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Abstract. The inverse finite element method (iFEM) is an efficient algorithm developed for real-time monitoring of structures 
equipped by a network of strain sensors. The inverse element for modeling curved beams was previously developed using an 
approximate solution based on independently interpolated displacement components. In this study, a new formulation is proposed 
by the development of a least-squares variational principle using the kinematic framework of the curved beam theory. The library 
of existing iFEM-based elements is expanded by introducing three different inverse curved elements named iCB3, iCB4 and iCB5 
respectively. This new formulation has been developed considering the exact solution of the curved beam theory that corresponds 
to the membrane-bending coupling and the explicit statement of the rigid-body motions. The three inverse elements, which require 
three, four and five measurement points respectively, extend the practical utility of iFEM for shape sensing analysis of curved 
structures according to the minimum available quantity of strain sensors. The effectiveness and higher accuracy of the iCB/iFEM 
methodology compared to other solutions present in literature are demonstrated considering numerical studies on curved beams 
under static transverse force and distributed loading conditions. For these problems, the effect of strain measurements error, 
number of sensors and discretization refinement on the solution accuracy is evaluated. 

Keywords: Shape sensing, inverse finite element method, structural health monitoring, curved beam, strain sensors. 

1. Introduction 

All structures belonging to different engineering fields share a common problem represented by structural decay. Apart from 
the specific origin, these are subjected to increasingly harsh environment, cyclic or extreme loadings, corrosion, which lead to 
challenging operating conditions. As a consequence, structural failures may occur more frequently, maintenance costs become very 
expensive and the safety levels are reduced. Therefore, for a better management of structural and infrastructural assets it is critical 
the knowledge of structural integrity and improve on-site assessment of structural performance. A procedure to obtain real-time 
information on the structural state, unusual structural behaviours and unhealthy structural conditions is known as structural 
health monitoring (SHM). The development of an efficient and reliable integrated SHM system allows to increase human and 
structural safety, decreases maintenance costs and reduces service downtime considering optimal periods for inspection and 
repairs. A promising technology for SHM procedure that processes data collected from the on-board sensors in real-time is known 
as shape and stress sensing. Processing the data collected by a network of strain sensors, it is possible to reconstruct the deformed 
shape and stress fields of a structure, allowing the damage prediction by means of a proper failure criterion and evaluate residual 
safety. 

A powerful mechanics-based algorithm called inverse Finite Element Method (iFEM) was developed by Tessler and Spangler [1, 
2] at NASA Langley Research Centre, for real-time shape sensing of aerospace vehicles. The theoretical framework is based on a 
least-squares variational principle that allows the reconstruction of the full-field displacements from measured surface strains of 
shear-deformable plate and shell structures. The error functional matches in the least-squares sense the analytical strains, 
explained in terms of C0 continuous displacement interpolation functions, and measured strains. Since the methodology involves 
only strain-displacements relations, the structural deformed shapes can be reconstructed without any knowledge of elastic or 
inertial material properties. Once the full-field displacements are obtained, the full-field strains and stress state can be evaluated 
by referring to the material properties of the structure.  Involving the stresses in a proper failure criterion a real-time damage 
prediction can be enabled.  

The iFEM approach has been extensively studied over the past fifteen years, including the development of various types of 
inverse elements and theoretical framework. The formulation has been extended by Gherlone [3] to reconstruct the complete 
displacements field for beam and frame structures according to Timoshenko beam theory, which includes the axial, bending, torsion 
and transverse shear deformations. Gherlone et al. [4, 5] proposed two inverse finite elements for the Timoshenko beams whose 
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order of kinematic interpolations is related to the number of required strain gauges. The solution accuracy is examined with respect 
to the numerical simulation of a thin-walled cantilevered beam subjected to harmonic excitations in the presence of structural 
damping. To reconstruct the deformed shape of multi-layered composite and sandwich structures possessing a high degree of 
anisotropy and heterogeneity, Cerracchio et al. [6] introduced the kinematic assumptions of the Refined Zigzag Theory (RZT) into 
the iFEM framework. A new four-node inverse quadrilateral shell element (iQS4) was introduced by Kefal et al. [7], expanding the 
existing library of iFEM-based inverse elements. Numerical studies have been performed to verify the effectiveness of the quadratic 
interpolation functions adopted, to avoid singular solution in case of complex shell structures, membrane and shear locking 
phenomena. Kefal et al. [8] proposed an improved iFEM formulation to model laminated composite and sandwich plates and shells. 
The methodology involves the kinematics of RZT as a baseline for the development of a three-node inverse-shell element named 
i3-RZT. The linear incremental iFEM procedure has been introduced by Tessler et al. [9] to reconstruct the displacement field of a 
shell structure undergoing geometric nonlinearity. The procedure, involving at each load step the incremental strains, provides 
displacements which in turn update the new geometry of the deformed shape. A new eight-node curved inverse-shell element, 
named iCS8, was developed by Kefal [10] through combining the kinematics assumptions of both solid shell and first-order shear 
deformation plate theory. Savino et al. [11] proposed a new iFEM formulation according to the kinematics assumption of the 
Bernoulli-Euler theory. Two inverse beam finite elements have been formulated for a better optimization of the number of strain 
measurements required. Due to the impact given by the experimental error in the strain measurements which could decrease the 
quality of the displacement solutions, Kefal et al. [12] developed “smooted iFEM” method for performing shape and stress sensing 
applying smoothing of in situ strain measurements. Since iFEM analysis of curved structures modelled with existing flat inverse-
shell elements requires more refined mesh generation and thus a large number of strain sensors, Kefal and Oterkus [13] expanded 
the iFEM methodology introducing a novel isogeometric inverse element. The isogeometric inverse-shell element, named iKLS, is 
based on membrane and bending strains consistent with the Kirchoff-Love shell theory. Savino et al. [14] developed a two-node 
inverse curved beam element based on quintic-degree polynomial shape functions to guarantee accurate reconstructions without 
the need to explicitly solve the governing differential equations for the strain-displacement problem. Moreover, the application of 
the inverse elements formulated not only involved the full-field structural deformed shape and stress-strain reconstruction but 
also the detection of possible damage locations. Colombo et al. [15, 16] used the iFEM algorithm to create a load-adaptive baseline 
for damage identification based on an anomaly index. Furthermore, they investigated the damage localization capability by 
comparing the trends in anomaly indices between the different sub-regions of the structures. The comparison of the strain 
computed by the iFEM and the strain measured by the test sensors provides the probability that the damage is close the test sensor. 
Roy et al. [17] investigated the use of the iFEM to localize damages by reconstructing the damaged strain field of the structure. 
Dividing the structure into square grid cells having strain sensors located at the boundaries, the iFEM reconstructs strain field with 
higher magnitude in those cells affected by damage. Li et al. [18] presented the application of iFEM approach to identify dent damage 
in a thin-walled cylindrical structures modelled with iQS4 element and representing the columns of floating offshore installations. 
In order to overcome potential constraints on sensor grid design given by the experimental setup, Oboe et al. [19] proposed a pre-
extrapolation of the strain field by integrating the Smoothing Element Analysis algorithm within the iFEM framework. The 
minimization of the Penalized Discrete Least Square functional of the error between measured and numerical input strain field 
allows to compute the vector of the global degrees of freedom (DOF) from which interpolate the strain field on all desired locations. 
As a result, could be no limitation on the number of input sensors to obtain ever finer meshes and accurate results.  

The mathematical concepts of the iFEM algorithm have been demonstrated with numerical and experimental application to 
SHM of aerospace, marine and mechanical structures. Quach et al. [20] combined fiber-optic strain sensing technology and iFEM to 
identify structural anomalies that may provide early indication of airframe structure degradation. The laboratory tests highlighted 
the effectiveness of the technique to detect anomalies as a trend of successively larger strain deviations from the no-damage state. 
The efficiency and predictive capability of the iFEM formulation have been investigated by Gherlone et al. [21] considering a 
laboratory experiment on a thin-walled cantilever beam subjected to various static loadings. The accuracy of the deformed shape 
reconstructed by strain-rosette data, has been assessed by comparing the iFEM outcomes with displacement transducers 
measurements. An application with experimentally measured strains according to the Timoshenko beam theory has been 
presented by Gherlone et al. [22], using both low-fidelity and high-fidelity discretization models. To verify the accuracy of the 
formulation, the iFEM predicted displacements are compared with those measured by the displacement transducers for static load 
cases or recovered by accelerometer for dynamic load cases. Kefal and Oterkus [23] performed displacement and stress monitoring 
of a typical chemical tanker mid-ship based on iFEM methodology. The effectiveness of the iQS4 inverse-shell element has been 
demonstrated by Kefal and Oterkus [24] for monitoring in case of multi-axial deformations and stresses considering a numerically 
simulated containership. Papa et al. [25] validated the iFEM formulation with the Mindlin plate approximation on a wing box 
extracted from total wing of an unmanned aircraft vehicle properly equipped with strain gages. Considering the iFEM-RZT 
methodology, Kefal and Yildiz [26] investigated the effect of sensor density and alignment on the shape sensing of a tapered wing-
shaped sandwich panel subjected to bending, torsion and membrane loads. Zhao et al. [27] verified the iFEM approach based on the 
kinematics assumptions of Timoshenko beam theory through a simple supported beam and an experimental aluminum wing-like 
frame model. Since the deformation of the gantry structure in heavy-duty machine tools is an important factor that affects 
machining accuracy, Liu et al. [28, 29] verified the accuracy of the iFEM algorithm integrated with fiber Bragg grating sensors to 
realize real-time monitoring in the mechanical manufacturing field. Moreover, Liu et al. [30] demonstrated the application of the 
iFEM methodology also for monitoring the deformation of the column of heavy-duty machine tools. Zhao et al. [31, 32] constructed 
an optimal placement model of strain sensors based on eigenvalue analysis to monitor the wing frame deformation according to 
the iFEM algorithm based on Timoshenko theory. The optimal result of the multi-parameter optimization problem is provided by 
using the Particle Swarm Optimization algorithm. Kobayashi and Murayama [33] applied iFEM formulation to reconstruct buckling 
deformation of mode 1 and 2 of a simulated thin-wall pipe structure. Kefal et al. [34] applied the iQS4/iFEM methodology for real-
time monitoring of 3D strains and stresses of a capsize bulk carrier. Niu et al. [35] presented a multi-nodes iFEM that reconstructs 
the displacement of a flexible antenna panel consistent with Mindlin plate theory; in order to clearly localize the damage, an 
additional damage parameter based on von Mises equivalent strain is introduced. Li et al. [36] applied iFEM analysis with iQS4 
element, to monitor the tower of an offshore wind turbines under both static and dynamic loads. 

The main focus of the current study is to expand the library of iFEM-based inverse curved elements and provide an enhanced 
iFEM formulation according to the exact solution of the governing differential equations for the curved beam problem. It is today 
widely recognized that to have good accuracy and convergence properties, it is important that the displacement field of a finite 
element (FE) incorporated an adequate representation of the rigid body motions (Dawe [37]). Previous iFEM-curved beam algorithm 
has been developed using independently interpolated displacement components which only approximate the rigid-body 
displacements. Moreover, the nodal DOF considered are compatible only for the simplified case of locally shallow arch, where the 
coupling between the membrane and bending behavior could be neglected. Considering the derivatives of the displacement 
components as nodal parameters and not the exact coupled terms, does not provide the true generalized strains. Since the rigid 
body displacements of finite elements with curved axis are expressed in trigonometric terms, the choice of independently 
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interpolating polynomial functions leads to nonconforming elements. The precise representation of rigid body motions requires 
the development of their explicit expression. On the other hand, to adequately represent strain-free motions, more DOF are often 
needed than a coupled displacement model (Dawe [38]). To address the aforementioned drawbacks, natural (“exact”) shape 
functions are obtained by integrating the strain-displacements equations, which allow to calculate exactly the behavior of arches. 
Three types of such shape functions are developed, named iCB3, iCB4 and iCB5, having an increasing both accuracy and minimum 
number of strain sensors required. The main focus of the new inverse elements is to create accurate iFEM models with an iCB3-
based coarse discretization using only three strain measurement points (station points) up to the most refined iCB5 considering 
five station points as minimum number. To consider higher degrees of the interpolant shape functions, the nodal continuities for 
both exact displacement and strain fields have been imposed. Validation problems are considered, including a semi-arch cantilever 
beam subjected to concentrated force and a fully clamped arch under distributed load. For these problems, different discretization 
refinements and the effects of strain measurements error on the accuracy of the iFEM solution are examined. To simulate the strain 
measurements and obtain the displacement reference solutions, direct FEM analyses are performed using LUSAS software (LUSAS 
[39]).  Finally, the effects of sensors number and type of inverse element are assessed with respect to the solution accuracy for 
future practical applications of SHM systems. 

2. Bernoulli-Euler Curved Beam Formulation 

In the present paper, for the aforementioned purposes it has been considered a thin curved beam with constant cross-section 
and radius of curvature R, referred to the polar coordinate system (r, ) and curvilinear reference system (s, y, z) depicted in Fig. 1. 
The element is characterized by a Young’s modulus E, moment of inertia Iz, cross-section area A and total length L. The present 
formulation is based on the following assumptions: 

•  small strains and displacements; 
•  homogeneous, isotropic and linear elastic material; 
•  beam axis always in the plane of bending; 
•  plane cross-section remains plane after loading. 

Given the cross-section with assigned reference systems, the corresponding displacement field of the curved beam in 
curvilinear coordinates can be written as: 

( ) ( ) ( )φs zu s,  y,z u s y s= −  

( ) ( )ru s,  y,z v s=  

( )zu s,  y,z 0=  

(1) 

where us, ur and uz denote the displacements of the curved beam in the s, y and z directions respectively, u(s) and v(s) are the 
tangential and radial displacements of an arbitrary arch with length s measured on the neutral axis, and z(s) is the angle of rotation 
due to bending around the z axis. The kinematic variables that completely define the displacement field can be grouped in the 
vector: 

{ }φ
T

zu,  v,  =u  (2) 

As an assumption for straight beam in bending, all longitudinal fibers have the same length. Since curved beams are 
characterized by a significant initial curvature, the longitudinal fibers have different lengths and the linear variation of longitudinal 
strains over the cross-section is no longer valid, even if the assumption that plane cross section remain plane after deformation is 
still valid. This implies that in-plane normal strain is proportional to the distance of the fiber from the neutral axis which is no 
more coincident with the centroidal axis but is shifted towards the centre of curvature (Fig. 1). Considering a differential segment 
with subtended angle d (Fig. 2), the relation between the neutral axis (dsn) with radius Rn and a general fiber (dsi) at yi distance 
from the neutral axis can be written as: 

n

ni i

d d ds

ds ds ds
=  (3) 

where the length dsn of the neutral axis fiber and dsi of the generic fiber result: 

βn nds R d=  

( ) βni ids R y d= +  
(4) 

 

Fig. 1. Configuration of an arbitrary curved beam element. 
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Fig. 2. Segment of curved beam with curvilinear axis.  

Substituting Eq. 4 into Eq. 3 gives: 

( )
n

n ni i

d R d

ds R y ds
=

+
 (5) 

where d/dsi varies over the section with hyperbolic law. From Eq. 5, it can be assumed that the axial derivative of a generic fiber si 
can be computed with respect to the neutral axis sn, by taking into account the non-linear dependence along y. 

Substituting Eq. 1 into the strain-displacement relations belonging to the Bernoulli-Euler theory, and considering the 
dependence given by Eq. 5, the consequent strain field is characterized by the normal strain written as (Qatu [40]): 

( )
( )

( ) ( )ε ε χn
s 0 0

n

R
s,  y,z s y s

R y
 = − +

 (6) 

where 0(s) is the tangential strain and 0(s) the curvature. Since the tangential displacement u(s) gives a negative angular variation 
z(s), and the radial displacement v(s) leads to a positive axial strain 0(s), the kinematics equations result: 

( )ε0

du v
s

ds R
= +  

( )
φ

χ
2

z
0 2

d d v 1 du
s

ds ds R ds
= = −  

(7) 

The section strains that define the Bernoulli-Euler model can be written in the vector form: 

( ) ( )
ε

χ
φ

0

0
z

d 1 u0
ds R v s

d
0 0

ds

               = = =    
                

e u B u  (8) 

where the matrix B(s) contains the derivative of the shape functions N(s) that reconstruct the element kinematic field by 
interpolating the nodal DOF ue according to the equation: 

( ) es=u N u  (9) 

Considering an infinitesimal curved segment subjected to distributed load p(s)ds, q(s)ds and m(s)ds (Fig. 3), the indefinite 
equilibrium equations relating to the tangent along the centroidal line, the radial direction and the rotation around the intersection 
point of the normal force axes, are: 

dN T
p 0

ds R
− + =  

dT N
q 0

ds R
+ + =  

dM
T m 0

ds
− + =  

(10) 

where the curvilinear coordinate s is the independent variable, the normal force N, the shear force T and bending moment M are 
the unknown functions. 
 

 

Fig. 3. Beam section force and moment. 
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3. Inverse Finite Element Method for Curved Beams 

A brief description of the iFEM formulation is reported in this Section. To reconstruct the deformed shape of a discretized 
structure adopting the iFEM methodology, a least-squares functional, (u), containing the difference between analytical and 
experimental section strains, need to be defined as (Tessler and Spangler [1, 2]): 

( ) ( ) ε2= −u e u eΦ  (11) 

where e(u) contains the analytical strain field and e is the experimental counterparts provided by strain sensors. For an individual 
curved element, the functional (u) accounts the membrane-bending coupling according to Eq. 7 and is expressed by: 

( ) ( ) ( )ε εe e 2 e 2
e 0 0 0 0= − + −u u uΦ ε ε χ χ  (12) 

where the squared norms can be written in term of the normalized Euclidean norms 

( ) ( )ε ε
e n

2e 2
0 0 0 0i

i 1

L
s

n =

 − = −  ∑uε ε ε ε  

( ) ( )ε ε
e e n

2e 2 z
0 0 0 0ie

i 1

I L
s

A n =

 − = −  ∑uχ χ χ χ  

(13) 

for each of the n station points where the section strains are evaluated, located at the curvilinear coordinates si. Substituting Eq. 8 
into Eq. 12, the inverse element matrix equation can be obtained by minimizing the functional e(ue) with respect to the nodal 
displacement, according to the original form of the iFEM framework: 

( )ee e e e

e

d
0  

d
= → =

u
K u f

u

Φ
 (14) 

where Ke and fe can be explicitly written as: 

( ) ( ) ( ) ( )
0 0 0 0

e e en n
e T Tz

i i i ie
i 1 i 1

L I L
s s s s

n A n= =

   = +      ∑ ∑K B B B Bε ε χ χ  

( ) ( )ε εε χ
0 0

e e en n
e T Tz

i 0,i i 0,ie
i 1 i 1

L I L
s s

n A n= =

   = +      ∑ ∑f B Bε χ  

(15) 

It can be highlighted that Ke should be computed once for a predefined locations of strain sensors, si, whereas fe is a function of 
the measured strain values and needs to be updated at each strain data acquisition. Once the local matrices are established for 
individual inverse elements, their contributions can be assembled into the global resulting equation system of the discretized 
structure: 

=KU F  (16) 

after a proper transformation from the local to the global coordinate system. The matrix K is a singular matrix because it contains 
the rigid body motions. By imposing problem-dependent displacement boundary conditions, a solvable reduced system can be 
obtained: 

R R R=K U F  (17) 

where KR is a positive definite matrix, UR is the unknown DOF vector and FR is the corresponding vector, dependent on the 
experimentally measured strains. The inverse of KR that remains unchanged for a given distribution of strain sensors leads to the 
unknown DOF vector, UR=KR

-1FR, which provide the full-field displacements and strains throughout the inverse element domain. 
The evaluated strain components can be used within a constitutive relationship to predict stress distributions and enable failure 
criterion for a damage detection process. The last part of the iFEM formulation concerns the selection of shape functions suitable 
to represent the behavior of the structure considered. 

4. New Curved Inverse Beam Elements iCB3, iCB4 and iCB5 

The displacement parameters assumed to formulate the curved FE should satisfy the requirements of kinematic admissibility. 
Therefore, the radial and tangential displacement components together with the rotation should be continuous across the element 
boundaries. Furthermore, a FE suitable for general applications and having good convergence properties should include both strain-
free and strain-inducing states. Considering the above requirements, highly efficient shape function can be derived by integrating 
the “exact” strain-displacement equations for the arbitrary curved beam reported in Eq. 7. Writing  and  in terms of strain 
functions f() and f(), the strain-displacement equations can be rewritten in a more general form as: 

( )β
β

1 du
v

R d
f

  + =   
ε  

( )β
β β

2

2 2

1 d v du

R d d
f

  − =   
χ  

(18) 

 

(19) 

Assuming fε(β) = f() = 0, it is equivalent to define the associated homogeneous equations corresponding to the zero-strain state. 
By substituting Eq. 18 into Eq. 19, and imposing the strain-free condition, the following system can be found: 
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β

du
v 0

d
+ =  

β

2

2

d v
v 0

d
+ =  

(20) 

 

(21) 

The solution of the associated homogeneous equations gives the displacements with zero strains, i.e. rigid-body displacements, 
which have the following form: 

β β1 2 3u a sin a cos a=− + +  

β β1 2v a cos a sin= +  

(22) 

 

(23) 

with a1, a2 and a3 constants of integration. By developing the trigonometric function according to the Taylors’ series, it can be 
obtained the uncoupled form given by Savino et al. [14]. Unlike this approximated solution, having the accuracy dependent by the 
order of the polynomial terms, the new rigid-body motions are exactly consistent with the strain-displacement equations. The 
general solution of the nonhomogeneous equations is the sum of the solution of the associated homogeneous equations and a 
particular solution of the nonhomogeneous equations depending by the functions fε(β) and f(). A suitable choice of their degree 
must be made, to properly express the deformation of the element according to the number of DOF. On this assumption, three 
different two-node inverse elements have been developed with increasing accuracy named iCB3, iCB4 and iCB5.  

Continuity across the nodes requires the specifications of the DOF at each end of the element. Since considering as nodal 
parameter approximated terms such as dv/ds instead of  does not give the true generalized strain and stress, actual DOF have 
been selected starting by nine for the iCB3 element up to twelve for the iCB5 element: 

[ ] [ ]φ χ φ χ1 1 1 1 2 2 2 2 miCB3
u  v      u  v      vw =  

[ ] [ ]φ ε χ φ ε χ1 1 1 1 1 2 2 2 2 2iCB4
u  v        u  v      w =  

[ ] φ ε χ χ φ ε χ χ' '
1 1 1 1 1 1 2 2 2 2 2 2iCB5

u  v          u  v        w  =     

(24) 

The initial nodal configuration of the iCB3 model is reduced to two nodes and eight DOF by applying the static condensation of 
the interior DOF (Fig. 4). 

The resulting element has the reduced DOF vector: 

[ ] [ ]φ χ φ χ1 1 1 1 2 2 2 2iCB3
u  v      u  v    w =  (25) 

Considering that three of the aforementioned nodal parameters are required for the rigid-body displacements (Eq. 22, 23), the 
remaining available terms allow to define the independent constants of the following strain functions: 

ε
β β2

1 2 3, iCB3f b b b= + +  

χ
β β2

4 5 6, iCB3f b b b= + +  

ε
β β2

1 2 3, iCB4f b b b= + +  

χ
β β β2 3

4 5 6 7, iCB4f b b b b= + + +  

ε
β β β2 3

1 2 3 4, iCB5f b b b b= + + +  

χ
β β β β2 3 4

5 6 7 8 9, iCB5f b b b b b= + + + +  

(26) 

Substituting each couple of strain functions in Eq. 18 and Eq. 19 for each type of inverse element, and by solving the 
nonhomogeneous differential equations, the particular solution can be obtained. For the sake of brevity, only the formulation of 
the iCB3 element is developed below; for the other elements the reader is referred to the Appendix.  

 

 

Fig. 4. iCB3 model. 
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Adding the solution of the homogeneous equations and the particular one, the general solution can be written as: 

( )
β β

β β β β β β
2 2 2 3

2 2
1 2 3 1 2 3 6iCB3

R R
u a sin a cos a b R b b 2R b 2R

2 3

  =− + + − − + − +   
 

( ) ( ) ( )β β β β β β β2 2 2 2 2 2
1 2 1 2 3 4 5 6iCB3v a cos a sin b R b R b R 2R b R b R b R 2R= + + + + − + + + −  

(27) 

where the terms a1, a2 and a3 express the rigid-body displacements and the remaining coupled terms represent the deformation of 
the element. Once obtained the two unknowns uiCB3 and viCB3, all the other quantities can be derived by substituting Eq. 27 into Eq. 
7. The generalized functions of the DOF can be expressed as follows: 

[ ] [ ][ ]βw A=  (28) 

where the terms are defined by: 

[ ] [ ]φ χ
T

iCB3 iCB3 iCB3 iCB3w u v=  

[ ]

β β
β β β β β

β β β β β β
β

β β
β

β β

2 2 2 3
2 2

2 2 2 2 2 2

2 3

2

R R
sin cos 1 R 2R 0 0 2R

2 3
cos sin 0 R R R 2R R R R 2R

1 R R
0 0 R R 0 0 R

R 2 3
0 0 0 1 0 0 0

 
 − − − −
 
 
 − −
 =
 
 − + 
 
 
 

 

[ ] [ ]
T

1 2 3 1 2 3 4 5 6A a a a b b b b b b=  

 

The nodal conditions given by Eq. 26 can be written by the following: 

[ ] [ ]β
iCB3

w A =     (29) 

where: 

β
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2
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1
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1
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2

2

R R
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R
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R

R
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R
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R
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
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
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

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−
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





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

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

 
 
 
 
 
 
 
 
 
 
 
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The next step involves the computation of the unknown coefficients following standard finite element procedures, after 
condensing the interior DOF. By inverting Eq. 29 and substituting the vector of unknown coefficient [A] in Eq. 28, yields to the final 
form: 

[ ] [ ] [ ] [ ][ ]β β
1

w w N w
−

 = =    (30) 

where [N] is the matrix of the shape functions. Note that the element shape functions are general enough to involve arbitrary 
applied loading, material properties and boundary conditions. The iFEM solution accuracy is dependent by the mesh refinement 
and the order of inverse element adopted. Finer shape functions would generally lead to more accurate results but require the 
availability of an increasing number of measured-strain data. According to the order of the strain functions given by Eq. 26, the 
singularity of the formulation is avoided if at least three, four and five station points are available for the elements iCB3, iCB4 and 
iCB5 respectively. Furthermore, considering the in-plane strain assumption adopted to define the experimental section strains from 
Eq. 6, at least two strain sensors are required for each station point. Therefore, the minimum number of strain sensors connected 
to the different order of the inverse elements is six, eight and ten for the iCB3, iCB4 and iCB5 element respectively. 

Different numerical examples addressing the inverse elements accuracy and the number of station points required are 
presented in Section 5. 

5. Numerical Simulation and Validation 

Numerical examples of curved beams with rectangular cross section with different loading conditions are presented; the iFEM 
methodology is compared with the direct solutions of LUSAS Civil & Structural software which is a commercial finite element 
analysis program. The modelling of curved thin beams has been done using the BM3 Kirchhoff beam element, in which shear 
deformations are not included. The direct finite element analyses have been performed not only to numerically simulate the 
experimental measured strains in correspondence of the station points but also to establish the reference solution in terms of full 
displacements or section strains. Therefore, the simulated strain sensor data are then used as input to perform the iFEM analysis. 
Finally, the accuracy of the iCB/iFEM formulation is assessed by the mean percentage difference (MPD) against the FEM reference 
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solution, calculated as:  

1

1
MPD 100%

iFEM FEMn
i i

g FEM
i max

g

g

g

n =

 −  =    
∑  (31) 

where gi indicates the value (strain or displacement) provided at the i-th location along each element, gmax is the corresponding 
maximum value considered as normalization factor and n is the total number of assessment nodes. The superscript “iFEM” refers 
to the reconstruction by iFEM while “FEM” refers to the simulated measurements. 

5.1 Uniform circular beam 

As a first example, the performance of the new inverse curved elements is demonstrated from the comparison with the 
independently interpolated model previously developed by Savino et al. [14]. The same curved beam with clamped-clamped 
boundary conditions has been considered (Fig. 5). The beam with rectangular cross section of height h = 0.5 m and base b = 0.3 m, 
radius of curvature R = 5 m and opening angle  = 180°, is subjected to a static transverse distributed load of q = 1 KN/m. The beam 
is made of concrete having a Young’s modulus of 30 GPa and Poisson’s ratio of 0.2. 

To establish an accurate reference solution, a mesh consisting of 20 elements and 140 DOF has been considered to perform the 
direct FEM analysis. To remain consistent with the work of Savino et al. [14], in the present iFEM analysis the same number of 
station points and locations are used throughout the curved beam axis (Fig. 6). This configuration is compatible with the minimum 
station points required by the iCB5 element, therefore the arch has been modelled considering an iCB5 with five station points. 

In Fig. 7 the distribution along the arch of the displacements and strain obtained by the previous inverse curved beam element 
(Savino et al. [14]), the enhanced iCB5/iFEM formulation and the FEM analysis are compared. The iCB5/iFEM and direct FEM analyses 
produce the maximum transverse displacement v that differs by 0.02 %; it is 3.05 % in the case of the previous formulation. 
Improvements have been recorded also for strain readings. A prominent feature of these results is the disappearance of the 
oscillatory behaviour in the membrane strain distribution obtained using the previous formulation (Fig. 7c), (Savino et al. [14]). 

 

Fig. 5. Uniform circular beam under uniformly distributed load. 

 

Fig. 6. Configuration of the iCB5 element. 

  

Fig. 7. Comparison along the arch axis of iFEM solution (Savino et al. [14], iCB5) to FEM analysis for the displacements u (a) and v (b),  
and strains  (c) and  (d). 
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Fig. 7. Continued. 
 

In Table 1, the accuracy metrics between the old iFEM formulation and the new iCB5 element are compared in terms of 
displacement and strain fields. In particular, a decrease in MPD is recorded for the iCB5 element both for displacements (MPDu, 
MPDv and MPD) and strain (MPD and MPD), with the maximum MPD being less than 1%. 

These results show the better shape sensing capability of the iCB5 element compared to Savino et al. [14] formulation, assuming 
the same configuration of station points. 

5.2 Cantilever beam 

To validate the bending and membrane response of iCB3, iCB4 and iCB5, a cantilever beam with a concentrated force F = 1 kN 
applied on the free end has been considered. Figure 8 shows the geometry of the curved beam having a radius of curvature R = 5 m, 
opening angle  = 90° and cross-section with height h = 0.5 m and base b = 0.3 m. The beam has an elastic modulus of the E = 30 
GPa and Poisson’s ratio of  = 0.2.  

To obtain an accurate reference solution by performing a direct FEM analysis, a refined mesh with 20 elements and 140 DOF is 
employed. This FEM analysis is also used to simulate the in-situ strain measurements. In comparison with the direct FEM analysis, 
the iFEM analyses are performed by using a coarse mesh with just one iCB3, iCB4 and iCB5 element respectively, with equally spaced 
strain sensors in a number of 3, 4 and 5 respectively (Fig. 9). 

Figure 10 compares the distribution along the arch axis of the displacements u and v, calculated by means of the direct FEM 
analysis and the corresponding iCB3, iCB4 and iCB5 iFEM models. 

 

Table 1. Mean-percent difference (MPD) for displacement and strain field corresponding to Savino et al. [14] and iCB5 models. 

Model MPDu (%) MPDv (%) MPD (%) MPD (%) MPD (%) 
Savino et al. [14] 3.14 0.90 4.05 0.79 5.48 

iCB5 0.58 0.12 0.47 0.01 0.16 

 

 

Fig. 8. Cantilever beam. 

 

Fig. 9. Configuration of station points corresponding to iCB3, iCB4 and iCB5 model. 
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Fig. 10. Comparison along the arch axis of iFEM solution (iCB3, iCB4 and iCB5) to FEM displacements u (a) and v (b). 

 
The global accuracy of each model is assessed considering the MPD between direct FEM solution and iFEM reconstructions for 

displacements and strain as listed in Table 2. According to the percentage differences in Table 2, the new models produce a 
maximum error of 1.32 % for displacements reconstructed by iCB3 model which further decreases using iCB5 element.  

These results confirm the high performance of all the new inverse elements even for the least effective iCB3 element, which is 
on the other hand, the most useful for real SHM applications given the minimum number of strain sensors required 

5.3 Influence of input data errors 

To examine the predictive capabilities of the iCB/iFEM methodology for real engineering applications, it is convenient to assess 
the effect of data input errors on the solution accuracy. Therefore, the cantilever beam considered in the previous study is analyzed 
again using the input data coming from the direct FEM by adding an error of 1%, 5% and 10%, respectively (Fig. 8). Since the first 
station point is in common among the configurations of the three inverse elements (Fig. 9), it has been chosen as reference point 
to contain the simulated input strain measurement affected by error, according to the following equations: 

( ) ( ) ( )ε ε ε0 1 0 1 0 1s s err. s
iFEM FEM FEM
= + ×  

( ) ( ) ( )χ χ χ0 1 0 1 0 1s s err. s
iFEM FEM FEM
= + ×  

 

where 0(s1)FEM and 0(s1)FEM are the tangential strain and curvature of the first station point simulated by the FEM analysis, err. 
represents the percentage error introduced above and 0(s1)iFEM and 0(s1)iFEM are the input strains of the iFEM procedure. The 
accuracies of each model are assessed considering the MPD between iFEM and FEM results for displacements and strain field. In 
Tables 3-7, the MPD between iFEM and FEM predictions for the displacement and strain distributions are listed versus the 
percentage error introduced in the input strains of the first station point. 

 

 

Table 2. Mean-percent differences (MPD) for displacement and strain field for iCB3, iCB4 and iCB5 iFEM models. 

Model MPDu (%) MPDv (%) MPD (%) MPD (%) MPD (%) 
iCB3 1.32 1.32 0.56 0.31 0.45 
iCB4 1.13 0.12 0.11 0.04 0.11 
iCB5 0.12 0.03 0.07 0.03 0.06 

Table 3. Percent differences between the iFEM and FEM prediction for tangential displacement u. 

Err. (%) 
MPDu (%) 

iCB3 iCB4 iCB5 
1 0.28 0.29 0.20 
5 0.85 1.05 0.76 
10 2.25 2.01 1.47 

Table 4. Percent differences between the iFEM and FEM prediction for radial displacement v. 

Err. (%) 
MPDv (%) 

iCB3 iCB4 iCB5 
1 0.17 0.11 0.07 
5 0.37 0.43 0.29 

10 1.03 0.85 0.59 

Table 5. Percent differences between the iFEM and FEM prediction for rotation . 

Err. (%) 
MPD (%) 

iCB3 iCB4 iCB5 
1 0.31 0.28 0.18 
5 0.91 0.95 0.66 

10 2.20 1.79 1.27 

Table 6. Percent differences between the iFEM and FEM prediction for membrane strain . 

Err. (%) 
MPD (%) 

iCB3 iCB4 iCB5 
1 1.15 1.01 0.27 
5 1.17 1.09 0.91 

10 1.92 1.73 1.71 
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Table 7. Percent differences between the iFEM and FEM prediction for curvature . 

Err. (%) 
MPD (%) 

iCB3 iCB4 iCB5 
1 1.15 0.28 0.14 
5 1.17 0.92 0.58 

10 1.92 1.73 1.15 
 

According to Tables 3-7, the percentage differences with the reference solutions result less than about 1% except in the cases 
with 10% of noise for iCB3 and iCB4 model, where it increases up to about 2%. These results confirm the higher performance of the 
iCB5 element compared to iCB3 and iCB4 element, especially in cases of input strain with high percentage error. However, 
satisfactory results are obtained even with the less powerful inverse elements, also considering the greater penalty induced when 
a lower number of station points is adopted. 

Lastly, to examine the effects on the shape and strain sensing quality given by the availability of a quantity of station points 
higher than the minimum required, the previous example of uniform circular beam (Section 5.1) is revised considering a noise of 
10 % on the first station point. More specifically, the performance of the iCB3 element considering three station points, five station 
points and a finer mesh with two iCB3 elements (Fig. 11) has been evaluated. Furthermore, a comparison with the metrics obtained 
using an iCB5 element with five station points is also reported. Therefore, the two elements can be compared considering the same 
penalty order on the total number of station points. 

In Fig. 12, the displacements u and v obtained using the configuration specified above for the iCB3 element are compared to the 
direct FEM solution. In contrast to the static scheme (FEM results), it can be seen in the displacement distributions a slight 
asymmetry which is given by the error introduced in the first station point for the iFEM analyses. 

 

 

 

 

Fig. 11. Mesh configurations with iCB3. 

  

Fig. 12. Comparison of displacements u (a) and v (b) predicted by different iCB3 configurations and direct FEM solution. 
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Table 8. Mean-percent difference between iFEM (iCB3 (3 st.pt., 5 st.pt., 2 elem.), iCB5) and FEM predictions. 

Model MPDu (%) MPDv (%) MPD (%) MPD (%) MPD (%) 
iCB3 (3 st.pt.) 4.92 0.85 2.46 2.53 2.51 
iCB3 (5 st.pt.) 3.99 0.65 2.16 2.20 2.51 
iCB3 (2 elem.) 2.10 0.79 1.97 1.35 2.07 

iCB5 1.77 0.80 1.74 1.60 1.76 
 

As evident from Fig. 12, in case of a number of station points higher than the minimum required, it is better to adopt a finer 
mesh rather than consider the same inverse element with redundant station points. Thus, the error on the strain input data affects 
only a portion of the reconstructed deformed shape. To assess the global behavior of the three different configurations, the MPD 
has been computed in terms of both strains and displacements. Furthermore, a comparison with the MPD between iFEM and FEM 
predictions is reported in Table 8, considering also the outcomes obtained by modelling with an iCB5 element with five station 
points. 

According to the MPD listed in Table 8, the iCB3 model shows a rapid reduction of the error passing from one element (iCB3 (3 
st.pt.)) to two elements (iCB3 (2 elem.)), also considering few strain sensors and the high input data error introduced in the first 
station point. By comparing the MPDs obtained by modeling with one and two iCB3 elements on the same number of station points 
(2nd and 3rd row in Table 8), it can be seen the advantages of considering a finer mesh rather than modeling with a single element 
on a redundant number of station points. However, considering the model with iCB3 on five station points and the most powerful 
iCB5 element on the same number of station points, the MPD between iFEM and FEM results decreases and become less than 2 % 
with a single iCB5 element. Overall, these results prove the effectiveness of the improved iCB/iFEM formulation also in case of input 
data affected by error.    

6. Conclusion 

The inverse finite element method is a widely recognized procedure for the SHM in various engineering fields. Many inverse 
elements have been developed in the literature related to both one and two-dimensional geometry. Early formulation on curved 
inverse finite element was not enough effective due to the approximate solution of the strain-displacement relations. Much 
attention has been devoted in the present study to get an improved iFEM formulation to solve the inverse problem of shape and 
stress sensing of curved beam. The theoretical framework relies on the exact analytical solution of the strain-displacement 
differential equations and consequently involve the correct representation of the rigid-body displacements. Three different two-
node curved beam models have been developed (iCB3, iCB4 and iCB5), each with an increasing order of accuracy according to the 
load configuration. One advantage of the present iFEM methodology is that accurate results can be obtained also when less powerful 
inverse elements are used; this is useful for practical applications where few strain sensors are available.  

Numerical examples with different geometry and loading conditions were investigated. The results obtained were compared 
with reference solutions given by simulations performed with direct FEM analysis. Firstly, the superiority of the new formulation 
has been highlighted, by comparing the iCB5 element with the one present in the literature. Furthermore, the performance of the 
three inverse elements have been tested considering the same static scheme with the minimum required number of strain sensors. 
Finally, the robustness of the iCB/iFEM formulation was also verified, introducing errors on the input strain data. A good accuracy 
has been obtained even if the less powerful inverse curved element was adopted and therefore with the least number of strain 
sensors. Future work will concern the study of performance considering experimental tests in order to evaluate the influence of 
real strain sensors noise. 
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Nomenclature 

A 
ai 
 

B(s) 
E 
e 

err. 
 

Cross-section area  
Constants of integration associated with the ith 
rigid-body motion 
Matrix of shape function derivatives 
Young’s modulus [GPa] 
Experimental section strains 
Percentage error introduced in the simulated 
input strains [%] 

R 
Rn 

r,  
s, y, z 

u 
u 
ue 

ui(),vi() 

Radius of curvature [m] 
Radius at the neutral axis fiber 
Polar coordinate system 
Local coordinate reference system 
Tangential displacement [mm] 
Vector of the kinematic variables 
Vector of the nodal DOF 
Numerical formulation of the displacement 
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e(u) 
F 
F 
f 
f 

h, b 
Iz 
K 
 
L 

MPDg 
n 

N(s) 
N, T, M 
p, q, m 

 

Vector of the section strains 
Global vector of the measured strains 
Concentrated force [kN] 
Function associated to the membrane strain 
Function associated to the curvature 

Height and base of the cross-section [m] 
Moment of inertia 
Global matrix dependent from strain sensor 
locations 

Total length of the curved beam 
Mean percentage difference of the g value [%] 
Number of station points 
Matrix of the shape functions 
Normal force, shear force and bending moment 
Distributed load associated to the membrane, 
shear and bending component 

 
us,ur,uz 

 
v 
w 
 

iw  
 

 

0 

s 

 

 
z 
0 
 

field associated with the ith inverse element 
Displacements along the s, y and z axes, 
respectively 
Radial displacement [mm] 
Vector of nodal parameters in terms of 
generalized functions  
Vector of the nodal parameter associated with 
the ith inverse element 
Opening angle [°] 
Tangential strain  
Normal strain in the cross-section 
Poisson’s ratio 
Least-squares functional 
Rotation about the z axis 
Curvature 
 

Appendix 

The development of the iCB models is based on the exact solutions of the strain-displacement differential equations and on the 
assumption of different degrees of interpolation. Consequently, three models have been developed (iCB3, iCB4 and iCB5) having 
nine, ten and twelve nodal parameters, respectively. This section describes the equations and the matrix related to the development 
of the iCB4 and iCB5 elements.  

For iCB4 element, the solution of the differential equations gives the following equations: 

( )
β β β

β β β β β β β
2 2 2 3 2 4

2 2 2 2
1 2 3 3 4 5 6 7iCB4

R R R
u a sin a cos a b 2R b R b b 2R b 3R

2 3 4

      =− + + + − − + − + −        
 

( ) ( ) ( ) ( )β β β β β β β β β2 2 2 2 2 2 2 3 2
1 2 1 2 3 4 5 6 7iCB4v a cos a sin b R b R b R 2R b R b R b R 2R b R 6R= + + + + − + + + − + −  

(A.1) 

where the unknown coefficients can be obtained considering the following DOF of the element: 

[ ] [ ]φ ε χ
T

iCB4 iCB4 iCB4 iCB4 iCB4w u v=  (A.2) 

Assuming the kinematics equations of the curved beam, the vector [w] can be explained in the matrix form: 

[ ] [ ][ ]βw A=  (A.3) 

where: 

[ ]

2 2 2 3 2 4
2 2 2 2

2 2 2 2 2 2 2 3 2

2 3 4

2

2 3

sin cos 1 0 0 2 2 3
2 3 4

cos sin 0 2 2 6

1
0 0 0 1 0 6

2 3 4
0 0 0 1 0 0 0 0

0 0 0 0 0 0 1

R R R
R R R R

R R R R R R R R R R

R R R
R R R

R

 
 − − − − −
 
 
 − − −
 
 =  − + − 
 
 
 
 
  

β β β
β β β β β β

β β β β β β β β

β β β β
β

β β

β β β

 (A.4) 

[ ] [ ]
T

1 2 3 1 2 3 4 5 6 7A a a a b b b b b b b=  (A.5) 

By imposing the continuity of each DOF, the matrix that allows to define the unknown coefficients results:  

2 2

2 2 2 3 2 4
2 2 2 2

2 2 2 2 2 2 2 3 2

2 3 4

2

0 1 1 0 0 0 0 0 0 0

1 0 0 0 2 0 2 0

1
0 0 0 1 0 0 0 6

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

sin cos 1 0 0 2 2 3
2 3 4

cos sin 0 2 2 6

1
0 0 0 1 0 6

2 3 4
0 0 0 1 0 0 0 0

0 0 0 0 0 0 1

R R R R

R R
R

R R R
R R R R

R R R R R R R R R R

R R R
R R R

R

− −

− −

  = −   − − − −

− − −

− + −

β α α α
α α α α α α

α α α α α α α α

α α α
α

α α

α 2 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  α α

 (A.6) 

The solution of the system provides the vector [A] which allows to express the functions [w] in terms of nodal parameters. 
Considering the same procedure also for the iCB5 element, the displacements vary over the element length as: 
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( )
β β β β

β β β β β β β β β β
2 2 2 3 2 4 2 5

2 2 2 2 2 2 3 2
1 2 3 3 4 5 6 7 8 9iCB5

R R R R
u a sin a cos a b 2R b 3R b R b b 2R b 3R b 4R 24R

2 3 4 5

           =− + + + + − − + − + − + − −               
 (A.7) 

( ) ( ) ( ) ( ) ( ) ( )β β β β β β β β β β β β β2 3 2 2 2 2 2 2 3 2 2 2 2 2 4
1 2 1 2 3 4 5 6 7 8 9iCB5v  a cos c sin b R b R b R 2R b R 6R b R b R b R 2R b R 6R b 24R   12R R= + + + + − + − + + + − + − + − +  (A.8) 

The consequent variables considered to develop the shape functions that approximate both membrane and bending 
deformations of the iCB5 element are: 

[ ] [ ]φ ε χ χ
T

iCB5 iCB5 iCB5 iCB5 iCB5 iCB5w u v '=  (A.9) 

which are defined in matrix notation by: 

[ ]

2 2 2 3 2 4 2 5
2 2 2 2 2 2 3 2

2 3 2 2 2 2 2 2 3 2 2 2 2 2 4

2 3 4 5

2 3

2 3 4

sin cos 1 0 0 2 3 2 3 4 24
2 3 4 5

cos sin 0 2 6 2 6 24 12

1
0 0 0 1 0 6 6

2 3 4 5
0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0

R R R R
R R R R R R R

R R R R R R R R R R R R R R R

R R R R
R R R

R

− − − − − − −

− − − − − +

− − + −=

β β β β
β β β β β β β β β

β β β β β β β β β β β β

β β β β
ββ

β β β

β β β β
2 30 0 1 2 3 4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  β β β

 

[ ] [ ]
T

1 2 3 1 2 3 4 5 6 7 8 9A a a a b b b b b b b b b=  

(A.10) 

The matrix referred to the imposition of the nodal conditions is:  

2 2 2

2 2 2 3 2 4 2 5
2 2 2 2 2 2 3 2

2 3 2 2 2 2 2

0 1 1 0 0 0 0 0 0 0 0 0

1 0 0 0 2 0 0 2 0 24

1
0 0 0 1 0 6 0 0 6 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

sin cos 1 0 0 2 3 2 3 4 24
2 3 4 5

cos sin 0 2 6 2

R R R R R

R R
R

R R R R
R R R R R R R

R R R R R R R R R R R

− −

− − −

  =   − − − − − − −

− − −

β α α α α
α α α α α α α α α

α α α α α α α α 2 3 2 2 2 2 2 4

2 3 4 5

2 3

2 3 4

2 3

6 24 12

1
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2 3 4 5
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0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 2 3 4

R R R R

R R R R
R R R

R

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− − + 
 
 
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α

α α α

α α α α

α α α

 (A.11) 

References 

[1] Tessler, A., Spangler, J.L., A Variational Principle for Reconstruction of Elastic Deformations in Shear Deformable Plates and Shells, NASA/TM-2003-
212445, 2003. 
[2] Tessler, A., Spangler, J.L., A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and 
shells, Computer Methods in Applied Mechanics and Engineering, 194(2-5), 2005, 327-339. 
[3] Gherlone, M., Beam inverse finite element formulation, LAQ Rep. Politecnico di Torino, 2008. 
[4] Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., Tessler, A., Dynamic shape reconstruction of three-dimensional frame structures using the 
inverse finite element method, Proceedings of 3rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 
Corfù, Greece, 2011. 
[5] Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., Tessler, A., Shape Sensing of 3D frame structures using an inverse Finite Element Method, 
International Journal of Solids and Structures, 49, 2012, 3100-3112. 
[6] Cerracchio, P., Gherlone, M., Di Sciuva, M., Tessler, A., A novel approach for displacement and stress monitoring of sandwich structures based on 
the inverse Finite Element Method, Composite Structures, 127, 2015, 69-76. 
[7] Kefal, A., Oterkus, E., Tessler, A., Spangler, J.L., A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural 
health monitoring, Engineering Science and Technology, an International Journal, 19, 2016, 1299-1313. 
[8] Kefal, A., Tessler, A., Oterkus, E., An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite 
and sandwich structures, Composite Structures, 179, 2017, 514-540.  
[9] Tessler, A., Roy, R., Esposito, E., Surace, C., Gherlone, M., Shape Sensing of Plate and Shell Structures Undergoing Large Displacements Using the 
Inverse Finite Element Method, Shock and Vibration, 2018, 2018, 8076085.  
[10] Kefal, A., An efficient curved inverse-shell element for shape sensing and structural health monitoring of cylindrical marine structures, Ocean 
Engineering, 188, 2019, 106262.  
[11] Savino, P., Gherlone, M., Tondolo, F., Shape sensing with inverse finite element method for slender structures, Structural Engineering & Mechanics, 
72(2), 2019, 217-227. 
[12] Kefal, A., Tabrizi, I.E., Yildiz, M., Tessler, A., A smoothed iFEM approach for efficient shape-sensing applications: Numerical and experimental 
validation on composite structures, Mechanical Systems and Signal Processing, 152, 2021, 107486. 
[13] Kefal, A., Oterkus, E., Isogeometric iFEM Analysis of Thin Shell Structures, Sensors, 20(9), 2020, 2685. 
[14] Savino, P., Tondolo, F., Gherlone, M., Tessler, A., Application of Inverse Finite Element Method to Shape Sensing of Curved Beams, Sensors, 20(24), 
2020, 7012. 
[15] Colombo, L., Sbarufatti, C., Giglio, M., Definition of a load adaptive baseline by inverse finite element method for structural damage identification, 
Mechanical Systems and Signal Processing, 120, 2019, 584-607. 
[16] Colombo, L., Oboe, D., Sbarufatti, C., Cadini, F., Russo, S., Giglio, M., Shape sensing and damage identification with iFEM on a composite structure 
subjected to impact damage and non-trivial boundary conditions, Mechanical Systems and Signal Processing, 148, 2021, 107163. 



Two-node curved inverse finite element formulations based on exact strain-displacement solution 273 
 

Journal of Applied and Computational Mechanics, Vol. 9, No. 1, (2023), 259-273 

[17] Roy, R., Gherlone, M., Surace, C., Damage Localisation in Thin Plates Using the Inverse Finite Element Method, Proceedings of the 13th International 
Conference on Damage Assessment of Structures. Lecture Notes in Mechanical Engineering, Springer, Singapore, 2020. 
[18] Li, M., Kefal, A., Cerik, B.C., Oterkus, E., Dent damage identification in stiffened cylindrical structures using inverse Finite Element Method, Ocean 
Engineering, 198, 2020, 106944. 
[19] Oboe, D., Colombo, L., Sbarufatti, C., Giglio, M., Comparison of strain pre-extrapolation techniques for shape and strain sensing by iFEM of a 
composite plate subjected to compression buckling, Composite Structures, 262, 2021, 113587. 
[20] Quach, C.C., Vazquez, S.L., Tessler, A., Moore, J.P., Cooper, E.G., Structural Anomaly Detection Using Fiber Optic Sensors and Inverse Finite Element 
Method, AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005. 
[21] Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., Tessler, A., Beam shape sensing using inverse finite element method: theory and 
experimental validation, Proceeding of 8th International Workshop on Structural Health Monitoring, Stanford, California, 2011. 
[22] Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., Tessler, A., An inverse finite element method for beam shape sensing: theoretical framework 
and experimental validation, Smart Material and Structures, 23(4), 2014, 045027. 
[23] Kefal, A., Oterkus, E., Displacement and stress monitoring of a chemical tanker based on inverse finite element method, Ocean Engineering, 112, 
2016, 33-46.  
[24] Kefal, A., Oterkus, E., Displacement and stress monitoring of a Panamax containership using inverse finite element method, Ocean Engineering, 119, 
2016, 16-29.  
[25] Papa, U., Russo S., Lamboglia, A., Del Core, G., Iannuzzo, G., Health structure monitoring for the design of an innovative UAS fixed wing through 
inverse finite element method (iFEM), Aerospace Science and Technology, 69, 2017, 439-448. 
[26] Kefal, A., Yildiz, M., Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel 
Using Inverse Finite Element Method, Sensors, 17(12), 2017, 2775. 
[27] Zhao, Y., Bao, H., Duan, X., Fang, H., The Application Research of Inverse Finite Element Method for Frame Deformation Estimation, International 
Journal of Aerospace Engineering, 2017, 2017, 1326309. 
[28] Liu, M., Zhang, X., Song, H., Zhou, S., Zhou, Z., Zhou, W., Inverse Finite Element Method for Reconstruction of Deformation in the Gantry Structure 
of Heavy-Duty Machine Tool Using FBG Sensors, Sensors, 18(7), 2018, 2173. 
[29] Liu, M., Zhang, X., Song, H., Wang, J., Zhou, S., Reconstruction algorithm for obtaining the bending deformation of the base of heavy-duty machine 
tool using inverse finite element method, Metrology and Measurement System, 25(4), 2018, 727-741.  
[30] Liu, M., Zhou, F., Song, H., Yang, X., Wang, J., Deformation Reconstruction for a Heavy-Duty Machine Column Through the Inverse Finite Element 
Method, IEEE Sensors Journal, 20(16), 2020, 9218-9225. 
[31] Zhao, Y., Du, J., Bao, H., Xu, Q., Optimal Sensor Placement Based on Eigenvalues Analysis for Sensing Deformation of Wing Frame Using iFEM, 
Sensors, 18(8), 2018, 2424. 
[32] Zhao, Y., Du, J., Bao, H., Xu, Q., Optimal Sensor Placement for Inverse Finite Element Reconstruction of Three-Dimensional Frame Deformation, 
International Journal of Aerospace Engineering, 2018, 2018, 6121293.  
[33] Kobayashi, M., Murayama, H., Shape sensing for pipe structures by inverse finite element method based on distributed fiber-optic sensors, 26th 
International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 2018. 
[34] Kefal, A., Mayang, J.B., Oterkus, E., Yildiz, M., Three dimensional shape and stress monitoring of bulk carriers based on iFEM methodology, Ocean 
Engineering, 147, 2018, 256-267. 
[35] Niu, S., Li, K., Liu, J., Bao, H., A Refined Shape Sensing Method for Skin Antenna Structure Based on Inverse Finite Element Method, Applied Sciences, 
10(21), 2020, 7620. 
[36] Li, M., Kefal, A., Oterkus, E., Oterkus, S., Structural health monitoring of an offshore wind turbine tower using iFEM methodology, Ocean Engineering, 
204. 2020, 107291. 
[37] Dawe, D.J., Rigid-body motions and strain-displacement equations of curved shell finite elements, International Journal of Mechanical Sciences, 14(9), 
1972, 569-578. 
[38] Dawe, D.J., Curved finite elements for the analysis of shallow and deep arches, Computers & Structures, 4(3), 1974, 559-580. 
[39] FEA Ltd, LUSAS Finite Element System V15.1: User’s Manual, FEA Ltd, UK, 1995. 
[40] Qatu, M.S., Theories and analyses of thin and moderately thick laminated composite curved beams, International Journal of Solids and Structures, 
30(20), 1993, 2743-2756. 

ORCID iD 

Pierclaudio Savino  https://orcid.org/0000-0001-8945-4030 

Francesco Tondolo  https://orcid.org/0000-0003-0258-3054 
 

© 2022 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open access article distributed under 
the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 
license) (http://creativecommons.org/licenses/by-nc/4.0/). 

 

How to cite this article: Savino P., Tondolo F. Two-node Curved Inverse Finite Element Formulations based on Exact Strain-
displacement Solution, J. Appl. Comput. Mech., 9(1), 2023, 259–273. https://doi.org/10.22055/jacm.2022.41150.3708 

 
Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.   
 


