
controlling the system. This strategy perfectly represents a model-free controller
meaning that no previously built model is employed to perform offline training. This
procedure can be performed as well in simulation environment in order to study the
capabilities of RL algorithms to rapidly converge to an acceptable solution. More-
over, since this procedure is extremely delicate it is necessary to previously analyze
its applicability before effectively move to a testing phase in physical environments.
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2.1.5 Hyper-parameters characterizing reinforcement learning
frameworks

Tuning of hyper-parameters is a crucial task to be addressed during the development
of RL and DRL controllers [39]. This section summarizes the main hyper-parameters
characterizing the control frameworks employed in this dissertation. Part of these
elements were already introduced in the previous sections. However, due to their
importance, it is functional to provide a synthetic recap of their properties. Hyper-
parameters can be organized according to the following classification:

• General RL hyper-parameters: these hyper-parameters are shared among
all RL frameworks.

• Specific RL hyper-parameters: these hyper-parameters are specific of differ-
ent RL frameworks characterizing their behavior and converging properties.

• DNN hyper-parameters: these hyper-parameters characterize the architecture
of DNN employed by DRL algorithms as function approximators.

• Environment hyper-parameters: these hyper-parameters characterize the
controlled environment and can strongly influence stability and convergence
of implemented control agents.

One of the main general RL hyper-parameters which is shared among all RL
frameworks is the discount factor (γ) for future rewards. The discount factor assumes
a value included between 0 and 1. It is a mathematical object introduced to prevent
the cumulative sum of future rewards going to infinite ensuring the convergence of
the algorithm. Values close to 1 gives greater importance to rewards obtained far in
the future with respect to the moment in which the control action is taken. Values
close to 0 gives greater importance to immediate rewards obtained after taking a
certain action.

Three other important hyper-parameters characterizing off-policy DRL frame-
works (like DQN, DDQN and SAC) are the Replay Memory Size, the Batch Size
and the Number of Gradient Steps. Replay memory stores the results of previous
interactions of the agents with the controlled environment. The size of this memory
determines the amount of previous knowledge that can be leveraged by the algorithm
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to refine the control policy. Batch size regulates the amount of elements drawn
from Replay Memory during the learning phase. Small values of the batch size can
guarantee faster convergence properties with the risk of being stuck in near-optimal
solutions. Higher values of the batch size may result in slower convergence proper-
ties with the benefit of mitigating the risk of learning sub-optimal policies [40]. The
number of gradient steps is an hyper-parameter that regulates the number of batches
randomly drawn from memory buffer on which gradient update is performed at each
control time-step. Typically, this hyper-parameter is set equal to 1, but in particular
cases this value can be increased in order to encourage faster learning.

Specific RL hyper-parameters depends on the specific RL of DRL algorithms
being implemented (explained among brackets in the following list):

• Learning Rate (α) (Tabular Q-Learning, DQN, DDQN): the learning rate
can take a value included between 0 and 1 and determines the rate at which
new knowledge overrides old knowledge while updating Q-values. Typically,
during training this value is set equal to 1.

• Exploration Rate (ε) (Tabular Q-Learning, DQN, DDQN): determines the
probability of the agent of taking a random action. It can be set at high values
at the beginning of the training phase (i.e. close to 1) and be gradually reduced
while learning progress.

• Boltzmann Temperature (τ) (Tabular Q-Learning, DQN, DDQN): determines
the degree of randomness in the choice of action. When high values are
implemented the actions are taken with almost the same probability. When low
values are implemented the actions with higher Q-values are more probable to
be chosen.

• Entropy Coefficient (α) (SAC): is the temperature parameter that determines
the relative importance of the entropy term versus the reward, and thus controls
the stochasticity of the optimal policy.

• Target Model Update Frequency (DDQN, SAC): determines the frequency at
which the parameters of the online network are copied into the target network.

DNNs are the most widely applied function approximators thanks to their ex-
cellent properties in successfully mapping non linear patterns and relationships.
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However, DNNs are characterized by several hyper-parameters adding a further
degree of complexity to the development of RL controllers:

• Neural Network Structure: The most widely applied neural network archi-
tecture is the Multi-Layer Perceptron (MLP). The number of Hidden Layers
and Neurons for each hidden layer are the hyper-parameters determining this
architecture.

• Activation Function: The choice of the activation function may influence
convergence of DRL algorithms. The most widely applied functions are the
REctified Linear Unit (RELU)[41] and Hyperbolic Tangent (tanh).

• Optimizer: The choice of the optimizer may influence convergence and per-
formance of DRL algorithms. The most widely applied optimizers are Adam
[42] and RMSprop [43].

• Optimizer Learning Rate: The learning rate of the optimizer implemented in
DNNs is an hyper-parameter that controls the degree of change of the network
in response to the estimated error each time the weights are updated. Increasing
the value of the learning rate may be useful in some circumstances to speed-up
the learning process.

Eventually, the controlled environment is characterized by a series of hyper-
parameters that requires careful tuning:

• Episode Length: The length of the episode depends on the specific control
problem being studied. It can ranges from few weeks to an entire year.

• Number of training episodes: The number of training episodes must be tuned
in order to provide to the agent a sufficient amount of experience to identify
the optimal control policy.

• Reward coefficients: As previously introduced the reward function combines
in a mathematical expression the different objectives that an agent seeks to
maximize (or minimize). The relative importance of these different objectives
is commonly managed through the introduction of weight factors. The tuning
of the weight factors plays a key role in the definition of a robust reward
function.
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As demonstrated by several research [39, 24], the choice of hyper-parameter
values can affect sensibly the performance of RL and DRL controllers. The tuning
process of these values may result in counter-intuitive solutions that can be easily
discarded in the design phase if the tuning task is not approached with a rigorous
and robust method. The results obtained from the applications presented in this
dissertation support this claim also providing guidelines and indications to future
researchers and practitioner approaching RL control for building energy systems.

2.1.6 Software and programming languages for developing RL
and DRL controllers

RL and DRL algorithms are usually developed through high-level programming
languages such as Python and MATLAB [44] which provide useful tools and libraries
for developing these control frameworks. In the current scientific literature, the most
widely applied tools are the following:

• Tensorflow: Tensorflow is an open source machine learning and artificial
intelligence library developed by Google Brain [45]. In Tensorflow computa-
tions are handled through stateful dataflow graphs. Tensorflow is employed to
build and train deep neural networks models which are the foundation of DRL
control strategies.

• Pytorch: PyTorch is an open source machine learning (ML) framework based
on the Torch library and the Python programming language. It’s one of the
most popular deep learning research platforms. The framework was created to
expedite the transition from research prototyping to implementation [46].

• keras-rl: keras-rl is an open source library developed for Python implementing
state-of-the-art DRL algorithms [47]. This library seamlessly integrates with
the deep learning library Keras.

• Stable Baselines: similarly to keras-rl, Stable Baselines is a open source
library developed in Python. Stable Baselines integrates a wider range of algo-
rithms compared to keras-rl and employs as back-end engines both Tensorflow
and PyTorch [48].



32 Literature Review

• Reinforcement-Learning Toolbox: The Reinforcement-Learning Toolbox
provides functions and a Simulink block for training reinforcement learning
algorithms through interactions with environments modeled in MATLAB or
Simulink. The Toolbox represents policies and value functions using deep
neural networks or look-up tables and provides implementation of multi-agent
controllers.

Pytorch and Tensorflow are real machine learning libraries that do not provide
any pre-set implementation of reinforcement learning algorithms. Using these tools,
it is necessary to build the DRL algorithms from scratch. This solution is more
complex for a novice user, but it allows to better understand the functioning of the
algorithms as well as an high level of flexibility. On the contrary keras-rl, stable
baselines and the toolbox are tools in which state of the art implementations of the
most famous DRL algorithms are already provided to the user. The use of these tools
allows a simplified approach to the application of this control technique. However,
the possibility of making modifications according to specific user requirements is
limited.
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2.2 Research context: Application of reinforcement
learning control to HVAC systems

The Section 2.2 introduces the research context of the dissertation. While in the
previous section reinforcement learning framework was discussed, in the following
the main applications of this advanced methodology for HVAC control are reviewed.
These applications represent the state-of-art of the implementation of RL and DRL
strategies for HVAC systems control which is the focus of this thesis. Applications of
RL and DRL can be analyzed and categorized following several patterns. Figure 2.7
shows a conceptual scheme based on Figure 2.1 reporting the five different criteria
related to the application of RL to HVAC system control on which is based the
proposed analysis of the literature.

Fig. 2.7 Conceptual scheme of the features of RL application to HVAC system control.

The core of every RL application is the controlled environment. As illustrated in
the top-right panel of Figure 2.7, the first criteria employed to analyze the current
scientific literature is the configuration of the controlled environment. The controlled
environment can be of two typologies: i)virtual-simulative or ii)physical-real. The
applications in the literature were reviewed highlighting which of the two types was
investigated, whether both were used, and what tools the researchers employed in
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the implementation process. A second criteria, showed in the bottom-right panel of
Figure 2.7, involves the features and characteristics of the building and the energy
system. The scale and complexity of these systems affect the definition of the
controller and provide a valid benchmark for different applications. Beside the
controlled environment, the criteria on which the analysis of the literature was based
included the definition of the action-space, reward signal and state-space illustrated
respectively in the bottom, top-left and top-right panels of Figure 2.7. The action-
space represents the output of the controller. This output can be provided at a high,
medium, or low level of the control hierarchy and can be of continuous or discrete
type. The reward represents the objective of the controller and it is mathematically
encoded within a function. This function can include one or more objectives that are
often contrasting. The state-space represents the input of the controller. A careful
selection of these variables is desirable since it can promote a faster convergence and
a greater robustness of the learned control policy.

It was decided to not classify the applications in function of the different RL and
DRL frameworks and their algorithmic differences. The following sections review
RL and DRL applications according to the five classification criteria introduced in
Figure 2.7.

In particular, Section 2.2.1 reviews the applications in function of the nature of
the controlled environment. The main software employed to simulate HVAC system
are introduced along with an analysis of implementations in physical test-beds.

Section 2.2.2 analyzes and discusses the feature of the HVAC system, highlight-
ing the presence of flexibility sources such as RES and storage equipment. Moreover,
the analysis focuses on the typology of the most typical configurations of generation
systems, distribution systems and terminal units.

Section 2.2.3 presents and discusses the various applications of RL and DRL
to HVAC system from a control action perspective. The level (high, medium, and
low) at which the control action is provided along with an analysis on the different
configurations (continuous and discrete).

Section 2.2.4 discusses the different control goals applied in the literature and
how they have been combined within reward functions.
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Section 2.2.5 discusses the control inputs as state-space formulation in applica-
tions of RL and DRL for HVAC system control by highlighting different approaches
that include variable engineering and the use of system disturbance forecasts.

The final aim of this chapter is then to discuss a wide research context, for better
pointing out broader challenges and opportunities related to the application of RL
and DRL for HVAC system control.

2.2.1 Controlled environment: configuration

The first criterion used to classify reviewed applications considers whether the case
study employed is physical or simulative. RL and DRL are frameworks that are still
in their infancy and their applicability for HVAC system control must be firstly tested
within safe and enclosed environments. To this purpose, researchers worldwide
developed different simulation environments employing surrogate models of the
building dynamics characterizing different control problems. These surrogate models
can be developed according to different approaches:

• Physics-based models: physics-based models, also identified as white-box
or engineering models, use physical knowledge to describe the dynamics
of the building and of the HVAC system. They are based on the principles
of heat transfer and energy and mass conservation [49]. The parameters
defining these models are physically significant and can be retrieved from
technical documentation available if the case study is a real system or from
standards and guidelines in case of prototype buildings. On one hand, physics-
based models suffer from modeling inaccuracies due to the vast amount of
parameters required for their definition and they usually require a considerable
amount of time to be developed [50]. On the other hand, if correctly tuned
they are capable to correctly emulate the physical properties and dynamics of
the building system. Physics-based models include also simplified solutions
such as first or second order models that can be used to perform a simplified
simulation of system dynamics.

• Black-box models: black-box models are developed starting from monitored
or surrogate data without prior assumptions regarding physical relationships.
The main advantage provided by these models is the limited amount of infor-
mation required to their development. The main disadvantage relies in the fact



36 Literature Review

that these models have limited generalization capabilities and are unreliable in
predicting building dynamics that fall outside their training range [51].

• Gray-box models: The gray-box category encompasses a wide range of mod-
els that include simplified physical relationships but also necessitate parameter
estimation using measurable data. In most gray-box models, the physics is
reduced through state space dimensionality reduction or linearization. The
RC analogy, which characterizes every model by its affinity with a resistor-
capacitor electrical circuit, is a common gray-box concept [49]. Theoretically,
gray-box models can overcome the limitations of both physics-based and
purely data-driven approaches. Since part of the knowledge regarding the
physics of the system is already present in the model structure, gray-box are
more likely to perform correctly outside the calibration range [52]. More-
over, they require less information that white-box models to be developed. In
practice, the main drawbacks is related to the necessity of a robust parameter
identification method.

In the current scientific literature, physics-based approach was the most widely
implemented with the purpose of RL and DRL development. Typically, physics-
based modeling was performed through programs and software allowing the simula-
tion of energy and mass flows within the building also considering the interaction of
the system with the surroundings (e.g. weather). In this context, the most popular
simulation software are the following:

• EnergyPlus [53]: is an open-source, comprehensive building simulation
program capable to model energy consumption for heating, cooling, ventilation,
plug and process loads.

• TRNSYS [54]: is a flexible proprietary software environment used to simulate
transient systems. The standard library provides more than 150 models of
different equipment that can be modified by the user to enhance simulation
capabilities.

• Modelica [55]: is an open-source, object-oriented language for modeling
heterogeneous physical systems. In particular, the Modelica Buildings Library
[56] provides powerful models to simulate buildings and district energy control
systems.
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Since RL and DRL frameworks are developed in programming languages such as
Python and MATLAB, simulation software, which are usually employed for design
purposes, are embedded into architectures relying on specific co-simulation tools
such as Building Control Virtual Test Bed (BCVTB) [57] and Functional Mockup
Interface (FMI) [58].

Among the previously mentioned software, EnergyPlus is the most widely ap-
plied. It was employed to analyze the effect of DRL control strategies for a variety
of case studies ranging from residential [59] end use to commercial [24, 60] end use
considering both physical sites [24, 61, 62] and reference buildings [63, 64] taken
from different guidelines.

Compared to EnergyPlus, the application of TRNSYS [65] and Modelica [66, 67]
is still limited. One barrier to the adoption of TRNSYS could be related to its propri-
etary nature which confine its applicability in research environments. Conversely, the
trend of adoption of Modelica is rising also thanks to the recent release of Spawn Of
Energy Plus (SOEP) project. SOEP combines EnergyPlus and Modelica leveraging
the first for weather, envelope, lights and load models and the second for state-based
models of HVAC system. This approach allows to overcome implicit, load-based
modeling of HVAC loads and controls of EnergyPlus and has the potentialities to
become a new standard in the building energy simulation community. In this context,
Touzani et al. [68] and Lee et al. [69] recently employed a simulation environment
combining EnergyPlus and Modelica to evaluate DRL control strategies applied to
HVAC systems.

Still in the context of physics-based modeling, Chen et al.[70] and Jiang et al.[71]
employed in the simulation environment simplified first order model and second
order model of system dynamics respectively. Despite their computational lightness,
these models can hardly represent the complexity of HVAC systems. For this reason,
the application of RL and DRL control techniques on this type of models represents
more of an academic exercise than a real (or at least realistic) demonstration of the
capabilities of these frameworks for the management of HVAC systems.

The black-box approach to building models for implementing co-simulation
environments has been less widely used than the physics-based approach. Zou et
al. [72] employed recurrent neural networks trained with monitored data to build
the models of the dynamics of two air-handling units of a commercial building.
Through the paper, the authors demonstrated how a DRL agent can be effectively
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trained employing a black-box model of the controlled system. This approach is very
interesting because exploiting data-driven models for pre-training DRL agents would
greatly reduce the time and complexity of the learning phase before their actual
deployment in the physical world. However, in this work the authors performed the
deployment phase of the control agent on the same data-driven model on which the
agent was trained. Therefore, this approach does not provide an accurate indication
of the performance of the same agent on the original system.

Grey-box models, being widely used in the MPC framework, were employed in
early applications proposing controllers based on RL techniques [73]. They have
been gradually replaced in the scientific literature by physics-based models but are
still used when available for certain case studies [74].

Most of the experiments proposed in the literature have been limited to the
implementation of DRL agents in a simulation environment, however, some authors
have succeeded in bringing the developed controllers from simulation to the physical
world. Touzani et al. [68] pre-trained in a simulation environment a control agent
for 4 years. This agent was successively deployed for 7 days in a real residential
building achieving 39.6 % of cost savings with respect to a baseline controller.
Valladares et al. [75] implemented a DRL agent pre-trained for 10 years in a real
classroom and laboratory during a period of almost 6 months. They results showed a
reduction in the energy consumption of 4-5 % and increased PMV compared to the
baseline. Chen et al. [76] deployed an agent pre-trained through imitation learning
in a campus building achieving a 17 % saving of cooling energy. Zhang et al [77]
designed a physical test-bed for demand response scenarios providing exhausting
details about the technology implemented to deploy the RL agent. In [78] the authors
implemented their controller in six residential buildings increasing significantly the
self-consumption of PV system compared to baseline thermostat control.

The benefits from the energy management perspective of implementing these
control techniques is well illustrated by these works. What remains to be investigated
and discussed in detail is the implementation cost of these solutions. Implementing
DRL techniques in the real world requires specific tools and knowledge, the cost of
which is rarely taken into account in scientific publications. For this reason, their
industry-wide adoption and scalability are still challenging.
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2.2.2 Controlled environment: building and energy system

A second useful criterion for classifying RL and DRL applications is provided by the
analysis of the building and of the HVAC system. In the current scientific literature,
RL and DRL were applied to both residential and commercial case studies.

Residential sector plays a key role in the application of demand side management
strategies aimed at increasing demand flexibility [79]. Thermostatically controlled
loads such as heat pumps, electric water heaters and air conditioning represent
example of flexibility sources which are interesting for demand response purposes
[80]. In this context, RL and DRL algorithms have been applied to optimize the
management of thermostatically controlled loads. Ruelens et al. applied batch-
Q-learning demonstrating its effectiveness in managing heat pumps and electric
water heaters in both open-loop and closed-loop form. Liang et al. [81] proposed a
Q-learning controller to manage flexible demand in a residential context. Residential
case studies have also been used to study the management of water heating systems
powered by gas boilers, demonstrating their effectiveness in reducing consumption
while ensuring comfort conditions [59]. However, residential systems are very
challenging to control mainly due to the high stochasticity of occupancy. Moreover,
in absolute terms, the cost savings provided by advanced control techniques are
rather limited. Greater advantages in this sense are obtained when more residential
systems are aggregated and controlled in an effective and coordinated way [82].

Conversely, in commercial buildings (such as schools, university campuses, shop-
ping malls and offices) HVAC systems account for 40%-50% of overall consumption
[1]. The complexity of the buildings belonging to this sector leaves ample room for
improvement in terms of management and control policies. In this context, DRL was
applied to large office buildings characterized by complex heating systems formed
by multiple gas-fired boilers, circulation pumps and radiators serving multiple zones
with different schedules and requests [24].DRL was also employed to manage an in-
novative radiant-based heating system served by district heating [38, 76]. Moreover,
DRL was successfully applied to cooling water systems which are a fundamental
subsystem of an HVAC characterized by circulation pumps, cooling towers, chiller
condensers and economizers [83]. The purpose of cooling water systems [65] is to
release the heat rejected by chillers. The chiller COP (coefficient of performance),
which determines the energy consumption of the overall HVAC system, is strongly
dependent on the operation of the cooling water system [84]. DRL was employed to
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manage simpler case studies as variable refrigerant flow system [85, 86] and fan-coil
units serving a small commercial zone [87].

A distinctive feature of several case studies is the presence of energy storage
technologies. In particular, Thermal Energy Storage (TES) proved to be a sustainable
solution making HVAC systems more flexible to time-varying electricity prices
improving capabilities of the system to shift its demand patterns [88, 89]. Ruelens
et al. [90] achieved 30 % cost savings applying a RL controller to a residential
system characterized by an electric water heater and an hot-water TES. Liu et al.
[91] developed one of the first application in the field in which a RL controller was
employed to manage a building equipped with chiller, a cold-water TES and VAV
terminal units. Pinto et al. [92], Canteli et al. [93] and Kathirgamanathan et al.
[94] analyzed the same case study implementing different DRL controllers with
both centralized and de-centralized architectures to coordinate a district of buildings
equipped with reversible heat pumps and both hot and cold water TES. The authors
of these works achieved both cost savings in the range of 3-10 % and peak reduction
between 20% and 30%.

In addition to TES, the presence of on-site PV production systems is another
interesting feature to consider. PV systems have been widespread adopted and
promoted to sustain the growing energy demand in buildings [95]. Due to PV weather-
dependent nature, electrical storage solutions have been introduced to increase self-
consumption providing benefits to both end-users and grid operators [96]. However,
Battery Energy Storage Systems (BESS) (e.g., Lead-acid and Li-ion batteries) are
characterized by high investment cost making their adoption unfeasible for many
applications [97] if incentives provided by policymakers are not foreseen [98].
Nevertheless, BESS improves PV energy utilization, by addressing the problem
of the low flexibility of solar energy. In this context, a DRL agent was used by
Sanaye et al. [99] to control the operation of a Combined Heat and Power (CHP)
generation unit and of a gas-fired boiler in an hybrid system with PV panels, solar
collectors, wind turbines, a hot water storage tank and batteries. This control
strategy reduced the operational cost of a residential complex with respect to two
different RBC strategies. Chenxiao et al. [100] developed an RL controller to
manage a residential energy storage module based on partial knowledge of the
controlled system achieving up to 50% cost savings. Anvari-Moghaddam et al. [101]
proposed an energy management strategy based on a multi-agent system for IES in a
microgrid to reduce operation cost and to ensure user’s needs. Particularly, a Bayesian
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Reinforcement Learning (BRL) controller was used for the battery operation, which
was coordinated with other agents in charge of collecting and sharing information,
making predictions of renewable generation and providing computation services.
Zsembinszki et al. [102] applied DRL to an innovative hybrid energy storage system
increasing the performance by about 50% compared to baseline strategy. Raman
et al. [103] developed an RL controller to manage a residential integrated energy
system comprising of a PV system and batteries achieving similar performance to an
MPC.

From the point of view of electrical energy storage, a very interesting technology
that is spreading in recent years is represented by electric vehicles. Considering
the building and the mobility sector at the same time results in more efficient
control systems [104]. For example, when the electricity price is low, a controller
may choose to provide space heating/cooling, charge the EV, or store energy in a
stationary battery for later use. On the other hand, this union poses some difficulties.
Charging electric vehicles increases a building’s total – and possibly peak – energy
usage. Furthermore, once an EV is attached, most EV chargers begin charging at
full power. As a result, if numerous EVs in a neighborhood are charged at the same
time, the aggregated demand might be very high, potentially causing concerns with
energy dispatching and grid stability [105, 106]. Mocanu et al [107] employed a
DQN agent to manage multiple residential buildings in a simulation experiments
achieving 20% cost savings. Svetozarevic et al. [106] developed a DRL controller to
manage a residential building equipped with an heat pump and an electric vehicle.
The controller was tested in-field for two weeks achieving 42% cost saving with
respect to the baseline.

Following these considerations, what emerges from the analysis of the different
applications is a greater need for advanced control techniques such as RL and
DRL in case studies characterized by a high complexity of the energy system. The
greater is the complexity, brought for example by the presence of renewable energy
sources and storage systems, the greater is the necessity to integrate a predictive and
adaptive energy management strategy. In this context, integrated energy systems
in buildings represent a promising case study to focus the application of advanced
control strategies. Figure 2.8 shows a schema of the features characterizing an
integrated energy system in buildings.
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Fig. 2.8 Schema of the features of an integrated energy system in buildings.

The building can be either commercial or residential and its thermal mass can
be regarded as one of the main flexibility sources of the system. The HVAC sys-
tem is characterized by different components. Generation equipment may include
renewable sources such as solar water heaters and the thermostatically controlled
loads such as chillers and heat pumps. As previously introduced, TES represents
one of the key flexibility sources since it provides the opportunity to shift thermal
load of the building. The nature of the terminal units plays a significant role in the
defining the applicability of advanced controllers. Complex systems characterized
by several subsystems such as Air Handling Units (AHU) are ideal candidates for the
application of advanced control techniques. Such systems are often characterized by
several operational inefficiencies and can greatly benefit from improved management
strategies. Eventually, the electrical system, which directly integrates with the grid,
can include different flexibility sources such as PV production, BESS and EVs.
These features contribute to increase the flexibility potential of the building energy
system. However, this potential have to be correctly managed in order to ensure the
optimal operation of the system.
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2.2.3 Control outputs: action-space

The control action that represents the controller output is one of the first components
to be designed when developing an RL or DRL agent. The control action is closely
related to the type of the considered building or facility. However, the choice of the
output is not always obvious. For example, Figure 2.9 shows the different levels at
which a control action can be performed for a simple heating system formed by a
gas-fired boiler, a circulation valve and a radiator serving a building thermal zone.

Fig. 2.9 Example of the different levels of control actions for a simple heating system.

As can be seen, although the system is very simple there are several outputs that
an advanced controller can consider to manage the system. Starting at the high-level,
the controller might be designed to directly manage the ambient air temperature set-
point. This set-point would indirectly adjust the emission terminals, radiators in this
case, to provide more or less heat to the thermal zone by adjusting the circulated flow
rate. Acting at this level enables the effective control of the pre-heating phase of the
building[8]. However, this control is often carried out by the occupants, in residential
buildings, or by the building manager, in commercial buildings. Therefore, an high-
level controller have to account for occupant interaction which can possibly by-pass
the choices made by the agent, further complicating the decision-making process.
Conversely, a medium-level controller can be designed to regulate the supply water
temperature set-point. This value is employed by a low-level controller managing
the opening position of the circulation valve of the circuit. Acting on low-level
controllers can be challenging since they represent the first line of management for
HVAC systems. Any failure or malfunction of these controllers can have serious
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consequences in terms of performance. Moreover, traditional control strategies,
such as PID, already represent a robust solution for effectively tracking set-points.
Acting on high-level or medium-level implies the presence of traditional controllers,
at low-level to manage the actuators tracking the desired set-points. An advanced
DRL controller might be able to manage all set-points and actuators simultaneously
acting on high, medium and low level. However, even DRL controllers suffer from
the curse of dimensionality [108]. By increasing the number of outputs, and inputs,
the convergence time and controller instabilities are significantly larger. For these
reasons, it is critical to carefully design the optimal output signal of the control agent
for each specific application.

A great amount of the reviewed applications employed high-level HVAC con-
trollers managing set-points at building or zone level. The most frequently controlled
variable was indoor air temperature [109, 110], but some work also focused on rela-
tive humidity [111] as the HVAC system considered allowed for latent heat control
within the building. Other studies focused on medium-level control acting on supply
water temperature set-point [24, 38], supply air temperature set-point of AHU sys-
tems [112, 75], supply air temperature flow rate [113] and TES temperature set-point
[114, 115]. Eventually, few works developed low-level controllers to manage control
signals such as air damper opening position [116, 72], humidifier operations [85]
and valve position [106].

Another fundamental aspect relating to the choice of control action concerns its
discrete or continuous nature. The most widely applied DRL technique for discrete
action spaces is DQN previously introduced in this chapter. There are several DRL
algorithms such as SAC and Deep Deterministic Policy Gradient (DDPG) [117]
allowing for the implementation of continuous action-spaces. Often, especially in
physical test-beds, it is not possible to implement a completely continuous control
on HVAC systems due to technological limitations. Even the most sensitive control
system can still provide in output a discrete signal. As a consequence, the continuous
output of certain algorithms would require to be discretized once the signal is sent to
the involved actuators. In addition, in the case of the implementation of a medium-
level or high-level controller the output of the controller will be employed as a
reference for traditional controllers. As a consequence, an excessively fine control
over these values could be counter-effective for low-level actuation. However,
when the physical range of control actions is very large, such as in the case of
flow temperatures of a heating system, a discrete action-space formulation may
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risk including an excessive amount of distinct values. In this case even the most
sophisticated algorithms designed for discrete action-spaces may struggle to converge
to the optimal control policy being outperformed by their continuous action-spaces
counterparts. Since HVAC control should deal with both discrete and continuous
actions Li et al. [118] proposed a Trust Region Policy Optimization (TRPO) based
approach capable to handle simultaneously the two cases.

Eventually, a feature that is worth to careful consider when designing action
spaces and, more in general, RL and DRL agents is the frequency of the control
action. In a simulative context, it is relatively simple to coordinate the exchange of
information between the agent and the controlled environment. In the RL framework,
at each control step, the agent receives information about the state of the environment
and the reward obtained for taking a certain action in the previous step. In the
period between two control steps, the environment should have enough time to
evolve towards the new state determined by the control action chosen by the agent.
Through this process is possible to correctly assign the values of the reward function.
Coordinating the timings of these interaction in a physical environment is a daunting
task especially if the time between two control steps becomes shorter. The typical
frequencies for medium-level and high-level controllers ranges from 15 minutes to 1
hour while for low-level controller this value can reduce down to 5 minutes.

2.2.4 Control objectives: reward

The reward function defines through a mathematical formulation the control goals of
the agent. In the analysis of the scientific literature were found four major goals in
HVAC system control:

• Energy conservation: this goal aims at minimizing both thermal and electrical
energy consumption of the controlled system. Energy conservation can be
achieved not only through retrofit intervention introducing new and better
performing equipment but also through the implementation of effective control
strategies capable to enhance the efficiency of existing technologies [119].

• Cost reduction: this goal aims at minimizing operating cost of the controlled
system. It is strongly influenced by energy price schedules and by the presence
of flexibility sources and RES production which are capable to shift the demand
to low-price periods [120].
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• Flexibility: this goal is strictly related to cost reduction and is becoming a
prerogative of systems using electricity as the primary energy carrier. It can
target different objectives including the reduction of peak absorption from the
electrical grid and the optimization of the operations according to Demand
Response (DR) programs [121, 122]. In this context it is particularly relevant
since in DR scenarios the introduction of price-based programs could lead to
new undesirable peaks of demand [123].

• Comfort: this is a primary goal for HVAC systems and thus for advanced
control strategies like RL and DRL. The satisfaction of occupant comfort
along with appliances use is responsible of 80% of energy consumption in
commercial buildings [124]. Moreover, maintaining comfort is a key-aspect
to ensure morale, working efficiency and productivity of the occupants [125].
In particular, HVAC systems are responsible for thermal comfort and Indoor
Air Quality (IAQ). Thermal comfort is challenging to be evaluated, especially
in physical implementations. The most common metrics to evaluate thermal
comfort are Predicted Mean Vote (PMV) and Predicted Percentage of Dissatis-
fied (PPD) based on Fanger’s theory [126]. However, given the dependency
of these metrics from many variables which collection is not a trivial task
most application relies on indoor air temperature measurements to evaluate
thermal comfort. Moreover, the performance of this metrics for an effective
evaluation of thermal comfort status of building occupants remains an open
issue. A recent study, demonstrated that these metrics are accurate only for
the 33% of the time considering a wide and robust dataset [127]. For these
reasons, researchers are exploring new approaches based on occupant feed-
back and spatio-temporal analysis to evaluate thermal comfort within control
frameworks [128]. Eventually, IAQ is evaluated trough the measurement of
pollutants in the indoor air such as CO2.

The challenge in the reward design process relies in the definition of the optimal
strategy to combine multiple goals. Figure 2.10 shows a schema of the different
terms, related to the previously introduced goals, eventually composing the reward
function of an RL or DRL control agent.
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Fig. 2.10 Schema of the different terms composing the reward function.

In building energy systems control field rewards are commonly expressed as
penalties meaning that each term of the function as a negative impact on the overall
value. The energy term is commonly defined proportional to the energy consumption
of the controlled system and it is expressed as follow:

renergy(t) =−Esystem(t) (2.7)

The minus sign on the right side of the equation is introduced to penalize the
agent proportionally to the magnitude of the energy consumption. The cost term is
defined similarly to the energy term combining the consumption of the controlled
system with the purchase price of the energy:

rcost(t) =−price(t)∗Esystem(t) (2.8)

The minus sign is commonly adopted also in this case to penalize the agent
proportionally with the cost achieved. The flexibility term depends on the specific
behavior that the agent seeks to maximize. A frequent scenario explored in the
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literature is the reduction of the peak load of the system. In this case the flexibility
term can be defined as follow:

r f lex(t) =−pricepeak ∗Psystem,max (2.9)

Where pricepeak is a specific tariff defined for peak load and Psystem,max represents
the peak load. Eventually, the comfort term is commonly defined as the deviation of
actual value of a specific metric from the desired value:

r f lex(t) =−|x− xset point | (2.10)

Where x is the employed metric (e.g. indoor air temperature, CO2 concentration)
and xset point is the desired set-point. The minus sign is introduce to increase the
penalty received by the agent with the increase of the delta between actual and
desired values.

The most widely approach is to employ a weighted sum of the different goals.
An example is provided in the following equation:

r = a1 ∗ rcom f +a2 ∗ rcost (2.11)

Different combinations of goals have been introduced in the scientific literature.
Baghaee et al. [129] designed a reward function to optimize energy consumption,
thermal comfort and IAQ. In [130] the authors combined energy sold and energy
withdrawn from the grid in order to minimize the operational cost. Claessens et al.
[131] designed a reward function to simultaneously optimize energy arbitrage, which
is function of an external price, and peak shaving/valley filling evaluated on a daily
basis.

In a different approach positive and negative terms are added to the reward
function besides the main optimization goals to encourage or discourage particular
behaviors. In [132] the authors introduced an exploration bonus to promote improve-
ments in the model formulation by the agent. Brandi et at. [27] added a penalty term
to discourage states in which the temperature of a TES rises above a safety threshold.

The identification of the reward function is one of the time-consuming processes
in the design of RL and DRL controllers. The optimal configuration depends
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from optimization goals, HVAC system features and characteristics of the control
problem. As a consequence, reward functions may significantly change for different
applications. It is recommended to professionals and researchers approaching to RL
and DRL control for HVAC systems to employ the current scientific literature as a
guideline for reducing the design time of reward functions given the features of their
case studies.

2.2.5 Control inputs: state-space

The selection of the variables forming the state-space is another crucial task in RL
and DRL development. The state-space must include all the variables required the
agent to learn the optimal control policy. Without important variables it is impossible
to converge to the optimal solution regardless of the robustness of the algorithm.
However, including too many variables is counterproductive as the agent suffers
from the curse of dimensionality [8].

The variables included in the state space may not refer only to the current control
step. For example, introducing past values of certain variables is preparatory to
provide the agent with correct information regarding the building dynamics and
the thermal inertia of the system due to the thermal mass. Fuselli et al. [133]
included state values lagged by two time-steps in the past significantly increasing
the number of outputs. Brandi et al. [27] considered the four past values of storage
tank temperature to provide information about the inertia of the system to the control
agent. In [134] the authors directly employed Recurrent Neural Networks (RNN)
as function approximators for actor and critic networks. In particular, Long-Short
Term Memory (LSTM) networks were employed for their capacity to effectively
map sequence-based highly non-linear patterns. However, adding historical states
increase the number of inputs and the risk to incur in the curse of dimensionality. To
overcome this issue, Claessens et al. [135] used a Convolutional Neural Network
(CNN) model to compress the previous ten temperature values reducing state-space
dimensions.

Beside historical values, prediction of certain variables represents a key-information
to be forwarded to RL and DRL algorithms. Forecasts can be added to the state-space
to provide to control agents information about the future evolution of external forcing
variables such as weather and energy prices. In [27] the authors used predicted values
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for the next 24 hour of electricity prices and outdoor air temperature to optimize
the operation of an integrated energy system. Deltetto et al. [122] used in addition
to outdoor air temperature and prices also solar radiation predictions to optimize
a system characterized by PV production. However, the accuracy of predictions
strongly influences the performance of the controller. Thus, grater attention must be
devoted in developing accurate forecasting models.

Fig. 2.11 Example of a variable-engineering process.

An important aspect to consider in the definition of the state-space is variable-
engineering. Variable-engineering processes are required by traditional RL algo-
rithms such as Q-table since these frameworks accept only discrete values in input.
In DRL frameworks, neural networks allows the usage of continuous variable as they
are collected in the controlled environment. Despite neural networks capabilities in
mapping complex patterns among data a variable-engineering process may result
effective in providing more robustness to the trained agent. Figure 2.11 shows
an example of this process. Instead of providing to the agent both the measures
of the controlled variable and the desired set-point at each time-step the variable-
engineering process passes to the agent only information about the relative distance
between these two values. Through this method is possible to reduce the number
of variables in the state-space and to provide to the agent the capability to adapt to
evolving conditions of the desired set-point.
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2.3 Discussion of the literature review

The application of RL and DRL techniques represents a powerful opportunity to
enhance HVAC systems operations considering different objectives. The applications
introduced and discussed in the previous sections demonstrated the effectiveness of
these control frameworks in different applications considering almost any typology
of system.

Model-free controllers are capable to automatically learn an optimal policy con-
sidering different objectives through a predictive and adaptive approach. However,
given the considerable amount of time required to converge, the scalability of these
methods in the building industry is still an open issue. Moreover, the majority of
the reviewed applications benchmarked RL and DRL controllers against traditional
and conventional approaches which suffer from well-known issues. Few works
introduced a comparison of model-free and model-based techniques such as MPC.
Despite its scalability issues in the energy and buildings field, MPC has been success-
fully applied to several applications from low-level to supervisory control, such as
zone temperature control in multi-zone buildings [136, 137], charging and discharg-
ing of ice-storage systems [138] and management of radiant heating systems [139].
MPC has proven to be particularly effective in managing renewable sources and
energy storage systems, because of its ability to use predictions of future intermittent
renewable generation [140, 141], as well as managing bi-directional energy exchange
with the grid and variable energy tariffs [142]. In the current scientific literature only
a few studies implemented model-based benchmarks [103, 143, 144].

In this context, despite the great interest aroused by techniques based on the RL
framework this approach is still in an exploration and research phase with limited
adoption in physical case studies. The application of RL frameworks in a real-world
context presents several challenges with respect to a simulation environment. An
issue not found in simulation environments is related to the quality of the monitored
data. RL agents, and DRL agents in particular, are highly dependent on the quality
of the monitored data to perform the update of the control policy. In this regard, it
is fundamental to design and apply robust data preprocessing procedures to ensure
high data quality. Data quality involves not only the treatment of missing values or
outliers, but also the time alignment between different quantities monitored in field.
Different sensors may be characterized by different sampling rates. In this context,
it is important to properly organize the inputs provided to the agent. Another issue
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is related to monitoring the variables necessary for the agent to learn an optimal
control policy. While electrical energy and indoor air temperatures are easy to collect,
operational temperatures of heat carrier fluids, flow rates, and thermal energies are
not always monitored. Eventually, the selection of the optimal algorithm, of the state
and action spaces along with the reward function requires a considerable amount
of expertise in both building physics and artificial intelligence. Thus, extending
the existing body of knowledge on RL-based control strategies for HVAC system
providing new evidences and innovative perspectives on the implementation these
techniques could pave the way for the progressive introduction of advanced control
strategies as an industry standard in the field.

This dissertation seeks to fulfill this goal through the development of four inno-
vative DRL applications considering different HVAC systems and control objectives
leveraging both building physics and artificial intelligence expertise. Figure 2.12
shows a flowchart of the steps followed in the definition of the DRL control agents
of the four different applications developed through this dissertation.

Fig. 2.12 Flowchart reporting the steps followed in the definition of RL control problems
applied to HVAC systems control.

Once defined the controlled environment characterized by the building and
the external disturbances (i.e. weather and interaction with the grid) the first step
involved the definition of the control action. The control action can significantly
influence the development of the DRL controller. The action is closely related to
the energy system since it depends on the actuators and the set-points that can be
actively managed. The reward function is defined in the second step. The reward
depends on both energy system features and external disturbances. The third step
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involved the definition of the states. Since states represent the inputs of the agent
they must carry all the necessary information required to effectively map the optimal
control policy. It would be impossible to design the inputs without correctly defining
the outputs and the goal of the controller.



Chapter 3

Co-simulation environment

This chapter introduces in detail the co-simulation environment developed in the
framework of this dissertation.

Portions of the present Chapter were already published in the following scientific
papers:

• Brandi S., Piscitelli M.S., Martellacci M., Capozzoli A. 2020. Deep rein-
forcement learning to optimise indoor temperature control and heating energy
consumption in buildings. Energy and Buildings 224, 110225. [24]

• Coraci D., Brandi S., Piscitelli M.S., Capozzoli A. 2021. Online Implementa-
tion of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and
Energy Efficiency in Buildings. Energies 14, 997. [25]

• Brandi S., Gallo A., Capozzoli A. 2022. A predictive and adaptive control
strategy to optimize the management of integrated energy systems in buildings.
Energy Reports 8, pp: 1550-1567. [26]

• Brandi S., Fiorentini M., Capozzoli A. 2022. Comparison of online and offline
deep reinforcement learning with model predictive control for thermal energy
management. Automation in Construction 135, 104128. [27]
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3.1 Development of the co-simulation environment

The co-simulation environment described in this section was developed during the
first half of 2019 and combines Python and EnergyPlus. This latter is one of the
most widely applied energy simulation software worldwide by both researchers and
building professionals. EnergyPlus is completely open-source.

In the development process of a physics-based model of a building system
through EnergyPlus one of the most challenging parts is the construction of the
geometric model. To this purpose different graphical interfaces can be employed
to reduce the development time. The two most widely applied graphical interfaces
for EnergyPlus are OpenStudio [145] and DesignBuilder [146]. Moreover, these
interfaces allow a rapid definition of the HVAC equipment connections. Once the
building and HVAC model is defined the EnergyPlus input data file (idf) can be
extracted and employed.

One of the main challenges to the simulation of advanced control strategies
in EnergyPlus is its limited capability to integrate user defined logic and the im-
possibility to rely on external modules. To overcome this limitation EnergyPlus
can be interfaced with other software such as Python. In this implementation the
interface between these two software is managed by BCVTB that was introduced in
the previous section. BCVTB relies on the ExternalInterface object of EnergyPlus.
Through this object is possible to set both the inputs received from BCVTB and the
outputs that are send to the interface at each time-step. The developed co-simulation
environment relies on the pyEp [147] library which enables the utilization of the Ex-
ternalInterface in Python. Moreover, it provides an EnergyPlus-OPC bridge service
that exposes EnergyPlus simulation variables as an OPC tree tag structure. The pyEp
library allowed to wrap up the building model in a Python class based on OpenAI
Gym [148].

The interaction between the two software is dynamic, and during a simulation
a continuous exchange of data take place. The data flow is characterized by the
following temporal features:

• Control time-step: it represents the frequency at which control actions are
forwarded from Python to EnergyPlus. With same frequency, EnergyPlus
outputs are provided to python in order to determine the next control action.
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• Simulation time-step: it is defined in the EnergyPlus environment and it is not
directly linked to control time-step. For example, if the simulation time-step
is set equal to 5 minutes and the control time-step is set equal to 15 minutes,
as a result, a control action occurs every 3 simulation time steps. In this case,
the same control action is repeated for multiple simulation time-step. This
procedure can be useful in order to let the EnergyPlus model to gradually
converge to the new state with an higher accuracy.

• Episode: it is a simulation time period performed by EnergyPlus. One episode
(or one simulation) is repeated multiple times during the training phase of the
agent in order to allow the exploration of different trajectories. Conversely, an
episode in the deployment phase is performed once in order to simulate the
deployment of a trained control agent. Training and deployment episodes may
differ, for example an agent can be trained on a heating season relative to one
year and deployed in the heating season of the successive year.

Figure 3.1 shows the information flow that occurs during a simulation of DRL
control interacting with the EnergyPlus simulation model. The entire process is
handled through a main Python file which import the various components required
to run the co-simulation environment.

The first module being imported in the main script is the Python class including
the EnergyPlus simulation model and interface. The initialization procedure of this
class is handled through the init() method which is invoked at the beginning of the
main script. The arguments of this method can include any hyper-parameter that the
user desire to set for the simulation process. The list of arguments may include the
length of an episode expressed as the number of control time-steps, reward function
weight coefficients, maximum and minimum values employed to re-scale variables
included in the state-space before being fed to the neural network.

Before effectively running the simulation, the main file initializes the control
agent. This agent can be built using different approaches as introduced in section
2.2.

The co-simulation process starts with the reset() method. This method initializes
one EnergyPlus simulation procedure which includes the warp-up period and returns
the initial state of the environment. This method is automatically invoked at the end
of each episode in order to re-start the simulation from the same starting point. The
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state returned by this method, since it is directly returned by EnergyPlus, is defined
as physical quantities and must be processed before they are provided to the DNN of
the DRL agent.

The process continue by forwarding the action picked by the DRL agent back
to the simulation model. This procedure is carried out through the step(a) method.
The only argument of this method is the action a selected by the control policy.
Within this method, the action value which is in an encoded form is translated into a
physical control action. This latter value is forwarded to EnergyPlus models which
simulates the successive time-step. The new state is processed through the method
and the reward value is calculated. These two values represent the output of the
method which are passed to the main script and the DRL agent. It is important to
remember that state variables may include not only actual values collected directly
from EnergyPlus but also historical values and forecasts of external disturbances.
This aspect was integrated within the co-simulation environment in the step(a)
method. The possibility to integrate forecasts as Python class attributes was provided
in the init() method while historical values can be stored directly in the step(a)
method. The process continues until the end of an episode is reached. It is worth
remembering that the length of an episode can be arbitrarily chosen, and it is defined
within EnergyPlus model. The green lines in the figure highlight the flow of data
exchanged between Python and EnergyPlus that is handled through BCVTB.
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Fig. 3.1 Architecture of the co-simulation environment for RL control in HVAC systems
[24].



3.2 Co-simulation environments from the current scientific literature 59

3.2 Co-simulation environments from the current sci-
entific literature

As introduced in the previous section the simulation environment presented in the
framework of this dissertation was developed in the first half of 2019 and was
used to implement most of the applications that will be presented in the next chap-
ters.Several environments and co-simulation libraries for the analysis of advanced
control strategies in buildings have been publicly released during this period.

In order to guide and facilitate the reader, the environments and tools identified
in current literature are listed below:

• BOPTEST [149]: is a building operations testing framework which includes
several building models developed in Modelica with different HVAC system
configurations for different climatic zones. BOPTEST allow the interaction
of control algorithms with the models through a pre-defined API system.
Moreover, it includes a series of key performance indicator (KPI) of the
performance of control strategies and forecasts of external disturbances.

• Energym [150]: is a Python-based library that includes 11 simulation models
developed with both Modelica and EnergyPlus and ranging from residential
to office case studies. The aim of Energym is to provide a standardized
environment to test climatic control and energy management strategies.

• AlphaBuilding [151]: is a simulation test-bed for a medium size office
wrapped up in a OpenAI Gym interface. The building model is taken from
DOE commercial reference building type. The environment comes with several
implementations of DRL algorithms.

• CityLearn [152]: is an OpenAI Gym environment developed for testing multi-
agent DRL agent for the coordinated energy management of districts and cities.
At the present time, CityLearn includes simplified building models developed
in Python employing pre-defined building loads. The models include domestic
hot water, heat pumps, chilled water and PV.

• Advanced Controls Test Bed (ACTB) [153]: is a test-bed which enables the
interface between external controllers and high-fidelity Spawn of EnergyPlus
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models. The two libraries used to interface control strategies are do-mpc for
model predictive controllers and OpenAI Gym for reinforcement learning
controllers (RLC). Spawn of EnergyPlus is a model-exchange framework
that allows the simulation of building envelope and internal gains models in
EnergyPlus, and their HVAC systems and controls in Modelica. The ACTB is
based on the BOPTEST framework.



Chapter 4

DRL applications in HVAC systems

This chapter discusses in detail the development of deep reinforcement learning
applications to HVAC system control. The focus is on the definition of the control
problem for different configuration of the HVAC system and of the training and
deployment strategies of control agents.

Portions of the present Chapter were already published in the following scientific
papers:

• Brandi S., Piscitelli M.S., Martellacci M., Capozzoli A. 2020. Deep rein-
forcement learning to optimise indoor temperature control and heating energy
consumption in buildings. Energy and Buildings 224, 110225. [24]

• Coraci D., Brandi S., Piscitelli M.S., Capozzoli A. 2021. Online Implementa-
tion of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and
Energy Efficiency in Buildings. Energies 14, 997. [25]

• Brandi S., Gallo A., Capozzoli A. 2022. A predictive and adaptive control
strategy to optimize the management of integrated energy systems in buildings.
Energy Reports 8, pp: 1550-1567. [26]

• Brandi S., Fiorentini M., Capozzoli A. 2022. Comparison of online and offline
deep reinforcement learning with model predictive control for thermal energy
management. Automation in Construction 135, 104128. [27]
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4.1 Optimization of indoor temperature control and
energy consumption in heating systems

DRL has recently gained popularity among RL algorithms due to its ability to
adapt to very complex control problems characterized by a high dimensionality and
contrasting objectives. DRL employs deep neural networks in the control agent
due to their high capacity in describing complex and non-linear relationship of the
controlled environment. Despite the advantages provided by the implementation of
DRL as a control method for HVAC systems, some major drawbacks in the design
and the training process of the DRL agent need to be further explored.

The next section presents the main research challenges analyzed in this appli-
cation and introduces the motivations and novelty of the proposed methodological
approach.

4.1.1 Motivations and novelty of the proposed approach

A DRL agent is characterized by a number of hyper-parameters that need to be
carefully tuned depending on the specific case study and objective functions [39].
As a consequence, despite its model-free nature, DRL requires a sort of modeling
effort in its initial state to find the set of hyper-parameters which may lead to the
learning of a control policy close to the optimum in less time as possible and with
an acceptable uncertainty [75]. In the existing literature an analysis on the effect of
the hyper-parameters settings on the performance of the control strategy was poorly
investigated. Moreover, two opposite approaches can be followed when deploying a
DRL agent previously trained offline: static deployment and dynamic deployment as
introduced in Chapter 2. Moreover, in the design of the DRL a proper selection of
the variable set which describe the environment is particularly important, considering
it represents the environment as it is observed by the control agent. The effect of
variable section on the adaptability capability of the DRL controller need to be
further explored respect to the exiting literature.

The present application focuses on the development of a DRL agent to control
the set-point of supply water temperature to heating terminal units system serving a
thermal zone of an office building. The main scope of the application is to extensively
test the operation of a robust agent by exploring its adaptability to the variation of
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forcing variables such as weather conditions, occupant presence patterns and different
indoor temperature set-point requirements. The analyses were conducted considering
both a static and dynamic deployment with the aim of underlining limitations and
opportunities. Moreover, two different sets of input variables (with an adaptive
and non-adaptive approach respectively) were analyzed for assessing the impact of
variable selection process on the adaptability capabilities of the RL controller.

On the basis of the literature review on RL and DRL control in HVAC systems
presented in Chapter 2 the main innovative contributions that this application intends
to provide can be summarized as follows:

• The control performance of a DRL agent was analyzed both in terms of indoor
temperature control and energy consumption against a baseline controller
implementing a climatic-based logic of supply water temperature set-point
and a rule-based control of heating system operation.

• The design of a DRL agent was conducted performing a tuning of the hyper-
parameters which may strongly affect the control performance of the agent.

• A proper variable selection was proposed to prevent the agent from learning an
overfitted control policy. When a DRL agent is developed, in most of the cases
the input variables describing the controlled environment are not defined to
provide information to the agent in an adaptable manner with respect to control
objectives. To this purpose, the variable selection process was performed both
with adaptive and non-adaptive approach in order to produce an effective
comparison.

• The two approaches of DRL deployment, static and dynamic, were compared
in four different deployment scenarios to assess the adaptability of the agent
to the variation of forcing variables such as weather conditions, occupancy
patterns and different indoor temperature set-point requirements.

The rest of the section is organized as follows. Section 4.1.2 presents the method-
ological framework adopted to test the DRL controller. Section 4.1.3 introduces the
case study and the control problem. Section 4.1.5 presents the results obtained for
the analyzed case study. Section 4.2.6 discuss the results and their implications.
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4.1.2 Methodological framework of the application

In this section the methodological framework is presented with the aim of introducing
each stage of the DRL control agent development. The present framework unfolds
over three different stages as shown in Figure 4.1.

Fig. 4.1 Framework of the application of DRL control [24].

Problem formulation: the first stage of the framework was aimed at defining
the main components of the reinforcement learning control problem. The action-
space includes all the possible control actions that can be taken by the control agent.
Considering that a Deep-Q-learning was implemented, the action space is discrete.
The reward is a function which describes the performance of the control agent
with respect to the control objectives. Finally, the state-space is a set of variables
related to the controlled environment which are fed to the agent in order to learn the
optimal control policy which maximizes the reward function. The state-space was
formalized following two approaches. In the first approach (Adaptive), the variables
were selected in order to make them flexible to possible changes in the controlled
environment (Variable Set A). In the second approach (Non-Adaptive), the selected
variables are equally representative of the state of the environment but do not follow
an adaptability paradigm (Variable Set B).

Training: in the second stage of the process the DRL agent was trained. As
introduced in section 3 reinforcement learning agents are characterized by many
hyper-parameters which require appropriate tuning. In this stage, a tuning was
carried out on some of the most important hyper-parameters by training the agent
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with different configurations, in order to analyze the variations in the results obtained.
The training process was implemented in an offline fashion using a training episode
(i.e. a time period representative of the specific control problem) multiple times to
constantly refine agent’s control policy.The training episode was expressly chosen
in order to not completely cover the full state-action space of the present control
problem. In this way, it was possible to evaluate the adaptability of the agent to
climatic conditions never explored during training during the deployment phase.The
hyper-parameter tuning process was performed for an agent implementing the vari-
able set A. The best configuration of hyper-parameters resulting from the analysis
was successively employed to train the agent with variable set B.

Deployment: the resulting agents, one trained on adaptive approach (using
variable set A) and the other one trained with non-adaptive approach (using variable
set B), were tested in the last stage. Both agents were tested through a static and
dynamic deployment in one episode which includes a different period (i.e. weather
conditions) from the training episode. Moreover, the deployment was performed in
four different scenarios including different occupant presence patterns and indoor
temperature requirements from the training stage. Eventually, a comparison of the
performance obtained with the different approaches was proposed.

4.1.3 Description of the case study

The DQN algorithm described in section 2.1.2 was implemented to control the
water supply temperature of a heating system for a simulated office building. In the
following sub-sections, a description of the case study together with the formulation
of the control problem are provided.

Description of the building

The simulated building is representative of a huge portion of the Italian building stock
in terms of both heating system configuration and building construction features. It
is a six-level mixed-use building with a net heated surface of 9300 m2 located in
Turin, Italy. The indoor environment is heated through water terminal units (i.e.,
radiators). The building is composed of three thermal zones served by different
hot-water circuits and was built between 1930 and 1960. The average transmittance
values of the opaque and transparent envelope components are respectively 1.084



66 DRL applications in HVAC systems

and 2.921 W/m2K. The ratio between heat transfer surface and gross volume (i.e,
aspect ratio) is equal to 0.25 m−1. The implementation of the DRL controller is
tested for one thermal zone which includes only office rooms. This zone is composed
of four-levels with a net heated surface of 7000 m2 and a net heated volume of 33000
m3. The remaining zones are occupied by the local police department and the warden
of the whole building. Figure 4.2 shows a picture of the real building and highlights
the thermal zone modelled in this application.

Fig. 4.2 Office case study located in Torino, Italy. Detail of the office zone modelled in this
application [24].

Heating system and control objectives

The heating system installed in the real building is quite complex. It is composed
by two hot water loops connected by a heat exchanger. The primary loop includes
four gas-fired boilers with a total nominal capacity of 1300 kW. The secondary loop
includes three zone-loops served by different pumping systems. The three zone-loops
withdraw hot water from the same water collector. The control of the supply water
temperature is achieved through three-way mixing valves. However, EnergyPlus
does not reach this level of complexity in the definition of the HVAC system and
some simplifications were introduced to model the building.

In the present case study, the control problem focuses on the regulation the
supply water temperature (TSUPP) to heating terminal units of a single thermal zone.
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The heating system was modeled in EnergyPlus with a single hot water loop. The
supply side includes a single gas fired boiler (Boiler:HotWater) and a constant speed
pump (Pump:ConstantSpeed). The supply water temperature set-point (SPT SUPP)
was managed through a SetPointManager:Scheduled which directly receives inputs
from Python through the ExternalInterface. The demand side includes one thermal
zone and its relative bypass branch. The goal of the control policy is to reduce
the amount of thermal energy provided to the supply water while maintaining
indoor air temperature within an acceptability range during occupied periods. This
application, even being developed in a simulation environment in which every
thermal comfort-based parameter can be easily evaluated, considers only the zone
air temperature (TZONE). In fact, other comfort related-variables are not monitored
in the real building. Moreover, the water terminal units can control only the sensible
part of the thermal load. If the zone air temperature value falls between upper
and lower threshold of a pre-defined acceptability range, then indoor temperature
requirements are satisfied. In this application the acceptability range was defined
in the interval [-1,1] °C from the desired indoor temperature set-point (SPT ZONE).
The application focuses on the energy supplied for heating the carrier fluid (QSUPP)
regardless the type of the generation system serving the building. Technically, in real
life implementations, the regulation of supply water temperature can be achieved
through different solutions such as three-way mixing valves or by modulating boiler
or heat pumps. The control policy developed through the presented approach could
be then employed independently by the actual generation system installed. Figure
5 provides a simplified scheme of the heating system and of the control problem
formulation.
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Fig. 4.3 Schematic of the heating system analysed [24].

Baseline control strategy

The performance of the DRL control was evaluated against a baseline control logic
implementing a combination of rule-based and climatic-based logics for the control
of the supply water temperature. The starting time of the heating system was
determined according to the value of indoor temperature and the amount of time
before the occupant’s arrival. The controller is enabled to turn on the heating system
up to four hours before the arrival of the occupants if the difference between the
actual indoor temperature and the low threshold of the acceptability range is higher
than 3 °C, or up to three hours before if that difference is higher than 2 °C. In any
other case the controller turns on the heating two hours before occupant’s arrival if
the zone temperature is lower that the low threshold of the acceptability range. When
the zone reaches the upper threshold of the acceptability range the heating system is
turned off. If the zone temperature falls below the lower threshold the heating system
is turned on again. This control strategy is operated until two hours before occupants
leave the building, when the heating system is turned off to exploit thermal inertia
until the next day. The supply temperature value is linearly interpolated between a
maximum value of 70 °C when the outdoor air temperature falls below -5 °C and
a minimum value of 40 °C when the outdoor air temperature is over 12 °C. These
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values were selected according to the control logic of the supply temperature actually
implemented in the Energy Management System of the real building.

4.1.4 Design of the DRL controller

The DRL control algorithm described in section 2.1.2 was trained and tested in the
developed simulation environment. In the next sub-sections, the design of the action
space and of the reward function are discussed along with the configuration of the
training and deployment phases.

Design of the action-space

At each control time-step the agent selects a value of supply temperature set-point
(SPT SUPP). Considering that the DQN was chosen as control agent the action-space
is expressed in a discrete space. The space includes the following actions related to
the supply water temperature in °C:

At = [20,40,50,60,70] (4.1)

These values where selected in order to provide to the DRL agent the same range
of supply water temperature set-point as the baseline controller. At the same time,
the values were selected to limit the actions to only five values in order to not over-
complicate the control problem formulation. Given the inertia of the water-based
heating system intermediate values of supply water temperature can be reached
by the agent switching between available control actions during system operation.
The introduction of intermediate values of set-point supply water temperature in
the present action-space (e.g. 45 °C, 55 °C, 65 °C) would have only increased the
complexity of the calculations performed by the neural network model [154] without
effectively producing an improvement on the learned control policy. The simulation
environment was set in order to shut down circulation pump when the supply water
temperature value falls below 20 °C.
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Design of the reward function

The reward that the agent receives after taking an action at each control time-step
depends by two competing terms: the energy and temperature-related terms. The
energy-related term is proportional to the energy provided to supply water to reach the
desired set-point. Unlike other applications where the energy-related term is purely
intensive, in this study this term was normalized with respect to the temperature
difference between zone temperature set-point and outdoor air temperature. This
formulation was found effective in accelerating the convergence of the developed
agent to a near-optimal solution. Through this approach the agent is not excessively
penalized for taking energy-intensive actions when the outdoor temperature is very
low and vice-versa. Moreover, this formulation can represent a robust approach to
the development of DRL control agents since it is less sensitive to extreme weather
conditions and modifications of indoor temperature set-point.

The temperature-related term is quadratically proportional to the distance be-
tween zone air temperature set-point and its actual value. This formulation was
found to be effective in speeding up the learning process, making the agent able to
easily avoid the exploration of states characterized by unacceptable conditions of the
indoor environment from the very beginning of the training phase. The formulation
of the reward function is expressed by the following equation:

R =−β ∗ QSUPP

SPT ZONE −TEXT
−ρ ∗ |(SPT ZONE −TZONE)

2|OCC=1 (4.2)

The coefficients ρ and β were introduced to weight the importance of the two
terms of the reward function.

Design of the state-space

The state represents the environment as it is observed by the control agent. The agent,
at each control time-step, choses among the available actions according to the values
assumed by the state. In this application, two different state-space were designed as
introduced in section 4. The first one includes a set of input variables (variable set
A) selected in order to guarantee the maximum adaptability of the learned control
policy. Part of these variables were obtained by applying a variable-engineering
process as illustrated in section 2.2.5. The second state-space, instead, is composed
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by a set of input variables (variable set B) which do not follow an adaptive approach.
These variables are provided in input to the control agent as they are collected from
the environment without performing any variable-engineering process. In both cases
the variables were selected according to the following criteria:

• The variables must provide to the agent all the necessary information to predict
immediate future rewards.

• The variables must be feasible to be collected in a real-world implementation.

The two variable sets are reported in Table 4.1 and Table 4.2 respectively. Overall,
the adaptive set (variable set A) includes 11 variables while the not-adaptive set
includes 13 variables (variable set B).

Table 4.1 Variables included in the variable set A conceived with an adaptive approach [24].

Variable Min Value Max Value Unit Time-step
∆T Indoor set-point – external air 6 31 °C t
Direct solar radiation 0 720 W/m2 t
Supplied heating energy 0 125 kWh t
Supply water temperature 10 80 °C t
Return water temperature 10 80 °C t
Time to occupancy start 0 36 h t
Time to occupancy end 0 12 h t
∆T Indoor set-point – indoor air -3 10 °C t,t-1,t-2,t-3
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Table 4.2 Variables included in the variable set B conceived with a non-adaptive approach
[24].

Variable Min Value Max Value Unit Time-step
Time of the day 0 24 h t
Day of the week 1 7 - t
External air temperature -12 26 °C t
Direct solar radiation 0 720 W/m2 t
Supplied heating energy 0 125 kWh t
Supply water temperature 10 80 °C t
Return water temperature 10 80 °C t
Occupants’ presence status 0 1 - t
Indoor set-point 13 25 °C t
Indoor air temperature 13 25 °C t,t-1,t-2,t-3

External air temperature and direct solar radiation were both included in variable
set B, as they are the most influencing ambient variables affecting building heating
energy consumption and indoor temperature. On the contrary, in the feature set
A, external air temperature was substituted by the temperature difference between
indoor set-point and external air since it is directly related to the formulated reward
function. This formulation was found to be effective in removing the dependency of
the learnt control policy from a fixed value of indoor temperature set-point which
could limit agent adaptability.

The supplied heating energy was selected considering that it is proportional to the
energy-related term in the reward function and it represents a key information that
has to be provided to the agent. Moreover, the heat supplied to the water depends by
the supply water temperature and by the return water temperature. These variables,
which represent the main operational parameters of heating system, were included in
both the variable sets.

Information about the presence of occupants in the zone, from which depends the
temperature-related term in the reward function, is provided through three different
variables. The occupants’ presence status, added in the set built following not-
adaptive approach, indicates if, in a certain control time-step, the zone is occupied
or not (it depends only by the occupancy schedule) and it is expressed in the range
[0,1]. However, this information alone is not comprehensive. It would be desirable
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for the agent to learn when it is convenient to pre-heat the zone so as to ensure an
adequate indoor air temperature during occupancy period. A common approach to
this problem in the literature, implemented in the non-adaptive set, is to select as
variables time-of-the-day and day-of-the-week. However, following this procedure,
the agent may learn to fit only to a specific occupancy-schedule provided during
the training process. To overcome this issue, the variables time to occupancy start
and time to occupancy end were introduced in the variable set A to define the time
left for the subsequent change in the occupancy pattern. When the building is not
occupied, time to occupancy start represent the number of hours left before occupants’
arrival time, during occupancy periods this variable is equal to 0. Conversely, when
the building is occupied, time to occupancy end represent the number of hours to
occupants’ leaving time, during off-occupancy periods this variable is equal to 0.

Eventually, the agent needs information about the zone air temperature which is
directly connected with the temperature-related term of the reward function. This
information was straightforwardly added to the variable set B along with its 3 lagged
values in the past (15, 30 and 45 minutes lag respectively) and the indoor set-point.
Contrarily, in variable set A, this information was provided indirectly introducing as
variable the difference between the zone air temperature and indoor set-point along
with its 3 lagged values in the past (15, 30 and 45 minutes lag respectively).

The relative humidity was not included in the two set of variables considering that
the heating system based on water radiators is capable to control only the sensible
part of the heating load.

In order to feed the variables to the neural network, they were scaled in the (0, 1)
range according to a min-max normalization.

Setting of the training phase

The Reinforcement Learning framework is characterized by a number of hyper-
parameters that strongly affect the behavior of the control agent. In order to analyze
their impact on the performance of the control agent, different configurations of
the most interesting hyper-parameters were tested and compared in this study. The
configurations implemented for the training of the DRL agent are described in the
following tables.
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The hyper-parameter tuning process was performed only with the agent imple-
menting the state space built following adaptive approach (variable set A). In Table
4.3 are listed the values of the hyper-parameters kept unchanged during the training.

Table 4.3 Fixed hyper-parameters of the DRL agent training [24].

Hyper-parameter Value
DNN architecture 4 layers
Neurons per hidden layer 512
DNN optimizer RMSprop
Optimizer learning rate 0.0001
DQN batch size 32
Episode length 5856 control steps (61 days)
Sequential memory size 5 episodes
Target model update 672 control steps (7 days)
Number of episodes 50
Boltzmann temperature (τ) 1
ε start 1
ε end 0.1
Energy related term weight factor (β ) 1

Although hyper-parameters such as neural network architecture and optimizer
learning rate can influence the learning capabilities of a DRL agent, in this application
these values were selected according to the experience and guidelines provided in
the current scientific literature for similar applications.

The two hyper-parameters involved in the tuning process are the discount factor
and the weight factor of the temperature-related term (ρ). The discount factor
determines the importance of future rewards over immediate rewards and directly
affects the magnitude of Q-values. The weight factor of the temperature-related term
of the reward function (ρ) defines the relative importance of indoor temperature
requirements with respect to energy consumption. Lower values may result in
a control policy which guarantees higher energy saving at the expense of higher
temperature violations and vice-versa. Table 4.4 reports the details of each hyper-
parameter configuration implemented for the tuning process.
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Table 4.4 Different hyper-parameter configurations implemented in the training phase [24].

run Discount Factor γ Weight Factor ρ

1,2,3 0.9 10
4,5,6 0.95 10
7,8,9 0.99 10

10,11,12 0.9 20
13,14,15 0.95 20
16,17,18 0.99 20
19,20,21 0.9 1
22,23,24 0.95 1
25,26,27 0.99 1

The performance of Deep Reinforcement Learning is affected by the stochastic
behavior that is intrinsic in both deep neural networks and controlled environments.
In order to account for this aspect, each configuration has been ran three times
employing multiple random seeds in order to ensure consistency according to [155].
Successively, the hyper-parameters of the run leading to the best performance in
terms of both energy savings and temperature control were selected to train also the
agent implementing variable set B.

As stated in section 4.1.2, a training episode was selected to be representative of
the present control problem. At the same time the training episode did not include
a full state-action space in order to test the adaptability of the proposed agents
during deployment. In particular, a training episode includes 2 months, from 1st of
November to 31st of December (5856 control steps, one every 15 minutes). The
weather file used in this application is the reference weather file (ITA_TORINO-
CASELLE_IGDG.epw) available in EnergyPlus for Torino, Italy. The same weather
file from the 1st of January to 31st of March was used for the deployment phase. As
reported in Table 4.3 each training episode was repeated 50 times for each hyper-
parameter configuration in order to let the agent explore several control strategies.
On average one episode took 3 minutes to be simulated on a machine with an Intel
Core i78550 CPU 1.80GHz processor and 16.0 GB RAM. An entire training period
(including 50 episodes) for each hyper-parameter configuration took on average 150
minutes to be simulated.
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Figure 4.4 shows the patterns of outdoor air temperature and direct solar radiation
in the two periods (i.e. training and deployment period). For the sake of legibility, the
solar radiation values include only daylight period. The training period was selected
for its wide range of temperature values spanning between -8 °C and 17 °C while
the direct solar radiation is higher during the deployment period. However, this latter
aspect allows to test the adaptability of DRL agent different climatic patterns from
those used for the training. In the training phase occupancy was simulated between
07:00 and 19:00 from Monday to Saturday. The required indoor set-point was set
equal to 21 °C and the temperature acceptability range between 20 °C and 22 °C.

Fig. 4.4 Outdoor Air Temperature patterns during training and deployment periods [24].

Deployment phase

In the last phase of the process the two agents were deployed in four different
scenarios in order to assess the adaptability capabilities of the learned control policy
to different configurations related to the controlled environment. Each agent was
deployed for one episode including the period between 1st January and 31st March.
The four different scenarios are:

• Scenario S1: this is the base case where no changes in the controlled envi-
ronment were implemented. The goal is to test the adaptability of the DRL
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controller only to patterns of outdoor conditions (i.e. air temperature and solar
radiation) never observed during the training phase.

• Scenario S2 & S3: in these scenarios the zone temperature set-point was
increased to 22 °C and decreased to 20 °C respectively in order to assess the
performance of the agent in satisfying temperature requirements that differ
from the ones assumed in the training.

• Scenario S4: in this case the zone occupancy schedule was modified as shown
in Figure 7 maintaining unchanged the zone temperature set-point respect to
the training conditions. The lighting and electric appliances schedules were
also changed according to the new occupancy schedule.

Fig. 4.5 Occupancy schedules and indoor set-point in different design conditions [24].

The trained control agents were deployed in each testing scenario in both static
and dynamic configuration. In the static configuration the control policy was not
updated during the deployment of the agent. Contrarily, dynamically deployed agents
constantly leverage new experience obtained interacting with the environment to
adjust their control policy. In particular in this configuration, the agents leveraged a
new replay buffer (i.e. including tuples collected only during the deployment episode)
while the update frequency of the target model of the DQN framework was lowered
to 288 control time-steps (i.e. 3 days). The control policy was updated every control
time-step while the values of the other hyper-parameters were left unchanged with
respect to the values showed in Table 4.3. The dynamic deployment configuration,
despite providing greater adaptability, requires additional computational cost and
may cause instabilities in the learned control policy.
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4.1.5 Results obtained

The framework presented in section 4.1.2 was implemented in the integrated simula-
tion environment. The results are presented in this section in order to compare the
performance of different DRL control agents (trained with different input variable
sets and deployed following different approaches) and the baseline control of supply
water temperature to terminal units of a heating system.

Results of the training process

As introduced in section 4.1.2, in the first step of the training phase a tuning process
was carried out on two DRL hyper-parameters to highlight their influence on the
performance of the control algorithm. The variable set based on adaptive approach
introduced in section 4.1.4 was implemented for this tuning process.

A useful indicator to assess the goodness of the learning process of a DRL agent
is represented by the evolution of the cumulative reward per episode. The reward,
which has not a direct physical meaning, takes into consideration both the energy
consumption and indoor temperature values and combines them in a single value.
Higher values of the reward correspond to a better performance obtained by the
control agent. It is important to supervise if the reward converges to a stable value.
A non-convergent trend in the reward may be caused by an agent that failed in
achieving an optimal control policy. To this purpose, the convergence of the different
configurations of the agent were analyzed in the episode-reward plot showed in
Figure 4.6. The figure is split into two main panels representing the evolution
of the energy-related term and temperature-related term respectively. Each main
panel is furtherly organized in a grid in which each sub-panel represents a specific
configuration of the hyper-parameters. Each sub-panel shows the evolution of the
relative term of the reward function during the training episode. The solid line
shows the average value per episode of the three different runs performed for each
configuration, while the grey area was drawn between maximum and minimum
value per episode. In all the configurations the agent starts exploring high values of
the energy-related term and extremely low values of the temperature-related term.
Across the different runs, the agent firstly learns how to correctly maintain indoor
temperature during the first 20 episodes; this fact can be observed by analyzing
the increase of the temperature-related term values and the relative decrease of
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the energy-related term. From this stage (i.e. 20th episode) the agent begins to
learn how to reduce energy consumption while keeping indoor temperature in the
range it previously learned. In fact, the values of the temperature-related term are
quite stable while the values of the energy-related term increase. Agents that were
initialized with a discount factor γ equal to 0.99 represent an exception, showing
highest variance in terms of temperature control performance. The training runs
performed with this specific configuration (γ = 0.99) seek to obtain higher rewards
in a longer time horizon compared to other agents generating an instability in the
objective function. This aspect is particularly clear observing the evolution of the
temperature-related term of the agent implementing a discount factor of 0.99 and
a weight of the temperature-related term equal to 20. On the other hand, agents
applying a discount factor equal to 0.9 shows the higher stability among all the
training configurations due to the shorter time horizon considered.

Fig. 4.6 Evolution of energy-related and temperature-related term of the reward function
during training phase [24].
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In this application the reward function is the weighted sum of supplied heat-
ing energy to water and temperature control performance. Therefore, the reward
value alone cannot directly provide a straightforward metric to evaluate the overall
performance of DRL control.

While the energy performance can be straightforwardly evaluated comparing the
amount of heating energy supplied to the water, the temperature control performance
requires the definition of an appropriate metric. In the present application, the indoor
temperature control performance was evaluated by calculating the cumulative sum of
temperature violations during occupancy hours. A temperature violation occurs when
the building is occupied, and the indoor temperature falls outside the acceptability
range. The magnitude of the temperature violation is then calculated as the absolute
difference between actual indoor temperature and desired set point value at each
simulation step. The cumulative value of this quantity over an entire episode returns
the performance of the control algorithm expressed in °C.

Figure 4.7 shows, in a four-quadrant visualization, the cumulative sum of temper-
ature violations during occupancy periods, as a function of the heating energy saving
with respect to climatic-based control baseline for the different hyper-parameter
configurations reported in Table 4.4.



4.1 Optimization of indoor temperature control and energy consumption in heating
systems 81

Fig. 4.7 DRL control performance in the last episode of the training phase. Each point refers
to a different training runs as reported in Table 4.4 [24].

The figure reports the results obtained in the last episode (50th) of the training
process. For the sake of legibility of the plot the y-axis was defined on a logarithmic
scale. The black-dashed lines indicate the performance achieved by the baseline
controller. The left-bottom quadrant includes all the solutions that have performed
better than the baseline both in terms of indoor temperature control and energy
consumption. Worst solutions, corresponding to higher energy consumption and
temperature violations than the baseline, should be displaced in the right-top quadrant.
None of the training runs produced results that fall within this latter region. In
particular, solutions with a discount factor (γ) of 0.99 and a weight of temperature-
related term (ρ) of 10 (runs 7, 8 and 9) and 20 (runs 16, 17 and 18) show the highest
variability. Agents trained with discount factors (γ) of 0.9 and 0.95 and a weight (ρ)
of 10 or 20 lead to the best trade-off solution achieving, at the same time, energy
saving and temperature control improvement. In particular, the setting of the discount
factor equal to 0.9 (run 1, 2 and 3) produced the less scattered solutions. This aspect
can be interpreted as an indicator of the consistency of the control policy learned
by such agents. As can be expected, agents implementing a weight factor of the
temperature-related term equal to 1 achieved greater energy savings at the cost of
worse temperature control. Following these considerations, the agent number 2, with
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a discount factor of 0.9 and a weight factor ρ of 10, was selected as best solution
among configurations explored in the hyper-parameter tuning process.

In order to furtherly characterize the results of the training phase, the performance
of the different solutions was analyzed on daily scale.

In Figure 4.8 are compared three agents implementing different values of the
discount factor γ . The comparison is proposed for the same working day of the
training episode. The figure shows the behavior of the agent when the discount factor
changes while the weight factor is kept constant (ρ = 10) for the same day of the
training period. Overall, in the three training runs, the agent has learnt to maintain
the indoor temperature between lower and upper thresholds of the temperature
acceptability range as can be observed from the central panels of the figure. However,
in the solution obtained considering a discount factor equal to 0.9, the agent learnt to
better maintain the indoor temperature across lower threshold of the acceptability
range. As can be observed from the left figure, the run performed with a discount
factor of 0.99 considerably anticipated the start-up phase resulting in higher energy
consumption compared to other solutions. Given the higher discount factor, this
agent learnt how to optimise the rewards stream in a longer horizon causing higher
instability. The agent implementing a discount factor of 0.9 selected higher values
of the supply water temperature during the first hours of the morning. As a result,
the zone air temperature reached exactly the lower threshold of the acceptability
range (20 °C) at the beginning of the occupied period (07:00). This agent led to a
heating energy saving of about 100 kWh in comparison with the agent implementing
a discount factor of 0.95 that shows a similar pattern of indoor air temperature.
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Fig. 4.8 Comparison between agents implementing different discount factors during a training
day [24].

Figure 4.9 reports the performance of the trained agents considering different
values of the weight factor ρ and a constant discount factor (γ = 0.9). It is possible
to notice the relative importance given to temperature violations obtained in the
three different solutions. In detail, the agent trained with a weight factor equal to 1
sacrificed indoor temperature control at the beginning and ending of the occupancy
period. However, this agent obtained a further daily energy saving of about 100 kWh,
respect to the previously discussed solution (ρ = 10, γ = 0.9), at the cost of keeping
indoor air temperature 1°C below the lower threshold of the acceptability range at
07:00 and 19:00.
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Fig. 4.9 Comparison between agents implementing different weight factors of the
temperature-related term during a training day [24].

At the end of the training phase, the same hyper-parameter configurations of
the best solution resulting from tuning process (i.e., discount factor γ = 0.9 and
weight factor ρ = 10) were employed to train a second agent with the variables of the
state-space selected following the non-adaptive approach (variable set B). Table 4.5
report the performances of the two agents relative to the last (50th) training episode
which lasts for 2 months between the 1st of November and 31st December.

Table 4.5 Performance comparison at the end of the training phase between agents imple-
menting adaptive and non-adaptive variable set in the definition of the state-space (γ=0.9,
ρ=10) [24].

Var. Set

DRL Control Climatic-Based Control
SavingTemp. viol. Temp.viol.

Cons. Cum. Occ.-rate Cons. Cum. Occ.-rate
[MWh] [°C] [%] [MWh] [°C] [%] [%]

A 101 37 2.8
113 112 3.3

-10.0
B 102 96 5.7 -9.92
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The table reports for each set of variables the performance in terms of total
consumption (Cons.) and temperature violations. The temperature violations during
occupancy were expressed both in terms of cumulative value of violations (Cum.)
and occurrence rate (Occ.-rate). As a reference, a temperature violation with an
occurrence rate of 5% means that the indoor temperature is out of range for the
5% of the total simulation steps included in the occupied periods of the building.
Eventually, the table shows in the last column the energy savings expressed in
percentage achieved by DRL controller with respect to climatic-based control.

As can be observed the two agents show similar performance in terms of energy
saving obtained compared to baseline. Despite both agents improved the indoor
temperature control and reduced heating energy consumption respect to the baseline,
the agent trained with variable set A performed slightly better especially in terms of
indoor temperature control. This aspect suggest that this agent was capable to better
exploit internal and external heat gains, improving temperature control and, at the
same time, increasing energy saving.

Results of the deployment phase

In this last section are analyzed the results of the deployment of the two agents
(trained with variable set A and B and considering ρ = 10 and γ = 0.9) in the
four different scenarios introduced in section 4.1.4. The deployment of each agent
was simulated both in a static and dynamic way for one episode. As previously
introduced, the deployment episode is 3 months long, including January, February
and March, and the climatic data employed in the simulation are gathered from the
reference weather file referred to Torino (ITA_TORINOCASELLE_IGDGėpw).

Figure 4.10 summarizes the performance obtained in terms of supplied heating
energy and cumulative sum of temperature violations for all the possible configu-
rations resulting from the combination of the four scenarios, two variable sets, and
two deployment processes (16 configurations) including also the baseline configura-
tion. The performance of the agent trained with the variable set A did not produce
always with dynamic deployment configuration an improvement with respect to
static deployment across the four scenarios (azure and blue bars in the Figure 12).
In particular, in scenarios S2 and S3 the dynamically deployed agent achieved a
lower energy saving compared to its statically deployed counterpart. In scenario
S2 this led to a slight improvement of temperature control performance while in
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scenario S3 the temperature control was performed with less accuracy compared to
statically deployed agent. Even without updating its control policy the agent trained
with the variable set A is capable to adapt to the different requirements in the differ-
ent scenarios achieving better performance than the baseline controller. The agent
based on variable set B, instead, shows opposite behavior and the effect of dynamic
deployment over static deployment is particularly significant (yellow and orange
bars in the figure). For example, in the scenario S2, which considers an increased
temperature set-point compared to training condition, the statically deployed agent
obtained the lowest consumption (yellow bar in the first panel of the bottom figure)
but an extremely high value of the cumulative sum of temperature violations (yellow
bar in the second panel of the bottom figure) meaning that the control policy was
not able to adapt to the new indoor temperature requirements. On the contrary, the
dynamically deployed agent in the same scenario achieved an overall performance
comparable with agent implementing the variable set A conceived with an adaptive
approach.

Fig. 4.10 Heating energy supplied and cumulative sum of temperature violations for agents
trained with both variable sets in four different scenarios under static and dynamic deployment
configuration. In the upper part of the figure are reported on the bars the heating energy
saving respect to the baseline [24].



4.1 Optimization of indoor temperature control and energy consumption in heating
systems 87

A similar condition occurred also for the fourth scenario, which considers the
presence of the occupants during Sunday (contrarily the training period) where the
dynamic deployment drastically improved the indoor temperature control perfor-
mances of the agent trained with variable set B. The same agent (trained with variable
set B) shows a different pattern in the third scenario. In this case, in which the desired
indoor set-point was reduced from 21 °C to 20 °C, the statically deployed solution
was capable to achieve satisfying temperature control performance (yellow bar in
the third panel of the bottom figure), but it obtained lower energy saving. On the
contrary, the dynamically deployed solution achieved almost the same temperature
control performance (orange bar in the third panel of the bottom figure) but increased
the energy savings obtained from 1.9% to 6.4%. Also in this case the dynamic
deployment was found to be effective in improving performance of the agent by
means of continuous refinement of the control policy during the deployment episode.
However, as the Figure 4.10 clearly shows, even in the dynamic deployment configu-
ration the agent trained with variable set B was not able to achieve the performance
of the agent trained with variable set A across all the four scenarios.

The successive figures (from Figure 4.11 to Figure 4.13) provide details about
some configurations that are of particular interest for supporting the discussion.

Figure 4.11 shows a comparison between statically deployed agent trained with
variable set A, and the baseline controller during a week of the deployment period.
The plot shows the indoor air temperature patterns generated by the two controllers
along with supply water temperature, outdoor air temperature and direct solar radia-
tion profiles. The DRL agent was able to exploit solar heat gains reducing supply
water temperature and, consequently, save energy. This aspect is particularly relevant
during the third and sixth day when solar radiation is higher.
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Fig. 4.11 Comparison between statically deployed agents trained with variable set A and
variable set B in terms of daily indoor temperature profiles during Tuesdays in the scenario
S2 [24].

Figure 4.12 highlights the differences between agent trained with variable set
A (red lines) and agent trained variable set B (blue lines). The plot shows for
different weeks and the same working day (Tuesday), the daily indoor temperature
profiles in the scenario S2, which implements an increased indoor set-point (22
°C) compared to the training phase (21 °C). As can be observed the agent based
on adaptive variables (variable set A) was promptly able to adapt to the change of
indoor temperature requirements maintaining satisfying conditions within the zone
despite any learning goes on during static deployment. On the other hand, the agent
trained with non-adaptive variables (variable set B) was not capable to adapt without
relying on dynamic deployment.
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Fig. 4.12 Comparison between statically deployed agents trained with variable set A and
variable set B in terms of daily indoor temperature profiles during Tuesdays in the scenario
S2 [24].

Figure 4.13 compares the effect of a static and a dynamic deployment for the
agent trained with variables selected according to the non-adaptive approach (variable
set B). This detail is particularly interesting considering that, as can be observed
in Figure 4.10, the differences between the two deployment strategies are more
emphasized for the agent trained with the variable set B.

Fig. 4.13 Comparison between dynamically and statically deployed agent trained with
variable set B in terms of daily indoor temperature profiles during Sundays in scenario S4
[24].

The figure shows the results obtained during the first 6 Sundays in deployment
scenario S4. This scenario is particularly interesting because, differently from the
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training conditions, implements the presence of occupants during Sundays. The plot
shows, for the first 6 weeks, the daily indoor temperature profiles generated by the two
agents. It is interesting to notice that the divergence between the profiles increases
over time suggesting that the two agents have different adaptability capabilities.
During the first week the two agents generated almost the same pattern which clearly
do not satisfy the indoor temperature requirements. The larger temperature violation
is localized during the first hours of the day since both the agents were not able to
anticipate occupants’ arrival. A second temperature violation region is localized in
the middle part of the day, when, during training, the agent correctly learnt to exploit
solar heat gains in order to reduce supply water temperature. However, the reduction
of supply water temperature caused the occurrence of temperature violation condition
since the agent did not performed a sufficient pre-heating of the zone in order to reach
the acceptability range of the indoor temperature. This pattern was replicated by the
statically deployed agent among the six weeks demonstrating its lack in adapting
to the modified occupancy schedule. On the contrary, the dynamically deployed
agent was capable to learn from experience and it was able to achieve satisfying
temperature conditions starting from the third week of deployment.

4.1.6 Discussion

The presented application focuses on the development of a DRL controller of supply
water temperature set-point to terminal units of a heating system. The developed
controller was trained and deployed in a simulation environment which combines
EnergyPlus and Python. The controller aims at optimizing both energy consumption
and indoor temperature control trying to identify the best trade-off between the two
contrasting functions. The control problem analyzed in this application was relatively
simple, not involving elements such as renewable energy sources or storage which
may effectively require an optimized controller to be fully exploited. Although the
only two features of the building that could be exploited in the considered optimiza-
tion process were the building thermal mass and the temperature acceptability range,
the DRL controller led to good performance improvements in comparison to the
baseline controller.

In DRL algorithms hyper-parameters tuning and reward design play a key role in
identifying the optimal configuration of DRL controller. In this application, a tuning
process was carried out on some of the main hyper-parameters to highlight their
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influence on the final performance of the developed controller. Given this strong
dependence it seems necessary for reinforcement learning applications in HVAC
systems to rely on simulated environments, at least in the initial stage of training. As
a consequence, despite the model-free nature of reinforcement learning control, a
modelling effort needs to be accounted.

The effect of adaptive variables defining the state-space was analyzed. A variable
set designed to enhance adaptability and flexibility of a DRL agent with respect to
variable requirements of the indoor environment (i.e. indoor temperature set-point
and occupancy schedule) was introduced. A DRL agent based on adaptive variables
was compared with an agent trained with more classic non-adaptive variables. The
comparison was performed by simulating the deployment of the two agents in four
different scenarios. Moreover, the deployment of the agents was simulated both
in static and dynamic configuration. The agent trained with adaptive variable set
was capable to adapt to each scenario performing better than the baseline controller
even if statically deployed. The dynamic deployment of the same agent did not
produce significant improvements on the overall performance, showing slight poorer
performance compared to static deployment case.

On the contrary when the variables were selected with a non-adaptive approach
the dynamic deployment performed better that the static deployment in all the sce-
narios analyzed. These results proved that the proposed variable selection process
was useful in providing to the agent the capability to adapt itself to changes that may
occur in the controlled environment. This analysis suggests that a DRL controller
with a carefully designed state-space is capable to provide the necessary flexibility
and adaptability to changing indoor requirements even in a static deployment con-
figuration. Through this approach is possible to leverage the advantages provided
by static deployment (i.e. lower computational costs and higher stability) without
sacrificing adaptability. However, the adoption of an adaptive approach in the design
of the state space may not be enough to guarantee a good control performance in
the case of retrofit on the HVAC system or other building components. In such
cases thermal dynamics of the controlled environment may change requiring DRL
controller to update its policy through a dynamic deployment. The implementation
of the proposed controller in a physical test-bed requires the monitoring of a few
variables that can be easily collected through low-cost solution already available in
the market. An outdoor ambient sensor is required to monitor outdoor air temperature
and solar radiation. Alternatively, those data can be easily obtained by an external
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weather data provider. Many of those services requires no fees for a limited number
of data requests and already implement Application Program Interfaces (APIs) which
enable the streaming of data. Low-cost solutions are available also for what concerns
indoor air temperature monitoring. Supply and return water temperature are usually
collected by the Building Management System (BMS) and thermocouples must be
installed in the relative pipes. The most challenging quantity to be monitored is the
supplied heating energy. This variable can be indirectly calculated from supply and
return water temperature if the water mass flow rate through the system is known
and collected through an appropriate sensor or directly by installing a non-invasive
heat meter. Since the considered case study is an office building the variables time
to occupancy start and time to occupancy end included in the variable set based on
adaptive approach can be easily obtained through working timetables. The most
challenging aspect is to design an infrastructure capable to manage the stream of
data from different sources in order to provide to the controller the required input
information. The static or dynamic deployment can be achieved in-situ if the BEMS
allows the running python scripts otherwise all the operations can be performed in a
cloud server.
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4.2 Effective pre-training of DRL agent by means of
data-driven models

DRL agents have to perform several interactions with the controlled environment
before converging to the optimal control policy. In this context, it is common practice
to pre-train an RL agent offline in simulation environments relying on physics-based
models of the real building. Nonetheless, the development of physics-based models
requires a considerable effort and expertise beside a huge amount of input data.
The application introduced in this section aims to evaluate the effectiveness of pre-
training a DRL agent on a data-driven model of a building based on Long Short-Term
Memory (LSTM) neural networks.

The next section presents the main research challenges analyzed in this appli-
cation and introduces the motivations and novelty of the proposed methodological
approach.

4.2.1 Motivations and novelty of the proposed approach

When detailed monitored data of the analyzed building are available, data-driven
models can be employed to pre-train DRL agents. Data-driven models require
significantly less input data than their physics-based counterparts resulting in reduced
development times. Following this approach, Zou et al. [72] demonstrated how a
reinforcement learning agent could learn an optimal control policy by interacting
with data-driven models based on LSTM architecture of an air handling unit system
built from monitored data. However, as the authors clearly states in their work,
the performance of the trained agent were not evaluated in field but on the same
data-driven models employed for training. The drawback of data-driven models is
their inability to map patterns that were not present in the training data. For example,
if during training on a data-driven model the DRL agent explores trajectories that
deviates from the normal behavior of the physical building, the response of the
model may be significantly different from the real behavior of the system. As a
consequence, the control policy learned by the DRL agent may be sub-optimal.

Based on the previous reasoning the application presented in this section aims
at evaluating the performance of DRL agent pre-trained by means of a data-driven
model of the original system. Given the unavailability of a physical system to test the
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approach a EnergyPlus model was used a surrogate of the real building. Despite this
simplification the primary purpose of the present application was not undermined.

4.2.2 Case study and control problem

The control problem focuses on the regulation of the heating power delivered from
a gas-fired boiler to the water serving an office building equipped with radiators
as terminal units. The regulation of the plant is performed by adjusting the supply
water temperature set-point while the water mass flow rate is constant. The objective
of the controller is to reduce the amount of thermal energy provided to the supply
water while maintaining indoor air temperature within the desired acceptability range
([+1 °C,-1 °C] with respect to set-point value) during occupancy periods. Since the
analyzed system is an all-water system, heating terminals are not able to control the
relative humidity. Thus, comfort analysis have been focused only on the analysis of
indoor air temperature deviation with respect to the desired set-point. The control
action was taken with a frequency of 15 minutes.

4.2.3 Methodology

In this section the methodological framework is presented with the aim of introducing
each phase of the DRL control agent development. The methodological framework
of the present application unfolds through three different phases as illustrated in
Figure 4.14. Moreover, two different weather data files have been employed across
the different phases.

Fig. 4.14 Methodological framework of the application of DRL control pre-trained with
data-driven models.
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LSTM model development: the first phase of the framework is aimed at the
development and training of a robust data-driven model of the building dynamics.
An EnergyPlus simulation of the case study was performed employing a rule-based
algorithm as a control strategy. This process was conceived to replicate the case in
which, for the considered case study, historical monitored data were available to be
employed for the training of the data-driven model. An LSTM neural network was
designed to predict the evolution of indoor air temperature for the next time-step
given a series of input variables. The model was trained performing an optimization
of the hyper-parameters values in order to identify the best configuration. Eventually,
the performance of the model were evaluated for both open-loop and closed-loop
configuration.

DRL training: in the second phase the trained data-driven model was wrapped up
in an OpenAI Gym interface and employed to train a DRL controller. The agent was
trained for several episodes considering the same weather data input of the previous
phase. Also in this phase an optimization of the hyper-parameters was carried out.
The proposed controller was based on a SAC architecture for continuous action
spaces described in Chapter 2. SAC was chosen among different DRL frameworks
considering its capacity to handle continuous action-spaces, its off-policy evaluation
mechanism and the capability to learn stochastic control policies.

DRL deployment: In the third phase, after the training process, the agent was
statically deployed in an OpenAI Gym environment implementing the EnergyPlus
model of the building as described in Chapter 3. In this phase, a new weather file
was implemented in order to simulate the deployment of the trained agent during a
new heating season as it was implemented in a physical case study. The performance
of the proposed controller were compared to the rule-based baseline employed to
generate the offline dataset in the first phase of the framework. This aspect represent
the only exception of the methodology to the exact emulation of a physical case
studies since it would had not been possible to deploy both baseline strategy and
DRL in the real system for the same period.

4.2.4 Implementation of the proposed methodology

The test facility analyzed in this application consists of a six-level mixed-use building.
This is the same facility described for the previous application and introduced in sec-
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tion 4.1.3. The following subsections introduce in detail the different implementation
steps of the proposed methodology. Figure 4.15 shows the distribution of outdoor
air temperature, relative humidity and direct solar radiation for the two weather files
employed in this application.

Fig. 4.15 Distribution of outdoor air temperature, relative humidity and direct solar radiation
for both weather data 1 (left) and weather data 2(right).

Implementation of the baseline controller

The baseline control strategy is based on the combination of a rule-based strategy
managing the on and off status of the system, and a climatic regulation determining
the supply water temperature set-point. The system is switched on 4 hours before
the arrival of the occupants if the difference between indoor air temperature and the
lower threshold of the acceptability range is greater than 3°C. Similarly, the system
is switched on 3 hours before the arrival of the occupants if the difference is greater
than 2 °C. Eventually, the system is switched on 2 hours before the arrival if the
previous two conditions were not met. During occupancy periods when the indoor
air temperature reaches the upper threshold of acceptability range the heating system
is turned off. The heating system is turned on again if the zone temperature falls
below the lower threshold. The climatic regulation is based on linear function that
spans from 70 °C to 40 °C when the outdoor temperature goes from -5 °C to 12 °C.
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Implementation of the LSTM model

As introduced in the previous section, the LSTM model was trained with data
generated from a EnergyPlus simulation implementing the baseline controller for
a period of 4 months between 1st November and 28th February with a timestep of
15 minutes. The weather data used in this phase and identified in figure 4.14 as
Weather Data 1 is is the reference weather file (ITA_TORINOCASELLE_IGDG.epw)
available in EnergyPlus for Torino, Italy.

This process emulates the collection of building related data in a physical building
managed through a traditional control strategies. Given a set of predictor attributes,
the objective of the LSTM model is to estimate the evolution of indoor air temperature
for the successive time-step. Predictor attributes were organized into 48 look-back
sequence. Each sequence included the variables reported in table 4.6.

Table 4.6 Variables included in a input sequence of the LSTM model

Variable Min Max Unit
Value Value

Outdoor air temperature -12.0 26.0 °C
Direct solar radiation 0.0 720 W/m2

Hour of the day 0 23 -
Day of the week 1 7 kW
Supplied heating power 0.0 522.0 kW
Indoor air temperature (previous time-step) 13.0 25.0 °C

Predictor sequences include variables which are easily available in physical
environment. Temporal information such as the hour of the day and day of the
week are necessary to provide knowledge to the model about usage patterns of the
building which determines endogenous loads. Outdoor air temperature and direct
solar radiation were included as the weather variables which affect the considered
control problem determining exogenous loads. Indoor air temperature value provides
information to the model about the actual state of the building. Eventually, supplied
heating power during the time-step is a key information along with endogenous
loads, endogenous loads and actual temperature to determine the temperature of
system in the successive time-step. It is not trivial to obtain supplied heating power
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in a real-world context. However, this value can be calculated knowing supply/return
water temperatures and mass flow rates to the considered building/zone.

As any other machine learning algorithm, LSTM networks are characterized by
several hyper-parameters. In this application, part of these values were arbitrarily
fixed and part were the result of an optimization process. The fixed hyper-parameters
were the number of training epochs chosen equal to 30 and the Adam optimizer of
the neural network. The other hyper-parameters, reported in table 4.7, were tuned
employing the Optuna optimization library [156]. Optuna employs a Tree-structured
Parzen Estimator (TPE) to search the best configuration of hyper-parameter values.
Both Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error
(RMSE) were chosen as optimization metrics for values search. Table 4.7 reports the
minimum and maximum hyper-parameters values along with their type.

Table 4.7 Variable hyper-parameters of the LSTM network.

Hyper-parameter Min Max Type
Batch size 80 120 Integer
Optimizer learning rate 0.0001 0.05 Float
Hidden layers 1 3 Integer
Neurons per layer 10 30 Integer

For the sake of hyper-parameter tuning, the performance of the network were
evaluated for the open-loop configuration. These performance represents what is
commonly identified as training performance in supervised learning frameworks.
Once identified the best configuration, the performance of the network were evaluated
also for the closed-loop configuration. According to this strategy only for the first
sequences of the indoor air temperature values were collected from the training
dataset (i.e. 48 sequences for this application). For the successive time-step the
network predictions were recursively fed as input data to the model while other
inputs were left unchanged with respect to training dataset. Through this approach it
was possible to evaluate potential deviations in model estimations.

Testing performance evaluated on a specific dataset were not included in this
application for two reasons. The first relates to the limited amount of data available
for training the model. Although this data comes from a simulation and it would have
been possible to easily generate more, it was preferred to have limited amount of
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information since it was considered more adherent to a real case study. The second
reason relates to the structure of the LSTM networks. These models, specifically
designed to model time series data, receive input structured in sequential architectures
whose length is variable. Consequently, it is impossible to carry out a classic random
sampling with 70% of training data and 30% of testing data. Moreover, examining
these aspects it has been considered counterproductive to execute a sampling on
temporal base (employing a period for the training and another for the testing) since
this procedure could have invalidated the goodness of the training process. Having
available few months, each of these provides information on the behavior of the
system in different climatic conditions that otherwise would be excluded from the
training set.

Design and training of the DRL agent

The DRL control algorithm was firstly trained offline exploiting the LSTM model. A
SAC control agent handling continuous action-spaces as described in Chapter 2 was
implemented. The following paragraphs describes in details the different features of
the proposed control strategy.

Design of the action-space The action space includes the set of possible control
actions that can be performed by the agent. Since SAC as DRL algorithm was se-
lected the action space is continuous limited between 0 and 1. The action correspond
to the fraction of the nominal supplied heating power (i.e. 522 kW) to the system at
each time-step.

This quantity is not easily controllable in physical environments. However, the
training of both DRL agent and LSTM model was found more effective employing
this variable. In the next subsection is illustrated the strategy to convert this action
value in a control signal that can be handled by the considered building system.

Design of the reward function The reward function includes two terms and it is
described by the following equation:

R =−δ ∗Qheating +β ∗CTemp (4.3)
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The first term is proportional to the power supplied by the heating system and it
was introduced to minimize energy consumption. The second term is proportional to
temperature control (Ctemp) and it was introduced with the aim to maintain the indoor
air temperature within an acceptability range of +/- 1 °C from the desired set-point
of 21 °C during occupancy periods. δ and β are the weight factors of the two terms
and are two hyper-parameters characterizing the DRL agent. The temperature term
was evaluated only when the building was occupied and it is characterized by the
following values:

• if T _int < 20 °C: −(21−T _int)3

• if T _int > 22 °C: −(T _int−21)3

• if 21 < T _int ≤ 22 °C: −(T _int−21)

• if 20≤ T _int ≤ 21 : +θ

The temperature term was conceived to encourage the controller to maintain
indoor temperature value as close as possible to the set point value. The reward
function has a positive value, equal to the hyper-parameter θ , when the temperature
value falls in the lower range of acceptability range in order to incentivize the
exploration of this condition.

Design of the state-space The state-space was conceived following a similar
approach to the feature selection process for the LSTM architecture. Variables
have been chosen following an adaptive approach as demonstrated in the previous
application described in section 4.1. The table 4.8 reports the variables included in
the state-space for this application.

Table 4.8 Variables included in the state-space.

Variable Min Value Max Value Unit Time-step
Outdoor air temperature 6 31 °C t
Direct solar radiation 0 720 W/m2 t
Time to occupancy start 0 36 h t
Time to occupancy end 0 12 h t
∆T Indoor set-point – indoor air -3 10 °C t,t-1,t-2,t-3
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Outdoor air temperature and direct solar radiation were included due to their
influence on the heating load. Moreover, time to occupancy start and time to
occupancy end are two engineered occupants-related variables that were included.
Eventually, the difference between the indoor air temperature and the desired set point
evaluated at the current time-step and with 15, 30, 45 minutes lags were included.
Each state variable was re-scaled between 0 and 1 using a min-max normalization.

Training The SAC agent was trained in an environment implementing the LSTM
network as model of the building dynamics. The environment was initialized provid-
ing to the network the first 48 sequence from the training set of the LSTM model.
The simulation continues employing the same weather data and time variables while
the input supplied heating power is defined by the DRL agent control action and the
indoor air temperature is recursively determined by the neural network model.

The Optuna library was employed also for this phase of the analysis since the
DRL agent is characterized by several hyper-parameters. Part of these values were
arbitrarily fixed due to computational limitations. These hyper-parameters include
the number of hidden layer of actor and critic networks fixed equal to 4 and the
number of neurons per hidden layer taken equal to 64. Moreover, the batch size was
assumed equal to 128 and the total number of training episodes for each configuration
was set to 20. Table 4.9 reports the hyper-parameters optimized and the relative
search ranges.

Table 4.9 Variable hyper-parameters of the SAC control agent.

Hyper-parameter Min Max Type
Weight factor energy term (δ ) 0.0001 0.001 Float (Step 0.0001)
Weight factor temperature term (β ) 1.0 8.0 Float (Step 0.5)
Temperature prize (θ ) 0.005 0.05 Float (Step 0.05)
Discount factor (γ) 0.9 0.99 Float

After 20 training episode the DRL agent was statically deployed in the same
environment implementing the LSTM network. Its performance were evaluated in
terms of total heating energy supplied to the system and total amount of temperature
violations. A temperature violation occurs when the building indoor air temperature
falls above or below the acceptability range defined from the desired set-point of
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21 °C during occupancy periods. The agent implementing the configuration of
hyper-parameters leading to the best performance in terms of heating energy and
temperature violations was chosen as a candidate to be effectively deployed on the
system.

Deployment phase

In the last phase of the process the trained agent was deployed in the environment
implementing the EnergyPlus model in order to assess the performance of the control
policy learned through the interaction with the LSTM model. The deployment period
last for one episode of four months from the 1st November to the 28th February.
Climatic data employed in this phase and identified in figure 4.14 as Weather Data 2
were real data collected for Torino between 2018 and 2019.

As described in the previous section the action taken by the DRL agent is
the normalized supplied heating power that during training was provided to the
LSTM network to predict indoor air temperature evolution. However, this process
is not suited for being implemented on the EnergyPlus model (that, it is worth
remembering, in this application acts as the real building) since it is impossible
to directly regulate the supplied heating energy to the system. In the EnergyPlus
environment the available control output is the set-point of supply water temperature
to the building. In order to correctly match the output of the trained DRL agent and
the actuator available in EnergyPlus, the control action was converted into a supply
water temperature set-point according to the following formula:

SPT,SUPP(t) =
a(t)∗PHeating,MAX

C
+TRET (t−1) (4.4)

Where a(t) is the control action from the DRL agent, PHeating,MAX is the maxi-
mum supplied heating power to the building equal to 522 kW and C is a constant
which depends from the mass flow rate and it is expressed in [kW/°C]. TRET (t−1)
is the value of the return water from the building at the previous time-step.
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4.2.5 Results obtained

This section reports the results obtained implementing the proposed methodology. A
data-driven model of the building dynamics was built from EnergyPlus simulation
data. These model was employed to train a DRL control agent that was successively
deployed to interact with the EnergyPlus environment with new weather conditions.
The entire process was conceived to emulate the implementation of a DRL controller
in a physical test-bed employing the EnergyPlus model as the real building.

Table 4.10 reports the values of the best configuration of variable hyper-parameters
of the LSTM network as obtained from Optuna.

Table 4.10 Values of variable hyper-parameters of the LSTM network obtained from Optuna.

Hyper-parameter Value
Batch size 108
Optimizer learning rate 0.0004
Hidden layers 2
Neurons per layer 17

Figure 4.16 shows in two subplots the distributions of the prediction errors
for both open-loop (left) and closed-loop (right) configurations. The errors were
calculated between LSTM predictions and the values of indoor air temperature in
the training dataset. The values of supplied heating power to the system and weather
forcing variables provided to the LSTM models in both configurations are the same
resulting from the EnergyPlus simulation implementing baseline rule-based strategy
and Weather Data 1. The first subplot show how the distribution of errors in the
open-loop case is narrower compared to the closed-loop case. In absolute terms,
closed-loop resulted in an errors distribution with a maximum value around 0.5 °C
compared to open-loop which maximum value is in the range between 1 °C and 1.2
°C. This situation was expected since while in open-loop the model received in input
exactly the values taken from the training dataset in closed-loop it employed its own
predictions to provide the next values risking to propagate errors.
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Fig. 4.16 Error distribution of the LSTM network implementing the best configuration of
hyper-parameters for both open-loop (left) and closed-loop (right) conditions.

Table 4.11 reports MAPE and RMSE values obtained by the LSTM network
implementing the best configuration of hyper-parameters for both open-loop and
closed-loop conditions. As expected, closed-loop performance are slightly worse
compared to open loop. However, MAPE value below 2% and RMSE equal 0.412
°C with respect to the training dataset proved the robustness of the training process.

Table 4.11 MAPE and RMSE obtained by the LSTM network implementing the best config-
uration of hyper-parameters for both open-loop and closed-loop conditions.

Configuration MAPE [%] RMSE [°C]
Open-loop 0.665 0.152
Closed-loop 1.891 0.412

Figure 4.17 shows the temperature profiles of the ground-truth, open-loop predic-
tion and closed-loop prediction obtained by the developed LSTM model for the first
4 weeks of the deployment period. These time series were obtained by applying the
baseline RBC strategy control signal. As can be observed, the error of the closed
loop prediction was mainly localized during nights and weekends.
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Fig. 4.17 Temperature profiles of the ground-truth, open-loop prediction and closed-loop
prediction for the first 4 weeks of the deployment period (i.e. Weather 2).

Table 4.12 reports the values of the best configuration of variable hyper-parameters
of the DRL agent as obtained from Optuna. The choice of this configuration was
based on the performance achieved by the agent statically deployed in the environ-
ment employing the LSTM network as model of the building dynamics.

Table 4.12 Values of variable hyper-parameters of the DRL agent obtained from Optuna.

Hyper-parameter Value
Weight factor energy term (δ ) 0.007
Weight factor temperature term (β ) 2
Temperature prize (θ ) 0.005
Discount factor (γ) 0.95

It is interesting to notice that, contrarily to what is suggested by the majority of
the applications found in the literature, the best discount factor γ for this application
was found equal to 0.95 instead of 0.99. One explanation to this behavior may rely
in the fact that the model of the building dynamics employed to train the DRL agent
(i.e. the LSTM model) lacks in accuracy compared to engineering models commonly
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Table 4.13 Performance comparison between DRL and RBC in the deployment period
considering heating energy supplied, cumulative temperature violations and average violation
magnitude.

Metric RBC DRL Difference
Heating energy supplied [MWh] 318 261 18.3%
Cumulative temperature violations [°C] 164 52 68.5%
Average violation magnitude [°C] 0.33 0.10 69.6%

employed to accomplish this task. As a consequence, it was found effective to focus
on most immediate rewards (i.e. reducing the discount factor) since they can be
estimated with an higher accuracy.

Successively, The DRL agent trained with the configuration of hyper-parameters
reported in table 4.12 was statically deployed for one episode in the environment
employing the EnergyPlus model. As previously introduced, the deployment episode
lasts four months between the 1st of November and 28th February and the climatic
data employed comes from real-world measurement collected for Torino in the
years 2018 and 2019. The performance of the DRL controller were compared to
the baseline control strategy implemented in the same environment with identical
weather conditions. Table 4.13 summarises the performance obtained in terms of
supplied heating energy, cumulative sum of temperature violations and average
violation magnitude for the proposed DRL controller and RBC baseline during the
deployment period.

The proposed controller outperformed the baseline RBC considering every metric.
The DRL agent reduced the supplied heating energy provided to the building by
18.3% from 318 MWh to 261 MWh in the deployment period. Concurrently, it was
capable to limit the cumulative sum of temperature violations of the acceptability
range during occupancy periods to 52 °C. This metric was evaluated with same
frequency of the control action, thus every 15 minutes. Eventually, the magnitude of
the average temperature violation was reduced by 69.9% from 0.33 °C to 0.10 °C.

Figure 4.18 shows the heating load curves obtained by implementing DRL and
RBC control strategies during the deployment periods. The two curves were calcu-
lated from supplied heating power values and the area between the two represents
the amount of heating energy saved.



4.2 Effective pre-training of DRL agent by means of data-driven models 107

Fig. 4.18 Heating load duration curves achieved by DRL and RBC during the deployment
period.

The figure shows how both strategies provided heating power to the building for
around 50% of the period length. Moreover, it can be observed how DRL provided
heating power for a greater amount of time but with a lower magnitude. Figure 4.19
is organized into two subplots representing the indoor air temperature distributions
achieved by baseline (left) and proposed (right) control strategies during occupancy
periods. The black dotted line represent the desired set-point while the red dotted
line the lower and the upper limits of the acceptability range.
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Fig. 4.19 Indoor air temperature distributions obtained by baseline (left) and proposed (right)
control strategies during occupancy periods.

The figure highlights the differences between the two strategies. The DRL
strategy maintained temperature values as close as possible to the lower threshold
of the acceptability range. The baseline controller, instead, resulted in values more
distributed around the desired set-point. Considering this aspect, DRL was more
effective in leveraging one of the few flexibility sources provided by this control
problem to achieve both energy saving and acceptable levels of indoor air temperature.
Figure 4.20 shows a comparison between the DRL agent and the baseline RBC
controller during a representative week of the deployment period. The plot reports
in two subplots the indoor air temperature patterns generated by the two controllers
along with supply water temperature profiles.
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Fig. 4.20 Comparison between DRL agent and baseline RBC controller during a week of the
deployment period.

At the beginning of the week, the control policy learned by the DRL agent
pre-heated the building correctly before occupants arrival. During, the other days
DRL correctly managed the indoor air temperature around the lower threshold of the
acceptability range also exploiting higher heat gains during central hours of the day
to reduce supply water temperature values. Despite, being trained on a simplified
model of the building dynamics the learned control policy was capable to correctly
manage the original system under different weather conditions.

4.2.6 Discussion

The presented application focuses on the development of a DRL controller pre-
trained by means of a data-driven model of the building system. The developed
approach relies on an EnergyPlus simulation model as a proxy of a physical building
to unfold the proposed methodology. EnergyPlus was first employed to generate
"synthetic" monitoring data of the building implementing baseline control logic.
This dataset was successively used to train an LSTM network to estimate building
dynamics. These model was integrated within a simulation environment to train a
DRL agent. The hyper-parameters of both LSTM model and DRL controller were
tuned through an open-source library available in Python. Eventually the trained
agent was implemented to control the EnergyPlus simulation of the building in
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order to assess its performance. In this application the use of EnergyPlus simulation
was conceived exclusively to emulate a real building system. However, in order to
effectively evaluate the performance of the DRL controller, a comparison with the
baseline control strategy implemented in the same environment with identical weather
conditions was introduced. LSTM networks, as any other supervised machine
learning algorithm, lacks in generalizability when employed to perform predictions
in conditions differing from training process. This aspect is particularly dangerous if
machine learning models are developed to predict building dynamics and employed
to train a reinforcement learning control agent. Since the agent, especially in the
initial period of the training, tends to explore the state-action space the response of
the machine learning model could significantly deviate from the expected values.
This deviation can be generate from different sources such as weather conditions,
building utilization and operational patterns. Despite these limitations, the approach
presented in this chapter the DRL agent pre-trained by means of an LSTM model
was able to converge to an acceptable control policy. This result can be motivated
by the fact that during deployment weather was the only forcing variable that was
modified, while operating conditions and building utilization were left unchanged.

However the present application suggests that the adoption of data-driven models
to pre-train DRL agents could represent a key-point for the scalability of this control
strategy in the energy and building sector. Data-driven models requires significantly
less input data than physics-based models and their development process can be
easily standardized and reproduced in an automatic fashion. Moreover, reducing
the complexity and the time required for the development of the model enable
the introduction of optimization techniques for the robust identification of hyper-
parameters values which strongly affect DRL agent performance.

Eventually, an agent pre-trained by means of data-driven models could benefit
from a dynamic deployment strategy in order to furtherly adapt to modifications in
the controlled environment with respect to the conditions in which the data-driven
model was trained.
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4.3 Optimization of the management of integrated
energy systems in buildings with Deep Reinforce-
ment Learning

The widespread adoption of RES production system to sustain the decarbonization
introduced the paradigm of Integrated Energy Systems (IES) in the building sector.
Energy storage technologies both thermal and electrical plays a pivotal role in this
process. In this context, the identification of optimal management strategies capable
to increase the profitability of storage systems is a key aspect to address. The optimal
operation of storage systems in buildings with IES is affected by exogenous factors
such as weather, energy demand patterns and electricity prices which all vary over
time. Classical control strategies are usually not able to consider trade-offs between
multiple and contrasting objectives, such as thermal comfort, energy consumption,
energy flexibility and Self-Sufficiency (SS), and are not capable to adapt to an
evolving system characterized by dynamic boundary conditions, including grid
requirements, and constraints [6].

To overcome these limitations, researchers worldwide have recently focused their
efforts in the development and implementation of advanced control strategies to
improve the management of IES in buildings based on predictive architectures or
optimization processes. Comodi et al. [157] assessed the viability of introducing a
Cold Thermal Energy Storages (CTES) for demand side management strategies into
an existing cooling system of an institutional building under a Time of Use (ToU)
pricing scheme. The storage was charged during night time to exploit higher chiller
Coefficient of Performance (COP) and lower electricity price. It was demonstrated
that a CTES could increase the overall energy efficiency and decrease the energy
cost by being charged during off-peak hours with a payback period between 8.9 and
16 years. Arteconi et al. [158] analyzed a factory building equipped with Heat Pump
(HP) and TES. The TES was charged during low price periods to cover the whole
cooling demand during occupancy periods. This strategy was able to save about 54%
of the electricity cost related to the cooling process. Ioli et al. [159] proposed a novel
convex constrained optimization to optimize the operational cost of cooling system
coupled with a TES into a single zone office building by controlling the storage
operation and zone temperature. The proposed approach achieved 14.8% cost saving
and 6.5% energy saving with respect to strategy where zone temperature is fixed.
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Other strategies have been developed recently, as in Ren et al. [160] that analyzed
an IES with an HVAC assisted by a photovoltaic thermal hybrid collector and a
TES. The results showed that using the PV panels to power the heat pump to charge
the TES provided additional energy flexibility respect to the use of only Demand
Side Management (DSM) strategies. Comodi et al. [161]managed the integration of
electrical and thermal storage into a nearly Zero Energy Building (nZEB). Thermal
flows were optimized by a Mixed-Integer Linear Programming (MILP) algorithm to
reduce the grid exchange electricity, while BESS were managed by a RBC. In that
way the building achieved an SS level of 100% even though the cost of electrical
storage did not justify the investment. A fuzzy rule control logic was developed by
Dimitroulis et al. [162] for the charging scheduling of a BESS within an IES with
renewable generation and Electric Vehicle (EV). The results showed a reduction
of the monthly bill as compared to the linear optimize, and to an RBC. Biyik et al.
[163] proposed a Model Predictive Control (MPC) for an IES with HVAC system,
renewable generation and BESS to reduce the peak load. The controller provided an
average reduction of 23% in peak electrical demand compared to a baseline where
indoor temperature is kept fixed. Predictive management for energy supply networks
using PV, HP and battery units was developed by Wakui et al. [164] by combining
two-stage stochastic schedule programming and RBC to reduce operating cost. The
proposed approach performed better than the management based on the deterministic
schedule planning and the rule-based management without schedule planning.

In this context, RL and DRL control strategies can prove their effectiveness. The
next sections present the implementation of a reinforcement learning-based control
strategy in an office building characterized by integrated energy systems with on-site
electricity generation and storage technologies. The proposed controller was tested
considering various configurations of battery energy storage system capacities, and
thermal energy storage sizes.

4.3.1 Motivations and novelty of the proposed approach

The management of storage systems is a key factor to consider in buildings with IES
to enhance energy flexibility and reduce operational costs. Traditional controls may
behave sub-optimally due to their lack of adaptability and their reactive approach.
The design and implementation of storage solutions, including BESS and TES, is
usually performed by different actors which are also responsible of the definition of
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their control logic. Failure to consider proper control strategies in the design stage
may result in oversized storage systems and consequently higher investment costs
[165, 166].

The introduction of advanced control strategies based on a predictive and adap-
tive approach can enable a better management of multiple storage technologies in
buildings. These controllers, thanks to their predictive and adaptive nature, can
increase the effectiveness of storage equipment during building operation making
competitive also solutions characterized by relatively low sizes and capacities. Ac-
counting for the effect of advanced control strategies in the design stage can limit
investment costs by adopting storage solutions that otherwise could be considered
not suitable. For instance, in [167] the authors highlighted that most approaches
to storage system sizing do not take into account storage daily performance which
could contribute to determine appropriate sizes and capacities of storage equipment.

With this in mind, the application presented in this section aims to analyze the
performance of a DRL strategy coupled with a RBC against a fully RBC to manage
the operation of a chiller system coupled with a cold-water storage tank for an office
building with on-site electricity generation and battery system. The analysis was
carried out for multiple configurations of the energy systems including different sizes
of TES and different capacities of BESS. The main contributions of the application
presented in this section can be summarized as follows:

• Demonstrate the energy and cost benefits of adopting advanced DRL-based
control strategies in IES characterized by BESS and TES equipment over
classical RBC approaches.

• Evaluate the flexibility potential and the storage management which can be
achieved with the adoption of advanced control strategies integrating a com-
prehensive management of the whole IES.

• Analyze the effectiveness of advanced control strategies with the variation of
sizes of TES and capacities of BESS equipment highlighting the impact of the
control also on the selection of storage in buildings.

• Adopting a novel formulation of the SAC algorithm specifically designed
for discrete control actions, as described in Chapter 2, differently from the
commonly implemented DQN framework.



114 DRL applications in HVAC systems

The rest of the section is organized as follows. Section 4.3.2 introduces the case
study and the control problem, Section 4.3.3 describes the methodological framework
and provides information about DRL control, Section 4.3.4 reports implementation
details of the different control strategies and configuration of the energy system.
Section 4.3.5 reports the results obtained while Section 4.3.6 includes the discussion.

4.3.2 Formulation of the control problem

In this application, the effect of the adoption of advanced control strategies on the
operation of IES in buildings considering different configurations of storage was
evaluated for an office building located in Turin, Italy. The building is equipped with
a TES system (i.e., a cold water storage tank) that is operated as a buffer between
the building and an air-to-water chiller. The IES also includes a mono-crystalline
silicon PV module and a lithium-ion electrical battery (i.e. BESS). Further, technical
specifications of the components are provided in section 4.3.4.

Figure 4.21 shows a simplified schema of the electrical and cooling systems
of the analyzed case study. The building electrical load (Pdem) is determined by
the electrical demand of the chiller and circulation pump. The electrical system is
formed by a DC bus and AC bus interfaced by a mono directional AC/DC inverter.
On the DC bus a PV system and a BESS are installed. The PV and the battery are
connected to the DC bus by a DC/DC converter. Grid is not allowed to charge the
BESS according to the normative of many European Countries, but it is used to assist
in matching electricity demand of the building and renewable power generation at
each time-step [168]. At each step if local RES production is not zero the PV injects
energy into the system according to the following priority: i) building, ii) BESS, iii)
grid.
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Fig. 4.21 Schematics of the electrical and cooling systems of the analyzed case study [26].

The electric chiller supplies cold water at constant set-point value (Tch). The
thermal storage can be operated in a temperature range between Ts,min and Ts,max.
The thermostatic control of the building was not considered in this application as
the building cooling demand is considered as an external disturbance of the system
along with weather conditions and electricity prices. To this purpose building cooling
demand is evaluated in advance to maintain fixed conditions of indoor air temperature
and relative humidity given the influence of weather and occupancy schedules.

The aim of the controller is to minimize the electricity cost of the chiller and
circulation pump by managing three different cooling operation modes and BESS
operation at each time-step.

The three different cooling operation modes showed in Figure 4.22 are i) charg-
ing mode, where cooling energy is provided to both storage tank and building (if
requested) simultaneously, ii) discharging mode, where cooling energy is provided
to the building to meet the demand only through the storage and iii) chiller cooling
mode, where cooling energy is provided to the building exclusively through the
electric chiller.
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Fig. 4.22 Schematics of the three different modes of the cooling system analyzed [26].

Discharging mode and chiller cooling mode were introduced considering that the
system configuration was not conceived to provide cooling to the building via two
separate sources at the same time. However the two modes were introduced to allow
the control agent to select during building operation at each control step the one that
is optimal according to boundary conditions (i.e. employ chiller also during high
price periods due to high PV production).

The proposed control strategy couples DRL to manage the cooling system opera-
tion with RBC which is employed to manage the BESS. Conversely, the baseline
employs a fully RBC strategy to manage both BESS and cooling system operation.
The case study was designed to assess the effect of adopting advanced control strate-
gies also considering the performance for different sizes and capacities of TES and
BESS, respectively.
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4.3.3 Methodology

This section describes the methodological steps and the main methods adopted in
the present application. The case study introduced in section 4.3.2 was used as a
test-bed to assess the effectiveness of an advanced control strategy consisting of a
DRL coupled with a RBC for an office building with IES

A DRL control agent was developed and trained in order to identify the optimal
control policy for the management of the cooling modes. The performances of the
proposed control strategy was evaluated against a baseline consisting of a fully RBC
for different configurations of storage systems. A different DRL control agent was
trained for each configuration resulting from the combination of BESS capacity and
TES size.

Design of baseline and proposed control strategies

As introduced in the previous section the baseline controller employs a fully RBC
approach. This strategy was conceived to simulate the performance of classical
control approaches applied to manage TES and BESS as two distinct system. Two
RBC strategies were separately designed to control the cooling operation modes
and BESS without sharing mutual information between the two. This hypothesis
was deemed legitimate since BESS and TES equipment are usually implemented by
different stakeholders.

On the other hand, the proposed controller employs an approach where DRL
control agent was coupled with an RBC strategy. The BESS system was managed by
the same RBC strategy employed by the baseline controller. Conversely, the man-
agement of cooling operation modes which involves TES was implemented through
an advanced DRL controller which exploits also information on PV production and
BESS status. The reason behind the choice to couple DRL with an RBC controller
is that this latter strategy is very effective in managing BESS considering building
demand, electricity price, and PV production [169, 170]. However, the management
of cooling modes requires an advanced controller capable of considering also the
boundary conditions determined by the PV system and the BESS in selecting the
optimal action. Thanks to this approach, the proposed controller operates with a
comprehensive perspective of the whole energy system.
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The discrete SAC control algorithm described in section 2.1.2 was employed
as DRL control strategy. This control framework was chosen over the classical
DQN approach for its sample efficiency and considering the difficulties of the DQN
algorithm in balancing exploration and exploitation. In the next sub-sections, the
design of the action-space, state-space and reward function are discussed along with
the configuration of the training phase.

Design of the action-space

The control action determines the operation mode of the cooling system at each
time-step. Since three operation modes were defined for the proposed case study, the
action-space was designed as a discrete space as follows:

A(t) = [0,1,2] (4.5)

where 0 correspond to discharging mode, 1 to chiller cooling mode and 2 to
charging mode as described in section 4.3.2.

Design of the reward function

The reward measures the performance of the controller after selecting an action
at each time-step. The controller operates with the aim to minimize the energy
cost related to the energy exchanged between the electrical grid and the system
(Egrid). Electrical energy can be imported from the grid when there is no PV power
generation and the BESS system is out of charge. Electrical energy is injected to
the grid when PV power generation excesses the building electrical demand and the
BESS system is fully charged. The electrical energy exchanged with the grid was
defined as negative when it is imported from the grid and positive when injected.
The reward function was defined as follows:

r(t) = βEgrid(t) ·Cbuy(t) i f Egrid(t)< 0

r(t) = βEgrid(t) ·Csell(t) i f Egrid(t)> 0
(4.6)

Where Cbuy(t) and Csell(t) are defined according to the schedule price for buying
and selling electricity and β is a factor introduced to weight the magnitude of
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the reward, namely reward scale, and it is considered an hyper-parameter of the
algorithm.

Design of the state-space

The state-space includes all the variables employed by the SAC control agent to
determine at each time-step the optimal control action capable to maximize the
stream of future rewards. Moreover, the state-space may include information relative
to historical values of the variables describing the behavior of the system and future
values of external disturbances. In this application, information about historical
values were introduced to account for slow-responsive thermal dynamics of the
components of the controlled system. At the same time, future values of external
disturbances were introduced since they can provide crucial information that the
agent can leverage to optimally solve the control problem. In the present application
perfect predictions of external disturbance were employed.

More detailed information on the variables included within the state-space are
provided in section 4.3.4.

Setting of the training phase

The control policy of the SAC agent was trained on a model of the proposed case
study described in section 4.3.2. During the training process a specific period called
episode was presented multiple times to the control agent in order to gradually
improve its control policy by enabling the exploration of different trajectories. At the
end of this process the trained agent was statically deployed on the same episode in
order to evaluate its control performance. The static deployment of a SAC agent was
achieved by stopping the update of the parameters determining the control policy
and employing the actor network to select the optimal control actions given the state
of the environment.

Design of BESS and TES configurations

Different configurations consisting in the combination of various volumes of the
cold-water storage tank and nominal capacities of the BESS were investigated.
The aim is to find out how the proposed advanced control strategy can improve
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the performance with respect to a classical control strategy while implementing
storage equipment with various sizes and capacities. The objective is to evaluate
if the introduction of advanced control strategies could support the introduction of
equipment characterized by smaller sizes and capacities. Thus, reducing the initial
investment cost which is decisive to guarantee the spread of the storage technologies.

4.3.4 Implementation of the proposed methodology

The test facility analyzed in this application consists of two study rooms, one control
room and a technical room. The technical room is not served by the air-conditioning
system and the storage tank is placed within it.

The facility is a prefabricated building with a rectangular layout. The floor area
is 196.3 m2 (11.25 × 17.45 m). The interior gross floor conditioned area is around
96.8 m2. The ceiling height is 2.8 m at the minimum and 3.7 m at the maximum
above the floor level, due to the different tilt angles of the roof, which are 13.4° on
SE side and 15° on NW side. The features of the building envelope are reported in
Table 4.14.

Table 4.14 Features of the building envelope [26].

Feature Value
Conditioned floor area 96.8 m2

Conditioned volume 501 m3

Envelope surface/conditioned volume ratio 0.85 m−1

Transparent/opaque envelope surface ratio 6.6%
Opaque envelope surface 400 m2

Ûop 0.16 W/m2K
Ûtr 0.55 W/m2K

The chiller has a reference capacity Qcap of 12 kW and reference COP of
2.67. The reference COP is provided by the employed chiller model provided
by EnergyPlus and it is calculated considering a reference leaving chilled water
temperature of 6.67 °C and a reference entering condenser fluid temperature of 35
°C. The design water mass flow rate during charging phase (ṁS) is 0.2 kg/s while
during discharging phase (ṁS) is 0.35 kg/s. This latter value corresponds to the sum
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of the design mass flow rates of the three air-conditioned zones. The supply water
temperature at the outlet of the chiller was set equal to 7 °C. The TES operates in the
range between 10°C and 18°C which correspond to a state-of-charge (SOCT ) of 1
and 0, respectively.

The HVAC system serving the building can meet the cooling demand through the
electric chiller or the TES. The building cooling demand was considered as an exter-
nal disturbance of the system and was calculated through EnergyPlus considering an
indoor air temperature of 26 °C and a relative humidity of 55% during occupancy
periods which occur between 09:00 and 18:00 from Monday to Friday. During these
periods, the zones were supposed to be occupied at their maximum capacity (i.e.
3 people for the control room and 10 people for the two study rooms). No regular
occupancy was expected for the technical room. The air infiltration rate was set to
0.15 h−1, a typical value for office buildings. The air ventilation rate for the control
room and the study rooms was set to 10 L/s per person according to Italian standard
UNI10339, resulting in 30 L/s and 100 L/s, respectively.

The price of the electrical energy drawn from the grid to operate the chiller unit
and auxiliary equipment is based on a Time-Of-Use (TOU) tariff structure commonly
implemented in Italy. The weekly period is divided into low price, medium price
and high price periods, corresponding to 0.03 C/kWh, 0.165 C/kWh and 0.3 C/kWh
respectively. The tariff rates of the electricity were designed in order to discriminate
the values for the optimization application starting from a real value of the high price
period. This approach has been found to be effective in ensuring better discrimination
of time periods of the day based on the price of electricity providing the agent with
faster convergence to the optimal control policy. Specifically the low and medium
price values were chosen to be respectively 1/10 and 1/2 of the highest one. Table
4.15 reports a summary of electricity prices used in this application.

Table 4.15 Details of electricity prices used in this application in C/kWh [26].

Day
Hour of the Day

00:00-07:00 07:00-08:00 08:00-19:00 19:00-23:00 23:00-24:00
Mon-Fri 0.03 0.165 0.3 0.165 0.03

Sat 0.03 0.165 0.03
Sun 0.03
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The price of the electrical energy sold to the grid from the PV overproduction was
assumed equal to 0.01 C/kWh according to data extracted from the Italian regulator .

The weather file used is the reference weather file (ITA_TORINOCASELLE_IGDG.epw)
available in EnergyPlus for Torino, Italy. Considering that the system under inves-
tigation involves the optimization of a cooling system the simulation period was
limited from June to August. Both the control and simulation time-steps were set
equal to 1 hour.

The efficiency of mono-directional DC/AC was assumed to be equal to 90% and
the efficiency of DC/DC converters to 95%.

The experiments were carried out in a co-simulation environment described
in Chapter 3. Building dynamics and the cooling system were implemented in
EnergyPlus while the electrical system including PV and BESS was developed in
Python along with the different control strategies.

Modeling of the PV system

The model of the PV system was implemented through a Python class. Solar position
was imported from the pvlib package [171]. A commercial mono-crystalline silicon
photo-voltaic module was modeled in the proposed environment. The selected
module has a specific power of about 80 W/m2 and an efficiency (η) of 15% under
standard conditions (solar irradiance GSTC = 1000 W/m2, cell temperature TSTC =
25°C, Air Mass AMSTC = 1.5), as described by Durisch et al.[172] and reported in
Equation 4.7.

η = f (G,AM,Tout) (4.7)

The PV panels tilt angle has been chosen from the world data-set provided by
M.Z. Jacobson and V. Jadhav [173]. Thus, the tilt angle was set to 33°, whereas the
azimuth is constrained by the orientation of the test facility. These inputs along with
solar radiation and incidence angle allow to compute the PV power generation (PPV )
at each time-step which was calculated as the product of the efficiency and incident
solar radiation. Table 4.16 recaps the parameters of the PV module.
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Table 4.16 PV parameters [26].

Parameter Value
Nominal power 3 kW
Surface 22 m2

ηSTC 0.15
Tilt angle 33°
Azimuth angle 116°

The nominal power of the PV system of 3 kW was chosen in order to match up
to the peak power of the building total electrical demand.

Modelling of the BESS system

The battery system was simulated through a Python class. A simple and widely
adopted model was implemented according to [169]. The model involves the esti-
mation of the State-Of-Charge (SOC), which it was considered sufficiently accurate
for carrying out a preliminary evaluation of the impact of BESS installation, even
though the degradation of the battery is not taken into account. The calculation of
the SOC at each time-step t was performed according to the set of equations reported
in Equation 4.8:

SOCB(t) = SOCB(t−1)+ηrte
PB,ch(t)∗∆t

CB
(charge)

SOCB(t) = SOCB(t−1)− PB,dis(t)∗∆t
CB

(discharge)

(4.8)

where SOCB(t−1) is the SOC at the previous time-step and ηrte is the round-trip
efficiency. PB,ch and PB,dis are the average power exchanged in the period between
two consecutive the time-steps (∆t) between the BESS and the system during charg-
ing and discharging process respectively. CB is the battery nominal capacity. Safety
constraints were introduced in order to preserve battery lifetime. Charging and
discharging processes have to respect two limits defined by PB,ch,max and PB,dis,max.
These values are introduced in the technical specifications to avoid too rapid charg-
ing/discharging operations. Typically, maximum charging and discharging power are



124 DRL applications in HVAC systems

different and when the power exceeds these thresholds, the controller limits it to the
maximum recommended values. In order to preserve the health of the battery, the
levels of the SOC were constrained by the minimum and maximum values provided
by the manufacturer (i.e. SOCB,min, SOCB,max).

The characteristics of the BESS considered in this application were gathered
from the data sheet of a modular Li-ion battery available on the market and reported
in Table 4.17.

In compliance with the typical values for the lithium-ion technology the minimum
SOC value (SOCB,min) was set equal to 10% and the maximum SOC value (SOCB,max)
was set equal to 90% for a total Depth of Charge of 80% [169]. An initial SOC
of 50% was imposed. The maximum charging power (PB,ch,max) and maximum
discharging power (PB,dis,max) were set equal to 0.5 times and 1 time the nominal
capacity of the battery (CB) respectively.

Table 4.17 BESS characteristics [26].

Parameter Value
Round-Trip Efficiency 0.96
Maximum discharging power 1C
Maximum charging power 0.5C
SOCB,min 10%
SOCB,max 90%

Setup of BESS and TES configurations

As introduced in Section 4.3.3 the baseline and the proposed control strategies were
implemented considering different capacities of BESS and different sizes of TES.

Table 4.18 reports for each size of TES the total volume and the corresponding
UA-value considered to estimate heat losses. The largest size of 10 m3 was chosen
considering 3-times the maximum daily cooling demand of the building. The smallest
size of 3 m3 was chosen considering 2-times the maximum hourly cooling demand
of the building. The intermediate values were picked up according to commercial
sizes between minimum and maximum values.
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Table 4.18 TES configurations [26].

Volume [m3] UA-value [W/K]
10.0 12.0
8.0 10.3
6.0 8.5
3.0 6.0

Table 4.19 reports the features of the various configurations of the BESS. A
commercial capacity for the battery unit of 2.4 kWh has been chosen as a reference.
This value was selected according to the maximum value of the building electrical
demand on an hourly basis. The other two capacities of BESS are supposed as
obtained by connecting in series two and three units respectively.

Table 4.19 BESS configurations [26].

Capacity Max Charging Power Max Discharging Power Units in
[kWh] [kW ] [kW ] Series

2.4 1.2 2.4 1
4.8 2.4 4.8 2
7.2 3.6 7.2 3

Eventually, Table 4.20 summarizes all the configurations resulting from the
combination of the different capacities of BESS and sizes of TES that have been
tested with both baseline and proposed control strategy.
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Table 4.20 Configurations simulated for the experiment [26].

Configuration BESS capacity TES volume
[kWh] [m3]

1 2.4 10.0
2 4.8 10.0
3 7.2 10.0
4 2.4 8.0
5 4.8 8.0
6 7.2 8.0
7 2.4 6.0
8 4.8 6.0
9 7.2 6.0
10 2.4 3.0
11 4.8 3.0
12 7.2 3.0

Implementation of the baseline fully Rule-Based Control

As introduced in section 4.3.3, the baseline strategy manages both the operational
modes of the cooling system (and consequently the TES) and BESS through two
different RBC strategies. The baseline RBC strategy operates the cooling system in
charging mode whenever the price of electricity is low (i.e. between 11 p.m and 7
a.m during Mondays and Saturdays and between 0 a.m and 24 p.m during Sundays)
and the temperature of the TES is greater than 12 °C. During these periods the
storage is charged until its temperature reaches 10 °C or the price of electricity rises.
The cooling system is operated in discharging mode whenever the building cooling
demand is not zero until this value returns to zero or the temperature of the TES is
greater than 18 °C. If the temperature of the TES is greater than 18 °C) and building
cooling demand is not zero the cooling system is operated in chiller cooling mode.

A simple still effective controller inspired from previous scientific literature
[170, 169] was implemented for BESS management. The BESS is charged when PV
generation is greater than the building electrical demand, otherwise it is discharged.
More specifically, during charging process the PV surplus is diverted to the BESS if
it is allowed by the constraints on charging power (PB,ch,max) and maximum SOC
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(SOCB,max). If PV generation is greater than the sum of building electrical demand
and BESS capacity the remaining overproduction is diverted to the grid. During
discharging, the BESS works in parallel with the PV to meet the electrical demand.
If the contribution from both PV and BESS is not sufficient to meet the building
electrical load the grid is employed to meet the demand.

Implementation of the proposed control strategy based on DRL coupled with
RBC

As introduced in section 4.3.3 the SAC agent manages the three cooling operation
modes (i.e. charging mode, discharging mode and chiller cooling mode) while the
BESS is managed by the same RBC strategy described in the section above. The
SAC agent is defined through the reward function, the action space and the state
space. Table 4.21 reports the variables included in the state-space.

Table 4.21 Variables included in the state space [26].

Variable Min Max Unit Time-step
Value Value

Outdoor Air Temperature (To) 7.0 40.0 °C t
TES SOC (SOCT ) 0.0 1.0 - t, t-1, t-2
BESS SOC (SOCB) 0.0 1.0 - t
Building Cooling Demand (Qd) 0.0 10.0 kW t, t+1, ...,t+24
PV power generation (PPV ) 0.0 3.0 kW t, t+1, ...,t+24
Electricity price (Cbuy) 0.03 0.3 C/kWh t, t+1, ...,t+24

The state-space was conceived to provide to the agent comprehensive information
about the whole IES including PV production and BESS status. Observations of the
storage tank including the SOC (SOCT ) evaluated at the current time-step t and up
to two time-step (t−2) in the past were provided to the agent. These values carry
information about the amount of cooling energy actually stored and its evolution
over time.

The SOC of the BESS is also a key-information provided to the agent to correctly
manage the operation of the cooling system. BESS is operated to provide electricity
to the chiller and the pumping system during high price periods. This value was
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provided only at the current time-step t due to lower inertia of BESS compared to
TES.

The electricity price is the main driver of the agent choices since it strongly
influences the reward. Current value was provided to the agent along with the exact
values for 24 hours ahead. The electricity price schedules were supposed to be
always known.

The building cooling demand together with the PV power generation is a fun-
damental information to optimally manage the controlled system. Also, the values
related to time-step t to time-step t +24 were provided to the agent. The predictions
of building cooling demand and PV power generation were assumed to be perfectly
known.

Eventually, information about outdoor air temperature were included in order to
provide knowledge about its influence on the COP of the chiller unit. Despite being
a key information, the solar irradiation was not included in the state-space since the
PV power generation is directly related to this variable.

Table 4.21 reports the maximum and the minimum values that were employed
to re-scale the state space through a min-max normalization before providing the
variables to the neural network models.

Besides the definition of state-space, action-space and reward function, the SAC
algorithm is characterized by a series of hyper-parameters. The settings of these
hyper-parameters adopted in this application are reported in Table 4.22.
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Table 4.22 Hyperparameters of the SAC control agent [26].

Hyperparameter Value
Discount factor (γ) 0.99
Optimizer learning rate 0.001
Boltzmann temperature coefficient (α) 0.2
Number of hidden layers 2
Number of neurons per hidden layer 256
Activation Function ReLu
Optimizer Adam
Batch size 32
Number of training episodes 30
Reward magnitude weight-factor (β ) 100

Each episode (i.e. one cooling season lasting from June to August) is presented
to the SAC control agent 30 times in order to train the control policy for each
configuration. At the end of the training process the SAC agent was statically
deployed for one single deployment episode corresponding to the same cooling
season as the training episode. When the SAC agent is statically deployed the control
policy is determined by the weights resulting from the last update (i.e., the last
control step of the last training episode) of the training phase. For this reason, as
common practice, the static deployment of the SAC agent was performed on the
same period (i.e., from June to August) of the training. In fact, during the deployment
process the performance of the agent during the training period could provide a good
indication of the stability of the learned control policy.

Co-simulation details

The experiments were carried out in the co-simulation described in Chapter 3. Figure
4.23 provides further detail the architecture of the co-simulation environment for this
application. The architecture is organized in two sides.
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Fig. 4.23 Architecture of the co-simulation environment.

The EnergyPlus side is formed by a model of the building dynamics and of the
cooling system (comprising of the air-to-water chiller and TES) receiving at each
time-step information from the weather data file and a controller which selects the
cooling mode. This model provides in output the state variables (i.e. outdoor air
temperature, TES SOC and Building Cooling Demand) employed by SAC agent
evaluated at each time-step. Moreover, the Energy Plus model produces additional
information such as building electrical load and direct and diffuse solar irradiation
employed by the PV and BESS models.

The Python side of the co-simulation environment is formed by the PV and
BESS models and by the control strategies employed to manage the integrated
energy system. The PV model employs solar irradiation to calculate the PV power
generation which is one of the state variables provided to the SAC agent. The
BESS SOC is evaluated through the BESS model which receives information to
whether charge or discharge the battery from the BESS RBC strategy described in the
previous section. This strategy manages the BESS according to building electrical
load (provided by EnergyPlus and determined by chiller and pump operation), PV



4.3 Optimization of the management of integrated energy systems in buildings with
Deep Reinforcement Learning 131

power generation and electricity price (provided to Python through a csv file). The
electricity price is furtherly forwarded as a state variable employed by both the SAC
agent and the RBC strategy to select the cooling mode at each time-step. Once the
BESS operation is evaluated, the environment evaluates the energy exchanged with
the electrical grid which determines the reward obtained by the SAC agent along
with the electricity price. The final component of the Python side is represented by
either the SAC agent or the RBC strategy employed to select the cooling mode. The
SAC strategy makes use of all the information included within the state space and
the reward function to learn the optimal control policy. The RBC strategy employs
only TES SOC and electricity price to determine the control action. Eventually, the
control action is forwarded to EnergyPlus in order to advance the simulation to next
time-step.

4.3.5 Results obtained

This section reports the results of the implementation of the methodology introduced
in section 4.3.3.

A SAC control agent coupled with RBC was simulated together with a baseline
fully RBC strategy during the cooling season in the period ranging from June to
August for different sizes and capacities of TES and BESS, respectively. For the
sake of simplicity, in the following sections the proposed controller which couples
SAC with RBC is indicated as SAC, while the baseline fully RBC strategy is simply
indicated as RBC.

Table 4.23 reports both electrical energy imported from and sold to the grid
together with the electricity costs achieved by implementing SAC and RBC strategies
for each configuration during the whole simulation period. The last column of the
table reports the monetary savings achieved through the implementation of SAC
strategy.
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Table 4.23 Energy imported from grid (Egrid,buy), energy sold to grid (Egrid,sell[kWh]), Cost
of electricity and economic savings obtained from the implementation of SAC agent and
RBC strategy [26].

Config
Egrid,buy[kWh] Egrid,sell[kWh] Cost [C] Cost Savings
SAC RBC SAC RBC SAC RBC [%]

1 314.70 871.40 380.90 919.10 6.0 16.9 64.7
2 223.70 749.10 274.60 776.80 6.5 14.7 55.8
3 172.40 628.60 222.30 636.50 3.9 12.5 68.8
4 292.20 872.70 357.50 928.10 6.9 16.9 59.2
5 310.60 750.90 355.90 786.40 8.9 14.7 39.5
6 147.90 632.00 193.70 648.00 3.4 12.5 72.8
7 355.40 861.10 420.80 928.90 8.2 18.1 54.7
8 231.10 747.20 281.90 796.20 5.2 14.9 65.1
9 188.20 636.60 230.40 667.30 5.3 12.5 57.3

10 281.20 797.00 358.50 862.00 7.7 49.2 84.3
11 209.10 693.00 271.70 740.70 4.9 24.5 80.0
12 178.00 591.50 233.20 622.40 6.1 12.5 51.2

The results in Table 4.23 show that SAC control policy learnt to minimize
the interactions with the electrical grid with respect to RBC strategy. Across all
configurations the energy imported from grid and energy sold to grid were on average
67% and 61% lower for SAC strategy compared to RBC strategy. RBC performance
in terms of operational cost improved with the increasing of BESS size. A cost
reduction between 26.1% and 74.3% was achieved by the baseline strategy when
nominal capacity was increased from 2.4 kWh to 7.2 kWh.

Independently from TES size, RBC achieved the best performance with a BESS
capacity of 7.2 kWh (i.e. configurations 3, 6, 9 and 12). The increase of TES size
beyond 6 m3 did not lead to significant improvements in terms of operational costs
of RBC strategy for the configurations implementing the same BESS capacity (i.e.
configurations from 1 to 6).

Similarly to RBC, the operational cost with the SAC control agents decreased
with the increase of BESS capacity. However, due to their intrinsic stochastic
nature in the training process and initialization of the neural network policy their
performance did not show a linear pattern.
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SAC strategy led to the best performances with the configurations implementing
8 m3 and 10 m3 leading to a monetary expense of 3.4C, and 3.9C, respectively.

The SAC control agents led to a better performance than the RBC with an
economic savings ranging from 39.5% to 84.3%. The highest difference between the
two control strategies were achieved for configuration 10 implementing both TES
and BESS with the lowest sizes.

Table 4.24 reports the building electrical consumption over the simulation period
(Edem) along with the percentages indicating the contribution of each source by
implementing SAC and RBC strategies. PVf rac, BESS f rac and Grid f rac indicate the
percentage of electrical demand satisfied by PV generation directly provided to the
building, by BESS and through the grid, respectively.

Table 4.24 Contribution of the different sources (PV, BESS and Grid) to the building electrical
demand (Edem) obtained by SAC and RBC strategy for the different configurations [26].

Config
Edem[kWh] PVf rac BESS f rac Grid f rac

SAC RBC SAC RBC SAC RBC SAC RBC
1 1070.5

1090.7
0.56

0.08
0.14 0.12 0.30 0.80

2 1075.4 0.58 0.21 0.23 0.21 0.69
3 1064.2 0.55 0.29 0.34 0.16 0.58
4 1073.10

1083.0
0.60

0.08
0.13 0.12 0.27 0.80

5 1078.70 0.50 0.21 0.23 0.29 0.69
6 1069.10 0.58 0.28 0.34 0.14 0.58
7 1070.20

1072.2
0.52

0.09
0.15 0.11 0.33 0.80

8 1064.30 0.53 0.25 0.22 0.22 0.69
9 1063.60 0.51 0.31 0.32 0.18 0.59

10 1055.70
1075.1

0.57
0.15

0.16 0.11 0.27 0.74
11 1053.30 0.54 0.26 0.20 0.20 0.65
12 1058.00 0.54 0.29 0.30 0.17 0.55

In the case of RBC strategy, independently from TES size, the implementation
of different BESS capacities had no influence on the percentage contribution of
PV generation directly feeding the building and the electrical energy demand as
can be seen for the configurations 1-3, 4-6, 7-9 and 10-12, respectively. Generally,
SAC led to lower energy consumption compared to RBC, as shown by second and
third column (i.e. Edem) suggesting that SAC learnt a better management strategy.
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Moreover, as shown by column PVf rac, the SAC strategy was capable to better
exploit PV generation to feed the building with respect to RBC. In the case of
baseline controller the percentage contribution of PV generation directly feeding the
building ranges between 8 % and 15 % increasing with the reduction of TES size.
SAC outperformed RBC exploiting the PV production in a range between 50 % and
60 % across all configurations.

With the increasing of the BESS capacity RBC was capable to shift the contri-
bution from the grid to the BESS. SAC and RBC showed similar utilization of the
BESS system among all configurations.

Considering the configurations implementing the smallest BESS capacity of 2.4
kWh (i.e. configuration 1, 4, 7, 10) the configuration 10 is the one which led to the
highest operational cost despite the lowest percentage of electricity drawn from the
grid with respect to configurations 1, 4 and 7. This pattern suggests that in that case
the RBC controller was forced to rely on electrical grid to operate the chiller during
high-price periods due to not enough thermal or electrical energy stored.

Key indicators to assess the performance of PV-BESS systems are the Self-
Sufficiency (SS) and the Self-Consumption (SC), the former describing the amount
of the demand which is satisfied by the local generation, the latter the amount of
the local generation which is consumed in place. SC also indicates the economic
viability of the PV systems which is usually increased through the introduction of
BESS. Since the BESS is charged only through PV, the value of PV generation
employed to calculate SS and SC comprises the PV generation directly feeding the
building and the electricity provided to the building by the BESS.

Figure 4.24 shows the SS and SC resulted from the implementation of SAC and
RBC strategies for all the configurations of storage analyzed.
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Fig. 4.24 SS and SC indices obtained by implementing SAC and RBC for all configurations
of TES and BESS analyzed [26].

The results show that TES volume did not significantly affect SS and SC values.
SAC performed significantly better than RBC, increasing SS and SC with an average
value of 40 % considering all the configurations. Moreover, RBC performance was
affected by BESS capacity both in terms of SS and SC, whereas SAC managed to
maintain their values almost constant among the configurations.

Table 4.25 reports the TES operation in terms of thermal energy charged (Charge)
and discharged (Discharge) along with the percentage of the building cooling demand
(Demand) satisfied through storage discharging by implementing SAC and RBC
strategies.
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Table 4.25 Thermal energy exchanged by the TES during charging (Charge) and discharging
(Discharge) phases and percentage of building cooling demand satisfied (Demand) by imple-
menting the different control strategies [26].

Config
Charge[kWhth] Discharge[kWhth] Demand [%]

SAC RBC SAC RBC SAC RBC
1 1825.0

3307.4
1703.0

3132.8
54.30

99.962 1630.1 1494.3 47.65
3 1594.4 1488.2 47.43
4 1643.3

3281.0
1518.6

3129.0
48.40

99.775 1975.9 1829.3 58.34
6 1622.1 1508.6 48.06
7 1895.2

3160.2
1775.4

3046.3
56.57

97.068 1649.4 1538.1 48.99
9 1548.0 1435.6 45.74

10 1429.2
2234.8

1351.4
2131.9

43.00
67.8811 1444.8 1372.6 43.68

12 1420.9 1339.9 42.65

The results show that the operation of the thermal storage was not influenced
by the capacity of BESS when the RBC is employed. On the other hand, SAC
managed the system by charging less the TES when the capacity of the BESS is
higher. Moreover, while the RBC almost fully met the building cooling demand
demand through TES discharging for the configurations implementing a TES size
greater than 6 m3, SAC met only the 48.7% on average among all configurations.

These patterns along with the results presented in Tables 4.23 and 4.24 suggest
that SAC learnt to optimally manage the cooling system and the thermal storage in
coordination with local PV production and BESS.

Figures 4.25 and 4.26 report the SOC profiles for both BESS and TES resulted
from RBC and SAC implementation for configuration 3 and 10 respectively during
the month of August. The black dotted lines indicates the beginning of a different
week (i.e. from Monday to Sunday).
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Fig. 4.25 TES and BESS SOC resulted by SAC and RBC implementation during the whole
simulation period for system configuration 3 [26].

Configuration 3 implements the highest sizes for both TES and BESS (ie. 10 m3

and 7.2 kWh). It can be observed that SAC learnt to manage the thermal storage to
maintain in average a lower SOC of the system compared to RBC. In particular, the
SAC agent charged the TES at the beginning of the week and gradually released this
energy during the first days of the week. Despite the controllers directly act only
on the operational state of the cooling system, the control strategies affected also
the operation of the BESS. The BESS was charged and discharged more frequently
when the SAC strategy is adopted compared to the case implementing RBC strategy.
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Fig. 4.26 TES and BESS SOC obtained by SAC and RBC during the whole simulation period
for system configuration 10 [26].

The variation of the SOC of BESS and TES for configuration 10 which imple-
ments the lowest sizes for both TES and BESS (ie. 3 m3 and 2.4 kWh) is reported in
Figure 4.26. Also in this case SAC managed the cooling system in order to maintain
the SOC of the thermal storage as low as possible. This pattern is particularly evident
during weekends in which RBC maintained a SOC close to 1 while SAC maintained
it close to zero until the beginning of the successive week. Also for this configuration
SAC showed a more variable use of the BESS system than RBC strategy.

Figures 4.27 and 4.28 better depict how the different management strategies of
the cooling modes affected the behavior of the whole energy system. The figures
show in three subplots the trend of several variables on hourly basis for five days
of the simulation period (i.e. between Friday 14-08 and Tuesday 18-08). For the
sake of simplicity, only the results obtained for configuration 10 implementing a
TES size of 3 m3 and a BESS capacity of 2.4 kWh are presented. This configuration
was chosen since it resulted as particularly representative of the difference between
SAC and RBC strategies. The top subplot reports the building total electrical load
and the sources through which it is met. Moreover, the subplot reports the PV
power production and its dispatchment. The central subplot shows the building
cooling demand and the sources employed to meet it along with the cooling energy
provided by the chiller to charge the TES. The bottom subplot depicts the trend of
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SOC for TES and BESS along with electricity price values scaled with a min-max
normalization.

Fig. 4.27 Trends of the electrical load, cooling load and SOC obtained by RBC strategy
between Friday 14-08 and Tuesday 18-08 for configuration 10 [26].

Figure 4.27 presents the results with reference to RBC strategy. According to this
strategy the TES is charged whenever the price of electricity drop to its minimum
value. This behavior generated an electricity demand due to chiller operations mainly
during night hours when the PV production is null. As a consequence, the system
was forced to import energy from the grid during low-price periods. Until 09:00 AM
there is no electrical demand from the building and the PV fed the BESS. When the
building is occupied, the TES was discharged to meet the cooling demand while
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the building electrical load is determined only by circulation pumps which were
powered by PV production. Through this approach, the import of electricity from
the grid during high-price periods was avoided. When the BESS was fully charged
the PV overproduction was sold to the grid. Since for configuration 10 the BESS
capacity is relatively small, the amount of energy sold to the grid during this period
is considerable. During the last hours of the day the thermal energy stored within the
TES is exhausted and the systems was forced to use the chiller to meet the cooling
load. The PV generation was not sufficient to meet the electrical load, and as a
consequence, BESS and grid were employed during high-price periods as shown in
the bottom subplot. Moreover, it can be noticed that at the beginning of the weekend
the RBC strategy immediately charged the TES due to the occurrence of a low price
period. The TES was fully charged after few hours and was not discharged until the
beginning of the next week. In these periods TES lost part of its thermal energy to
the ambient, resulting in a sub-optimal management of the system.
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Fig. 4.28 Trends of the electrical load, cooling load and SOC obtained by SAC control
strategy between Friday 14-08 and Tuesday 18-08 for configuration 10 [26].

Figure 4.28 shows the results obtained by SAC control strategy. The agent tried to
charge the thermal storage during low-price periods close to arrival time of occupants
in order to minimize heat losses to the ambient due to storage inactivity. Through
this approach, the SAC strategy was capable to reduce electrical energy consumption
due to TES charging and, consequently, to consume less electrical energy than RBC
as reported in Table 4.24. During the first hours of occupancy in working days
the SAC agent followed a similar policy to RBC powering circulation auxiliaries
through PV production and charging the BESS at the same time. However, during
the central hours of working days, the control policy learnt by the SAC agent is
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completely different from RBC. The agent switched the system in chiller cooling
mode in order to leverage PV production to feed the chiller avoiding to sell renewable
energy to the grid and maximizing SC. When the PV production was not sufficient,
the BESS previously charged was employed. During the last hours of the occupancy
period which are still characterized by high electricity prices, the cooling system
was switched again to discharging mode since the PV and BESS could not meet
the electrical load of the chiller. In this period the PV production was employed to
operate the circulation pumps and charge the BESS while the excess of energy was
sold to the grid. Moreover, SAC control strategy during weekend awaits Sundays to
charge the TES in order to minimize electricity cost even during low-price periods
and maximizing SC. Through this approach the SAC agent was also capable to limit
TES heat losses compared to RBC strategy.

4.3.6 Discussion

The results obtained by applying RBC and SAC strategies for an IES of an office
building provided interesting information about the impact of an advanced control
strategy on the sizing and operation of energy storage solutions.

SAC was capable to outperform RBC in terms of operating cost for all the
configurations of TES and BESS tested. RBC proved to be very sensitive to stor-
age capacities resulting in a huge impact on the operational cost. This aspect is
particularly relevant for the BESS capacity.

On the other hand, SAC strategy was able to achieve considerable economic
savings also with small capacities, but as the storage capacities increase, the improve-
ment achieved was lower than those achieved by RBC. SAC did not show a clear
dependency of the operating cost from the capacities of the storage systems, rather it
learnt effective control policies for each configuration. Larger BESS helped SAC in
reducing the TES utilization while a similar pattern was not observed for RBC.

BESS is largely considered as the best way to increase SC. However, the operating
cost decrease as long as the PV production is sold to the grid leaving no room of
improvement of SC levels. Advanced control strategies such as SAC proved to be a
viable solution to increase SS and SC levels also with relatively low capacity of the
BESS. This is an important aspect to consider given that BESS has a great impact
on the total investment cost of energy systems. Reducing the energy exchanged
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with the electrical grid results in higher profitability of storage technologies and
higher flexibility of the building IES. When PV production is sold to the grid the
performance of the system in terms of SC degrades. For this reason, SAC aimed
at matching PV production and chiller operation as much as possible. In this way,
SAC not only avoided unnecessary BESS operations, which would have involved
electrical losses due to the round-trip efficiency and converter efficiency, but it also
managed effectively the system with smaller capacity of BESS.

Eventually the energy consumption and PV contribution to building electrical
demand was not affected by the capacity of BESS when RBC was employed. The
reason might be that RBC strategy employed two distinctive s for both BESS and TES.
These controllers were responsible only for their relative system and did not share
information between each other. As a consequence, the RBC controller managing the
cooling system operation was not aware of PV production and BESS SOC and vice
versa. This aspect strongly limited the capability of the RBC to optimally control the
proposed system despite the reasonable control rules implemented. This fact clearly
shows the limitations of traditional control approaches.

Infact, the RBC strategy implemented in this application was developed making
the hypothesis that in classical control approaches the different storage solutions are
managed by control laws unaware of other systems. This assumption was deemed
reasonable considering that BESS and TES are usually implemented in existing
buildings by different stakeholders in different periods of time. Moreover, installers
and maintainers usually lack of competences to design an integrated control system
capable to coordinate multiple storage equipment.

Conversely, SAC based its decision process on a set of information including
those relative to PV production and BESS status. This approach provided to the
agent with a comprehensive view of the operation of the whole IES, enabling the
identification of a better control policy compared to RBC. Moreover, SAC leveraged
predictions of external disturbances to furtherly optimize the decision process.

SAC outperformed the RBC in managing the PV-BESS system, even though the
control action does not directly act on the battery. High levels of SS and SC make the
use of electricity storage technologies much more desirable from the point of view
of the building flexibility. Moreover, SAC was capable to achieve appreciable levels
of SS and SC with configurations implementing small sizes of the storage systems.
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These results suggest that advanced control strategies are necessary elements
to be integrated in a system where the number of connections and prosumers is
drastically increasing.



Chapter 5

Robust comparison between
model-based and model-free
strategies for HVAC systems

This chapter discusses in detail the comparison between model-free deep reinforce-
ment learning controllers and model-based model predictive control strategies. The
comparison process presented in this chapter was defined as "robust" since it con-
siders different boundary conditions and different configurations of control agents.
The focus is on the identification of the relative strengths and weakness of the two
approaches when applied to HVAC system control.

This content is developed as a work published in the Elsevier journal "Automation
in Construction":

• Brandi S., Fiorentini M., Capozzoli A. 2022. Comparison of online and offline
deep reinforcement learning with model predictive control for thermal energy
management. Automation in Construction 135, 104128. [27]
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5.1 Comparison of offline and online DRL with MPC
for thermal energy management

MPC is a well-established model-based method for controlling complex interacting
dynamical systems. Firstly developed in the process industry, it has recently been
receiving wide attention from the building industry as it is capable of considering
the physical behavior and dynamics of the controlled systems, its constraints, and a
prediction of the future disturbances to minimize a cost function solved with different
optimization methods [17]. Despite its low adoption in the building industry, MPC
is still one of the most promising advanced control techniques for HVAC systems
control given its mature stability, feasibility and robustness along with an inherent
constraint handling capacity [174].

On the contrary DRL shows interesting adaptability properties together with
a low deployment complexity. However, in ideal conditions, a model-free DRL
agent should be directly employed in the controlled environment to gradually learn
the optimal control policy. However, this process may take a considerable amount
of time leading to poor control performance in its first implementation period.
Moreover, besides the necessity of pre-training the control agent, DRL algorithms
are characterized by a vast amount of hyper-parameters that require careful tuning in
order to achieve good performance. As a consequence, despite being successful, DRL
requires a considerable effort in developing the surrogate model of the controlled
environment undermining the complete model-free nature of the framework.

The present chapter presents and discusses a comparison between an online
and offline DRL formulation with a MPC architecture for energy management of a
cold-water buffer tank linking an office building and a chiller subject to time-varying
energy prices, with the objective of minimizing operating costs.

The next section presents the main research challenges analyzed in this ap-
plication and introduces the motivations and novelty of proposed methodological
approach.
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5.1.1 Motivations and novelty of the proposed approach

This application present a robust comparison between an MPC and a DRL strategy
applied to building energy management, benchmarking them against baseline clas-
sical rule-based controllers. Moreover, besides the approach typically followed in
the literature in which DRL agents are commonly pre-trained offline on surrogate
models of the environment, this application present an online implementation of a
DRL controller which maintains the model-free nature of the algorithm.

As introduced in the literature review in Chapter 2, DRL algorithms are com-
monly compared to rule-based control strategies and only a few studies implemented
model-based benchmarks. Raman et al. [175] implemented a DRL control strategy
pre-trained offline without developing an online counterpart. A similar approach was
adopted by Biagioni et al. [143] for price responsive water heaters. Outside building
energy management applications, Ceusters et al. [144] compared MPC and DRL in
dynamically simulated multi-energy systems where the complexity of the proposed
case studies made it difficult to discern the differences between the two controllers.

For this reason, in the present application, the comparison between MPC and
DRL is proposed for a simple case study in order to better analyze the performance of
the implemented control strategies. The controllers have to manage the charging and
discharging operations of a cold-water storage tank within an HVAC system of an
office building while minimizing the cost associated with the operation of an electric
chiller. The comparison was performed in a simulation environment described in
Chapter 3.

The rest of the section is organized as follows. Section 5.1.2 introduces the
proposed case study, Section 5.1.3 describes the control methodology proposed in
this study, Section 5.1.4 reports the implementation details of the different control
strategies. Section 5.1.5 presents the results obtained. Section 5.1.6 includes the
discussion of the present application.

5.1.2 Case Study and Control Problem

The case study selected for the performance benchmarking of the different control
approaches presented in this application consists of a cold thermal storage tank that
acts as a buffer between the demand of an office building and the generation of cold
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water via an air-to-water chiller. The system can operate in two modes, i) charging
mode, where the cold water can be fed to the building and to the storage tank at the
same time and ii) discharging mode, where the demand of the building is met only
through the storage.

The controller in the charging and discharging phases can modulate the amount
of heat transfer to the storage tank by adjusting the fraction of the nominal flow rate
to/from the storage as shown in Figure 5.1.

Fig. 5.1 Schematics of the cooling system analyzed [27].

In charging mode (left-hand side of Figure 5.1), if the building cooling demand
(Qd) is not zero, the chiller provides cooling to the building and the capacity of the
chiller limits the amount of energy transferable to the storage. The supply water
temperature (Tch) is considered to be constant. The storage can be operated within
a defined temperature range (between Ts,min and Ts,max), however, these boundaries
are not as considered hard constraints and may be slightly exceeded in particular
situations.

In discharging mode (right-hand side of Figure 5.1) the chiller is by-passed and
the building is cooled only via the cold thermal storage, with a constant design water
mass flow rate mD.
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The control problem aims at optimizing the total electricity cost (R) of the energy
used by the chiller by managing i) the scheduling of the two operating modes and
ii) the charging/discharging power at each time-step. For simplicity, the building’s
thermostatic control is not considered and its cooling demand is considered as an
external disturbance along with the price of the electricity and the temperature of the
zone in which the storage is located.

5.1.3 Methodology

This section introduces the methodological framework of this study. As shown
in Figure 5.2 the case study introduced in section 5.1.2 was used as a test-bed to
benchmark the performance of three different control strategies, i) an MPC controller,
ii) a DRL with offline training and iii) a DRL with online training, against two
classical RBC controllers.

Fig. 5.2 Methodological framework of the proposed study [27].

MPC formulation

As the system is allowed to either discharge the storage to provide the cooling
required by the building, or to supply cooling via the chiller to the building and/or to
the storage, this results in two distinct operating modes leading to a Mixed Integer
Linear programming (MILP) problem to be solved.
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Model Defining a Boolean variable δ that is true when the system is in discharge
mode, the storage dynamical behavior is described in Eq. 5.1:


∆Ts(k)

∆ts
= Qd(k)−UA(Ts(k)−Ta(k))

Cs
i f δ = 1

∆Ts(k)
∆ts

= −Qch(k)−UA(Ts(k)−Ta(k))
Cs

i f δ = 0

(5.1)

Where Qd and Ta, the building demand and the ambient temperature where the
storage is located are measured disturbances; Ts , the storage temperature, is the
system state; Qch, the charging power to the storage, and δ , the selection of the
operating mode, are the controlled inputs; UA and Cs are the storage UA value and
capacitance respectively.

Constraints At each time-step the controlled input Qch is limited by the possibility
of the chiller to charge the storage. The chiller capacity, Qcap, constrains the
maximum thermal energy delivered to the building and the storage, as in Eq. 5.2.

Qch(k)+Qd(k)≤ Qcap (5.2)

The storage temperature, since the supply temperature and maximum flow rate
to the storage are fixed, limits the maximum heat transfer rate Qch,max, as in Eq. 5.3.

Qch(k)≤ Qch,max(k) (5.3)

The maximum heat transfer rate Qch,max is calculated as in Eq. 5.4.

Qch,max(k) = ṁcp(Ts(k)−Tch) (5.4)

The storage operation should be maintained within a reasonable temperature
range. This constraint, also to help to ensure the feasibility of the optimization when
the controller is deployed, was formulated as a soft constraint, as in Eq. 5.5.

Ts,min(k)− ε ≤ Ts(k)≤ Ts,max(k)+ ε (5.5)
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where Ts,max and Ts,min are the upper and lower temperature boundaries for the
operation of the storage, and ε is the slacking variable. This latter variable is also
subject to a constraint that limits the allowable temperature excess as in Eq. 5.6.

ε ≤ Ts(k)≤ εmax (5.6)

Cost Function In this economic MPC formulation, the total cost to be minimized
is the actual energy cost over the prediction horizon N, as in Eq. 5.7:

J =
N

∑
k=1

R(k)
Qch(k)+Qd(k)

COP
(5.7)

Where R is the cost of the electrical energy per kWh, and the COP of the chiller
is considered to be constant and equal to the equipment nominal value.

The problem is solved at each time-step k, with a control time-step ∆ts equal to
1h and the length of the horizon N equal to 48h.

The control actions of the MPC are the value of δ , which determines the operating
mode, and the charging power Qch, from which the mass flow rate is determined
(by dividing Qch by the known temperature difference between storage and charging
flow, water density and specific heat capacity).

DRL formulation

In this application the classical implementation of SAC algorithm described in Chap-
ter 2 was implemented. SAC methods are useful as they are capable of handling
continuous action spaces. The Actor-Critic architecture employs two function ap-
proximators. The Actor has the aim to determine the optimal action for a given
specific state of the controlled environment (policy-based), while the Critic eval-
uates the decisions made by the actor (value-based). This framework is generally
coupled with an off-policy implementation, enabling the re-utilization of the previ-
ous experience collected by the agent in order to improve the control policy. The
Soft-Actor-Critic algorithm originally implemented in the library Stable-Baselines
[48] was employed in this application. In the following paragraphs, the design of
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the action-space and of the reward function are presented along with the different
training strategies employed.

Design of the action-space At each time-step, the action has to control the schedul-
ing of the charging and discharging modes, as well as the fraction of design water
mass flow rate (mD) that should circulate through the storage. These aspects were
encoded through an action space defined in the interval between -1 and 1 from which
the DRL agent can select control actions. Following this approach, if the agent
selects an action strictly less than 0 the system operates in discharging mode. Con-
versely, if the agent selects an action greater or equal than 0 the system operates in
charging/chiller cooling mode and the water mass flow rate circulated to the storage
is set proportional to the modulo control action value.

Safety constraints A safety constraint was introduced in order to guarantee that
the cooling demand of the building is always met and to maintain the temperature of
the storage within the prescribed range.

In particular, the constraint was introduced in the discharging mode (i.e. control
action < 0). If the temperature of the storage tank rises above a certain value
and the building cooling demand is not zero the system automatically switches
to charging/chiller cooling mode in order to meet the demand regardless of the
negative control action selected by the agent. This value was set equal to the upper-
temperature boundary (Ts,max) plus a defined tolerance value τ . The violation of
the upper-temperature boundary is penalized by associating a cost to the reward, as
explained in the following subsection.

Reward function The reward function obtained by the agent after selecting an
action at each time-step measures its control performance. Since the building’s
thermostatic control was not considered in this application, the objective of the
controller is to minimize the cost of the electricity consumed by the chiller unit. The
reward depends from this value as described in Eq. 5.8:

r(t) =−β ∗R(k)∗Qch,elec(k)−P(k) (5.8)



5.1 Comparison of offline and online DRL with MPC for thermal energy
management 153

Where R(k) is the electricity cost at each time-step k and Qch,elec(k) is the chiller
electricity demand in the time interval between k− 1 and k. β is a weight factor
introduced to regulate the magnitude of the reward. Moreover, the term P(k) is
a cost term introduced to penalize the agent of a quantity P if the temperature of
the storage rises over the upper-temperature boundary (Ts,max) as introduced in the
previous paragraph. In any other case (i.e. the temperature of the storage lower than
upper-temperature boundary) the cost term P(k) is equal to zero.

Design of the state-space The state or observation space includes all the variables
which describe the environment at each time-step as it is seen by the DRL agent.
In this study, the state-space does not include only information about the current
time-step but also information about the recent past and the future disturbances.

Historical values were added to the state-space in order to account for the effect
of thermal dynamics which characterize the present control problem.

All the variables included in the state-space are physical quantities directly
extracted from the simulation output with the exception of the State of Charge (SOC)
of the storage tank that was calculated according to Eq. 5.9 :

SOC(k) = 1−
(Ts(k)−Ts,min)

((Ts,max + τ)−Ts,min)
(5.9)

More detailed information on the variables included within the state-space is
provided in section 5.1.4.

DRL with offline training According to offline strategy, a DRL control agent was
first trained using a calibrated model of the energy system over a training period
and successively statically deployed on the same model over the deployment period.
The training period, also identified as training episodes, was repeated multiple times,
allowing the agent to explore different control policies in order to identify the optimal
control strategy. Once the training phase was completed, the agent was statically
deployed meaning that the parameters of the control policy were not updated during
the process. The advantages of such an approach are the limited computational cost
and the relative stability provided by a static control policy. The disadvantage is that
the agent is unable to automatically adapt in the case key features of the controlled
system change (e.g. revamping intervention) and may need to be retrained.
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DRL with online training According to the online strategy, a DRL control agent
was directly deployed on the calibrated model of the energy system. The control
agent has no prior knowledge of the dynamics of the controlled environment. Thus,
it was forced to learn the parameters of the optimal control policy while actively
controlling the system. This strategy completely emulates a model-free controller in
the sense that no previously built model was employed to pre-train the control agent.

A particular configuration of two hyper-parameters, learning rate and number
of gradient steps, was adopted to directly deploy the DRL agent on the controlled
system. In the offline approach was implemented a constant value of learning rate
and number of gradient steps since the agent has at disposal a large amount of
experience in the replay buffer, generated through multiple episodes. In the online
approach the values of learning rate and the number of gradient steps vary over time
according to two step functions. In particular, high values of the learning rate and
number gradient steps were employed during the first period to encourage faster
learning of neural networks weights. This approach is motivated by the fact that at
the beginning of the deployment period the online agent has no prior knowledge of
the problem and limited experience is available in the memory buffer. The learning
rate and the number of gradient steps were then gradually reduced as long as learning
progress to limit the risk of converging to near-optimal control policies. The step
functions adopted for both the learning rate and number of the gradient steps during
the simulation of online trained DRL agent are reported in section 5.1.4.

Modelled predictions of forcing variables

Since in this application both MPC and DRL implements predictions of the forc-
ing variables to identify the optimal control policy, the performance of the three
strategies was evaluated employing both perfect and modeled predictions of external
disturbances.

The implementation of perfect predictions represents an ideal test scenario in
which the performance of the controllers is benchmarked knowing exactly the
evolution of the disturbances. The implementation of modeled predictions represents
a test scenario closer to reality in which the evolution of the disturbances cannot
be exactly known but can be estimated using data-driven methods. Through this
approach was possible to evaluate the effect of the accuracy of the predictions on the
different control strategies.
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The modelled prediction was obtained by developing an LSTM network model
for each disturbance. In particular, the disturbances predicted through this approach
were the building cooling demand (Qd) and the air temperature of the space in which
the storage is located (Ta). The prediction of the price of electricity was always
supposed to be perfectly known.

The prediction models were developed on an hourly basis with a prediction
horizon of 48 hours. The inputs sequences to the two LSTM models are formed
by the following common variables: day of the week, hour of the day, outdoor air
temperature and outdoor solar radiation. Along with these variables, the sequences
were completed with building cooling demand or air temperature of the space in
which the storage is located depending on which was the target output. The sequences
were provided to the LSTM models up to 48 hours in the past.

5.1.4 Implementation of the proposed methodology

The case study described in Figure 5.1 consists of an office module that is currently
under construction at Politecnico di Torino, Italy. The module has an overall surface
of 95 m2 and consists of two 10-persons office rooms, one control room and a
3-persons technical room. The technical room is not served by the air-conditioning
system and the storage tank is placed within it. The average transmittance value of the
opaque and transparent envelope components are 0.15 and 0.6 W/m2K respectively.
The reference capacity of the chiller (Qcap) is 12 kW and the reference COP is
2.67. The chiller can provide cooling energy to the building or to cold water storage
which has a volume of 10 m3. The storage was sized considering 1.5-times the
maximum daily cooling demand of the building. The design water mass flow rate
during charging phase is 0.2 kg/s while during discharging phase is 0.35 kg/s. This
latter value corresponds to the sum of the design mass flow rates of the three air-
conditioned zones. The supply water temperature at the outlet of the chiller was set
equal to 7 °C. The operating range of temperature of the storage tank ranged between
10 °C (Ts,min) and 17 °C (Ts,max). The cooling demand was considered as an external
disturbance of the system and was calculated within EnergyPlus in order to maintain
an indoor temperature of 26 °C and a relative humidity of 55 % between 08:30 and
18:00 from Monday to Friday. In this time interval, the zones were supposed to be
occupied at their maximum capacity.
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The price of the electric energy drawn from the grid to operate the chiller unit is
a further external disturbance of the analyzed system. A summary of the electricity
prices used in this application is presented in Figure 5.3, which is based on the tariff
structure commonly implemented in Italy.

Fig. 5.3 Detail of the electricity prices used in the application [27].

Three different tariff levels were considered: i) a “High Price" level, with an
electricity rate of 0.3 C/kWh, ii) a “Medium Price" level, with a rate of 0.165 C/kWh
and iii) a “Low Price" level, with a rate of 0.03 C/kWh.

The price of the electricity was assumed to be relatively different from each other,
to discriminate the values for the optimization application. Specifically, the low and
medium price values were chosen to be respectively 1/10 and 1/2 of the higher one.
The system was simulated using EnergyPlus. DRL control agents were designed and
implemented in Python, the MPC controller in Matlab [44]. The weather file used in
this application is the reference weather file (ITA_TORINOCASELLE_IGDG.epw)
available in EnergyPlus for Torino, Italy. The cooling season was defined to last
between June and August. The control time-step was set equal to 1 hour whereas the
simulation time-step was set equal to 5 minutes in order to improve the precision of
the simulation. As a result, a control action is defined every 12 simulation steps for
which the same control action is repeated.

Implementation of RBC strategies

Two different RBC controllers were implemented in this application.

The first one, named RBC 1, was designed in order to charge the storage during
mornings (i.e. between 0 a.m and 7 a.m) of working days when the price of electricity
is low and if the temperature of the storage (Ts) is greater than 12 °C. In this mode, the
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controller charges the storage at the maximum flow rate. The storage is discharged
during peak-cost hours until the storage temperature reaches 17 °C or until the
building cooling demand (Qd) is null.

The second one, identified as RBC 2, charges the storage whenever the price of
electricity is low (i.e. between 11 p.m and 7 a.m during Mondays and Saturdays and
between 0 a.m and 24 p.m during Sundays) and the temperature of the storage is
greater than 12 °C. In this phase, the storage is charged until its temperature reaches
the lower limit of the temperature range or the price of electricity rises. The storage
is switched to discharging mode whenever the building demand is not zero until this
value return to zero or the temperature of the storage is greater than 17 °C.

RBC 1 was initially conceived as the only benchmark solution. However, as
showed in the next sections, despite it can be considered a reasonable control law, its
performance resulted extremely poor leading to the design of RBC 2. Nevertheless,
RBC 1 was still considered as a baseline together with RBC 2, to show how an expert-
based design of the control strategy may require different trials before converging to
the optimal setup.

Implementation of MPC strategy

The MPC strategy was implemented using Matlab R2019b, the Multi Parametric
Toolbox and Hysdel for the problem formulation [176], and Gurobi [177] as a
solver for the MILP problem. As Hysdel was used to describe the Mixed Logical
Dynamical (MLD) system, the future measured disturbances were taken into account
by augmenting the prediction model with an additional linear model and treating
the vector of the future references and measured disturbances as additional states
[178]. For this reason in the implementation phase, the three tariffs described in
the previous section were converted into discrete variables to enable switching to
linear systems with a fixed energy cost equal to the rate of that time window. The
parameters used for the implementation of the MPC strategy, including the system
design variables (the storage UA and Cs, and the chiller COP) and MPC formulation
(the control time-step ∆ts, the horizon length N, and weight and maximum value of
the slacking variable ε) are reported in Table 5.1.
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Table 5.1 Parameters used in the MPC controller [27].

Parameter Value Units

ε 0.005 C/K
εmax 3 K
∆ts 1 h
N 48 -

COP 2.67 -
Cs 11.62 kWh/K
UA 0.012 kW/K

Implementation of Deep Reinforcement Learning Control strategies

The reinforcement learning control problem is defined by action-space, by the reward
function and the state-space that are summarized in Figure 5.4.
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Fig. 5.4 Summary of the variables included in the state-space, action-space and employed to
evaluate the reward.

The figure shows the variables included in the state-space highlighting the dis-
turbance for which a prediction was provided (i.e. electricity price and building
cooling demand). Moreover, Figure 5.4 summarizes the control action (i.e. charg-
ing/discharging mode and water mass flow rate fraction circulated from/to the stor-
age) and the variables employed to evaluate the reward. These features are the same
for both DRL trained through offline approach and DRL trained through online
approach.
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Table 5.2 Hyper-parameters of the reward function [27].

Variable Value

Weight factor (β ) 100
Penalty cost (P) 1

Storage temperature tolerance (τ) 1 °C

Table 5.2 shows the hyper-parameters of the reward function introduced in section
5.1.3. These values were found to be the most effective after conducting a hyper-
parameter tuning process as implemented in [24]. Table 5.3 furtherly describes the
variables included in the state-space along with their maximum and minimum values
that were employed to re-scale the state space through a min-max normalization
before providing the variables as inputs to the DNNs.

Table 5.3 Variables included in the state-space [27].

Variable
Min
Value

Max
Value

Unit Time-step

State of charge (SOC) 0 1 - k-4,..., k-1, k
Electricity Price (R) 0.03 0.3 C/kWh k, k+1,..., k+24
Building Cooling Demand (Qd) 0 20 kW k, k+1,..., k+24
Ambient Air Temperature (Ta) 13 30 °C k
Outdoor Air Temperature (To) 7.5 40 °C k

The storage tank State Of Charge (SOC) at the time-step k was introduced
to provide to the agent information about the amount of energy actually stored.
Moreover, past values of this variable were introduced to provide information about
the evolution of the temperature caused by the charging/discharging of the system up
to 4 hours before the actual control time-step. These values were included to provide
to the agent information about the inertia of the system evaluated at the time-step k.

The electricity price is a key-information for the agent in order to correctly plan
the operations of the system. Actual value is provided along with the exact values
for the 24 hours ahead. As introduced in section 5.1.3, the electricity price patterns
were supposed to be always known.
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The building cooling demand together with the price of electricity is a funda-
mental information to optimally manage the controlled system. Also the values of
building cooling demand from time-step k to time-step k+24 were provided to the
agent. The predictions of building cooling demand were assumed to be perfectly
known or estimated by means of a neural network model.

Eventually, information about the air temperature of the space in which the stor-
age is located along with information about outdoor air temperature were included.
The first variable provides knowledge about the heat losses from the storage while
the latter affects the COP of the chiller unit.

Besides the formulation of the reward function and of the state-space, the rein-
forcement learning frameworks require of a series of hyper-parameters to be set as
the discount factor for future rewards (γ) and the structure of the neural networks
employed as function approximators. The values of the hyper-parameters selected
for this application that are the same for the two control strategies based on DRL are
summarized in Table 5.4.

Table 5.4 Hyper-parameters of the DRL Agents [27].

Hyper-parameter Value

Discount factor (γ) 0.99
Number of hidden layers 2

Number of Neurons per Hidden Layer 256
Activation Function ReLu

Optimizer Adam
Entropy regularization coefficient (α) 0.2

Memory size 2160

In the next following subsections the different implementations of DRL agent
trained in offline and online modes are described.

Implementation details of the DRL agent with offline training

In this case the DRL control agent was pre-trained offline using the model of the
system as introduced in section 5.1.3. The pre-training unfolds by repeating the same
training episode in order to let the agent converge to the optimal control policy. The
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selected training episode includes the month of June of the weather file implemented
in this application. The training episode was repeated 15 times before obtaining an
acceptable solution. The trained agent was successively deployed statically on the
system for the whole cooling season (June-August) in order to assess its performance.
The deployment process was performed considering also the training period to assess
the stability of the learned control policy. The optimizer learning rate was set equal
to 0.001 while the batch size equal to 256.

The agent was trained using only the perfect predictions of the external distur-
bances while the deployment was performed considering both perfect and modeled
predictions. Through this approach, the stability of the control policy of the DRL
agent pre-trained offline was challenged during deployment since it had no informa-
tion about prediction uncertainties during training.

Implementation details of the DRL agent with online training

This DRL agent was directly implemented on the simulated case study as if it was
the real system. The behavior of two hyper-parameters, the learning rate of the DNN
optimizer and the number of gradient steps, was defined according to the function
depicted in Figure 5.5. The batch size was set equal to 32 differently from the DRL
agent trained offline due to the lower amount of data available to the agent to train
the control policy in the online training fashion. Employing smaller batch size can
provide a faster convergence to near-optimal solution [40] which is an extremely
desirable feature for a DRL agent directly deployed on the controlled system.
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Fig. 5.5 a) Evolution of the learning rate and of b) Number of the gradient steps during the
simulation of Online trained DRL agent [27].

The figure shows how the two hyper-parameters, learning rate figure (a) and
number of gradient steps (b), were reduced during the simulation. This approach
was found to be effective in speeding up the training process in the first weeks
of deployment given the limited amount of data available to learn from. The two
functions shown in Figure 5.5 were found according to a manual tuning process.

Implementation of modeled predictions of disturbances

As introduced in section 5.1.3 modeled predictions of building cooling demand and
air temperature of the zone in which the storage is located were obtained by means
of two LSTM models. These models were characterized by two hidden layers with
48 neurons, one LSTM layer and one dense layer with relu activation function. The
predictor attributes employed are described in section 5.1.3. The models were trained
for 300 epochs with a batch size equal to 64.

The training data-set was generated with the same simulation model considering
a different weather file obtained from real world measures collected for Torino
(Italy) during the year 2019. The trained LSTM models were used to predict the
values of the building cooling demand and air temperature of the zone in which the
storage is located considering the same weather file employed to analyze the different
control strategies (i.e. reference weather file ITA_TORINO-CASELLE_IGDG.epw).
The performance of the two LSTM models were evaluated in terms of Root Mean
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Squared Error (RMSE). The models developed to predict building cooling load and
the air temperature of the zone achieved in testing conditions an RMSE of 229.6 W
and 0.84 °C respectively.

5.1.5 Results obtained

As introduced in Section 5.1.4 the main objective of this application is to compare
the performance of model predictive and deep reinforcement learning control strate-
gies. Considering that both control techniques benefit from predictions of future
disturbances values for the evaluation of the optimal control sequence, a comparison
of their performance considering both perfect and modeled predictions was under-
taken. The two rule-based control strategies described in section 5.1.4 were used
as a benchmark. The different control strategies were simulated during the cooling
season in the period ranging from June to August. Table 5.5 reports the total cost and
consumption of electricity obtained by implementing the different control strategies.

Table 5.5 Total operating cost and electricity consumption comparison of the system using
the different control strategies. The Pred column refers to the type of predictions of external
disturbances used (perfect P or M modeled predictions) [27].

Strategy Pred
June July August

C kWh C kWh C kWh

RBC 1 - 13.1 272 21.9 344 18.9 310
RBC 2 - 8.40 280 10.8 361 9.78 326

MPC P 8.16 272 10.26 343 9.24 309
DRL Offline P 8.28 277 10.5 351 9.6 320
DRL Online P 21.24 269 13.1 357 10.14 326

MPC M 8.16 272 10.26 342 9.3 310
DRL Offline M 8.34 278 10.5 351 9.6 319
DRL Online M 24.3 270 12.78 365 10.62 314

The results in Table 5.5 show that the MPC achieves the best performance in
terms of total cost in both the implementations with perfect and modeled predictions,
followed by the DRL strategy with offline pre-training. It can be noticed that RBC
1 obtained the worst performance among the employed control strategies, which
was the main reason for the development of the RBC 2 controller. This latter RBC
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strategy, better suited for the system, performs only 4.7% worse in terms of operating
cost compared to the MPC. However, it led to the highest amount of electrical energy
over the simulation period, 4.6% higher than the best performing MPC.

It is also interesting to notice that the DRL trained offline and the MPC obtained
very similar results, showing that both solutions are most likely near-optimal.

The MPC and the DRL with offline training were only mildly affected by in-
accurate disturbances predictions, whether the DRL controller trained online was
more affected, with a reduction in performance compared to the case with perfect
predictions of 7.2%.

The negative effect of modeled predictions was mitigated in the case of DRL
with off-line training since this agent utilized more experience to converge to an
optimal solution, relying less on the goodness of the prediction.

As expected, the DRL controller trained online did not perform well if the entire
3-months period is considered, since the agent was deployed without prior knowledge
of the controlled system. However, it can be noticed how the total cost achieved
through this controller gradually decreased over time. This can be seen from the
monthly results in Table 5.5, and in Figure 5.6, which reports the cumulative cost
(starting from July) of each strategy. Table 5.5 shows that the performance difference
between the MPC approach and the online DRL in terms of total cost decreases from
160% in the first month, to 21% in the second, to only 3.6% during the last month.
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Fig. 5.6 Total electricity cost obtained by the different control strategies in the period July-
August in the case of a)perfect prediction and b)modelled predictions of external forcing
variables [27].

This is also clear in Figure 5.6, which shows that the cumulative cost of trained
online DRL (green line) becomes parallel to the curves of the best performing
solutions, indicating that these control solutions became more and more similar over
time.

The higher costs of the DRL with online training were expected as, differently
from the one trained offline, needed to explore behaviors in the initial period that,
without having a-priori knowledge of the system, could be detrimental. In addition,
the agent trained online might not react to sudden changes (e.g. the increase in the
cooling demand from June to July).

The importance of flexibility of energy sources can be furtherly highlighted by
reporting the costs related to an identical system without the introduction of an active
thermal storage which are 86.7 C, 101.2 C and 90.4 C during June, July and August
respectively.

Table 5.6 reports the use of the storage tank in terms of thermal energy charged
and discharged, as well as the fraction of cooling demand satisfied, achieved by the
different control strategies over the three simulated months.
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Table 5.6 Thermal energy exchanged by the storage tank during charging (Ch) and discharg-
ing (Disch) phases and the fraction of cooling demand satisfied (Dem) by the different control
strategies [27].

Strategy Pred
June July August

Ch Disch Dem Ch Disch Dem Ch Disch Dem
kWh kWh % kWh kWh % kWh kWh %

RBC 1 - 845 886 95 1014 963 89 923 877 90
RBC 2 - 924 936 100 1189 1080 100 1077 976 100

MPC P 897 936 100 1132 1080 100 1022 976 100
DRL Off. P 906 936 100 1142 1080 100 1042 976 100
DRL On. P 743 797 85 1154 1068 99 1066 976 100

MPC M 896 936 100 1131 1080 100 1024 976 100
DRL Off. M 906 936 100 1142 1080 100 1043 976 100
DRL On. M 729 786 84 1185 1076 99 1025 976 100

The results show that the MPC, DRL trained offline and RBC 2 strategies used
the storage to satisfy always the full building cooling demand. However, RBC 2
employed an higher amount of energy to charge the system resulting in an increased
storage heat losses to the ambient. It can also be seen that RBC 1 never fully met
the building cooling demand through the storage, resulting in a higher cost. RBC 1
was never capable to charge the storage enough to cover the demand during off-peak
time slots reaching, during discharging phase, the upper limit of storage temperature
range before the demand was completely satisfied and incurring in a higher energy
cost. As far as the DRL trained online is concerned, a gradual improvement of the
control policy can be seen, with an increase of the percentage of cooling demand
satisfied through the storage during the second and third months.

Figure 5.7 shows the temperature profile of the storage tank achieved by the
different control strategies. For simplicity, only the MPC and DRL results with
perfect predictions were reported.
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Fig. 5.7 Comparison of storage tank temperature profiles for the different control strategies
(perfect predictions), June-August [27].

In this figure it can be observed that RBC 1 charged the storage tank only during
morning of working days, which is insufficient to cover the building demand. As
a results the storage temperature gradually increases during the first weeks to later
remain stable between 13 °C and 17 °C.

RBC 2 control strategy charged the storage whenever the price of electricity was
low and whenever the temperature of the storage was higher than 12 °C. Conse-
quently, during weekends the storage was cooled to the lower temperature limit (i.e.
10 °C), resulting in a better cost performances compared to RBC 1, but in a higher
energy losses to the ambient.
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The MPC controller, which achieved the best performance, tried to maintain
the temperature of the storage as close as possible to the upper limit, to provide
sufficient cooling energy to satisfy the daily demand while minimizing the thermal
losses. During some Fridays the MPC controller violated the soft constraint on the
upper limit of storage temperature range of approximately 0.5 °C, as enabled by
the constraint formulation in Eq. 5.5. This could be due to a compensation of the
mismatch between the model and the system closing the loop, or the willingness of
the controller to incur the cost of violating the upper temperature constraint to access
charging energy at a lower price a few hours later.

The offline DRL controller achieved a very similar performance as the MPC, but
with a slightly different sequence of inputs, as it charged the storage more during
weekends. This additional energy was gradually released during the week allowing
the controller to violate the upper constraint of storage tank temperature for shorter
periods of times compared to the implemented MPC approach.

The online DRL controller clearly struggles during the first weeks to manage
the storage, charging it only intermittently resulting in a higher cost due to a more
extensive use of the chiller during high-price periods. However, it can be observed
how the control policy gradually improves to finally converge to a control pattern
very similar to the behavior described for the DRL controller pre-trained offline.

Figure 5.8, Figure 5.9 and Figure 5.10 provide more details on the behavior of
the MPC and DRL control strategies during a week included between 21/08 and
2/08. The patterns observed during this week were not necessarily observed in all
other weeks, however it were deemed sufficiently representative to be presented and
discussed.

The top plot in these figures shows the amount of heat transfer to the storage
tank, where a negative value means charging and a positive one discharging of the
storage. The background color shows the electricity price, where a green background
corresponds to a low price time period, a yellow one to a medium price and a red
one to a high price period.

The second subplot shows the temperature profile of the storage tank together
with the upper temperature limit, marked with a red line at 17 °C.
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Fig. 5.8 Storage cooling load and temperature patterns for MPC control strategy in the period
21/08 - 27/08 [27].

Figure 5.8 is related to the operation of the MPC strategy. As expected, the
controller charged the storage only during low-price time slots in order to match
the cooling demand of the building. At the same time, the controller managed to
maintain the temperature of the tank as close as possible to the upper temperature
limit. During the last day of the week, (Friday 27/07 in this figure), the soft constraint
on this limit was relaxed by the controller to satisfy immediately the cooling demand
and return below the temperature boundary after a few hours, when the energy price
lowered again.
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Fig. 5.9 Storage cooling load and temperature patterns for DRL with Offline Training control
strategy in the period 21/08 - 27/08 [27].

Figure 5.9 shows the behavior of the DRL controller pre-trained offline. Dif-
ferently from the MPC, it is interesting to observe that this controller decided to
pre-charge more the tank over the weekend in preparation for the coming week.

In this region the control policy was relatively noisy, alternating between charging
and free-floating. However, the storage tank was cooled at a lower temperature at
the beginning of the week respect to the MPC strategy, and the upper temperature
constraint was never violated during this week.
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Fig. 5.10 Storage cooling load and temperature patterns for DRL with Online Training
control strategy in the period 21/08 - 27/08 [27].

Figure 5.10 shows the control policy of the DRL controller trained online. This
controller shows similar behavior to DRL agent pre-trained offline after six weeks of
training. During Sunday-Monday morning the control policy was uncertain resulting
in a more pronounced alternation between charging and free-floating. It is interesting
to observe from the bottom plot how this controller gradually released the cooling
energy stored in the tank during the week.

When comparing the results of the three control approaches it can be seen that,
while they all charge during off-peak time slots between the working days, during
the weekend they follow different policies. The MPC controller waits as long as
possible before charging the storage on Monday morning, as it can be seen in Figure
5.8. As Figures 5.9 and 5.10 show, the two DRL controllers, charge the storage more
and over a longer period of time, showing a more intermittent behavior. This pattern
suggests that the control policies learned by the DRL agent are still uncertain and
might be slightly less efficient.
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However, the DRL control policies were able to capture requirements of the sys-
tem beyond the 24h prediction horizon. More specifically, DRL agents were capable
to extract a recurrent pattern (i.e. the alternation between weekend and weekdays)
which spawns for a longer period compared to the horizon of the predictions included
in the state space.

5.1.6 Discussion

The results from the comparison of a MPC, a DRL and a RBC applied to a case study
featuring a cold water storage tank and an air-to-water chiller showed interesting
similarities and differences between these approaches.

The different control strategies, to minimize the operational cost, had to correctly
manage the storage to shift the demand to the lower energy cost time slots, ensure
that the storage was sufficiently charged to satisfy the demand each day of the week,
and minimize the thermal losses to the ambient.

The MPC approach achieved the best performance, managing the system in order
to charge the storage tank with enough cooling energy during off-peak price periods
in proximity of on-peak time slots. Thanks to this approach the controller was
able to minimize thermal losses to the ambient and guarantee the building cooling
demand satisfaction with the storage. In particular circumstances (e.g. at the end of
each week) the MPC controller decided to soften the upper temperature boundary
constraint, possibly due to the limited length of the prediction horizon (48h) that did
not allow the controller to use the weekend to further cool in advance the storage.

The DRL agent pre-trained offline achieved a similar performance to the MPC
approach, with a similar control pattern during the weekdays, but during weekends
and early Monday mornings the DRL controller attempted to provide more cooling
to the storage, in order to gradually release it during the week. This allowed the
controller to violate less the upper limit on storage tank temperature. This difference
can be explained by the fact that the DRL controller based its decisions on patterns
such as alternation between weekend and weekdays that went beyond the 24h
prediction horizon that it had available in the state-space. A similar behavior was
observed for some weeks also for the DRL agent trained online. This pattern
represents an advantage with respect to MPC provided by the off-policy evaluation
method employed by DRL algorithms. This method leverages previous experience
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to learn an effective mapping between states and actions capable to identify complex
patterns thanks to DNN capabilities. However, DRL controllers charged the storage
intermittently and over a longer period of time, alternating it with no-charging
periods. As a result, the heat losses to the ambient were greater compared to the
MPC case, possibly showing intrinsic instabilities affecting a DRL control approach.

RBC 2 achieved a similar performance in terms of cost of electricity compared
to the MPC ad DRL trained offline approaches. However, it used on average 4.5 %
more energy with respect to MPC due to heat losses since it was designed to charge
the storage to its minimum temperature whenever the price of the electricity was low.
On the other hand, RBC 1 failed at providing the storage with enough cooling energy
and was forced to use the chiller to satisfy the remainder of the building cooling
demand at higher electricity costs as expected.

The DRL agent trained online demonstrated to be capable to rapidly adapt to the
controlled environment reaching, after one month, comparable results to the best
performing solutions and outperforming the RBC 1 controller. On the other hand,
during the first month, the poor performance of this agent led to high operating costs.

In this application both MPC and DRL made use of predictions of external
disturbances (electricity price, the temperature of the ambient of the storage and
cooling demand) to derive the optimal control policy. They were considered as either
perfectly predicted or modelled through a deep neural network to make a future
48h forecast, to replicate an implementation in real-world conditions. The inputs
to the disturbances models were outdoor air temperature and solar radiation for the
unconditioned space, with the addition of the occupancy schedule for the cooling
demand.

Alongside the predictions of the external disturbances, the MPC required a
model of the controlled system and an optimizer. The definition of the model is
usually addressed as one of the most time-consuming tasks in MPC development.
In this application, given the relatively simple nature of the problem considered, a
straightforward model of the controlled system was derived. In this application MPC
demonstrated a good performance, with an implementable solution that worked well
with both perfect and modelled predictions of the external disturbances.

A DRL agent pre-trained offline, despite not using a model directly in its for-
mulation, still requires the development of a model of the controlled environment
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for training, as it needs to see the same simulation period several times to learn an
efficient control policy comparable to the one obtained by an MPC approach.

The DRL agent directly deployed on the controlled environment and trained
online, despite an initial lower performance, was capable to converge to an accept-
able though not optimal solution, demonstrating to be capable of improving the
performance of the system controlled by a rule-based system without using a model
of the system or supervision.

The RBC controllers developed showed the limitations of classical approaches.
The first RBC controller, RBC 1, despite having a reasonable control law, resulted
in an under-performing solution, which lead to the design of RBC 2 controller for
benchmarking. This solution obtained satisfying performance in terms of electricity
cost but led to the greatest amount of energy losses to the ambient.

The results obtained in this study highlight that, despite the simplicity of the
control problem, an expert-based design of the control strategy may require time
to identify the optimal control setup that is only applicable to a specific system.
In this sense, rule-based controllers are not capable to adapt to the evolution of
the controlled environment over time. For example modification to the patterns of
building cooling demand or price of electricity may lead to a poor performance that
advanced control strategies would not suffer, as they are more effective in adapting
to known and changing boundary conditions.



Chapter 6

Conclusions

The present dissertation was aimed at demonstrating the applicability and effec-
tiveness of DRL-based strategies for HVAC system control. DRL-based control
strategies have the capability to automatically improve HVAC system operation
considering multiple goals while adapting to evolving conditions. However, their
application in the building sector is still in its infancy and it requires expertise in
both artificial intelligence and building physics.

The framework in which the present dissertation was undertaken was carried out
with the aim of bridging the gap between these two research fields.

To this purpose four different applications of the DRL framework for HVAC
system control were conceived and tested leveraging a co-simulation environment
specifically designed in the context of this dissertation. Figure 6.1 shows a summary
of each application highlighting the different aspects being investigated. These
aspects are related to:

• Environment models employed to train DRL control agents. Both physics-
based and data-driven models were employed.

• The complexity of the controlled environment. Simple heating systems were
investigated along with more complex configurations involving storage tech-
nologies and integrated energy systems.

• Control objectives. The DRL control strategies were designed to meet different
goals including indoor temperature control, energy minimization and cost
minimization.
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• Formulations of the state-space. Input variables to DRL control agents
were identified according to traditional approaches or following variable-
engineering processes. Moreover, prediction of external disturbances were
considered in some applications in order to provide more information to the
controller.

• DRL training methods. DRL agents were trained following both offline pre-
training and online training approaches.

• DRL deployment methods. DRL agents were deployed according to both
static and dynamic deployment configurations.

• Benchmarking strategy employed to evaluate the performance of DRL agents.
Traditional and model-based strategies were developed to provide robust
benchmarks of the proposed DRL agents.

Fig. 6.1 Summary of the four different applications and relative aspects being investigated.

Each application was designed to address different challenges and questions re-
lated to the application of DRL controllers to building systems bringing the following
innovative perspectives:

• Optimization of indoor temperature control and energy consumption
in heating systems: Despite the simplicity of the case study, the flexibility
and adaptability of the control agent to different occupancy schedules and
indoor temperature requirements was tested in different scenarios showing the
potentialities of the proposed solution. In this perspective, this process can be
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categorized as an application of transfer learning in which a learned control
policy was evaluated in different context. A proper selection of variables
defining the state-space was proposed with the aim of developing a controller
capable to adapt to dynamic changes of the environment. The importance of
hyper-parameters selection was highlighted by analyzing the sensibility of the
results for different configurations of their values. The DRL control agent with
variables selected according to adaptive approach led to savings between 5%
and 12% of heating energy depending by the analyzed scenario. This agent
was able to achieve these performances in a static deployment configuration
suggesting that a careful design of the state space may be sufficient in providing
to an agent the capability to adapt to changes in the controlled environment
without scarifying its stability with a dynamic deployment configuration. At
the same time, the controller achieved satisfying performance in controlling
indoor air temperature.

• Effective pre-training of DRL agents by means of data-driven models to
control HVAC systems in buildings: Pre-training of DRL control agents can
be effectively performed through data-driven models of the building dynamics.
Through this approach a DRL controller can be effectively trained without
performing the time-consuming and expensive task of developing physics-
based models of the controlled environment. The risk of this approach is
related to the fact that monitored data only carries information about specific
usage patterns of the building limiting prediction capabilities of the data-driven
model. This situation is particularly relevant during the training process in
which the agent may explore a wider range of the state-action space never
mapped from monitored data. The presented application showed how an
LSTM network carefully tuned can be effectively exploited as data-driven
model for DRL training. The result showed how the agent trained through
the proposed framework can be capable to reduce energy consumption while
maintaining indoor air temperature requirements for a water-based heating
system of an office building.

• Optimization of the management of integrated energy systems in buildings
with Deep Reinforcement Learning: The optimal management of storage
technologies is a fundamental task to address in buildings with IES to enhance
energy flexibility and reduce operational costs. In the developed application
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the baseline strategy, conceived following a traditional approach, was not
aware of local PV production or BESS status resulting in sub-optimal control
policy especially when the capacities of TES and BESS were small. The
proposed DRL strategy proved to be capable to learn better control policy
compared to RBC given the same storage capacities reducing the operating
cost between 39.5% and 84.3%. Traditional baseline controller resulted more
sensitive to the storage size, giving greater importance to the initial design,
whereas DRL achieved high savings also when smaller capacities were im-
plemented. The advantage with respect to the baseline narrows down as the
capacities were increased. For the same BESS capacity installed, DRL control
strategy was capable to notably increase the levels of SS and SC, reducing the
energy exchanged with the grid and increasing building energy flexibility. The
results obtained highlighted the importance of implementing advanced control
strategies in the design framework of IES in buildings. However, the proposed
DRL control strategy despite its model-free definition is not completely inde-
pendent by a modeling effort since it was trained for several episodes before
converging to the final solution.

• Comparison of DRL with MPC for thermal energy management: MPC
is a model-based solution that employs a simplified model of the controlled
system to perform an optimization process over a receding horizon, using
predictions of external disturbances. Similarly, DRL employs predictions of
external disturbances to learn a near-optimal control policy. However, despite
the model-free nature of the control algorithm, as this control approach requires
a certain amount of time to converge to an acceptable solution, a common
approach consists in pre-training the DRL agent offline with a simulated model
of the controlled system, losing the intrinsic model-free nature of the algorithm.
Conversely, a DRL controller directly deployed in the controlled environment
learning the control policy online may achieve a sub-optimal performance
in the first period of deployment, as shown in this study, but can converge
to a near-optimal strategy in an acceptable amount of time (in the order of a
few weeks as shown in the results). This approach, differently from the DRL
with offline training, is model-free in the entire deployment process. These
considerations open several research questions on the development of DRL
algorithms. If DRL control strategies are implemented with offline training,
they require a model of the system, removing this theoretical advantage in
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comparison to an MPC approach. DRL has the advantage of not relying on a
numerical optimization process which generally requires linearized models and
and a convex problem to be formalized. This also leads to lower computational
times compared to an MPC approach. On the other hand, MPC demonstrated
to be a more robust and stable control approach. The flexibility shown by
DRL agents is associated with the risk of temporary poor control performance.
This is particularly evident when employing a DRL agent trained online, but
this represents nevertheless a promising truly model-free approach. The DRL
agent trained online presented in this study proved to be able to improve its
control performance over time, approaching the behaviour of a near-optimal
MPC strategy or the similar one of a DRL pre-trained offline. However, the
possibility to really deploy such a controller in a plug-and-play fashion is still
to be assessed, as the hyper-parameters and reward function, which play a key
role in determining the performance of this category of controller, can require
different setting depending on the system on which they are implemented.

Regardless of the specific goals of each application the main objective at the
basis of the methodological development was the implementation of model-free
strategies for HVAC system control following an energy engineer perspective. For
this reason, within this dissertation, more emphasis has been given on how to
effectively implement these methodologies considering each step, from the definition
of the variables involved to the different deployment strategies, rather than the
algorithmic complexity of the different approaches.

In that perspective, the developed applications significantly contributed to achieve
this demanding target in the robust way as possible. Most of the findings and
outcomes of the present research work were already discussed in detail in the previous
chapters. Therefore, the aim of this final chapter is to provide a comprehensive
overview of the lessons learned in the framework of this research work.

Advanced control strategies: an opportunity or a necessity? Through the appli-
cations developed in the context of this dissertation emerged how advanced control
strategies can bring significant benefits to the management of HVAC systems in
buildings. The greater the complexity of the system under consideration, the greater
the advantage these techniques can provide over traditional control strategies. How-
ever, the convenience of adopting such strategies, cannot be measured only in terms
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of performance during operation but also in terms of development and implemen-
tation costs. Certainly, the implementation of control strategies based on artificial
intelligence algorithms has a higher economic impact than traditional strategies.
However, it should also be considered the decreasing trend in the cost related to the
development and maintenance of cloud services on which these techniques can be
deployed. Moreover, the efficiency of plant equipment and components available
in the market has almost reached its theoretical limit boosted by the technological
progress and incentive programs. Considering this aspect, it is desirable that, in the
near future, incentives initiatives will be mainly focused on supporting innovative
strategies for the management of equipment and systems during operation rather
than further technological improvements.

Domain expertise still matters? In a research environment dominated by data
scientists and complex mathematical algorithms promising to agnostically extract
complex information from any type of data, building physics knowledge still plays a
key role. As demonstrated in several applications an effective advancement in this
area is only possible through a perfect combination of knowledge about algorithm
development and physics laws governing the control problem under investigation.

Model-based versus model-free: is this a dilemma? Model-free controllers are
often presented as the panacea to problems and limitations of their model-based
counterparts. As also shown in the application introduced in section 5.1 both have
strengths and weaknesses. While model-based controllers showed greater robustness
and stability, model-free controllers are more adaptable and are able to learn complex
behaviors. The questions to which scientific research in this area will hopefully
provide answers are the following:

• For which control problems and configuration of HVAC system is it more
convenient to use one or the other strategy?

• Is it possible to combine the strengths of the two approaches in order to obtain
a strategy that is both robust and capable to adapt?

In this context, innovative algorithmic approaches merging the relative benefits
of MPC and RL techniques are emerging from the scientific literature [179].
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Is model-free really free from models? The literature review and the applications
developed in the present dissertation showed how DRL agents employed to manage
HVAC system heavily relies on models of the controlled environment. Given the
considerable amount of interactions required to converge to an acceptable control
policy, it seems unfeasible to directly implement model-free controllers in real build-
ings without performing a pre-training phase on simulation models. The application
presented in section 4.2 demonstrated the applicability of data-driven modeling of
building dynamics to pre-train DRL agents. In that case a model of the environment
is still required for the implementation. However, its development has a greater po-
tential of standardization and automation compared purely model-based frameworks.
Conversely, the application presented in section 5.1 introduced a purely model-free
agent which was directly deployed on the analyzed case study. What emerged after
carrying out the research of the present dissertation is that the term "model-free"
could result misleading to the inexperienced reader or practitioner.

Without trasferability there will be no scalability The trend emerging from the
current scientific literature highlights the dependency of advanced control strategies
from machine learning and deep learning models. Both model-based and model-
free frameworks increasingly employ these techniques to effectively map system
dynamics or control policies. In this context, a promising methodology to scale-up
the application of machine learning models in real-world environments is transfer
learning [180]. This technique aims at transferring a model trained for one system or
task to another similar system or task minimizing the modeling effort in the process.
Transfer learning could enable the re-utilization of models of building dynamics or
control policies exploiting knowledge previously learned increasing the scalability
of advanced control strategies and reducing their implementation cost.
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