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1. Introduction

The key goal of Industry 4.0 is to enable the factory of the
future, including new types of intelligent systems and 
automation as well as more flexible collaborative robots [1]. 
Historically, automation in industry has been kept separate 
from human workers for safety reasons, but Industry 4.0 aims 
to support the development of robots being incorporated into 
assembly lines near operators [2]. Accordingly, Human-
Robot Collaboration (HRC) is one of the enabling 
technologies in the framework of Industry 4.0 and it has 
received much attention in recent years due to the growing 
importance of Industry 4.0 related technologies. The main 
objective of HRC is to create an environment where humans 
and robots share the same workspace, the same resources, 
and the same tasks. This collaboration aims to integrate the 
strength, endurance, repeatability, and accuracy of the robots 
with the intuition, flexibility and versatile problem solving of 
the humans [3].

Collaborative robots are the cornerstone of HRC
paradigm. A cobot (union of terms “collaborative” and 

“robot”) is a robot that physically interacts with humans in a 
shared workplace [4]. The distinction between collaborative 
robots and traditional industrial robots is the direct interaction 
with human workers [5]. Thus, the main features that 
distinguish a cobot from a traditional factory robot include 
improved safety features for working in proximity with the 
operator and simplified programming enabling simple 
redeployment within a factory [6]. According to Peshkin et 
al. [4], cobots are also different from teleoperators, in which 
a human operator controls a robot and payload remotely.

HRC is a key strategy that may be applied to many 
manufacturing industries as it supports the effective use of 
existing resources through the integration of new 
technologies [7]. However, introducing HRC into assembly 
lines is complicated. Advanced tools are required to help 
assembly line designers better understand the requirements 
of both humans and robots in different situations [2]. 
Nowadays, collaborative robots are mainly used in product 
assembly processes. This is due to the cobots’ ability to 
relieve human operators from tedious and repetitive tasks by
integrating precision, repetitiveness, and flexibility, reducing
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operators physical and cognitive workload. As a result, using 
HRC in assembly processes leads to higher overall 
productivity and better product quality [3]. 

Despite the above benefits, in human-robot collaborative 
assembly there is the risk of defects occurring due to the 
wrong communication between humans and robots. In 
manual assembly, human operator is responsible for most 
non-conformities, whereas in automatic assembly most non-
conformities may be generated by program errors. HRC risks 
combining the defects of manual assembly with those of 
automatic assembly, in addition to specific defects due to 
communication errors [8]. This introduces the need for
developing suitable defects generation models in human-
collaborative environment in order to maximize the benefits 
of HRC. Indeed, it is well known that defects generated in 
assembly process heavily affect product final quality and cost 
[9].

This paper presents a preliminary investigation of defects 
generation in human-robot collaborative assembly. The main 
objective is to compare the performances achieved in HRC
assembly with those obtained in purely manual assembly. In 
detail, two experimental campaigns were conducted to 
investigate the effects of the assembly typology on defects 
generation and assembly times.

2. Background and research gap

Quality is one of the most important factors in the 
customer’s selection process among competing products. 
Accordingly, implementing and improving quality control 
are key factors leading to business success [10]. 
Additionally, quality inspections are performed in almost 
every production system to prevent nonconforming products 
from reaching final customers or end-users. In fact, the firm’s 
ability to compete may be compromised if a defective 
product reaches the customer [11]. In this context, 
collaborative robots’ versatility, as well as their affordability, 
makes them a suitable choice for quality control in a wide 
range of applications. 

Collaborative robots are significantly lighter than 
industrial robots and, as a result, it is easier to move them 
within the factory floor. Moreover, cobots require little space 
and are suitable for integration into existing resources. This 
enables in-process control, i.e., quality control performed 
during production, that prevents defective from reaching the 
end of the line. Therefore, no space is required at the end of 
the line for offline inspections. Accordingly, in-process 
control is an opportunity to make production systems more 
efficient and bring advantage to today’s competitive market 
[11]. 

The types of quality inspections based on HRC are 
manifold. The most widely used is the visual inspection with 
a camera. Indeed, many simple visual inspections performed 
previously by human workers can be easily replaced and 
improved by mounting a camera on the arm of the cobot. For 
instance, in the study of Muller et al. [12], the main objective 
is to perform a water leak test on the final assembly of a car 
manufacturing line. A water leak test is expensive and 
inefficient as the car has to be watered for a long time and 

human eyes cannot detect small infiltration. By incorporating 
a thermographic camera into the robotic arm, water leakages 
could be detected more accurately, avoiding non-ergonomic 
tasks for the operator. In such a collaborative environment, 
the only task of the operator is to guide the cobot through the 
different areas within the vehicle. Another example is
proposed by El Makrini et al. [13]. The paper introduces a 
collaborative architecture between human and robot on an 
assembly task. The process consists of assembling and 
simultaneously inspecting a box. During the assembly, the 
collaborative robot picks up the appropriate plate, hands it to 
the human and holds the semi-assembled box. On the other 
hand, human operator correctly positions the plate and 
screws it onto the semi-assembled box, while the cobot 
checks the quality of the assembly through a visual camera. 
This collaborative assembly involves in-process quality 
control to prevent that non-conforming parts reach the end of 
the line.

Another HRC opportunity for quality control is the 
adoption of machine learning techniques to improve cobot
capabilities. An example is proposed by Doltsinis et al. [14], 
where a complicated snap-fit mechanism is considered. The 
main problem is that the quality control inspection of a snap-
fit assembly is done by the human workers listening to the 
snapping sound during the insertion process. Consequently, 
it is difficult for the cobot to learn this procedure since it is 
not able to hear. The paper proposes a method in which a 
cobot arm equipped with a force sensor is trained by the 
operator through several experiments. The goal is to raise the 
cobot awareness of the force applied in correct and incorrect 
insertion. Once the collaborative robot is trained, the 
assembly process can be carried out autonomously by the 
cobot.

HRC for quality control and inspection processes has 
increased with the emergence of Industry 4.0. However, 
compared to the various uses of collaborative robots in 
manufacturing, quality control still plays a minor role. In 
addition, some articles covering the topic, lack a real and 
consolidated industrial application. Indeed, being a topic of 
recent research interest, the approaches developed have not 
yet been fully adopted and validated in real industrial 
applications.

3. Assembly modelling

In recent years, several studies focused on the problem of 
defect generation in assembly manufacturing processes, 
since the presence of defects may compromise the final 
product quality. The development of suitable defect 
generation models is crucial in manufacturing industries, 
having the dual purpose of predicting defects and planning 
effective quality controls [11]. As a result, quality control has 
become one of the most important issues in modern 
manufacturing and assembly defect generation models are 
required to prevent the occurrence of defects during the 
process [15]. Nowadays, defect generation models are
widely used in manual assembly, and it is well known that 
there is a close connection between assembly complexity and 
operator-generated defects [16].



Stefano Puttero  et al. / Procedia CIRP 118 (2023) 247–252 249

The present paper aims to investigate defect generation 
models in a human-robot collaborative environment to 
compare quality performances achieved in purely manual 
assembly. In order to study the defects generation both in 
manual and collaborative assembly, the assembly of organic 
molecular structures is considered. These structures are 
typically considered in the literature to effectively emulate 
real assembly products, as they can be assembled from 
elementary components as for industrial products [17]. 
Molecular structures emulate the corresponding products by 
using atoms to represent product constituent parts and bonds 
to represent the connections. In the reference literature, 
molecular assembly is adopted to minimize confounding 
effects typical of real productions and to replicate real 
assembly in a controlled way [17]. These molecular models 
were used to model the complexity of the corresponding 
physical products and relate it to the performance of the 
manufacturing process. For the purposes of this paper, the 
number of parts (including both atoms and bonds) is used as 
a reasonable indicator of product complexity. Indeed, the 
greater the number of parts, the greater the complexity of the 
molecules [17].

Using the molecules as products to be assembled, 
experimental tests performed only by human operators and 
in collaboration with cobots were carried out, allowing a 
comparison between the two types of assembly to be drawn.

4. Experimental setup and procedure

The effects of assembly type on defects generation and 
assembly time have been investigated through the 
implementation of two different experimental campaigns. 
The first campaign is the manual assembly where human 
operators had to assemble manually the different structures. 
During the assembly, human operators did not follow a 
specific assembly sequence and they were free to implement 
their own assembly strategy. In these experiments, the ability 
of individual operators was emphasized. The second 
campaign involves the human-robot collaborative assembly 
in which human operators were supported by collaborative 
robot to assemble the structures. The same molecular 
structures of manual experiments were considered. In HRC 
assembly, the cobot passed the parts one by one to the 
operator following a predefined strategy. The operators were 
tasked to assemble the structures by joining the parts at the 
rate defined by the cobot. Therefore, operators were tied to 
the cobot’s sequence and could not define their own strategy.

During the experimental tests of both campaigns, 
assembly time and defects were collected, as will be 
discussed in detail in Section 5.

4.1 Assembled structures

The main characteristics of organic molecular structures 
assembled during the experiments are summarized in Table 
1. In Table 1, for each structure, the ID and the molecular 
formula are specified, as well as the number of atoms and 
bonds, and the detailed quantities, subdivided per typology, 
of atoms (carbon, hydrogen, oxygen, nitrogen and sulphur) 
and bonds (single or double). The number of parts reported 
in Table 1 refers to the sum of the number of bonds and atoms 
that compose the structures.

Participants of both manual and human-robot 
collaborative assembly were tasked with assembling the six 
molecular organic structures in Table 1 using a molecular 
modelling kit (Orbit™ by 3B Scientific®). This kit is 
composed of different atoms (i.e., balls) and bonds (i.e.,
sticks). Concerning the bonds, two different typologies were 
considered during the experiment: single covalent bonds 
(rigid connectors) and double covalent bonds (flexible 
connectors). On the other hand, five different typologies of 
atoms were considered: carbon (grey), hydrogen (white), 
oxygen (red), nitrogen (blue) and sulphur (yellow).

4.2 Manual assembly

In the manual experimental campaign, operators were 
tasked to assemble the six molecular structures manually.
Before the tests, an equipped assembly workstation was 
prepared, and some preliminary information were provided 
to the operators. In the workstation, each type of atom and 
bond was placed in a specific box, where operators picked up 
the parts according to the given assembly instruction. During 
the experiment, operators used 2D and 3D molecular work 
instructions as an assembly guide (see Fig. 1). The 3D 
instruction could be rotated in the space, allowing molecules 
to be seen from different perspectives. Each operator could 
define its own strategy for assembling and completing the
represented structures, thus minimizing the effect of 
sequence complexity.

Fig. 1. 3D representation of molecular structures ID A and ID F.

Table 1. Six organic molecular structures assembled during both manual and HRC experimental campaigns and their characteristics.

ID Molecular 
formula

Number 
of parts

(Np)

Number 
of atoms

Number 
of bonds

Carbon
(C)

Hydrogen
(H)

Oxygen
(O)

Nitrogen
(N)

Sulphur
(S)

Single 
bonds

Double 
bonds

A C2H4 11 6 5 2 4 - - - 4 1
B C2H17NO6 93 44 49 20 17 6 1 - 42 7
C C33H46O5 169 84 85 33 46 5 - - 76 9
D C46 H70O 234 117 117 46 70 1 - - 106 11
E C50 H64N2O12 261 128 133 50 64 12 2 - 119 14
F C43H66N12O12S2 272 135 137 43 66 12 12 2 123 14
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A total of 52 assembly operators were involved, selected 
from the students of the course “Quality Engineering” of the 
Master of Science in Management Engineering at Politecnico 
di Torino. All the participants had no previous industrial 
assembly experience. The experimental campaign was 
organized over 8 days in the period between October and 
December 2021. The assembly of each ball-and-stick model 
was repeated one time by each operator, and all the six
structures were assembled by following a random order. As 
abovementioned, the operators were free to assemble by 
deciding their own strategy. There was no optimal reference 
strategy, thus the experiment showcased the individual skills 
of the operators. During assembly, a quality controller was 
responsible for recording assembly time and defects of each 
structure. Assembly time is the time needed to complete the 
structure. Concerning defects, both process and product 
defects were considered. Process defects are those occurring 
during assembly, involving disassembling one or more parts,
and repeating the operations to correctly complete the 
structure. Product defects were identified by the controller on 
the finished structure by comparing the number of parts of 
the assembled structure with the reference values shown in 
Table 1. Each extra or missing part was counted as a defect.

4.3 Human-robot collaborative assembly

The experimental campaign involving the collaboration 
between operator and cobot was performed using a single-
arm collaborative robot UR3 (Universal Robots ™) equipped 
with OnRobot RG6 flexible two fingers robot gripper
(OnRobot™). In Table 2, the cobot and gripper parameters 
used in the experiment are reported. For fields not specified, 
the symbol “-” is used. MoveJ and MoveL are two different 
types of movement that the collaborative robot can adopt. 
MoveJ involves a movement in which each joint of the cobot 
reaches the desired end location at the same time. This 
movement type results in a curved path for the tool. The two 
parameters that apply to this movement type are the 
maximum joint speed and joint acceleration, expressed in °/s
and °/s2, respectively. On the other hand, MoveL makes the 
tool move linearly between waypoints. The two parameters 
that have to be set for this type of movement are the desired 
tool speed and tool acceleration, expressed in mm/s and 
mm/s2, respectively. Concerning the gripper, the shared 
parameters are the distance between the two fingers when the 
gripper is open and the clamping force used to close the 
gripper, expressed in mm and N, respectively [18]. 

Table 2. Cobot and gripper parameters used in the experimental campaign.

Tool
MoveJ 
speed 
[°/s]

MoveJ 
acc. 
[°/s2]

MoveL 
speed 

[mm/s]

MoveL 
acc. 

[mm/s2]

Distance 
[mm]

Force 
[N]

Cobot 200 200 200 200 - -
Gripper - - - - 25 80

Since the cobot was unable to recognize parts, being not 
equipped with visual recognition systems, the workstation 
was organized by dividing the parts into several columns, as 
shown in Fig. 2. Fig. 2 also compares the workstations used 
in the HRC assembly and manual assembly. During the 

experiments, the collaborative robot took the parts from the 
columns and passed them to the operator following a priori
defined order. Human operators connected the different parts 
together in the order defined by the cobot. The cobot was in 
control of the assembly process and dictated assembly time, 
but the operator could stop the process at any time. The 
MoveL movement was used for vertical moves (e.g., to pick 
up the parts from the columns or to deposit the parts in the 
storage area, where the operator picked up the parts for 
assembly), being a linear and controlled movement, while 
the curved and faster MoveJ movement was used for all other 
moves (e.g., to move the parts, after picking them up from 
the columns, over the storage area).

Fig. 2. Workstation of (a) manual assembly and (b) HRC assembly.

A total of 10 participants with no previous industrial 
assembly experience were involved in the experiment. The 
experiment was organized over 10 days in the period 
between February and March 2022. Each molecular structure 
was assembled one time by each operator in random order.
All participants were provided with some introductory 
information about the cobot and its role in the experiment. In 
addition, a precedence diagram was given to the operators to 
follow the assembly order (see Fig. 3). It represents the order 
in which the collaborative robot passes the parts to the 
operators. On each arrow, there is a number that indicates the 
order in which the assembly should be completed, while in 
the circles the name of atoms followed by an identifier 
number is reported. Human operator had to follow this 
sequence until the structure was completed.

Fig. 3. Example of the precedence diagram of molecular structure ID A.

In each test, defects occurring during the assembly 
process were recorded. Any wrongly positioned or 
repositioned part was considered a product defect. In 
addition, if the operator was unable to maintain the assembly 
rate, the cobot could be stopped and each part remaining in 
the storage area (because not yet assembled) was considered 
an assembly defect. Moreover, defects attributable to the 
cobot due to non-execution, or incorrect execution, of the 
task were also accounted for. At the end of the assembly, the 
assembly time was also recorded.
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5. Experimental data analysis and discussion

In order to compare the results obtained in the two 
experimental campaigns, manual and with HRC, the 
boxplots of assembly time and total defects are reported in 
Fig. 4. In the boxplots, the single values collected during the 
experiments for each molecular structure, identified by the 
number of total parts (Np), are represented. It has to be noted 
that for both assembly time and total defects there is a large 
difference in the dispersion of data between manual and HRC 
scenarios. The difference is more pronounced for structures
composed of many parts, whereas for few parts structures
this difference is less evident. Moreover, in manual 
assembly, the variability of times and defects increases more 
than proportionally as Np increases. In contrast, in the 
collaborative scenario, the variability appears to be unrelated 
to the assembled structure. Such a high difference in data 
variability between the two scenarios may be attributed to the 
difference in cognitive effort that the two experiments 
required. Indeed, in the manual assembly, time and defects 
variability increase more than proportionally with increasing 
parts due to the high cognitive effort of complex structures. 
On the contrary, the presence of the cobot in the HRC 
scenario reduces the cognitive effort of operators, as they do 
not have to find assembly strategies and choose the correct
parts to assemble, resulting in a significant reduction in data 
variability. Accordingly, the introduction of cobot, leading to 
a reduction in variability, may bring an advantage also to the 
manufacturing context. Indeed, it is known that greater 
variability leads to lower product quality [10].

Fig. 4. Boxplots of (a) assembly time and (b) number of total defects.

To identify significant differences between manual and 
HRC results, hypothesis tests at 95% confidence level were
implemented. Firstly, a t-test on the difference between the 
means of assembly time and total defects of manual and HRC 
assembly is performed [10]. The test is performed assuming 
different variances between manual and HRC populations. 
This test aims to determine whether the differences between 
the means of the experiments of the two experimental 
campaigns is statistically significant. Secondly, a 
comparison of the variability of data obtained in manual and
collaborative assembly is performed through a Levene’s test 
[10]. The Levene’s method is used when the samples have 
less than 20 observations and populations cannot be 
considered normally distributed [10]. In Table 3, the p-values 
obtained in each hypothesis test is provided, separately for 
assembly time and total defects. In Table 3, when p-values 
cannot be calculated since data are identical, the symbol “-” 
is used. Considering a significance level of 5%, the 

difference between manual and collaborative assembly 
results is statistically significant if the p-value is less than 
0.05. In Table 3, the differences between the means and the 
variances statistically significant are written in bold.

Table 3. p-value of t-test and Levene’s test hypothesis tests on assembly 
time and total defects of manual and HRC experimental results. 

Assembly time Total defects

ID t-test p-
value

Levene’s 
test p-value

t-test p-
value

Levene’s 
test p-value

A <0.0005 0.362 - -
B 0.003 0.349 0.132 0.139
C
D
E
F

0.019
<0.0005

0.046
<0.0005

0.008
0.021
0.005
0.002

0.009
0.003
0.180

<0.0005

0.122
0.071
0.272
0.007

Regarding assembly time, the differences of means are 
statistically significant for all the structures. On the other 
hand, the difference of variances is significant starting from 
the structure ID C. Such pronounced differences are also due 
to assembly time constraints. In manual assembly, the lower
limit is driven by physical constraints of operators to pick up 
the parts. For HRC assembly, the lower limit is the cycle time 
of the cobot to pick up and pass all parts. In both cases, 
however, the maximum assembly time is not limited and 
depends on the errors that occur in the assembly process. 
Consequently, since the number of defects in HRC assembly 
is generally lower, the maximum assembly time in HRC is 
smaller. Regarding defects, significant differences are 
observed for structures with high number of parts due to the 
drastically reduction of operator cognitive effort. It would be 
necessary to investigate this aspect further by considering
more complex structures and verifying whether the cobot 
brings higher benefits when the complexity increases.

Regression analyses were performed to evaluate trends in
times and total defects for both manual and HRC assembly, 
considering average values. In Fig. 5, the most suitable 
regression curves in terms of residual analysis and goodness-
of-fit test are represented, with the relevant 95% confidence 
and prediction intervals. It has to be noted that 95% 
confidence and prediction intervals are limited to zero since 
time and defects cannot assume negative values.

Fig. 5. Regression curves of average assembly time and average number of 
total defects for manual and HRC assembly.
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As shown in Fig. 5, HRC average assembly time and defects 
follow a linear trend, while manual ones follow a power-law 
trend, in line with previous studies in the field [15-17]. 
Indeed, in manual assembly, time and defects increase more 
than linearly compared to the number of parts, whereas in 
HRC assembly the growth is linear. These trends confirm 
that in the collaborative assembly the cognitive effort 
required to the operator is maintained almost constant in all 
the structures, and this does not involve a power growth of 
times and defects.

6. Conclusion and future work

In recent years, the interest in collaborative robots has 
grown exponentially thanks to their light weight, flexibility, 
and precision, enabling industries to be more productive and 
efficiently respond to market needs. However, compared to 
the various application of collaborative robotics in 
manufacturing (e.g., material handling, pick and place and 
positioning), quality control still plays a marginal role. 
Indeed, literature on quality control in HRC is scarce and 
lacks real application cases. Thus, there is an stringent need 
to further investigate the field of quality control in the HRC 
framework and define suitable defect generation models.

This paper investigates the effects of the assembly type on 
defects and assembly time. In detail, purely manual assembly 
was compared with human-robot collaborative assembly. 
Two experimental campaigns were conducted, using six 
different ball-and-stick molecular models. The experimental 
results showed that manual assembly data are generally 
affected by greater variability than collaborative assembly 
data. Furthermore, using collaborative robots in assembly 
processes lead, on average, to a reduction of time and defects,
especially for complex structures. On the other hand, cobots 
seem to be less beneficial when dealing with simple 
products. Moreover, it was shown that collaborative 
assembly time and defects increase linearly with the number 
of parts, while in HRC assembly they grow superlinearly. 
Thus, the cobot, by supporting the operator, prevents time 
and defects from increasing sharply with the complexity of 
the structures. A limitation of the present study is that in 
manual assembly, the choice of the most appropriate strategy 
was left to the operator, whereas, with the use of the cobot, a 
single optimal strategy was adopted for each structure. In 
future work, cobot capabilities will be enhanced through 
machine learning, allowing it to recognize the parts and 
autonomously choose the optimal strategy from among 
several available. In addition, real assembly processes and a 
wider range of products will be considered in order to verify 
the trends identified in this preliminary study.
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