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End-to-End Learning to Grasp
via Sampling from Object Point Clouds

Antonio Alliegro1, Martin Rudorfer2, Fabio Frattin1, Aleš Leonardis2 and Tatiana Tommasi1

Abstract—The ability to grasp objects is an essential skill that
enables many robotic manipulation tasks. Recent works have
studied point cloud-based methods for object grasping by starting
from simulated datasets and have shown promising performance
in real-world scenarios. Nevertheless, many of them still rely
on ad-hoc geometric heuristics to generate grasp candidates,
which fail to generalize to objects with significantly different
shapes with respect to those observed during training. Several
approaches exploit complex multi-stage learning strategies and
local neighborhood feature extraction while ignoring semantic
global information. Furthermore, they are inefficient in terms
of number of training samples and time required for inference.
In this paper, we propose an end-to-end learning solution to
generate 6-DOF parallel-jaw grasps starting from the 3D partial
view of the object. Our Learning to Grasp (L2G) method gathers
information from the input point cloud through a new procedure
that combines a differentiable sampling strategy to identify the
visible contact points, with a feature encoder that leverages local
and global cues. Overall, L2G is guided by a multi-task objective
that generates a diverse set of grasps by optimizing contact
point sampling, grasp regression, and grasp classification. With
a thorough experimental analysis, we show the effectiveness of
L2G as well as its robustness and generalization abilities.

Index Terms—Deep Learning in Grasping and Manipulation;
Deep Learning for Visual Perception; Grasping

I. INTRODUCTION

GRASPING and manipulating unknown objects in un-
structured, real-world environments is a long-standing

challenge in robotics research. Ideally, we would like robots to
be able to observe 3D objects and propose a variety of reliable
grasps, out of which collision-free and kinematically feasible
actions can be executed. However, there are many challenges
in the whole grasping pipeline that need to be tackled, from
perception to planning and control. Some works have simpli-
fied the task by focusing on 2D perception and planar grasps
prediction: a camera observes the scene perpendicularly and
the gripper pose is constrained to be parallel to the image
plane [2], [3]. In this way, important geometric information
may be disregarded inducing a limit in the grasp quality:
the final effect is that the learned models hardly generalize
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beyond the scenario seen during training. When dealing with
3D perception, a very first bottleneck is due to imprecision
and deficiency in sensing: the information acquired from the
observed scene is usually noisy and affected by variations in
the environmental conditions. Several works have proposed to
overcome these issues by exploiting extra sources of geometric
and physical information about the observed objects [4], [5],
but these are not generally applicable for unknown shapes.
Other approaches rely on specific gripper information which
makes them less ready to generalize in real-world applica-
tions [6]. Besides being very sensitive to shape variations
(dimension and aspect ratio), 3D-based existing approaches
have high sample and time complexity: they need a large
number of densely annotated data to be trained [7], [8] and
a long prediction time when deployed [1]. This is mainly
due to the use of handcrafted space quantization strategies
and other heuristics that need to be progressively adjusted
while training. From the implementation point of view, the ap-
proaches that take point clouds as input are often cumbersome.
Although described as end-to-end strategies, they are multi-
stage techniques composed of networks trained in cascade
or simultaneously with separate losses: each network has its
own learning objective with no gradient flow among each
other [9], [8]. Furthermore, these works mostly concentrate
on feature extraction from local point neighborhoods, with
little consideration given to the global appearance of the point
cloud.

With our work (see Fig. 1) we aim at pushing deep learning
models for robot grasping one step further by overcoming at
once the limitations described above. We introduce Learning
to Grasp (L2G), an efficient end-to-end learning strategy to
propose 6-DOF parallel-jaw grasps starting from a partial
point cloud of an object. Differently from previous work,
our approach does not exploit any geometric assumption or
impose gripper constraints. L2G builds on a differentiable
sampling procedure. Specifically, it is guided by a multi-
task optimization objective that identifies a set of diverse
and reliable grasps by solving contact point sampling
jointly with grasp regression and grasp classification. We
show how L2G largely improves over its competitors with
an advantage that becomes ever more evident when reducing
the amount of available training data. It also demonstrates
remarkable generalization ability in challenging settings where
training and test data present significant shape variations as
well differences in the gripper. Moreover, we go beyond
standard backbone architectures discussing how a self-
supervised pre-trained encoder that combines local and
global cues can be easily plugged into the network and
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Fig. 1. Overview of the advantages of our L2G model over the GPNet [1] baseline. Trained with the same training dataset, L2G is able to predict a diverse
set of reliable grasps even for objects from unseen categories and different shape distributions. The inference times are much shorter and drastically facilitate
real-world application. Finally, L2G is showing higher grasp success rates even when trained with only half the amount of data.

provides a further advantage.

II. RELATED WORK
The task of grasping rigid objects with a 2-finger gripper

consists in identifying the pose of the gripper in which the
fingers close, starting from some representation of the object.

Data and representations. A large part of the grasping
literature has focused on 2D and 2.5D (images with depth
maps) data [3], [10], [11]. This setting simplifies the definition
of the grasping problem, but at the same time limits its
applicability with gripper forced to approach objects vertically.
Dealing with images provides the possibility to exploit super-
vised Imagenet pre-trained networks as well as large scale
self-supervised models reducing the need for data annotation
[12], [13], [14]. On the other hand, point clouds allow better
reasoning on the geometric properties of the objects and more
freedom for the gripper pose [1], [15], [16], [17], [18], but
3D grasping is more challenging and needs densely annotated
data. Here transfer learning from supervised or self-supervised
pre-trained models [19], [20] is not standard practice, and
existing works based on point clouds mainly exploit PointNet
[21] and PointNet++ [22] representations which focus on local
information, lacking the ability to properly capture the global
object shape.

Several works have been dedicated to collecting and an-
notating grasping datasets by exploiting physical grasps in
simulation engines [23], [24], [1]. Most recent publications
have also proposed larger testbeds, but their simulation envi-
ronments have not been released yet, which makes it difficult
to consider the methods proposed in the same papers as
benchmark references [17], [25], [6].

Grasping Methods. The earlier grasping approaches were
based on handcrafted features [26], [27], while in recent years
data-driven methods have gained popularity [28]. They can be
categorized as model-based and model-free: the former relies
on object-specific knowledge such as a 3D model or surface
characteristics [4], [5], [29], while the latter assumes that no
such explicit information is available. Model-free methods
infer grasp poses purely based on the perceived information,
and they can be conveniently applied to novel objects for
which specific models are not available. Among them, Deep-
Learning-based discriminative strategies evaluate a given set

of grasp candidates [2], [25]. On the other hand, generative
approaches regress the best grasp poses, however they usually
lack grasp diversity [30], [31]. The most recent grasping
methods combine the two aspects and incorporate both gener-
ative and discriminative components. In particular, [17], [18]
generate grasp poses by means of a variational autoencoder
trained on the distribution of successful grasps obtained from
a simulation engine. A subsequent classifier and an iterative
grasp refinement are used to rank and improve the candidates.
In [15], [16], the authors use a tailored grasp representation
and regress a grasp with a relative graspability score for each
point of the input point cloud. A coarse grasp for every point
is also predicted and then refined in [9]. A combination of
sub-networks for point selection and refinement is used in [8].
The recent work [7] relies on dense grasp annotations and
predicts the probability of successful grasping for each point
which are then subselected via Farthest Point Sampling (FPS),
while in [6] FPS is applied upfront to limit memory cost before
running grasp prediction for each obtained point. GPNet [1]
uses a grid-based heuristics to generate grasp proposals. A
discrete set of regular 3D grid points is defined and proposals
are obtained by pairwise combination of all input points (as
contact points) with all grid points (as grasp centers). The
learning process exploits an antipodal classifier to reduce the
large number of proposals, a regression module to predict
approach angles and offsets to the grasp centers, and a grasp
classification module to estimate the success likelihood of the
regressed grasps. Finally, the large number of predictions is
reduced by Non Maximum Suppression (NMS).

Our L2G method fits in the context of Deep-Learning-based
models for grasping from object point clouds. Given a partial
observation of an unknown object, we learn to sample a set
of suitable contact points and proceed to predict a 6-DOF
grasp only for these points. Our strategy avoids unnecessary
overhead by sub-optimal heuristics, naı̈ve FPS, or expensive
refinement stages and post-hoc NMS. Moreover, we show
how 3D self-supervision improves data representation with a
beneficial effect on grasping performance.

III. METHOD
The core contribution of our L2G model is in the procedure

used to gather information from the input point cloud which
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Fig. 2. The world coordinate system has its horizontal plane parallel to the
ground and the vertical axis orthogonal to it. The grasp configuration is defined
by the two contact points (c1, c2) and the pitch angle ϕ which is the angle
formed by the plane of the gripper (dashed lines) with the horizontal plane.
We indicate with x the center between the contact points, while θ ∈ [−π, π]3

combines the information of yaw, roll, and pitch.

combines the sampling procedure adopted to identify the
contact points, and the DeCo feature encoder [19]. Overall
L2G is formalized as a multi-task deep architecture as shown
in Fig. 3.

A. Problem Statement

Given a point cloud P = {pi ∈ R3}Ni=1 representing the
visible surface of an object, we indicate a parallel-jaw grasp
as g = {x, θ} ∈ SE(3). Here x ∈ R3 locates the center
of the two parallel jaws, and θ ∈ [−π, π]3 is the Euler angle
describing the 3D orientation of the gripper, which can be also
identified by its unit quaternion representation u = quat(θ).
A grasp can be alternatively defined by g = {c1, c2, ϕ} ∈ R7.
Where (c1, c2) are the two contact points on the object surface,
which determine the grasp center x as well as the roll and
yaw orientation of θ, while ϕ ∈ [0, π] is the remaining pitch
orientation corresponding to the gripper approach angle1 (see
Fig. 2). A physical simulation engine provides us with a set
of positive G+ (label l = 1) and negative G− (label l = 0)
ground truth grasps for P . They all satisfy the antipodal
constraint [32], but the negative ones fail to successfully lift
the object. This may be due to collisions of the gripper with
the object or ground, not making proper contact, or object
slipping during lifting. We formalize the task of visual learning
to grasp as learning the mapping from the object point cloud
P to the set of gM

j=1 ∈ G grasps that best matches G+. In
order to avoid ambiguities due to symmetry, during evaluation
all grasps are mapped into an unambiguous half-space by
considering the contact point closer to the ground plane as
c1, as done in [1].

B. Learning to Grasp

Our L2G architecture is optimized to predict all the com-
ponents (contact points and pitch angle) of a grasp at once.
It is composed of Feature Extractor, Contact Point Sampler,
Grasp Regressor, and Grasp Classifier. Each of the modules is
described in detail in the next paragraphs.

1Note that by restricting ϕ to [0, π] instead of [−π, π], we eliminate grasps
with an approach vector in the lower hemisphere for which the gripper would
collide with the ground plane.

Feature Extractor (RN×3 → RN×F ). The feature extractor
learns an F -dimensional representation for each point of the
observed point cloud P . We consider two possible encoders:
a standard PointNet++ [22] and DeCo [19]. The latter exploits
graph convolutions and combines local information from de-
noising with global information from contrastive learning: the
encoder is pre-trained with these two self-supervised tasks and
has shown remarkable results when used for shape completion.

Contact Point Sampler (RN×F → RM×F ). The goal of
the sampler is to identify the set of reliable contact points
Q = {qj ∈ R3}Mj=1 with M ≤ N , out of the visible point
cloud P , and collect for each of them the corresponding
F -dimensional representation vector. The major issue with
sampling is that it is a non-differentiable operation, but recent
papers have proposed effective workarounds [33], [34]. We
leverage these approaches to produce an M × 3 matrix which
can be interpreted as a set of M points. Specifically, we learn
to produce M points that are close to the set of visible contact
points C of G+ such that, for each of them, the projection on
the object surface soft-matches to a single point of P . The first
goal is attained by optimizing the average nearest neighbor
loss

Lnn(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

∥x− y∥22 , (1)

and the maximal nearest neighbor loss

Lmn(X,Y ) = max
x∈X

min
y∈Y

∥x− y∥22 , (2)

combined in the following closeness-coverage loss

Lcc(Q, C) = Lnn(Q, C) + Lnn(C,Q) + Lmn(Q, C) . (3)

Here the first and last term forces the produced points to stay
close to the grasp contact points both in average and in the
worst case, while the second term ensures the full coverage of
the grasping input set. Furthermore, for each point q we search
the set pk

i=1 ∈ NP(q) of its nearest neighbors from P in terms
of Euclidean distance di = ∥q − pi∥2. The k neighbors are
used to evaluate the projection r of the produced point q on the
object surface, formalized by the following linear combination

r =
∑

pi∈NP(q)

ωipi , (4)

where

ωi =
exp−d2

i /t
2∑

pi∈NP(q) exp
−d2

i /t
2
. (5)

These weights can be intended as a probability distribution
over the points in P , guided by the temperature parameter t.
For high temperature values, the distribution becomes more
and more uniform, while for low temperature values the
distribution collapses to a Kronecker delta on the closest point.
This last condition mimics the desired sampling and can be
obtained by minimizing the projection loss:

Lproj = t2 . (6)

Finally the sampling loss is Lsample = αLcc + Lproj .
Grasp Regressor (RM×F → RM×4). Starting from the

features of each selected point, we rely on the simplified
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Fig. 3. Schematic overview of our Learning to Grasp (L2G) multi-task network. The feature extractor corresponds to our backbone encoder: we use both
PointNet++ [22] and DeCo [19]. The contact point sampler produces points close to the ground truth contact points while soft-projecting them on the object
surface. The grasp regressor and the grasp classifier are inherited from [1]: the former predicts the second contact point and the pitch angle for each grasp,
while the latter scores the predicted grasps to identify the most reliable ones.

hypothesis that it corresponds to only one possible successful
grasp, and the grasp regression module predicts both its second
contact point (c2 ∈ R3) and the grasp pitch angle (ϕ ∈ R1).
The learning process is guided by a loss that measures the dis-
tance between each predicted grasp gj = (c1, c2, ϕ)j and its
closest ground truth grasp g+

j = (c+1 , c
+
2 , ϕ

+)j . Specifically,
the ground truth points c+1 are sorted based on their distance
to c1, and the closest one identifies the reference ground truth
grasp. The distance between the grasps is measured in terms of
the position of their centers and variation of the corresponding
angles defined in terms of the quaternion representation u:

Lregr =
1

M

M∑
j=1

∥xj − x+
j ∥2 + λ arccos(|⟨uj ,u

+
j ⟩|) , (7)

where λ weighs the contributions of Euclidean and angular
distances, as similarly done in [35].

Grasp Classifier (RM×4 + RM×F → R1). The grasp
classifier takes as input the information on the second contact
point and angle (R4) as well as the features of the first contact
point (RF ) to finally score the grasp. Its purpose is to sort
the predicted grasps and eliminate those that are unlikely to
succeed. We use a simple binary cross-entropy loss where we
indicate the predicted output with sj ∈ R1 and the ground
truth label with lj = [0, 1]:

Lclass = − 1

M

M∑
j=1

(lj log sj + (1− lj) log(1− sj)) . (8)

All the loss contributions guide jointly the training process
of our L2G: L = Lsample + Lregr + Lclass.

C. Implementation Details

In the previous section, we provided a high-level intuition
about the internal functioning of our approach by referring
to a generic F -dimensional feature vector. Here we describe
the architecture, the learned intermediate embeddings, and the
hyperparameters of our model in more detail.

Our L2G employs the same feature extractor as GPNet
[1]: a PointNet++ with four multiscale-grouping Set Abstrac-
tion (SA) layers followed by four Feature Propagation (FP)
layers. For each observed partial object point cloud we obtain

the global feature vector Fs ∈ R1024 by performing max-
pooling on the feature map output of SA4. The per-point
features Fp ∈ R128 are obtained right after FP4.

We dub our model L2G+DeCo when using as feature extrac-
tor the two-branch graph-convolutional backbone presented in
[19], pre-trained via self-supervision on ShapeNetPart [36].
In this case, the global feature vector Fs ∈ R1024 is obtained
from the global encoder branch, while the local encoder output
is first concatenated with the global vector and then processed
through a 128-dimensional convolutional layer. The output
defines the per-point features Fp ∈ R128.

The contact point sampler takes as input the feature vector
Fs to produce (soft sampling at training time) the qM

j=1

points of the Q set. The sampler is composed by four
Fully Connected layers followed by the soft-projection module
which has the same structure described in [34]. We consider
M = 500 and use a small local context for the projection loss
by setting the size of neighborhood NP(q) to k = 10. For each
q, we further define NF (q) by grouping the per-point feature
vectors Fp of the nn = 100 nearest points on the input shape.
The grasp regressor is fed with input NF (q) and predicts
both the second contact point and the angle (c2, ϕ). The grasp
classifier combines NF (q) with (c2, ϕ). Specifically, an MLP
layer takes as input (c2, ϕ) ∈ R4 to get a 128-dimensional
feature vector which is aggregated by summation with NF (q)
before entering a second MLP layer with 1-dimensional output
followed by a sigmoid function. For a detailed analysis of the
hyperparameters M and nn we refer to the next section and
specifically Fig. 4.

In all our experiments we set the loss weighting parameters
to α = 10 and λ = 0.1. For each experiment, we take the
average of three runs with different seeds and report the results
from the last epoch. Our code is implemented in PyTorch 1.8
with CUDA 11.1. The models are trained on a single NVIDIA
Tesla V100 16GB GPU. The code, pre-trained models, and
data are available at https://github.com/antoalli/L2G.

IV. EXPERIMENTS
A. Datasets, Metrics and Baselines

For our experiments, we consider two datasets.
ShapeNetSem-8 [1] consists of 226 CAD models of 8
object categories (bowl, bottle, mug, cylinder, cuboid, tissue

https://github.com/antoalli/L2G
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TABLE I
LEFT: SIMULATION-BASED AND RULE-BASED EVALUATION RESULTS ON SHAPENETSEM-8. GPNET REFERS TO THE TOP RESULTS IN [1]. GPNET*

INDICATES THE RESULTS OBTAINED BY RE-RUNNING THE AUTHORS’ CODE. RIGHT: SIMULATION-BASED SUCCESS RATE IN RELATION TO THE
COVERAGE FOR DIFFERENT SENSITIVITY SETTINGS.

Test Set from [1] - Simulation Based Test Set from [1] - Rule Based

Method success rate @k% success rate @k% coverage rate @k%
10 30 50 100 10 30 50 100 10 30 50 100

GraspNet [17] 80.0 59.4 50.8 35.4 86.7 83.3 73.3 53.4 6.3 6.3 12.2 16.8
GPNet [1] 90.0 76.1 72.3 58.8 93.3 93.2 82.0 72.9 6.8 14.4 19.9 30.7

GPNet* 92.2 90.0 82.3 59.7 91.1 89.5 85.0 67.5 7.6 15.2 25.3 34.5
L2G 93.6 90.1 87.9 82.0 94.8 95.9 95.3 95.1 19.2 29.1 34.5 39.9

GPNet*+DeCo [19] 91.1 89.1 81.9 67.0 89.4 85.0 82.5 70.4 7.2 15.1 24.6 33.9
L2G+DeCo [19] 94.6 93.5 91.4 82.9 95.2 94.9 94.6 94.5 20.6 29.2 35.5 41.8

Extended Test Set - Simulation Based Extended Test Set - Rule Based
GPNet* 87.0 85.4 79.2 59.5 89.6 87.9 83.7 68.1 7.6 15.5 24.5 34.4

L2G 91.0 89.0 87.2 81.4 94.9 96.0 96.2 95.8 19.1 29.1 34.0 39.8
GPNet*+DeCo [19] 91.2 89.5 83.1 68.5 89.2 86.3 82.9 72.3 7.5 15.9 25.0 34.7

L2G+DeCo [19] 93.0 92.1 90.7 83.2 96.4 96.5 96.4 95.4 20.3 31.0 36.5 41.5

box, soda can and toy car) from ShapeNetSem [37]. Each
object comes with ∼100k annotated grasps and associated
grasp success or failure label obtained with the Pybullet
physics simulator [38]. The dataset is split into 196 object
instances for training and 30 object instances for testing. The
test set in [1] was composed of only one view per object. To
get more statistically meaningful results we also present an
Extended Test Set of 5 different views per object, with each
view serving as an independent test sample.

Using the Pybullet simulator, we also created our second
dataset with 76 objects from YCB [39], dubbing it YCB-76.
Each object is placed in various stable resting poses, totaling
259 distinct grasping scenarios, with point clouds generated
from 10 arbitrary views. We consider the described YCB-
76 as test set after having trained the grasping models on
ShapeNetSem-8. For most of the objects, we only focused on
the grasping success in simulation, but for a subset of them
(YCB-8: cracker box, mug, tomato soup can, potted meat can,
mustard bottle, flat screwdriver, large clamp, tennis ball) we
also collected ∼100k ground truth grasps in the same fashion
as in ShapeNetSem-8 to run a detailed rule-based analysis.

We perform our experimental evaluation by using the same
metrics of [1]: simulation-based success rate as well as rule-
based success rate and coverage. For the former, we use
the same simulation environment used for grasp annotation.
The rule-based metrics instead compare a predicted grasp g
to the reference annotated grasps g+ ∈ G+ by means of
Euclidean δx(g, g

+) = ||x − x+||2 and angular δθ(g, g
+) =

arccos |⟨u,u+⟩| distances. A prediction is considered success-
ful if there exists at least one g+ with δx ≤ 25mm and
δθ ≤ 30◦. Conversely, a grasp annotation g+ is considered
covered, if there is a prediction g ∈ G close by, using the
same distance criterion. Hence, the coverage expresses what
fraction of G+ is covered by the grasp predictions in G.
The rule-based success rate may be overly optimistic because
it only takes into account proximity to successful ground
truth grasps but not proximity to unsuccessful ones. For all
three metrics, we consider the predictions ranked in the top
k = {10, 30, 50, 100}%, reporting the values as @k%.

As reference baselines we consider GPNet [1] and GraspNet
[17]. In particular the former is our best competitor: we
highlight that this approach, besides relying on a heavy initial

space quantization to choose the reference contact points,
also requires an NMS post-processing stage to refine the
predicted grasps. Moreover, to guarantee a fair comparison,
we report both the results of GPNet from the original paper
and our re-run of the authors’ code indicated as GPNet*. With
GPNet+DeCo we refer to the baseline where we applied the
encoder from [19].

B. Experiments on ShapeNetSem-8

We start our analysis by running experiments on the training
and test data of ShapeNetSem-8. The results reported in Table I
(left) show that L2G and L2G+DeCo consistently outperform
the corresponding GPNet and GPNet+DeCo baselines. On the
smaller test set of [1], the effect of the DeCo encoder on top
of L2G might be marginal. Instead, the advantage of DeCo
becomes clear for both GPNet and L2G when focusing on
the simulation-based results of the extended test set which
should be considered the more reliable testbed. Notably, by
increasing @k%, i.e. when taking into account predictions
with lower confidence, the performances of the baselines drop
significantly, whereas L2G maintains high success rates. By
combining this information with the increased coverage rate
we can conclude that L2G is effectively providing a wide
variety of reliable grasp predictions and that DeCo further
enhances this effect. The success-coverage plot in the right
part of Table I confirms this behavior. It is comparable to
a precision-recall curve where the simulation success rate
resembles the precision and the coverage is the recall.

C. Sampling Ablation

We run an ablation analysis to assess the role of our
contact point sampler. Specifically, we compare L2G to a
model that uses the same encoder and grasp heads but lacks
the contact points sampler, resulting in a grasp prediction
for each point in the observed point cloud (no sample). We
also consider replacing our sampler with a not-learned FPS
selection process, as well as testing a variant of our L2G
obtained by turning off Lproj (L2G w/o proj). As shown by
the first plot of Fig. 4, L2G w/o proj performs worse than L2G
when considering the top 10, 30 and 50% grasps, while on the
entire set (100%) the results are the same. The success rate of
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Time Complexity Analysis

Method
Inference Time
per shape (s)
min max

GPNet* 0.909 50.861
L2G 0.001 0.339

GPNet*+DeCo 0.935 46.897
L2G+DeCo 0.016 0.365

Fig. 4. All the results refer to the simulation-based experiments on the extended test set of ShapeNetSem-8. First plot: ablation analysis to study the role
of the contact point sampler. Second and third plot: robustness evaluation when varying M and nn. Fourth plot: sample complexity analysis executed by
observing the performance of the grasping methods when changing the amount of training samples. Table: time complexity analysis.

FPS is always lower than L2G: such a naı̈ve sampling process
is the core of several 3D grasping approaches [6], [8] and it is
significantly less effective than our learned sampling. Finally,
the no-sampling strategy is the most expensive: we report it
as a reference to show how our efficient L2G approaches its
results and becomes equal or better when considering the top
50% predicted grasps and the entire set.

D. Robustness, Sample and Time Complexity Analysis

We evaluate the robustness of L2G to its two hyperparam-
eters: the number M of sampled contact points which also
corresponds to the total number of considered grasps, and the
cardinality nn of the neighborhood NF (q) centered at each
sampled contact q. The second and third plots of Fig. 4 show
that the performance of L2G has a mild dependence on M ,
with a decrease in success rate for very high values, while it is
more robust to the choice of nn. The trend is similar also when
using the DeCo encoder. Both L2G and L2G+DeCo maintain
their advantages over the GPNet baseline.

To investigate the sample complexity, we reduced the
amount of training data by a factor 0.25 and 0.50. The results
in the fourth plot of Fig. 4 show that L2G outperforms GPNet
even in low-shot scenarios. By comparing the accuracy of
L2G at 0.25 (89.7) with that of GPNet at 1 (87.0) the low
sample complexity of L2G appears even more evident. Similar
conclusions can be drawn also comparing L2G+DeCo at 0.5
(91.7) with GPNet+DeCo at 1 (91.2). DeCo well combines
with the handcrafted space quantization strategy of GPNet at
0.25 producing the best results.

Finally, the table within Fig. 4 allows to compare GPNet
and L2G in terms of minimum and maximum inference time,
showing the significant advantage of our approach.

E. Generalization on YCB

To assess the generalization abilities of L2G we employ
the YCB dataset as test set. It has more object categories
than ShapeNetSem-8 used for training. Additionally, objects
in YCB vary in dimension and appear in different resting
poses, leading to grasping scenarios with a wide range of
difficulty levels. This is a challenging setting due to the need
for overcoming both the semantic and the appearance domain
shift. The simulation-based and rule-based results on YCB-8
are in the left part of Table II, while the right part presents
the simulation-based results on YCB-76.

On YCB-8, L2G outperforms the GPNet baseline by a
large margin in terms of both success rates and coverage.
L2G+DeCo shows a further advantage over L2G which is
particularly evident in the simulation based results. Interest-
ingly, the DeCo encoder provides a significant improvement
also to GPNet, with GPNet+DeCo reaching similar or even
better success rate in simulation than L2G. Still, the results of
GPNet+DeCo remain lower than L2G+DeCo in most of the
settings. On the large YCB-76, L2G shows top simulation-
based results, demonstrating its generalization abilities. In this
case the advantage obtained by using DeCo appears minimal
over the already high success rate of L2G. On the other hand,
the results of GPNet+DeCo are significantly higher than those
of GPNet, despite remaining lower than L2G. These findings
suggest that the choice of the feature encoder is important
for improving generalization on weaker models. In Fig. 5
we also present a qualitative analysis to compare the grasp
predictions of GPNet and L2G in simulation. The sponge can
be considered an adversarial object: it is completely flat and
its side length is close to the gripper opening width, hence
imposing a high risk of the gripper colliding with either the
ground or the object and neither method accomplishes to
predict successful grasps. On the other hand, the peach can
be grasped without failure, although there weren’t spherical
objects in the training set. Especially with increasing @k%,
GPNet tends to predict many spurious, unreasonable grasps,
which is not the case for L2G. For elongated objects like the
spoon, the grid-based approach of GPNet fails entirely. L2G,
in contrast, is more robust to unknown shapes since it does
not rely on any geometric heuristics for the grasp proposal.

F. Robot Experiments
To evaluate the performance in real-world scenarios, we

conducted experiments with a Franka Emika Panda robot
and an Intel RealSense D415 sensor (see Fig. 6). Based on
the highest-ranked grasp prediction obtained from the models
(trained purely on synthetic data of ShapeNetSem-8), we plan
a trajectory using MoveIt [40]. If no feasible plan can be
found, we swap the contact points and plan for this symmetric
grasp. If this still does not give a feasible trajectory, we resort
to the second or at most the third grasp prediction. The trial
counts as successful only if the object is continuously in
contact with both fingertips from grasp execution until release.

We performed five trials for each object in two sets: one with
28 custom items from the same categories as in ShapeNetSem-
8, and one with 20 YCB objects for better experimental
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TABLE II
RESULTS OBTAINED WHEN TESTING ON YCB-8 AND YCB-76. FOR THE FIRST, WE COLLECTED GRASP ANNOTATIONS TO ALSO ASSESS THE

RULE-BASED PERFORMANCE, WHILE FOR THE SECOND WE SHOW ONLY THE SIMULATION-BASED RESULTS.

YCB-8 YCB-76

Method
Simulation Based Rule Based Simulation Based
success rate @k% success rate @k% coverage rate @k% success rate @k%

10 30 50 100 10 30 50 100 10 30 50 100 10 30 50 100
GPNet* 27.9 28.9 30.1 21.9 54.0 53.7 52.2 37.7 3.0 8.0 14.3 18.6 28.9 29.2 27.2 20.8

L2G 44.6 42.8 42.1 39.0 75.8 76.6 76.3 73.0 16.5 23.6 27.2 33.3 45.0 44.6 43.8 41.2
GPNet*+DeCo [19] 54.9 48.7 42.6 32.7 80.0 72.7 63.5 51.0 7.5 15.8 20.5 26.2 40.3 39.2 38.0 34.1

L2G+DeCo [19] 52.5 53.4 51.6 46.3 77.7 78.7 78.4 76.5 17.3 23.6 27.5 33.8 43.6 44.0 43.9 42.2

Fig. 5. Visualization of the predicted grasps of GPNet∗ and L2G for five different objects from YCB-76 (from left to right: sponge, spoon, cup, sugar box,
peach). Based on the outcome of the simulation, we color-coded successful grasps in green and unsuccessful ones in red. From top to bottom, we increase
the parameter k, i.e. the top row contains only the 10% highest-ranked grasp predictions whereas the bottom row contains all grasp predictions.

Fig. 6. Left: Our real experiments setup with Franka Panda robot and
Realsense D415. Center: Custom set with 28 objects from similar categories
as in ShapeNetSem-8 (from left to right and top to bottom: 6 boxes, 5 bottles,
2 soda cans, 5 cylinders, 3 toy cars, 3 mugs, 4 bowls). Right: Selection of 20
YCB objects including shapes from unseen categories.

TABLE III
REAL-WORLD ROBOT EXPERIMENTS: FRACTION OF SUCCESSFUL TRIALS

OUT OF FIVE PERFORMED ON EACH INSTANCE AND AVERAGED PER
CATEGORY. NUMBER OF INSTANCES PER CATEGORY IN PARENTHESIS.

28 custom items
Category GPNet∗ L2G
box (6) 0.47 0.73

soda can (2) 0.80 1.00
cylinder (5) 0.52 0.76
bottle (5) 0.25 0.48
mug (3) 0.27 0.40
bowl (4) 0.15 0.10

toy car (3) 0.33 0.27
average 0.40 0.53

20 YCB objects
Category GPNet∗ L2G
box (7) 0.31 0.71
mug (1) 0.20 0.20
bowl (1) 0.00 0.00

cylinder (5) 0.72 0.64
sphere (3) 1.00 1.00
bottle (3) 0.07 0.27
average 0.38 0.47

reproducibility (see Fig. 6). The results are displayed in
Table III and indicate that the grasping performance varies
strongly in relation to the object category. The bowls, which
have been grasped with least success, required different modes

of grasping: they can be grasped around the circumference
only if the diameter is smaller than the gripper opening width,
else they must be grasped along the rim. Both GPNet and
L2G did not cope well with this mode switch. On the other
hand, sphere-like objects and soda cans could be grasped
by L2G without failure. Across categories, we observed that
both grasping approaches are sensitive to object size. In
ShapeNetSem-8, all objects are scaled to have their smallest
dimension >60mm and their largest <150mm. Based on this
criterion we can separate the 28 custom items into two sub-
groups: one with the 10 objects which fit the size constraints,
the other with the remaining 18 which do not. It is genuinely
hard to find real objects from the categories bottle, toy car,
bowl, and cylinder with these dimensions and almost all the
instances of those categories are in the second group. As
could be expected the results on the 10 object group (GPNet:
0.44, L2G: 0.62) are higher than those on the 18 object group
(GPNet: 0.36, L2G: 0.49), but the improvement of L2G over
GPNet remains confirmed.

A further challenge originates from the simulation to reality
gap to which also the gripper type contributes. The gripper
used in the simulation environment was a Robotiq-2F85 grip-
per, whereas we used a Panda gripper with shorter finger
length and slightly smaller opening width. This is crucial
when grasping (flat) objects close to the ground, like toy cars.
Overall, L2G outperforms GPNet by a significant margin and
is also ahead in most category-specific comparisons, with the
biggest margins for boxes and bottles.
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V. CONCLUSIONS

In this paper we introduced L2G, our end-to-end method
for 6-DOF grasping from partial object point clouds which
leverages a differentiable sampling strategy to identify the
visible contact points, and a feature encoder which combines
local and global cues. Overall, L2G is guided by a multi-task
objective to produce a diverse set of grasps by optimizing
contact point sampling, grasp regression, and grasp classifi-
cation. In our experimental analysis we thoroughly compared
L2G to the main competitor GPNet [1] and could demonstrate
its advantages: L2G predicts a larger, more diverse set of
reliable grasps. Furthermore, it better generalizes to unseen
objects with significant shape variations. Using the pre-trained
feature encoder DeCo [19] instead of a standard PointNet++
significantly boosts generalization performance. Here we con-
sidered single object scenes to maintain the main focus on
the robustness and effectiveness of the proposed approach.
Still, by its design, L2G can be easily adapted for scenes
containing multiple objects. The point sampling procedure
could also incorporate prior knowledge about the downstream
manipulation task when available. We plan to investigate both
these directions in future work.
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