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Abstract—In safety-critical applications, microcontrollers must
satisfy strict quality constraints and performances in terms of
Fmax, that is, the maximum operating frequency. It has been
demonstrated that data extracted from on-chip speed monitors
can model the Fmax of integrated circuits by means of machine
learning models, and that those models are suitable for the per-
formance screening process. However, while acquiring data from
these monitors is quite an accurate process, the labelling is time-
consuming, costly, and may be subject to different measurements
errors, impairing the final quality. This paper presents a method-
ology to cope with anomalous and noisy data in the context of the
multi-label regression problem of microcontroller performance
screening. We used outlier detection based on Inter Quartile
Range (IQR) and Zscore and imputation techniques to detect
errors in the labels and to avoid to drop incomplete samples,
building higher-quality training set for our models, optimizing
the devices characterization phase. Experiments showed that
the proposed methodology increases the performance of existing
models, making them more robust. These techniques permitted
us to use a significantly smaller number of samples (about one
third of the devices available for characterization) , thus making
the costly data acquisition process more efficient.

Index Terms—Performance Screening, Fmax, Speed Monitors,
Machine Learning, Active Learning, Device Testing

I. INTRODUCTION

The goal of Microcontroller (MCU) performance screening
is to detect under-performing devices that do not fully satisfy
the characteristics described in the datashet in terms of max-
imum operating frequency. To do this, one possibility is to
use machine learning (ML) models trained on data that can
be correlated to the speed Fmax of the devices. The model
is derived from available data, and it is able to express the
relation between inputs (features) and outputs (labels). The
dataset creation requires the acquisition of features and labels,
and the performance of supervised ML models depends on the
quality and the quantity of labeled data. Previous works have
proposed the usage of Speed Monitors (SMONs) to predict
Fmax values derived from the execution of functional patterns
on single devices [1]–[4]. In this context, measurements of
frequency are prone to errors, dirty data and missing values.
Also, the amount of available data is limited because the pro-
cess of acquiring the labels is costly in terms of time required.

Authors are listed in alphabetical order.

All these problems reduce the quality of the data used in the
training procedure and affect the performances of ML models.
The label acquisition is performed by humans. Significant
problems with manual labelling include the introduction of
bias in the data, the huge cost (in terms of time and money,
and also the need for a domain-expert that needs to do the
work), and the absence of a real “gold standard” for the labels:
every manual data acquisition introduces a possible error in
the dataset that may be difficult to catch and identify. In
addition, the possible presence of noise in the data may make
the available data deviates from real values, introducing a shift
in the latent data distribution. Noise and many other causes
create anomalous data, i.e., data that are clearly abnormal with
respect to the other entries of our dataset.

Outlier detection techniques can be used to detect and,
where appropriate, remove anomalous observations from data.
But the majority of machine learning models are not able
to deal with missing values (especially in the labels). In a
classical ML framework, if a particular label has a missing
value, the the data point is dropped. But this operation would
lead to a smaller dataset, and since the amount of data is
limited, to a possible loss of precious information. Several
works can be found in the ML literature applied to MCU
performance screening ([4], [5]), but without focusing on the
presence of anomalous data, and do not deal with the presence
of missing values in the labels.

In this paper, we focus on how anomalies on the labels
introduced during measurements in the dataset creation phase
can affect ML regression models in the context of MCU
performance screening (but perfectly extendable to all the
types of regression problem in which we have missing or
noisy values in the labels). Once that anomalous labels are
recognized and removed from the dataset, we will discuss
how to recover information from points that present missing
values and lack of labels instead of simply dropping them.
We will exploit the relationship between the available labels
to reconstruct information that are not present in the dataset
with the goal of building a bigger training set, which will be
used to train more robust machine learning models. This will
be done by using imputation techniques on the labels.

The rest of the paper is organized as follows. Section II
presents related works on the topic. Section III describes
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the characterization process used to derive the dataset for
ML. Section IV introduces the concepts of outlier detection
and imputation which are the mechanisms for dealing with
anomalous data, while in Section V we detail how to use
them to optimize the dataset. The experimental evaluation
is presented in Section VI. Finally, Section VII draws our
conclusions.

II. RELATED WORK

Different approaches to predict the device performance were
suggested in recent years [6]–[9]. In [6], the current was used
as a very rough estimator of the performances. The use of
additional monitoring and warning infrastructure for a speed
violation (Razor FFs) was studied in [7] for tracking the signal
delays in particular paths at the system clock speed. It allows
very accurate monitoring of a specific path, at the cost of a
massive overhead of warning FFs on large chips. The use of
ML models to correlate structural and functional Fmax was
first presented in [1]. The use of indirect measures to predict
a circuit specification is called ‘alternate test’ in literature, and
has been widely studied for analog circuits [10]–[13]. More
precisely, the idea is to learn the mapping between indirect
measurements and circuit specifications, and to use only the
indirect low-cost measurements to predict device specifications
during production testing. Previous works on MCU perfor-
mance screening were aimed at deriving a model for Fmax

prediction [4], [5]. In [4], the values of 27 speed monitors
coming from wafer sort were correlated to functional Fmax

measured on more than 4,000 packaged devices extracted
from 26 corner-lot wafers; training devices were randomly
selected among the available ones. A first step towards the
reduction of the training set size was conducted in [5], where
three Active Learning (AL) metrics were deployed to build
a training set that considers possible process variations. Even
though a reduction of the training set size can be achieved by
means of appropriate AL techniques, the presence of outliers
negatively influences the overall training procedure. Moreover,
the work in [5] does not deal with possible missing or dirty
values in the labels.

Working with anomalous data is a well-known topic in the
ML community. Anomalous data is expressed by the concept
of outlier: “an outlier is an observation which deviates so
much from other observations as to arouse suspicions that it
was generated by a different mechanism” [14]. Various outlier
detection approaches from a data mining perspective are com-
pared in [15], and in particular the classic outlier approaches
are resumed, which include statistical-based approach [16],
[17], distance-based approach [18], [19], deviation-based ap-
proach [20], and density-based approach [21]. We make use
of statistical methods to identify outliers both during the label
acquisition phase and during the dataset preparation for ML
training process.

The definitions and sources of label noise in the context of
supervised classification tasks are presented in [22]. The paper
proposes a taxonomy of the types of label noise and discusses
the potential consequences. It proposes filter approaches to
improve the quality of the training data. In such a case, noisy

labels are typically identified and being dealt with before
training. Mislabeled instances can either be relabeled or simply
removed. However, this work deals with classification, rather
than regression. It also refers to single-label tasks rather than
multi-label and does not deal with missing labels (i.e., samples
are simply removed). In this context, we will make use of the
correlation among the labels to try to impute missing values
and recover information from incomplete data, while we apply
anomaly detection techniques directly on the labels.

III. CHARACTERIZATION PROCESS

The characterization process for MCU performance screen-
ing requires collecting a suitable dataset for the ML train-
ing process. The SMONs’ data are the features in the ML
context, and are measured during the production with high
accuracy. Such a measurement is a stable and fast process;
hence, the gained features have a high quality. Conversely,
the labeling process is a time-consuming procedure performed
mostly manually, in which each MCU is measured individually
with functional test patterns. The MCU starts to execute the
functional pattern with a low frequency, then the frequency
is slowly stepped-up in each loop until the functional pattern
fails [23]; the resulting threshold frequency Fmax is stored.
The procedure is typically repeated using various functional
test patterns, thus leading to a multi-label dataset. For each
MCU, the Fmax values collected with the various patterns can
have a considerable spread. The most critical pattern is the
one with the lowest Fmax value, and this is not necessarily
the same for all MCUs.

The accuracy of the models and the performance prediction
quality are strongly dependent on the quality of the features
and labels. While, as mentioned above, the features are ac-
quired with high quality, the labeling might be affected by
uncertainty. The measurement of the label is performed under
the worst-case voltage and temperature conditions allowed in
the datasheet. Minor changes in such measurement conditions
have an high impact. The MCU is mechanically mounted on
a measurement board that mimics the customer application.
Also, here some uncertainty is introduced, such as mechanical
vibrations, contact resistance (MCU to board), and white noise.
Besides such uncertainty, the MCU itself also widely varies.
The main reasons are: (1) the process variation in the CMOS
manufacturing and (2) devices with a defect. Every CMOS
manufacturing has a particular process variation which is
usually follows a Gaussian distribution [24]. This means a vast
amount of devices are within the expected process variation.
However, some devices are in the tail region of the distribution.
Those devices can be determined as outliers. The devices
with a defect can also be classified as outliers. There are
test methods in the production flow (e.g., based on Stuck-
At, Transition, or Path-Delay testing) trying to identify such
defective devices. However, some MCUs with certain defects
might escape the test procedure, or the tests are still in the
engineering phase and not mature enough.

The boxplot in Fig. 1 shows how Fmax varies for the set
of devices from a wafer. One device is clearly below the
threshold value highlighted in the figure for several functional
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Fig. 1. An overview of functional patterns and their critical fail frequency
with the threshold frequency level of the data-sheet. Some outliers are visible
over all applied patterns [4]. The threshold is 0%.

test patterns; other devices are just below the whiskers. Those
devices that deviate from the wafer median by several standard
deviations in a functional test pattern can be classified as
outliers. In some cases, a device is classified as outlier for
each functional test pattern, while in some others it would be
an outlier only for one or few functional test patterns (i.e.,
the remaining labels are within the expected distributions).
An outlier detection procedure is generally applied to each
label. Then, in the baseline approach, the device is removed
from the training set if an outlier is detected in at least
one functional test pattern. This outlier detection is a very
pessimistic approach, but necessary for high-quality training
data. If only one test pattern is faulty, it does not necessarily
mean that the whole device is faulty; nonetheless, all captured
labels for that device are discarded. Thus, some mechanisms
in the measurement process are integrated to make the label
acquisition more robust. Each determination of the Fmax is
repeated multiple times (five in our case study) for every
device; the median value is calculated and determined as the
final Fmax value. If a device has a high variance between the
various measurements, the label is treated as an anomaly and
discarded, introducing a missing value in the dataset. In Fig. 2,
we can see a graphical view of the repeated measurements of
a device as an example. The labels for the patterns number
1 and number 3 would be discarded due to the high variance
among the measurements (on the y-axis, the deviation of the
measurement w.r.t. the mean for that pattern).

The dataset after the (imperfect) labeling process contains
some outliers (devices anomalous with respect to the wafer
median) and some missing values (patterns which repeated
measurements present high variance). Simply discarding all
dubious devices which might have an uncertainty will signif-
icantly reduce the training set. Methods are needed to cope
with such a dataset.

Fig. 2. Graphical view of the five measurements for each patterns of a device

IV. DEALING WITH ANOMALOUS DATA

For a ML algorithm, data are like gold, and the more data
we have the more likely will be our algorithm to reach a high
generalization capability. In the context of MCU performance
screening, the low availability of labelled data and the high
cost in obtain them lead us to exploit all possible information
retrievable from the data. Even an incomplete sample (that
misses some values) may carry useful information, if handled
with care. But data must also be of high quality. A ML model
trained with a properly chosen dataset, clean by noise and
outliers, can achieve the same performances (if not better) of
a model trained on a larger amount of data but of poor quality.
In the following, we will introduce the statistical methods used
for optimizing the training set, thus reducing the amount of
data required to reach a sufficient accuracy in the final ML
models.

A. Outlier Detection

Outlier detection is a critical task in many data-science
fields. Outliers indicates abnormal conditions that may cause
significant performance degradation in ML models. Example
of outliers can be: abnormal objects in images, intruder
inside a system with malicious intentions but also faults on
production lines. The effect of outliers and noise in data
measurements phase involves a shift in the underlying data
distribution: if data are affected by noise, the distribution of
inputs p(x), of labels p(y), and the joint distribution p(x, y) of
labels and inputs may vary. As a consequence, an ML model
might learn something different with respect to information
that can be retrieved from data, and in particular a different
discrimination distribution p(y|x) with respect to the one
related to the underlying processes.

Outlier detection has been classified in three types [25]. In
Type 1, we perform outlier detection with no prior knowledge
of the data; This type is based on a clustering approach. In
Type 2, the aim is to model both normality and abnormality;
This approach is analogous to supervised classification and
requires pre-labelled data for the normal and abnormal class.
In Type 3, the aim is to model only normality; the normal
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class is given and an algorithm will autonomously learn to
recognise abnormality by defining boundaries of normality;
authors generally name this technique novelty detection or
novelty [25]. Our approach is a mixed Type 1 and Type 2
outlier detection, since we make use of statistical tools to
detect abnormal data, but we have some pre-existing indication
on the outlierness of samples. Statistical approaches are based
on metrics like interquartile range (IQR) or z-score.
IQR is an outlier detection technique based on considering

as outliers each sample outside a specific range, computed on
the basis of first and third quartile (Q1 and Q3) of the data
distribution. This method goes trough these steps: (1) calculate
Q1 and Q3, and (2) compute the IQR as Q3 − Q1 and the
lower and upper bound (lb and ub, respectively) as:

lb = Q1 − 1.5 · IQR ub = Q3 + 1.5 · IQR

Anything outside the range [lb, ub] is considered an outlier
[26]. The factor 1.5 may vary in some implementations.

The z-score is a numerical measurement that describes a
the relationship between a sample and the mean of a group of
samples. A z-score is measured in terms of standard deviations
from the mean. The formula for the z-score of a sample is
z = x−µ

σ , in which µ and σ are the mean and the standard
deviation of the population. A z-score equal to 3 means that
a sample lies 3 standard deviations above the mean. If the
samples are normally (i.e., Gaussian) distributed, it is possible
to compute the confidence interval (and relative standard
normal table). The probability that a sample has a z-score
below 3 is approximately 99.865%. This means that a sample
has a probability of just 0.135% to finish above 3 standard
deviations. Thus, 3 will be used as the z-score limit value to
discriminate among inliers and outliers in our experiments.

B. Imputation

Missing values may be present both in the feature space
and in the label space. If a label is missing in a single-label
dataset, the corresponding sample cannot be used in supervised
algorithms, and thus it is typically discarded. However, when
dealing with a dataset containing missing values on features
(or, in multi-label datasets), removing samples which may
be valuable for successive learning algorithm is not always
acceptable, especially when the effort for collecting those
samples is high. A better strategy is to try to recover missing
values by resorting to mathematical procedures like weighting
or imputation [27], which try to infer missing values from the
known part of the data. One type of imputation algorithm is
the Univariate Imputation, which imputes the missing values
present in a column of the dataset by using only non-missing
values in that feature dimension (for example, by replacing
the missing value with the mean value of that feature, or
with the median or another standard properly-chosen value).
Multivariate imputation algorithms [28], instead, use the entire
set of available features to estimate the missing values. A
missing value in one column of the dataset is imputed on
the basis of all the other columns. An example of Multivariate
Imputation is the Iterative Imputer.It iterates for each feature
and, at each step, a feature column is designated as output

Fig. 3. Step performed during the data preparation phase on the labels dataset.

y and the other feature columns are treated as inputs X . A
base regressor is fit on (X, y). Then, the regressor is used
to predict the missing values of y. This is done for each
feature in a round-robin fashion. The imputation procedure
is repeated for a certain number of iteration. The results of
the final imputation round are returned.

V. OPTIMIZING THE TRAINING SET

During the characterization phase, multi-label samples are
collected and added to the dataset. We aim at identifying
anomalous and noisy data from the part of the dataset used for
the training process. As a result, the optimized dataset lets us
stop the characterization earlier. Hereinafter, we will refer to
such a training set as the dataset intereset by the optimization.
The procedure consists of three steps, which will be explained
using a simplified dataset and graphically visualized in Fig. 3,
without features. For each of the 6 samples in the toy dataset,
6 distinct labels are collected using multiple measurements
per label. Frequency values in the figure are normalized on
the mean of the corresponding label. In the example, we will
focus on labels, but the approach can be extended to features.

In the first step (upper dataset in Fig. 3), noisy data are
identified by looking at the variance of the multiple measure-
ments of each label (see Fig. 2). Labels with a high variance
are dropped and replaced with a not-a-number (NaN), thus
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introducing a missing value in the dataset. This first step is
a “filter” applied by domain experts, and the threshold value
depends on the quality of the measurement process. Outliers
can escape from this procedure, justifying the use of additional
detection methods.

The second step consists of applying statistical methods
for outlier detection, based on IQR and z-score (see Sec-
tion IV-A), to discover labels measurements that are out of
the normal distributions (see Fig. 1). The analysis is performed
per label, and can be eventually performed per wafer (i.e., in
that case, when computing IQR or z-score, only the samples
in the same wafer would be considered). In the upper dataset
of Fig. 3, the second sample shows two outlier labels (the first
and the last pattern), which are replaced with NaN values in
the middle dataset. If most of the labels of a given sample are
NaN, then that sample should be discarded.

In the last step, we use imputation to fill the missing
values. This permits to avoid to drop samples and to recover
information also by incomplete rows. But simple univariate
imputation, that replaces the missing values of a feature with
the mean or median of that feature in the dataset, could not be
the correct choice, resulting into a too simplistic approach that
may introduce further noise in the data. Also, when labels are
highly correlated, as in the problem at hand, it is absolutely
reasonable to build a model, even a simple linear one, able to
predict the value of a target on the basis of the others. This
justifies the deployment of a multivariate imputation model,
able to predict missing values relying on multiple columns of
the dataset. The resulting values are visible in the lower dataset
of Fig. 3. Here we are considering both missing and removed
data in the same way, due to the fact that (as explained in
Section III) devices which repeated measurements present high
variance are discarded from the dataset in advance.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup
The proposed methodology has been validated on a dataset

composed of 4,039 devices, with 27 features (SMONs) and
10 labels (functional test patterns), plus an extra label taking
the minimum among the patterns, for each device. This is
the final target in the performance screening procedure (the
critical pattern of each device). The test set used for the
evaluation of all models includes 602 devices without any
missing label, randomly sampled but stratified per-wafer. Such
a test set is the same used in [4], [5], as a comparison.
Alternatively, cross-validation can be used to better estimate
the generalization error on several test sets. The training set of
each model is derived by applying the proposed methodology
on the remaining 3,437 devices, which include 2,058 full-
row samples (i.e., they do not present missing values) and
1,632 samples with at least one missing value due to the high
variance in the repeated Fmax measurements. In the baseline
approach [4], anomalous data were identified in 423 devices by
the domain experts who acquired the labels, and those samples
were marked as outliers. Outliers were discarded from the
training set used in the baseline approach while they were kept
in the test set; the resulting baseline consists of only 1,805 full-
row samples – less than 53% of the available devices. For the

imputation procedure, we chose the Iterative Imputer of scikit-
learn [29] with Random Forest as the base estimator to mimic
the MissForest imputation algorithm [30], but also a simple
linear regression would fit well in our case, with comparable
performances. The regression algorithms used are 1) the Ridge
Regression with a a pre-processing pipeline of normalization
of input, PCA feature reduction with 14 components, and
polynomial transformation and 2) the Kernel Ridge Regression
with input normalization and the radial basis function (RBF)
kernel. Both the algorithms work in a multi-output fashion
using a Regression Chain approach [31].

We chose to combine z-score and IQR, in a double-level
check fashion, marking as NaN the labels that present a z-
score higher than 3 or that are outside the IQR range. These
procedures can be done at the whole-dataset level or per-wafer.
This last wafer-level approach considers the process variations
of the corner-lots and the presence of faster and slower wafers.
In our experiments, we obtained the best results using this last
approach.

B. Results

In Table I, we resumed the performances of the same ML
algorithm trained on various training set, derived by using
different outlier detection and imputation schemes. The first
three columns of the table describe how the training set has
been derived. Column 1 (Missing values) indicates whether
we have utilized imputation on the missing values or we
simply drop the corresponding sample. Similarly, column 2
(Baseline outlier) tells whether, in presence of anomalous data
identified by the baseline approach [4], to keep the original
values, to replace them with NaN and apply imputation, or
to drop the sample. Column 3 (Outlier detection) indicates
whether additional outliers on labels are identified at dataset-
level or at wafer-level (None indicates that this step is not
performed). Column 4 (Training set size) shows the number
of samples used for the training. Finally, the last two columns
report the normalized root mean squared error (nRMSE) and
mean absolute error (nMAE) of the model on the test set.

The first two models in Table I do not make use of the
proposed approach. The second case represents the baseline
model, which shows how removing the baseline outliers helps
to increase the model performance. The three models in the
following group of lines show imputation combined with
outlier detection; in that case, 100% of the available samples
can be used for the training. The following two groups of
lines also highlight that baseline outliers should be subject of
imputation or discarded to outperform the baseline model; in
the last case, we use around 88% of the available samples.
In the final group of models, we show that a mixed solution,
where we drop the devices than present a number of missing
labels greater than a certain threshold (5 in our case) and
impute the others, we can further increase the performances;
these last models use 87% of the available samples or more.
This final approach is based on the idea that the imputation
procedure is considered unreliable when the number of avail-
able labels is low, even though the correlation among them
is practically perfect. Similar results can be obtained both for
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TABLE I
PERFORMANCES ON TEST SET WITH DIFFERENT METHOD FOR PATTERNS

OUTLIER DETECTION (POLYNOMIAL RIDGE REGRESSION)

Missing
values

Baseline
outliers

Outlier
detection

Training
set size nRMSE nMAE

0 Drop Keep None 2,058 1.67% 1.27%
1* Drop Drop None 1,805 1.59% 1.19%

2 Imputation Keep None 3,437 1.66% 1.28%
3 Imputation Keep Dataset-level 3,437 1.66% 1.28%
4 Imputation Keep Wafer-level 3,437 1.58% 1.20%

5 Imputation Imputation None 3,437 1.58% 1.20%
6 Imputation Imputation Dataset-level 3,437 1.57% 1.19%
7 Imputation Imputation Wafer-level 3,437 1.59% 1.21%

8 Imputation Drop None 3,014 1.57% 1.18%
9 Imputation Drop Dataset-level 3,014 1.56% 1.16%
10 Imputation Drop Wafer-level 3,014 1.57% 1.18%

11 Threshold Imputation Wafer-level 3,343 1.60% 1.22%
12 Threshold Drop Wafer-level 2,986 1.56% 1.17%

* Baseline model [4]

linear and kernel-based algorithms (with nRMSE of 1.56%
and 1.50%, respectively). The Coefficient of determination
R2 is equal to 0.9842 for the baseline (1) and 0.9846 for
the best approach (12). The increased number of samples
permits to have more robust models in the sense of portion
of input-space explored. We can notice that models 5-7 and
8-10 are similar: with imputation, no matter how the baseline
outliers are corrected (drop/imputed), the nRMSE and nMAE
are very close to each other. In this case, the imputation seems
not to add relevant information. Since the values of these
labels are in the distribution’s tails, the information created
by the imputation on the basis of the remaining pattern may
be irrelevant. Keeping those samples in the training set may
alter the training procedure. We compared the proposed most
promising strategies and the baseline model using the learning
curves for both regression algorithms, as shown in Fig. 4.
The x-axis represents the number of devices characterized
and available in the best case (i.e., when 100% of them are
used for the training); the percentage of actual samples in
the training set with respect to the available devices depends
on the strategy used and reflects the results in Table I. The
y-axis reports the nRMSE of the model on the test set. All
models were evaluated on the same test set, at each step
of the learning curve creation. The learning curves show
that we can reduce the number of devices that need to be
characterized to reach a certain amount of accuracy. Let us
focus on Fig. 4: for the Ridge regression (upper figure), the
yellow curve (corresponding to the model 12 in Table I)
reaches the final accuracy of the baseline method (i.e., 1.59%
of nRMSE, red curve) just after 1,000 samples, and remains
stably below it. This means that just 1,000 samples might have
been characterized for the training, that is less than 30% of the
devices needed for the baseline approach. Similar trends can
be observed with the Kernel Ridge regression (lower figure).
Hence, we can save a great amount of human-time needed for
acquiring the measurements of the labels.

To resume, the imputation technique have the double ad-

Fig. 4. Learning curves of Ridge (upper plot) and Kernel Ridge (lower plot)
models with different types of training sets, tested on the same test set. On
the x-axis, the number of devices characterized (constant), on the y-axis the
nRMSE. The dashed lines are the nRMSE values reached by the baseline
models (1, red) with the maximum number of samples in the training sets.

vantages of 1) minimizing the number of samples dropped,
increasing both the training set size and the performances
and building robust algorithm and 2) reducing the number of
devices to be characterized to reach satisfactory final accuracy,
taking advantage of the different labels available and reducing
the time measurement cost.

VII. CONCLUSIONS

We presented techniques for dealing with anomalous and
noisy values in the labels in the context of MCU performance
screening. The detection of outliers is a fundamental step as
they affect the performances of ML models. Results showed
that imputation is an appropriate approach in this context, since
it can be helpful to increase the number of available samples
for the training procedure. We were able to increase the quality
of existing methods for MCU performance screening, with
the double goal of 1) creating a dataset with a higher quality,
reaching 1.56% of nRMSE using a linear regression algorithm
and 2) reducing the number of devices to be characterized by
a factor of three with respect to the baseline approach. This
work can be extended to other contexts that present errors in
measurements, noise, and high-correlated labels.
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