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ABSTRACT
Discovering patterns that represent key spatial or temporal depen-
dencies among data is a well-known exploratory data mining task.
However, prior works either separately analyze spatial and tem-
poral dependencies or discover joint spatiotemporal properties of
specific trajectories observed over a region of interest. With the
goal of generalizing the information provided by spatiotemporal
patterns, in this paper we extract sequences of discrete events show-
ing spatiotemporally invariant properties. We seek patterns whose
corresponding instances in the source data differ only due to an
invariant spatiotemporal transformation. We denote such a new
type of patterns as SpatioTemporally Invariant. We also propose an
efficient algorithm to mine STInvs and validate its efficiency and
effectiveness on real data.
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1 INTRODUCTION
Desigining and applying data mining algorithms tailored to spa-
tiotemporal data has become relevant to several application do-
mains (e.g., [4, 7]). Sequential pattern mining is an unsupervised
technique aimed at discovering recurrent patterns from sequential
data, which provide actionable insights. Traditional sequential pat-
tern mining approaches (e.g., [3]) discover sequences of discrete
events. They allow end-users to enforce domain-specific temporal
constraints [1, 10] while neglecting the spatial dimension. Con-
versely, arbitrary spatial relationships can be modelled as spatial
trajectories [2] or co-location patterns [9] while ignoring the tem-
poral aspects.

More recently, the research community has addressed the joint
analysis of spatiotemporal correlations among data. Prior works
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focus on (1) Characterizing specific routes by means of trajectory
and STAR patterns [2, 8], or (2) Finding frequent co-located and
co-occurring contiguous events in a sequence by extracting propa-
gation/influential patterns [6]. However, the discovered patterns
are tailored to specific locations or regions and not easy to abstract
from specific data instances.

This paper aims at generalizing geospatial event relations by
introducing the notion of spatiotemporal invariance. Given a trigger
event of interest, we look for associated sequences of events whose
instances frequently show similar spatial and temporal relative
gaps. For instance, we seek sequences of multiple events taking
place at relatively similar distances both in space and time. To
address this issue, we propose a new type of patterns, namely
the SpatioTemporally Invariant Patterns (STInvs). They describe a
trigger event followed by a sequence of spatiotemporally related
ones. The related events are characterized by a (constrained) spatial
and temporal gap with respect to the trigger event. Thus, STInvs
provide a high-level description of the spatiotemporally invariant
relations holding between a trigger event and those occurring in
its neighborhood regardless of the specific data instance.

The proposed pattern differs from existing ones because events
are not necessarily located in close spatial proximity (unlike the
events described by co-location patterns [9]), are not constrained
to specific trajectories (unlike trajectory patterns [2, 8]), and can
represent non-contiguous sequences of co-occurring and co-located
events (unlike propagation patterns [6]).

The contributions of this paper are as follows.

• Formalization. Introduction of the notion of spatiotemporal
invariance.

• Pattern. Definition of a new pattern (namely the STInv
patterns).

• Algorithm. Design and development of a new mining algo-
rithm (namely STInvMiner).

• Experiments. Empirical evaluation on a real case study
related to bicycle sharing system management.

2 THE SPATIOTEMPORALLY INVARIANT
PATTERN

We describe the occurrences of a set of discrete events of inter-
est according to their spatiotemporal properties. For example, the
manager of a bike sharing system can be interested in recording
and analyzing critical occupancy levels of the stations in terms of
percentage of available docks.

Domain experts are asked to (i) define a set of possible event types
𝐸 and (2) mark a subset of them, hereafter denoted by trigger events,
as relevant to effectively support decision-making. For example,
when the occupancy level of a specific station is too high a trigger
event can be recorded.

https://doi.org/10.1145/3557915.3560998
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Table 1: Summary of the notation used.

Symbol Description
𝐴 the geographical area under analysis (e.g., the urban

area where the bike sharing system is active)
𝑙 a geographical location within 𝐴 (e.g., the location of

a docking station)
𝑟 spatial resolution, i.e., the radius of the circular neigh-

borhood of a geographical location 𝑙
𝑡𝑑 temporal resolution, i.e., duration of the considered

time slots
𝑙𝑒𝑛𝑔𝑡ℎ max sequence length, i.e., the maximum number of

time slots that appear in an input sequence
𝛿𝑠 spatial gap (multiple of 𝑟 )
𝛿𝑡 temporal gap (multiple of 𝑡𝑑)
E set of event types under analysis (e.g., car accident,

very low level of occupancy of a bike sharing station)
E𝑡𝑟 trigger event types (E𝑡𝑟 ⊆ E)
⟨𝑒 ,𝑡 ,𝑙⟩ occurrence of event type 𝑒 at timestamp 𝑡 in location 𝑙

When an arbitrary event is observed, we keep track of the corre-
sponding location 𝑙 and time 𝑡 (see Table 1 for a detailed description
of the notation used). The location indicates the geographical po-
sition where the event of type 𝑒 took place. Similar to co-location
patterns [9], locations are also characterized by a local neighbor-
hood, which indicates the potential area of influence of an event
occurrence. In our context, the local neighborhood of a location
𝑙 is defined as a circular area of radius 𝑟 centered in 𝑙 . To enable
a multi-resolution spatial analysis, we define various amplitudes
of neighborhood represented by concentric circles of radius 𝑘 · 𝑟
centered in 𝑙 (𝑘 ∈ Z+). Hereafter, 𝑟 will be also denoted as spatial
resolution.

The timestamp of occurrence of a discrete event 𝑡 is discretized
into discrete time slots of equal duration 𝑡𝑑 . 𝑡𝑑 indicates the tem-
poral resolution at which we consider the occurrences of discrete
events.

Example. In Figure 1 the temporal resolution is 15 minutes.
All the events occurring in the same time slot (e.g., 𝑒1 and 𝑒2) are
assumed to be concurrent.

A spatiotemporally annotated occurrence of event 𝑒 at timestamp
𝑡 in location 𝑙 is denoted as a triplet ⟨𝑒 ,𝑡 ,𝑙⟩. For the sake of brevity,
we will also denote the event occurrence ⟨𝑒𝑖 , 𝑡 𝑗 , 𝑙𝑧⟩ where 𝑒𝑖 ∈ 𝐸,
𝑡 𝑗 ∈ 𝑇 , and 𝑙𝑧 ∈ 𝐴, as 𝑜𝑐𝑐𝑒𝑖𝑡 𝑗 𝑙𝑧 whenever clear from the context.

2.1 The event sequence mining task
We explore temporal sequences of discrete events [3].

Definition 2.1. An event sequence of length 𝑛 (also denoted as
event 𝑛-sequence) is an ordered list of items, each one consisting
of an event occurrence: [𝑜𝑐𝑐𝑒1𝑡1𝑙1 , 𝑜𝑐𝑐𝑒2𝑡2𝑙2 , . . ., 𝑜𝑐𝑐𝑒𝑛𝑡𝑛𝑙𝑛 ], where
𝑡1 ≤ 𝑡2 . . . ≤ 𝑡𝑛 .□

An arbitrary sequence may include events of different types and
contemporary events happening in different locations.

For our purposes, all the timestamps associated with the event
occurrences are discretized into time slots (e.g., [10am, 10.15am])
with fixed duration 𝑡𝑑 . We denote 𝑡𝑑 as the temporal resolution.

Figure 1: Examples of SpatioTemporally Invariant patterns.

We apply a time windowing approach [5] to collect a database
consisting of a set of event sequences. .

Example. Let us consider the time slot𝑇𝑆1 including timestamps
𝑡1 and 𝑡2, time slot 𝑇𝑆2 including timestamps 𝑡3, and time slot 𝑇𝑆3
including 𝑡4. Let 𝑜𝑐𝑐𝑒1𝑡1𝑙1 , 𝑜𝑐𝑐𝑒2𝑡1𝑙2 , 𝑜𝑐𝑐𝑒2𝑡2𝑙1 , 𝑜𝑐𝑐𝑒4𝑡2𝑙3 , 𝑜𝑐𝑐𝑒1𝑡3𝑙1 , and
𝑜𝑐𝑐𝑒5𝑡4𝑙4 be the observed events.

Let us define a window of size 𝑙𝑒𝑛𝑔𝑡ℎ · 𝑡𝑑 , being 𝑙𝑒𝑛𝑔𝑡ℎ = 2,
sliding over the time span and including pairs of consecutive time
slots. The corresponding sequence database contains the follow-
ing sequences 𝑆1, . . ., 𝑆3 respectively corresponding to𝑇𝑆1, . . .,𝑇𝑆3:

𝑆1: [𝑜𝑐𝑐𝑒1𝑡1𝑙1 , 𝑜𝑐𝑐𝑒2𝑡1𝑙2 , 𝑜𝑐𝑐𝑒2𝑡2𝑙1 , 𝑜𝑐𝑐𝑒4𝑡2𝑙3 , 𝑜𝑐𝑐𝑒1𝑡3𝑙1 ]
𝑆2: [𝑜𝑐𝑐𝑒1𝑡3𝑙1 , 𝑜𝑐𝑐𝑒5𝑡4𝑙4 ]
𝑆3: [𝑜𝑐𝑐𝑒5𝑡4𝑙4 ]

The sequence database 𝐷=∪3
𝑖=1𝑆𝑖 collects all the sequences gen-

erated by the sliding process.

2.2 The spatiotemporal invariance property
We look for the sequences of discrete events showing invariant spa-
tiotemporal properties. To this end, we first introduce the concepts
of time and spatial gaps, which indicate the sequential variation of
the recorded timestamps and locations, respectively.

Definition 2.2. Let 𝑆=[𝑜𝑐𝑐𝑒1𝑡1𝑙1 , 𝑜𝑐𝑐𝑒2𝑡2𝑙2 , . . ., 𝑜𝑐𝑐𝑒𝑛𝑡𝑛𝑙𝑛 ] be an
event 𝑛-sequence. The temporal gap sequence relative to 𝑆 , 𝛿𝑡 (𝑆) in
short, is the (𝑛-1)-sequence [𝑡2 − 𝑡1, 𝑡3 − 𝑡1, . . ., 𝑡𝑛 − 𝑡1]. □

The temporal gaps 𝑡 𝑗 − 𝑡1 are multiples of 𝑡𝑑 .

Definition 2.3. Let 𝑆=[𝑜𝑐𝑐𝑒1𝑡1𝑙1 , 𝑜𝑐𝑐𝑒2𝑡2𝑙2 , . . ., 𝑜𝑐𝑐𝑒𝑛𝑡𝑛𝑙𝑛 ] be an
event 𝑛-sequence. The spatial gap sequence relative to 𝑆 , 𝛿𝑠(𝑆) in
short, is the (𝑛-1)-sequence [dist(𝑙2,𝑙1), dist(𝑙3,𝑙1), . . ., dist(𝑙𝑛 ,𝑙1)],

where 𝑑𝑖𝑠𝑡 (𝑙𝑥 , 𝑙𝑦) =
⌈
ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑙𝑥 ,𝑙𝑦 )

𝑟

⌉
.

The spatial distance among two event occurrences depends on 𝑟 .
Example. In the left-hand-side picture of the example in Figure 1,

the (discretized) spatial gap between events 𝑒1 and 𝑒2 is equal to
3 · 𝑟 because event 𝑒2 lies in the third circle centered in 𝑒1.

Two 𝑛-sequences are spatially/temporally invariant if their cor-
responding spatial/temporal gap sequences are coincident.

Definition 2.4. Let 𝑆1 and 𝑆2 be two event 𝑛-sequences and let
𝛿𝑡 (𝑆1) and 𝛿𝑡 (𝑆2) be the corresponding temporal gap sequences.
𝑆1 and 𝑆2 are temporally invariant if and only if 𝛿𝑡 (𝑆1)=𝛿𝑡 (𝑆2). □

Definition 2.5. Let 𝑆1 and 𝑆2 be two event 𝑛-sequences and let
𝛿𝑠 (𝑆1) and 𝛿𝑠 (𝑆2) be the corresponding spatial gap sequences. 𝑆1
and 𝑆2 are spatially invariant if and only if 𝛿𝑠 (𝑆2)=𝛿𝑠 (𝑆2). □
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Example. Let us consider the following sequences: 𝑆1: a car
accident occurred at 9pm in location 𝑙1, then a car accident occurred at
9:30pm in 𝑙1. 𝑆2: a car accident occurred at 7.00am in location 𝑙2, then
a car accident occurred at 7:30am in 𝑙2. 𝑆1 and 𝑆2 are spatiotemporal
invariant sequences because the corresponding pairs of events
occurred within the same position (spatial gap=0) with a temporal
gap of 30 minutes.

2.3 The SpatioTemporally Invariant pattern
The main purpose of STInv is to characterize relevant spatiotempo-
rally invariant trends in sequence databases. An STInv summarizes
a set of event sequences 𝑆1, 𝑆2, . . ., 𝑆𝑞 such as all the pairs of summa-
rized sequences (𝑆𝑖 , 𝑆 𝑗 ) 1 ≤ 𝑖, 𝑗 ≤ 𝑞 are spatiotemporally invariant.

Definition 2.6. Let 𝑆1, 𝑆2, . . ., 𝑆𝑞 be a set of 𝑞 spatiotemporally
invariant sequences sharing the same trigger event as first event
type (𝑒1 ∈ E𝑡𝑟 ). The STInv is a sequence of triplets [⟨ 𝑒1, 𝛿𝑠1, 𝛿𝑡1 ⟩,
⟨ 𝑒2, 𝛿𝑠2, 𝛿𝑡2 ⟩, . . ., ⟨ 𝑒𝑛 , 𝛿𝑠𝑛 , 𝛿𝑡𝑛 ⟩] where 𝑒𝑥 is 𝑥-th event type in 𝑆1,
𝑆2, . . ., 𝑆𝑞 , 𝛿𝑠𝑥 and 𝛿𝑡𝑥 are the 𝑥-th spatial and temporal gap values
in the corresponding sequences. □

Example. Figure 1 shows an example of event sequences related
to the monitoring of the occupancy of the bike sharing stations
in an urban environment. Specifically, the monitored events, i.e.,
fully occupied, almost fully occupied, and increasing occupancy level
indicate the levels of occupancy of the stations of a bike sharing
system, expressed in terms of percentage of available docks. We
consider as temporal resolution the 15-minute time slots depicted
as consecutive time frames. To model the neighborhood of trigger
events 𝑒1 and 𝑒4, we set the spatial resolution to 𝑟=100m and plot
surrounding circles indicating the spatial distances 1 · 𝑟=100m,
2 · 𝑟=200m, and 3 · 𝑟=300m, respectively. Two STInvs in Figure 1
are depicted as oriented splines connecting different occurrences
of spatiotemporal events. Specifically, they are represented as a
dashed line and a continuous line, respectively.
Pattern example 1. Let us consider the STInv with trigger event
(Almost full). It is observed in the time slot [10.00am, 10.15am]. It
shows a spatial correlation between events 𝑒1 (Almost full) and
𝑒2 (Increase). More specifically, 𝑒2 occurs in the neighborhood of
the trigger event at a distance ranging between 2 · 𝑟=200m and
3 ·𝑟=300m, i.e., (200m - 300m]. Next, 15 minutes after the occurrence
of the trigger event 𝑒1, we can also observe in the same location the
occurrence of event 𝑒5 (Full). Such a combination of spatiotemporal
events (𝑒1-𝑒2 and then 𝑒5) is worth considering because another
spatiotemporally invariant occurrence can be observed at the upper-
right corner of the spatial areas in time slots [10.15am, 10.30am]
and [10.30am, 10.45am] (events 𝑒7-𝑒8 and then 𝑒11). The STInv can
be formulated as follows: [⟨ Almost Full, 𝛿𝑠=0m, 𝛿𝑡=0 ⟩, ⟨ Increase,
𝛿𝑠=200m-300m, 𝛿𝑡=0 ⟩, ⟨ Full, 𝛿𝑠=0m, 𝛿𝑡=15mins ⟩]

To simplify the representation and improve readability, we can
omit the temporal gap indication at the event occurrences while
reporting the relative temporal gap 𝛿𝑡 observed between the event
sets occurring in different time slots:

{Almost Full(𝛿𝑠=0m), Increase(𝛿𝑠=200m-300m)}
15 mins−−−−−−−−→ {Full(𝛿𝑠=0m)}

This STInv can be interpreted as follows: If a bike sharing station
is almost full and the occupation level of at least one of its nearby sta-
tions (between 200m and 300m) is increasing then within 15 minutes

the occupancy of the same station will get full.

The pattern mining task. Let 𝑚𝑖𝑛𝑠𝑢𝑝 be a minimum support
threshold and 𝐷 be a sequence database. A frequent STInv in 𝐷 is
an STInv whose number of corresponding event sequences in 𝐷 is
above𝑚𝑖𝑛𝑠𝑢𝑝 .

Given a sequence database 𝐷 , our purpose is to automatically
extract all the frequent STInvs in 𝐷 .

3 THE STINV-MINER ALGORITHM
We present a new algorithm, namely STInv-Miner, to address the
STInv patternmining task. STInv-Miner leverages a prefix-projected-
like pattern growth strategy [3]. To enable its adoption for STInv
pattern mining, we first need to tailor the concept of sequence
projection to STInvs.

The key idea is to transform the original event sequences, an-
notated with absolute temporal and spatial information, into their
corresponding projected versions including relative time and spatial
gaps with respect to each trigger event.

For each trigger event in the sequence we generate a projected
sequence from the original one that contains the sequence of non-
trigger events annotated with their relative spatial and temporal
distance, i.e., the spatial and temporal gaps. The projected sequences
corresponding to all event sequences in 𝐷 are stored in a projected
sequence database 𝐷𝑝 .

Definition 3.1. Let be 𝑆𝑖 be an event 𝑛-sequence and let 𝐸𝑡𝑟 (𝑆𝑖 ) be
the set of trigger events in 𝑆𝑖 (which are a subset of the whole event
set 𝐸(𝑆𝑖 ) occurring in 𝑆𝑖 ). The projection function maps each 𝑆𝑖 to
a set of 𝑞 distinct sequences 𝑆𝑝1 , 𝑆

𝑝

2 , . . ., 𝑆
𝑝
𝑞 , namely the projected

sequences . Each projected sequence corresponds to a distinct trigger
event in 𝐸𝑡𝑟 (𝑆𝑖 ) belonging to the first time slot of the sequence 𝑆𝑖 .
The 𝑗-th projected sequence 𝑆𝑝

𝑗
is defined as follows

[⟨ 𝑒𝑡𝑟 , 𝛿𝑠 = 0, 𝛿𝑡 = 0 ⟩, ⟨ 𝑒2, 𝛿𝑠2, 𝛿𝑡2 ⟩, . . ., ⟨ 𝑒𝑚 , 𝛿𝑠𝑚 , 𝛿𝑡𝑚 ⟩]
where 𝑒𝑡𝑟 is the 𝑗-th trigger event, 𝑒2, . . ., 𝑒𝑚 are the events in 𝑆𝑖
that are spatially correlated with 𝑒𝑡𝑟 , and the corresponding 𝛿𝑠 and
𝛿𝑡 are the spatial and temporal gaps relative to the trigger event. □

The STInv-Miner algorithm leverages a projected version of the
sequence database by tightly integrating the projection and mining
phase into a scalable, distributed mining process executed using
Apache Spark. Event projections are computed on top of a dis-
cretized version of the spatiotemporal event occurrences fulfilling
the desired temporal and spatial resolutions.

4 EXPERIMENTS
4.1 Datasets and configurations
The Bike Sharing Dataset contains data related to bike sharing
stations’ occupancy rates of 5 different cities in the San Francisco
Bay Area, sampled every minute in a 2-year period. For simplicity,
all the reported results are related to San Francisco, Palo Alto and
the global view (35, 5, and 70 stations).

To characterize the occupancy levels of the stations, we divided
the temporal axis into timeslots of fixed size (i.e., temporal res-
olution) and generated an event dataset, defining the following
events: Increase in station’s occupancy level, Decrease in station’s
occupancy level, Almost full (at most 2 free slots available) and Full.
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Table 2: Configuration settings.

Config 1 Config 2

Dataset Bike Sharing Bike Sharing
Temporal Resolution (𝑡𝑑) 10 min 10 min
length (nr. of time slots) 6 6
Spatial resolution (𝑟 ) 100m 100m
Geographical area Global, City Global, City
Max pattern length 6 6
Event types Full, Almost Full,

Increase
Full, Almost
Full, Increase,
Decrease

Trigger event types Full, Almost Full,
Increase

Full, Almost Full,
Increase

Table 3: Number of generated events for the bike sharing
dataset. Values associated to events are expressed in %.

Global San Francisco Palo Alto
Conf 1 Conf 2 Conf 1 Conf 2 Config 1 Config 2

Full 3.94 2.26 5.03 2.92 2.39 1.42
Almost Full 22.12 12.67 23.45 13.60 30.26 18.05
Increase 73.94 42.35 71.52 41.47 67.35 40.18
Decrease N/A 42.72 N/A 42.01 N/A 40.35

Total events 1.08M 1.88M 708K 1.22M 74K 124K

We performed 2 different experiments (Conf 1 and 2 in Table 2),
with the sole difference that Conf 2 also considers the Decrease
events and analyses events taking place in the top-N departure
stations instead of considering the station’s neighborhood.

4.2 Pattern extraction and analysis
We performed several pattern extractions on geographical areas of
different size. We adopted two configurations: (i) Conf 1 to mine
local patterns and understand interactions between neighboring
stations, and (ii) Conf 2 to identify long-term spatial departure-
arrival patterns. minsup is set to 1 in both cases.

Statistics on events and STInv patterns. Table 3 reports the event
type distribution, while Table 4 summarizes the characteristics of
the mined STInvs when considering the global view (i.e., all cities
together). Several complex and expressive patterns are mined. They
are characterized by an average number of event occurrences per
STInv close to 6. Sincemany of them showdifferent spatial/temporal
gaps, they represent non-trivial invariant patterns that human ex-
perts are unlikely to detect during a manual data exploration.

Comparison with traditional event sequences and non-spatially in-
variant sequences. Analyzing the percentage of STInvs with 𝛿𝑠 > 0
and 𝛿𝑡 > 0, we exclude all the patterns that disregard variations
in the spatial and temporal dimension. Both the values are above
99.9% (Table 4), thus confirming the added value of exploring STInvs
rather than simpler event sequences. Finally, we compare the num-
ber of STInvs with the number of traditional sequences mined by
considering the absolute location of the events (Table 5), relax-
ing the spatial invariance constraint. The results demonstrate the
summarization capability of the proposed approach.

Table 4: Statistics on the bicycle sharing dataset. Global area.

Config 1 Config 2

Total num. of STInvs 45.3M 11.0M
Mean #triplets per sequence 5.90 5.77
Mean discrete spatial distance 2.40 8.31
Mean discrete temporal distance 2.13 2.17
#sequences with at least one 𝛿𝑠 > 0 (%) 99.95 99.89
#sequences with at least one 𝛿𝑡 > 0 (%) 99.99 99.99
#sequences with at least one 𝛿𝑠 > 0 and
at least one 𝛿𝑡 > 0 (%)

99.29 98.36

Table 5: Compression Ratio (CR) of STInv compared to abso-
lute non-spatially invariant patterns (Abs).

Conf 1 Conf 2
#STInv #Abs CR #STInv #Abs CR

San Francisco 45.3M 2350M 51.90 6.24M 28.2M 4.53
Palo Alto 111K 143K 1.29 344K 592K 1.72

5 CONCLUSIONS
We present a new type of patterns denoting spatiotemporally invari-
ant relations among sequences of discrete events. The key contribu-
tion is the generalization of the joint spatial and temporal relations
over multiple data instances. The empirical results, achieved on a
real-world dataset, show that (i) STInvs averagely summarize the
temporal correlations described by tens of traditional sequences
and (ii) STInv patterns show non-zero spatial and temporal gaps in
most cases.
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