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Abstract—Phonocardiography (PCG) has proved a valuable 

tool over the years to monitor the status of at-risk patients for 

some cardiovascular diseases. Its multi-source version, 

consisting of the simultaneous recording of multiple acoustic 

signals from different points of the patient’s chest, is currently 

under research as a solution to develop wearable devices based 

on PCG and bring PCG to the patient’s domicile. When a high 

number of PCG signals are available, to define the most suitable 

auscultation area, depending on the clinical question, clustering 

comes into the picture. In this work, we applied agglomerative 

hierarchical clustering and k-means to multi-source PCG 

recordings. A similarity metrics based on the correlation of the 

signals was used to compare the signals based on their 

morphological characteristics. The two clustering methods 

resulted in a Rand Index averagely higher than 0.84, showing a 

high level of agreement and validating the usage of clustering 

for the application of interest. Hierarchical clustering allowed 

for obtaining a better trade-off between the intra-cluster 

variability and the inter-cluster distance. Adding to its 

deterministic nature, it should be considered as preferrable with 

respect to k-means. This work moves one step further to the 

development a reliable wearable device based on digital 

auscultation for the monitoring of the patient at its domicile.  

Keywords—heart sounds, multi-source phonocardiography, 

hierarchical clustering, k-means 

I. INTRODUCTION 

The constant ageing of the global population and the 
consequent rise of the prevalence of age-related pathologies 
has been driving a change in the healthcare paradigm in the 
latest years. The focus of medicine is moving from treatment 
to prevention and the center of gravity of the management of 
at-risk patients is shifted from the hospital to the patient’s 
domicile [1], [2].  

Technology plays a fundamental role in making this 
possible. The availability of sensors and wearable systems 
which can be used by the patient himself (or by a caregiver) 
enables interesting novel applications based on the remote 
monitoring of the patient’s vital signs. This dramatically 
increases the chances for reaching the widest possible 
patients’ population, even though the aspects of reliability and 
accuracy of the wearable systems need to be accurately faced 
to provide a real breakthrough in the clinical practice. What 
stated above is particularly true when considering the 
management of at-risk patients for cardiovascular diseases 

(CVDs), which are currently the number one cause of death 
worldwide [3].  

In this context, phonocardiography (PCG, i.e., the digital 
recording of the heart sounds) is object of increasing research 
and has often proved a valuable tool to diagnose and monitor 
the health status of the heart [4], [5]. A main technical issue 
limiting its applicability in a domiciliary setting resides in the 
positioning of the electronic stethoscope. In fact, the quality 
of the signal, as well as the features extracted from it, strongly 
varies depending on the positioning of the microphone sensor 
over the chest, and finding a suitable positioning is not a trivial 
issue [6]–[8].  

Multi-source phonocardiography may be a solution to the 
problem. On one side, the availability of simultaneous 
recordings of multiple PCG signals from different 
auscultation points is expected to strongly decrease the 
importance of the positioning of the sensors, by shifting the 
problem of the choice of the best auscultation point from the 
recording phase to the signal processing phase. On the other 
side, the information that signal conveys is different 
depending on the auscultation area: even in traditional 
auscultation, clinicians are trained to change the positioning 
of the stethoscope depending on the clinical question.  

Some previous research works exist in the literature 
confirming the potential of multi-source PCG in improving 
the performances of their single-channel counterpart. In 
particular, features extracted from multi-source recordings 
were employed for the estimation of the Left Ventricular 
Ejection Fraction [9], for the estimation of the Pre-Ejection 
Period [10], for the classification of valvular disorders [11], 
[12] and for the classification of Coronary Artery Diseases 
[13]–[15]. 

When a high number of simultaneous recordings are 
available, typically only a subset of signals is really needed for 
the subsequent processing. For example, if the status of the 
mitral valve is under analysis, then the signals recorded over 
the heart apex are of particular interest, as traditional 
auscultation taught us. Nevertheless, detecting the correct 
subset of microphones depending on the application can raise 
some difficulties when the recording is performed by a naïve 
user, since the geometry of the positioning of the microphones 
over the chest is not necessarily the same across different 
recordings.  



Clustering aims to divide the elements of a dataset into 
groups (clusters) based on their similarity. The latter is 
measured through an appropriate metrics, which is defined 
depending on the characteristics of the dataset and on the goal 
of the application of clustering [16], [17]. In the literature, 
clustering is typically used on unlabeled datasets, for the 
scopes of Knowledge Discovery in Data, Identification of 
Frequent Patterns and Data Mining [18], [19]. In the PCG 
context, clustering techniques could allow us to divide PCG 
signals into consistent subsets according on their shape 
similarity. Afterwards, the most suitable subset of signals can 
be chosen depending on the application.  

The goal of this work is to compare and evaluate 
hierarchical and partitional clustering methodologies to divide 
simultaneously recorded PCG signals into morphologically 
homogenous subsets. In particular, agglomerative hierarchical 
clustering and k-means were taken into account. 

II. MATERIALS AND METHODS 

A. Signals recording and processing 

48 PCG signals were simultaneously recorded by means 
of a custom multi-sensor array. The array mounts 48 
condenser microphones, for sensing the acoustic waves on the 
chest’s wall, along with 3 electrodes for the simultaneous 
acquisition of an electrocardiogram (ECG). The ECG signal 
is used as reference for the robust segmentation of the PCG 
signals into heartbeats. 

Fig. 1 shows the geometrical distribution of the sensors in 
the array. The microphones have a 4 mm diameter and are 
located over the nodes of a virtual grid, with a distance of 16 
mm between closest neighbors. In this way, a properly high 
spatial resolution is reached (48 microphones located over an 
area of 172 cm2), which makes an approximate positioning 

over the chest acceptable. The electrodes create a non-
standard lead with the heart roughly at its center. This is 
possible because the information to be extracted from the ECG 
signal is the time of occurrence of the R-wave, which does not 
depend on the lead (contrarily to the signal’s morphological 
features). 

The device should be positioned over the left hemithorax 
of the patient, as shown by Fig. 1. The positioning is not 
required to be precise and can be successfully performed even 
by a naïve user (e.g., the patient himself or a caregiver). The 
array is flexible, so that it can best adapt to the morphology of 
the chest of the subject and is attached to the chest by means 
of an elastic band. 

Both ECG and PCG signals are pre-amplified on board, 
simultaneously sampled at 1 kHz and multiplexed, to be A/D 
converted and transferred to a PC by a commercial I/O device 
(NI USB 6210 by National Instruments®). 

The signal processing is performed on a PC using Matlab® 

routines. First, a pre-processing phase is carried out to obtain 
signals of reliable quality. The ECG signal is bandpass filtered 
between 10 Hz and 35 Hz. In this way, the frequency content 
of QRS complex is enhanced [20]. Afterwards, the R-wave 
peaks are identified through the signal using the Pan-
Tompkins algorithm [20]. The PCG signals are bandpass 
filtered between 20 Hz and 100 Hz, which corresponds to the 
typical bandwidth of the two main heart sounds, generated by 
the closing of the cardiac valves [21]. The signals are 
segmented into heartbeats using the R-wave peak as reference, 
as shown by Fig. 2. In particular, the heartbeat i is defined as 
signal’s samples within the interval ��� − 100; ��	
 − 100�. 

Lastly, the quality of each segment is assessed, and 
segments considered poor-quality are discarded. The quality 
assessment was performed on the basis of the signal’s SNR, 
defined as: 

 �� = 20 log
�
��

� �� , (1) 

where �� is the peak-to-peak amplitude of the heart sound 
under analysis and 4 ��  is the amplitude of the 95% noise 
band, observed within the 70% and the 85% of the cardiac 
cycle, when no heart sound is expected to occur. Only 
segments with an SNR higher than 10 dB were used for 
clustering, which is considered to be sufficient for most 
applications [22]. 

B. Clustering and similarity measure 

In our case, for each heartbeat, the elements to be divided 
into clusters are the signal segments recorded by the 48 
microphones of the array.  

 

Fig. 1. Picture of the described wearable multi-sensors array device 

used for recording the signals (A) and distribution of the microphones 
and electrodes over the chest (B). 

 

Fig. 2. Example of the segmentation of the heartbeats on the PCG 

signals using the ECG signal as reference. 



To this set of signals, we applied two clustering methods: 
the agglomerative hierarchical clustering and the k-means. 
Both methods are iterative, but they differ on the way clusters 
are initialized and built up. However, their final aim is to 
obtain groups of elements with low intra-cluster variability, 
that is homogeneous clusters, and high inter-cluster distance, 
meaning that different clusters do not contain similar 
elements.  

Since the clusters are expected to contain elements with a 
similar morphology, we used a similarity measure based on 
the correlation between signal segments from different 
channels. If �� and �� are two signal segments from different 

microphones, then the distance between �� and �� is defined 

as [23]: 

  �,� = 1 − "#$%#̅$'(#)%#̅)*+

,"#$%#̅$'"#$%#̅$'+-(#)%#̅)*(#)%#̅)*+ . (2) 

In the following paragraphs details are provided 
concerning each of the two methods and their implementation 
for the scopes of this work.  

C. Agglomerative Hierarchical Clustering 

In agglomerative hierarchical clustering, each element of 
the dataset constitutes a separate cluster in the initial phase. 
Afterwards, iteratively, the two closest clusters according to 
the similarity metrics are aggregated together, until all the 
elements belong to the same cluster. In this way, a hierarchical 
tree called dendrogram is built [24]. The final clusters are 
obtained by cutting the tree at a certain level: the most 
appropriate cut is decided depending on the scope of the 
application of the clustering.  

A main advantage of hierarchical clustering lies in the 
need for few initial parameters and a-priori knowledge. In 
particular, the algorithm requires to set the similarity metrics, 
the method to merge the clusters, also called linkage method, 
and the method to establish the cutting level. Another main 
advantage is that the method is completely deterministic [18], 
[24].  

In this work, we used as metrics the similarity measure 
defined in (2) and as linkage method the “complete linkage”, 

which uses the farthest distance among the elements in the 
different clusters as criterion for selecting the two clusters to 
be merged. This method allows to obtain more compact 
groups and to highlight outlier points [25]. The cutting level 
was automatically defined as the iteration where the two 
farthest clusters are merged.  

D. K-means 

K-means is one of the best known partitional clustering 
algorithms. First, k clusters centroids are initialized by 
arbitrarily assigning random elements to them. Then, each 
element of the dataset is assigned to the cluster corresponding 
to the closest centroid according to the similarity metrics. The 
new centroids of the clusters are computed again, usually as 
mean of the elements inside the cluster, and the elements are 
reassigned to the closest cluster. The process continues 
iteratively until the assignment of all the elements to clusters 
ceases changing or if after given number of iterations [18]. 

It should be highlighted that the k-means algorithm is 
typically repeated more than once to obtain robust results due 
to the stochastic nature of the initial assignment of the 
elements to clusters [18]. Moreover, k-means requires the 
number of clusters k to be defined a priori, which is not always 
easy to define, depending on the clinical problem [26]. 

In this work, we tested k values between 5 and 10 and run 
the k-means algorithm 10 times for each value of k. The final 
clustering was chosen as the one resulting in the highest 
minimum inter-cluster distance.  

E. Evaluation of the results of clustering 

We tested both hierarchical agglomerative clustering and 
k-means on a dataset of 721 one-heartbeat-long recordings, 
each involving 48 PCG signals recorded simultaneously from 
the chest of the subject. The heartbeats were extracted from 6 
recordings one to five minutes long belonging to two healthy 
volunteers. The recordings were performed in a laboratory 
setting, with the subjects in a supine position and the multi-
sensor array positioned on the left hemithorax by the subjects 
themselves. The algorithms were applied separately beat by 
beat. 

We performed two kinds of analysis on the results.  

Fig. 3. Clustering obtained through hierarchical clustering (dendrogram) and partitional clustering (k-means, 10 repetitions) on a sample heartbeat. 



In the first place, we evaluated the agreement among the 
clusters resulting from the two methods. To do so, we 
constructed for each heartbeat a contingency matrix, i.e. a 
matrix where each cell contains the number of elements 
clustered in the cluster p by the hierarchical approach and in 
cluster q by k-means, where (p,q) are the coordinates of the 
cell. Then, the Rand Index is computed, according to the 
formula [18]: 

 �. =  /	0
12

34  , (3) 

where a is the number of pairs of elements that are 
clustered together from both approaches, b is the number of 
pairs of elements that are clustered apart from both approaches 
and n is the total number of elements in the dataset. The RI 
index ranges from 0 to 1 and high values correspond to high 
agreement between the two approaches. 

To best evaluate the agreement among two clustering 
methods, we required the number of clusters to be equal. 
Therefore, we repeated the analysis twice: (1) by choosing the 
number of clusters through the dendrogram and running the k-
means with the same number of clustering and (2) by choosing 
the number of clusters through k-means and applying the 
corresponding cutting level on the dendrogram. 

In the second place, we evaluated the actual results of each 
clustering approach on their own optimal number of clusters. 
The evaluation takes in account three factors: 

• The intra-cluster variability (varIntra), defined as the 
average distance between two elements belonging to 
the same cluster. We consider the highest value over 
the clusters, i.e. the worst case. 

• The inter-cluster distance (distInter), defined as the 
minimum of the distances between two centroids of 
two different clusters. A centroid is a prototype of the 
cluster and is computed as the median of its elements, 
in this case. 

• The Silhouette Coefficient, which simultaneously 
consider the intra-cluster variability and the inter-
cluster distance. It is based on a Silhouette value 
which is defined for each element of the dataset as 
[27]: 

 5"6' =  7�289:
;

�<8
∑ >"?,7'@∈<8 % ;

�<:B; ∑ >"?,7'@∈<8,@9C
7/# " ;

�<:B; ∑ >"?,7'@∈<8,@9C ,7�289:
;

�<8
∑ >"?,7'@∈<8 ' (4) 

where the first term in the numerator is the distance 
from the closest element not belonging to the same 
cluster and the second term in the numerator is 
average distance from the elements of the same 
cluster. The Silhouette Coefficient is the average of 
the Silhouette values of all the elements of the dataset. 
High values of the Silhouette Coefficient are found 
for clustering where both the intra-cluster variability 
is low and the inter-cluster distance is high, i.e. for 
clustering which allows obtaining a good tradeoff 
between the two parameters. 

III. RESULTS AND DISCUSSION 

In this section the main results of the application of both 
hierarchical agglomerative clustering and k-means to the PCG 

dataset are presented. For the sake of brevity, hierarchical 
agglomerative clustering will be referred to as dendrogram in 
the following. 

A. Agreement between hierarchical and partitional 

clustering 

For a visual comparison of the results of clustering, Fig. 3 
presents an example on a random heartbeat, comparing the 
clustering obtained through the dendrogram and by k-means 
with an equal number of clusters over 10 repetitions. The 
blank circles represent microphones that recorded signals with 
a SNR lower than 10 dB.  

It can be observed that clustering performed through both 
approaches resulted in spatially coherent groups of 
microphones. In other words, the signals belonging to the 
same cluster were typically recorded by neighboring 
microphones. This can be seen as a confirmation of the 
significancy of the obtained results since no a-priori 
knowledge about the spatial relationships among the signals 
was used for defining the similarity metrics. It can also be 
observed that there is a certain degree of variability of 
clustering among different repetitions of k-means. This is due 
to the stochastic nature of the k-means algorithm. In this 
example, the second repetition was selected as the final k-
means clustering because it has the highest inter-cluster 
distance. 

The contingency matrix in Fig. 4 summarizes the information 
about the agreement of the two clustering. Because of the 
contingency matrix, the Rand Index is computed twice for 
each heartbeat, choosing the number of clusters using the 
dendrogram and the k-means, respectively. Fig.5 shows the 
two values over the heartbeats. The blue solid line represents 
the value when the number of clusters is selected via 
dendrogram, whereas the red dashed line represents the value 
when the number of clusters is selected via k-means.  

The average value of the Rand Index was found as high as 
0.88 when the number of clusters is selected via the 

 

Fig. 4. Contingency matrix and Rand Index for summarizing the 

agreement of the dendrogram and k-means clustering on the sample 
heartbeat. 



dendrogram (stdev = 0.05) and 0.84 when the number of 
clusters is selected via k-means (stdev = 0.06). The value is 
higher than 0.7 for all heartbeats in both cases, which we can 
consider as a good agreement. This suggests that, in the 
overall, clustering is an appropriate technique to divide the 
simultaneously recorded PCG signals into significant groups 
based on their morphology.  

It should be highlighted that the optimal number of 
clusters selected by either dendrogram or k-means is equal 
only in 26% of the heartbeats. In the vast majority of cases 
(70%), dendrogram selects a higher number of clusters. 
Nevertheless, the agreement between the two approaches is 
statistically significantly higher when the cut is selected via 
dendrogram (p < 0.001 using paired Student t test). This 
suggests that a slightly higher number of clusters is a better 
choice in this context. 

B. Comparison of the results of each clustering approach 

The results of clustering using dendrogram with its 
optimal number of clusters and using k-means with its optimal 
number of clusters are compared in terms of intra-cluster 
variability, inter-cluster distance and Silhouette Coefficient. 
The distribution of the three parameters over the heartbeats is 
presented in Fig. 6, along with the corresponding boxplots.  

When applying paired Student t-test with a significance 
level α = 0.05, all the three comparisons are found statistically 
different (p < 0.001).  

From the observation of the plots, it can be derived that the 
inter-cluster distance obtained through k-means is higher than 
the one obtained using the dendrogram. Nevertheless, also the 
intra-cluster variability obtained through k-means is higher. 
This suggests that k-means favors the maximization of the 
inter-cluster distance at the expense of the minimization of the 
intra-cluster variability.  

On the other side, dendrogram allows for obtaining a better 
tradeoff between the minimization of intra-cluster variability 
and the maximization of the inter-cluster distance. This is 
confirmed by the Silhouette Coefficient, which is higher in 
dendrogram than in k-means.  

The presented results show that hierarchical and 
partitional clustering techniques allow for obtaining clustering 
with a high agreement. Therefore, both methods should be 
considered reliable to divide the simultaneously recorded 
PCG signals from multi-source recordings into consistent 
groups. When it comes to choose the most suitable method, 
results show that hierarchical clustering presents some 
advantages with respect to k-means. In particular, it allows 
obtaining a better tradeoff between having homogeneous 
groups and having groups the farthest possible from each 
other. Together with the appealing deterministic nature of 
hierarchical clustering and the non-necessity to fix the number 
of clusters a priori, the choice for the latter in the context of 
multi-source phonocardiography looks natural and supported 
by data. 

IV. CONCLUSIONS 

The application of multi-source phonocardiography to the 
remote monitoring of the cardiological health status of at-risk 
patients is expected to grow in importance in the future. 
Nevertheless, its clinical impact will be limited as long as a 
patient himself or a caregiver could effectively perform the 
monitoring.  

The possibility of dividing the high number of signals 
recorded in a multi-source setting in spatially consistent 
subsets in the processing phase overcomes the need for a 
precise positioning over the chest and allows to identify the 
auscultation area of interest a posteriori. In this work we 
analyzed the validity of clustering to perform such a task and 
we compared hierarchical and partitional clustering methods. 
Our results show that both hierarchical and partitional 

 

Fig. 6. Value of the inter-cluster distance, the intra-cluster variability and the Silhouette Coefficient obtained through the two clustering approaches over 

the beats of the sample population. It must be noted that the inter-cluster distance must be high, while intra-cluster variability must be low. 

 

Fig. 5. Rand Index over the heartbeats of the sample population 

computed when the number of cluster is decided either by th 

dendrogram (blue solid line) or the k-means algorithm (red dashed line). 



clustering allow for obtaining spatially consistent groups 
using a similarity metrics based on the signal’s morphology. 
Moreover, the two approaches were found to have a strong 
agreement, which validates the applicability of the clustering 
methodology to a multi-source dataset with reliable outcomes.  

When hierarchical and partitional clustering were 
compared, hierarchical clustering was found to produce a 
better tradeoff between having a good homogeneity within the 
clusters and a high distance among different clusters. Adding 
to its deterministic nature and the non-necessity to define the 
number of clusters a priori, hierarchical clustering can be 
regarded as a reliable method to divide multiple 
simultaneously recorded PCG signals into homogenous 
groups. This could help in the future in identifying the proper 
auscultation area depending on the clinical question without 
the need for using anatomical landmarks for the positioning of 
the sensors.  
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