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Abstract—Neural Architecture Search (NAS) is increasingly
popular to automatically explore the accuracy versus computa-
tional complexity trade-off of Deep Learning (DL) architectures.
When targeting tiny edge devices, the main challenge for DL
deployment is matching the tight memory constraints, hence most
NAS algorithms consider model size as the complexity metric.
Other methods reduce the energy or latency of DL models by
trading off accuracy and number of inference operations. Energy
and memory are rarely considered simultaneously, in particular
by low-search-cost Differentiable NAS (DNAS) solutions.

We overcome this limitation proposing the first DNAS that
directly addresses the most realistic scenario from a designer’s
perspective: the co-optimization of accuracy and energy (or
latency) under a memory constraint, determined by the target HW.
We do so by combining two complexity-dependent loss functions
during training, with independent strength. Testing on three edge-
relevant tasks from the MLPerf Tiny benchmark suite, we obtain
rich Pareto sets of architectures in the energy vs. accuracy space,
with memory footprints constraints spanning from 75% to 6.25%
of the baseline networks. When deployed on a commercial edge
device, the STM NUCLEO-H743ZI2, our networks span a range
of 2.18x in energy consumption and 4.04% in accuracy for the
same memory constraint, and reduce energy by up to 2.2× with
negligible accuracy drop with respect to the baseline.

Index Terms—Deep Learning, TinyML, Energy-efficiency, NAS

I. INTRODUCTION

Deep Learning (DL) is at the core of many modern
computing applications, such as computer vision [1], sound
classification [2], bio-signal analysis [3], predictive mainte-
nance [4], etc. While DL models have been traditionally
deployed on powerful cloud-based servers, evidence exists
about the potential advantages of an implementation at-the-
edge [5]. Edge computing could improve privacy and reduce
the energy consumption at the distributed system level, by
replacing the energy hungry wireless transmission of raw data
with more efficient local computations and transmission of
aggregated outputs [6].

This has spurred strong academic and industral interest for
so-called TinyML, i.e., the study of techniques and tools to
enable the deployment of Machine Learning (ML) and DL
models on low power, battery-operated edge devices. In this
context, the key hard-requirement to be satisfied is on the
memory footprint of DL models, which should match the
severe constraints of edge devices, typically based on Micro-
controllers (MCUs) with few MBs of Flash and RAM [7].
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Fig. 1. Overview of the proposed approach.

At the same time, energy consumption should be minimized,
typically by reducing the total number of operations (OPs) per
prediction, in order to maximize the system’s lifetime.

Achieving these goals through a manual tuning of a Deep
Neural Network’s (DNN) hyper-parameters, while maintain-
ing a sufficient prediction accuracy, is a tedious and time-
consuming process. Therefore, Neural Architecture Search
(NAS) tools have emerged as new design space exploration
and automation solutions, able to find DNN hyper-parameters
that co-optimize prediction performance and a computational
cost metric, such as the number of parameters (i.e., Size), the
number of OPs per inference, or the latency/energy consump-
tion [8], [9]. However, classic NASes, e.g., based on reinforce-
ment learning, are extremely time-consuming (1000s of GPU
hours), thus being inaccessible to most edge systems designers,
while light-weight Differentiable NAS (DNAS) solutions are
limited in the ways they can express optimization objectives
and constraints. Indeed, to our knowledge, all existing DNAS
methods optimize either the model size or the number of OPs
separately. In contrast, the relevant problem from a designer’s
perspective is the minimization of energy (OPs) under a given
memory constraint.

In this work, we address this issue proposing a novel prob-
lem formulation (shown in Fig. 1) that can be applied to any
DNAS, and allows to find a set of Pareto-optimal architectures
in the accuracy vs OPs space, under a fixed model size
constraint. We validate our formulation in combination with
a simple DNAS, that performs a fine-grained search over the
number of channels in Convolutional Neural Network (CNNs)
layers. With experiments on three different benchmarks from
the TinyMLPerf suite [10] we show that, starting from net-
works already optimized for edge deployment, our method can
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further improve and enrich the Pareto frontier. Deploying the
automatically discovered architectures on a real edge device,
the STM NUCLEO-H743ZI2, we show that we can reduce
the energy consumption up to 2.2× with negligible accuracy
drop, while also cutting memory occupation, compared to
the baseline hand-tuned CNNs. Our code is open-sourced at:
https://not-yet-available.

II. BACKGROUND AND RELATED WORKS

Initial attempts to enable inference at-the-edge were based
on hand-crafting efficient DNN architectures. Notable exam-
ples include SqueezeNet [11], MobileNets [12], Efficient-
Net [13], etc. Such models, originally proposed for mobile
deployment, are the result of a long and time-consuming
manual tuning of hyper-parameters based on heuristics and
human ingenuity. While very efficient, hand-tuned DNNs
are never a one-size-fits-all: they represent a single point in
the accuracy versus complexity space, which cannot fit all
deployment scenarios. For instance, they cannot be directly
applied in TinyML use cases, where hardware has much tighter
constraints with respect to mobile systems. Accordingly, in
order to prevent designers from having to repeat such hy-
perparameters’ hand-tuning from scratch for each prediction
task and deployment target, research has recently focused on
automated DNN optimization solutions referred to as “NAS”.

Early NAS algorithms explore the search space by means
of Evolutionary Algorithms (EA) [14] or training a Reinforce-
ment Learning (RL) agent [15]–[17]. At each iteration they
sample and fully train one or more architectures from the
search space. The obtained accuracy and cost (e.g., model
size, OPs, etc.) are then used to generate the EA fitness
function or RL reward. Such solutions are extremely powerful,
allowing to accommodate any combination of optimization
target and constraints. However, they do not scale well with
the dimension of the search space, requiring thousands of GPU
hours for a single search, due to the repeated sequence of
sampling, training, and evaluation. So-called “proxies”, e.g.,
training for a reduced number of epochs or on a reduced
dataset, can cut the search complexity, but may also undermine
the quality of results [9].

Alternatively, search costs can be reduced resorting to more
recent DNAS methods, which optimize a DNN architecture
while training it, using the same gradient descent algorithms
to optimize both the weights and the network hyperparameters
(e.g., depth, neurons, receptive field, etc). One way to achieve
this result is through the use of super-nets, large DNNs includ-
ing multiple alternative implementations of each layer/module,
with different hyperparameters settings [18]. Each super-net
path corresponds to a potential final architecture, and the
optimal one is selected during training, using a differentiable
relaxation of the problem: alternative layers’ are combined
by means of a set of continuous and trainable architectural
weights, which are then optimized by gradient-descent, so to
assign larger weights to the alternatives that maximize the
metric(s) of interest. At the end of the training, a discretization

step selects a single path, typically the one associated with the
largest architectural weights.

In DNASes, networks that are simultaneously accurate and
low-complexity are typically found enhancing the standard,
task-dependent, loss function L with an additional regular-
ization term R, that models the cost metric to be optimized
(size, OPs, energy/latency, etc.) as a differentiable function.
The overall optimization goal becomes:

min
W,θ
L(W ; θ) + λR(θ) (1)

where W is the set of trainable weights of the network
(e.g., convolutional kernels), θ is the set of NAS architectural
weights encoding the different paths in the super-net and λ
is a scalar regularization strength that controls the relative
importance between the task-specific loss and complexity loss.

While super-net-based DNAS can find an optimized archi-
tecture with a single training, thus being much faster than
RL/EA methods, such training is still tricky when dealing with
large search spaces, due to the explosion of the super-net size,
which causes huge training time and memory overheads with
respect to a “normal” DNN. ProxylessNAS [9] tackles the
memory problem by sampling at most two super-net paths for
each batch of inputs.

Other methods, such as FbNetV2 [19], MorphNet [8] and
PIT [20] replace the super-net with a standard DNN with a
unique path, usually denoted as seed network. The search
space is formed by sub-architectures of the seed, obtained
by reduction of its hyper-parameters. In practice, this result
is obtained masking different slices of each layer’s weights
with binary parameters, so that the slices multiplied with a
0 are effectively eliminated from the layer. The continuous
relaxation of the binary mask is then optimized, similarly
to the architectural weights in a super-net DNAS, with the
objective of reducing the network complexity, by eliminating
unimportant parts of each layer (in that, this approach is
similar to a structured pruning [5]). The usage of masks
introduces a minimum overhead with respect to a normal
training of the seed [20], reducing the search time and memory
requirements significantly compared to super-net approaches,
and representing a further step towards lightweight NAS.

One drawback of mask-based DNAS is that the search-space
definition is less flexible, since it can only include reduced
variants of the seed. Nevertheless, this is traded with a much
more fine-grained search granularity, hardly reproducible with
multiple paths in a super-net. For instance, considering a
convolutional layer with 32 channels, a mask-based DNAS
can easily explore all variants of the number of feature maps
with a granularity of 1 (i.e., 31, 30, 29, and so on); doing the
same with a super-net DNAS would require a huge network
with 32 alternative versions just for that layer.

III. PROPOSED METHOD

DNAS tools that follow the formulation of (1) have two
main limitations. First, R models a single cost metric, i.e.,
either the model size, the number of OPs, or a differentiable
approximation of the latency or energy consumption, as a
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Fig. 2. Proposed mask-based DNAS for convolutional layers output channels.

function of the DNN hyper-parameters [8], [9]. Second, cost
is considered as an objective to minimize, rather than a
constraint. While this is appropriate for some metrics (e.g.,
OPs, latency or energy), it is sub-optimal when considering
memory occupation. In fact, most designers are interested in
finding the “best” model (e.g., the most accurate or the best
balance between accuracy and energy consumption) that fits
a memory constraint, given by the target hardware. Doing so
with (1) requires repeating the DNAS multiple times, sweeping
λ, until a model with appropriate memory footprint is found.

We propose a new DNAS formulation that addresses both
problems, allowing to consider both memory occupation and
other cost metrics (OPs, in our experiments) simultaneously,
taking the former as a constraint and the latter as an objec-
tive. In practice, this enables the search for Pareto-Optimal
architectures in the Accuracy vs OPs plane, around a fixed
memory budget. We apply the proposed method on top of a
mask-based DNAS that explores the number of channels Cout
of Convolutional layers in a CNN. However, our formulation
is agnostic of the specific search method, and can be applied
to any DNAS, including super-net based ones.

The rest of this section is organized as follows. Sec. III-A
describes the considered search space, while Sec. III-B
presents the multi-regularization loss approach at the core of
our method. Finally, Sec. III-C details the training algorithm.

A. Differentiable Channels Search

We apply our formulation to a simple but powerful mask-
based DNAS, which optimizes the number of output channels
of all convolutional kernels in a CNN seed. This is a gener-
alization of the approach proposed in [8], which instead of
adding explicit mask weights, made use of Batch Normaliza-
tion (BN) parameters to eliminate some output channels. In
contrast, our approach can work also when BN is not present,
hence being applicable to any CNN.

Fig. 2 schematizes the proposed search scheme. Starting
from the seed network, a “searchable” model is built modify-
ing the weight tensor W (n) of each convolutional layer, with
size C(n)

out×K
(n)
x ×K(n)

y ×C(n)
in , where C(n)

in , C(n)
out are the in-

put/output channels and K(n)
x /K(n)

y are the horizontal/vertical
kernel sizes. The searchable weights W (n)

Θ are obtained as:

W
(n)
Θ =W (n) �H(θ(n)) (2)

where θ(n) is a trainable mask tensor with C(n)
out elements, � is

the Hadamard product, andH is a Heaviside step function with

a fixed threshold th = 0, which has the effect of binarizing
θ(n) to 0/1 (1 if θ ≥ th, else 0). The product is broadcast to
an entire weight filter, i.e., the same element θ(n)

i is multiplied
with an entire slice W (n)

i of the weight tensor, of size K(n)
x ×

K
(n)
y × C(n)

in . Therefore, the i-th element of the mask vector
controls whether the i-th output channel is removed from the
network (H(θ(n)

i ) = 0) or kept alive (H(θ(n)
i ) = 1). The

obtained “searchable” network is then inserted in a normal
training loop, where W and θ are trained together.

Specifically, in each forward pass of the training, Heaviside
binarization has the effect of sampling a single architecture
from the search-space (see the examples on the right of
Fig. 2). During backward passes, instead, a Straight-Through
Estimator (STE) based on the BinaryConnect [21] approach
lets gradients flow through the network despite the presence
of the non-differentiable Heaviside Function.

B. Multi-Regularization Loss

Most state-of-the-art DNAS tools [8], [9], [19] sum the
task-specific loss L and the complexity term R, scaled by
a strength constant, using the scheme of (1). MorphNet [8]
and FBNetV2 [19] regularize either against the number of
parameters or against the number of OPs, while Proxyless-
NAS [9] tries to optimize the latency directly, using a model
obtained fitting the latency measurements obtained profiling
layers with different hyper-parameters combinations. More
recently, UDC [22] proposed a different approach, where the
regularization term includes a specific cost target r∗ to be
satisfied, and the regularization term becomes |R(θ)− r∗|.

Building upon these ideas, we propose a novel formulation
with two complexity loss terms, which drive the DNAS towards
a desired region of the search space, while still allowing
the exploration of accuracy versus complexity trade-offs. The
proposed optimization problem formulation takes the form:

min
W,θ
L(W ; θ) + λ|S(θ)− s∗|+ µO(θ) (3)

In the equation, S models the size (i.e., memory footprint)
of the DNN as a function of the architecture parameters θ.
In particular, for a CNN with N convolutional layers, S is
computed as the total number of effective (i.e., non-masked)
parameters in those layers, i.e.:

S(θ) =
N∑
n=0

S(n)(θ) =

N∑
n=0

C
(n−1)
out (θ)C

(n)
out(θ)K

(n)
x K(n)

y (4)

where C(n−1)
out = C

(n)
in and, for the 1st layer C(n−1)

out is fixed
and equal to the number of channels in the input data.

Since, as explained above, memory occupation is usually
a constraint that DNNs should respect for edge deployment,
rather than a metric to optimize, we follow the approach
of [22], minimizing the absolute value difference from a target
size s∗ which depends on the hardware.

We associate this cost term with a relatively large and fixed
regularization strength λ, with λ >> µ, thus forcing the NAS
to find a set of θ∗ parameters that yield S(θ∗) ≈ s∗. This



Algorithm 1
1: for i← 1, . . . ,Epochswu do # warmup loop
2: Update W based on ∇WL(W )
3: end for
4: while not converged do # search loop
5: Update W, θ based on ∇W,θ(L(W ; θ) + λ|S(θ)− s∗|+ µO(θ))
6: end while
7: for i← 1, . . . ,Epochsft do # fine-tuning loop
8: Update W based on ∇WL(W )
9: end for

allows us to immediately respect the memory constraint in
each search, without a lengthy sweep of λ values. The way λ
is calculated for a given seed is detailed in Sec. III-C.

Furthermore, we add a further loss term O to model
additional complexity-related metrics. In this work, O models
the total number of OPs per prediction, which correlates with
inference latency and energy consumption:

O(θ) =
N∑
n

S(n)(θ)O(n)
x O(n)

y (5)

where O(n)
x and O(n)

y are respectively the output feature map
width and height of the n-th convolutional layer. We consider
this metric as a general and easy-to-compute estimate of the
inference cost of a model. However, our formulation is not
limited to this specific expression for O, and would be equally
effective using more precise, profile-based energy or latency
estimates, such as those proposed in [9].

Differently from S, O is treated as an objective, not a
constraint, and its importance is weighted by µ, which is
the main knob used in our method to generate different final
architectures starting from a single seed. To summarize, the
formulation of (3) will produce DNNs with a size around
s∗. With a small µ, the DNAS will focus on minimizing
L, producing networks as accurate as possible (for that size
constraint), while large µs will cause to partially sacrifice the
accuracy in exchange for fewer OPs.

Intuitively, since the OPs of a convolutional layer are equal
to the parameters multiplied by the output feature map size
(see Eq. 5), and since feature sizes tend to reduce going
forward in the network, due to the effect of pooling, strided
convolution, etc, OPs reduction under a fixed size budget can
be obtained masking more channels in the initial layers of the
DNN, and less channels in the final ones. We show that our
formulation produces precisely this behavior in Sec. IV.

C. Training Procedure

Alg. 1 shows the overall training scheme of our DNAS. We
start with a warmup phase, i.e., a normal training of the full
seed network, in which all masking parameters θ are frozen at
the initialization value (i.e., 1), and only the normal weights W
are trained. The training objective in this phase consists solely
of the task-specific loss function L. Noteworthy, warmup can
be performed just once, saving the learned weights and reusing
them for all following searches.

The second phase coincides with the actual architecture
optimization. In this step, the weights W and the masking pa-
rameters θ are optimized together, to minimize the cumulative
loss function of (3). The number of search epochs is controlled
with an early-stop mechanism which monitors the task loss L
on an unseen validation-split, and stops the search when the
loss stops improving. When a validation set is not provided
in the considered benchmark, we generate it by randomly
sampling 10% of the training set.

Lastly, in the fine-tuning phase, similarly to warmup, only
the weights W are trained against the task loss L, while the θ
architectural parameters are frozen to the final learned values.
In all our experiments, we set the warmup and fine-tuning
epochs Epochswu and Epochsft equal to the number of training
epochs used in the papers proposing each benchmark task.

For a given target size s∗, the size strength λ is determined
with the formula λ = L(θseed)/|S(θseed)−s∗|, where S(θseed)
and L(θseed) are the model size and task loss of the full seed
network after warmup. The rationale is to have similar values
for the first two addends of (3) at the beginning of a search,
so that the DNAS does not just shrink the network in the
first iteration, ignoring completely the impact on accuracy. We
found this heuristic to work well, but we also noticed that,
as expected, varying λ in a reasonable range (± one order of
magnitude) does not alter the search results significantly, since
the term S(θ) − s∗ is quickly brought close to zero in the
search phase. Importantly, this means that λ can be computed
in closed-form and does not have to be swept.

Having fixed the target size (and λ), multiple iterations
of Alg. 1 with different values of µ generate a front of
Pareto-optimal architectures in the Accuracy versus OPs space.
Specifically, we always run a first search with µ = 0, to find
the most accurate network which satisfies the s∗ constraint,
without taking into account the number of OPs. We then
progressively increase µ to find less accurate and more ef-
ficient architectures. Importantly, too large µ values (violating
λ >> µ) lead to low-quality results, since the DNAS tries to
dramatically reduce the number of OPs while simultaneously
keeping the model size close to the target. This produces sub-
optimal DNN architectures, with worse accuracy than those
of smaller size. Thus, whenever increasing µ with fixed s∗

degrades the accuracy too much (in our experiments, we limit
to a 5% degradation w.r.t. the case µ = 0), we simply stop the
exploration and switch to a lower size target.

IV. EXPERIMENTAL RESULTS

A. Setup

We evaluated the proposed NAS on three datasets taken
from the MLPerf Tiny Benchmark Suite [10]. As seed net-
works, we used the reference architectures proposed in the
suite for each dataset. The Image Classification (IC) bench-
mark is based on the well-known CIFAR-10 dataset, which
consists of 60000 32x32x3 RGB images belonging to 10
classes. The reference CNN is a customized ResNet [1] with
8 convolutional layers. The Visual Wake Word (VWW) task
considers the MSCOCO 2014 dataset, with 109619 96x96x3
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Fig. 3. Accuracy versus OPs results for different size targets.

RGB images, and the objective is detecting whether at least a
person is present in the input. The reference architecture is a
MobileNetV1 [12] with a width multiplier of 0.25. Lastly, the
KeyWord Spotting (KWS) benchmark is based on the Speech
Commands v2 dataset, which contains 105,829 utterances, to
be classified in 12 classes including 10 words and two special
labels (“unknown” and “silence”). The reference architecture
is the Depthwise Separable CNN (DS-CNN) described in [2].
MLPerf Tiny includes a fourth Anomaly Detection benchmark.
However, the reference DNN is an Autoencoder composed
only of Dense layers, for which the model size and number
of OPs are directly proportional (i.e., there is no degree of
freedom to reduce the OPs under a fixed size budget). So, we
did not consider that task, since it would not benefit from our
formulation, which would become equivalent to (1).

Our DNAS is implemented in PyTorch v1.10.2. Some
relevant architectures found by our tool are then deployed on
a commercial edge device, the NUCLEO-H743ZI2, in order
to estimate energy consumption. We convert ONNX graphs
exported from PyTorch into C code using the proprietary X-
Cube-AI toolchain of STM. In this work, we deploy floating-
point models, but note that integer quantization is fully-
orthogonal to our method. All results are reported on test sets.

B. Search-Space Exploration

Fig. 3 shows the results obtained applying the proposed
DNAS on the three benchmarks. Each plot reports the found
architectures (represented with coloured dots) and the seed
(represented with a black star) in the Accuracy versus OPs
space. Different colors correspond to different size targets s∗.
To validate our approach, we initially set s∗ to be respectively
75%, 50% and 25% of the original size of each seed net-
work. In a real scenario, s∗ would depend on the hardware,
so this setup simulates targeting three different MCUs with
progressively less available memory. Within the curve relative
to each s∗ target, different points are obtained changing the
OPs regularization strength µ.

The left-most graph shows the results obtained on the IC
task. Considering all three memory targets, the DNAS is able
to find networks that span almost one order of magnitude in
OPs 1.96M-9.86M), and ± 6.3% in accuracy. Moreover, under
the 75% size constraint, we obtain a network that achieves a
negligible accuracy drop with respect to the seed (-0.23%),
while reducing the number of OPs by 1.3x (12.7M vs 9.86M).

The center graph reports the Pareto fronts obtained for the
VWW task. In this case, we found that the results obtained
with the 75% and 50% size constraints are completely outper-
formed by those obtained with lower memory, which achieve
higher accuracy with fewer OPs (only the 50% curve is shown
in the graph, for clarity). This means that the reference network
used for this task is strongly over-parameterized. Therefore,
forcing to optimize OPs with a too high s∗, leads to un-
balanced architectures which attain same accuracy of smaller
ones (see orange vs. red curves in mid graph of Fig. 3). Thus,
we decided to add two additional memory targets (i.e., 12.5%
and 6.25% of the seed) in order to show more insightful trade-
offs. The results demonstrate once again that our DNAS is
able to find a rich collection of Pareto-optimal architectures
for multiple memory constraints. The NAS results span almost
one order of magnitude in terms of OPs (0.81M-6.14M).
Furthermore, many of the found architectures Pareto-dominate
the seed, even at 12.5% size (+0.39% accuracy with 2.5× OPs
reduction and +0.82% accuracy with 2.2× OPs reduction).

Lastly, the right-most plot in Fig. 3 shows the results on
the KWS task. In this case, Pareto-fronts are not as rich as
for the other two benchmarks, due to the peculiarities of the
seed network. In fact, DS-CNN includes strided convolutions
and pooling only in the first and last convolutional layers.
Consequently, all intermediate feature map sizes are identical,
with OPs and model size strongly correlated. Nonetheless, we
still find multiple networks for each size constraint, although
the trade-off between OPs and accuracy is less favorable. At
most, for the 50% size target, we obtain an OPs difference of
1.2× in exchange for an accuracy degradation of 1.45%.

C. Architecture Details

As an example of the architectures found by our DNAS,
Fig. 4 reports four of the networks generated for the IC bench-
mark, under the 75% and 25% size constraints. The models
labeled with “-H” (high-OPs) are obtained with µ = 0, i.e.,
performing the search with the only constraint of respecting
the target size, without OPs reduction. Instead, the networks
labeled with “-L” (low-OPs) are obtained with with µ 6= 0,
and in particular, they correspond to the points with fewest
OPs in the 75% and 25% Pareto fronts of the graph in Fig. 3.
Each rectangle represents a convolutional layer, and numbers
inside them correspond to C(n)

out,final/C
(n)
out,seed.

These examples demonstrate that our formulation generates
meaningful results. First, as expected, a lower target size
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Fig. 4. Examples of found architectures for the IC benchmark.

TABLE I
DETAILED DEPLOYMENT RESULTS FOR THE IC AND VWW BENCHMARKS.

THE MEM. FIELD EXPRESS WEIGHTS MEMORY IN KB.
Mem. Lat. En.

Task Network Acc. [kB] (% 6= constr.) [ms] [mJ]

IC

Seed 87.27% 310 125 29.3
75%-H 87.04% 231.6 (-0.37%) 110 25.7
75%-L 85.09% 233.5 (+0.44%) 57.4 13.4
50%-H 86.00% 155.8 (+0.54%) 87.7 20.5
50%-L 83.22% 156 (+0.65%) 42.1 9.84
25%-H 82.49% 74.96 (-3.3%) 55.9 13.1
25%-L 80.71% 75.6 (-2.5%) 27.4 6.42

VWW

Seed 85.48% 832.4 115 26.9
25%-H 86.83% 206.1 (-0.97%) 81.4 19.1
25%-L 86.29% 208.2 (+0.05%) 72.9 17.1

12.5%-H 86.30% 104.1 (+0.03%) 69.5 16.3
12.5%-L 81.64% 103.8 (-0.2%) 34.6 8.09
6.25%-H 83.40% 50.32 (-3.3%) 53.5 12.5
6.25%-L 79.36% 52.12 (+0.2%) 24.5 5.73

results in more masked channels, regardless of the OPs reg-
ularization strength. Moreover, the “-L” networks have fewer
channels in their initial layers, which are those that contribute
more to the total OPs, due to the larger resolution of their
input/output feature maps. The considered ResNet8 has two
convolutional layers with stride s = 2 (c3 and c5), indicated
by yellow dashed lines in Fig. 4, which reduce the feature map
sizes of downstream layers by a factor 4. As evident from the
figure, our DNAS reduces much more aggressively the layers
before c3 when µ increases.

D. Embedded Deployment

Table I summarizes the deployment results on the
NUCLEO-H743ZI2 for the IC and VWW benchmarks. We
do not report KWS results because, as explained above, the
structure of the reference CNN makes the trade-offs less
interesting. The table reports two DNNs for each target size
(high-OPs “-H” and low-OPs “-L”), corresponding to the two
extremes of each Pareto front of Fig. 3, neglecting the fully-
dominated 50% front for VWW. Additionally, for comparison,
we also deploy the baseline seed networks.

The Mem. column reports the memory occupation of each
model, and the difference in percentage from the imposed
constraint. As shown, all networks are within ±3.3% from
the target, showing that our constraint formulation produces
the expected results. Further, on the IC task we find solutions
with energy consumption spanning from 25.7mJ to 13.4mJ,
20.5mJ to 9.84mJ and 13.1mJ to 6.42mJ respectively for the
75%, 50% and 25% targets. Noteworthy, the 75%-H network
reduces the energy consumption by 2.2× with respect to the

seed, whit negligible accuracy drop. Similarly, the deployed
solutions for VWW with 25%, 12.5% and 6.25% size consume
respectively from 19.1mJ to 17.1mJ, from 16.3mJ to 8.09mJ
and from 12.5mJ to 5.73mJ, and the 12.5%-H CNN reduces
the energy consumption of the seed by 1.7× while improving
accuracy of 0.9%.

V. CONCLUSIONS

We have proposed a new DNAS formulation that can be
used to enhance existing tools allowing them to find DNNs
with optimal trade-offs between accuracy and inference com-
plexity, under fixed memory constraints. With experiments on
three different real-world edge-relevant use-cases, we have
shown the effectiveness of our method, which is able to reduce
the energy consumption by up to 2.2× with respect to hand-
tuned baseline models.
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