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ABSTRACT
The ability to correctly identify areas damaged by forest wildfires
is essential to plan and monitor the restoration process and esti-
mate the environmental damages after such catastrophic events.
The wide availability of satellite data, combined with the recent
development of machine learning and deep learning methodologies
applied to the computer vision field, makes it extremely interesting
to apply the aforementioned techniques to the field of automatic
burned area detection. One of the main issues in such a context
is the limited amount of labeled data, especially in the context of
semantic segmentation. In this paper, we introduce a publicly avail-
able dataset for the burned area detection problem for semantic
segmentation. The dataset contains 73 satellite images of differ-
ent forests damaged by wildfires across Europe with a resolution
of up to 10m per pixel. Data were collected from the Sentinel-2
L2A satellite mission and the target labels were generated from
the Copernicus Emergency Management Service (EMS) annota-
tions, with five different severity levels, ranging from undamaged
to completely destroyed. Finally, we report the benchmark val-
ues obtained by applying a Convolutional Neural Network on the
proposed dataset to address the burned area identification problem.

CCS CONCEPTS
• Computing methodologies → Image segmentation; Supervised
learning; • Applied computing → Earth and atmospheric sciences.

KEYWORDS
earth observation, machine learning, deep learning

1 INTRODUCTION
Natural resources are limited and fundamental assets that must be
preserved. Public entities and governments are constantly mon-
itoring catastrophic events to preserve natural diversity and the
environment, limiting as much as possible short- and long-term
damages. Furthermore, once a catastrophic event such as a forest

wildfire occurs, planning the post-event restoration process repre-
sents a fundamental activity to be held to contrast climate change.
In this context, in-situ data acquisitions are often preceded by re-
mote sensing, data gathering, and analyses performed jointly with
computer vision techniques to help domain experts promptly iden-
tify areas of interest that require immediate support. Thanks to the
great data availability and the development of deep learning algo-
rithms, the Earth Observation (EO) domain represents an attractive
research field in many different topics: disaster management and
crisis response, agricultural monitoring, and change detection.

Natural hazards are a relevant cause of economic, humanitar-
ian, and environmental losses. In the field of EO, change detection
algorithms are largely adopted to identify land cover changes or
natural calamities occurrences [3, 12, 18, 25, 26, 38], whereas other
techniques and models are known to be well-suited for flood detec-
tion [9, 30, 37] and burned areas delineation [11, 23, 39].

Remote sensing enables domain experts to perform preliminary
analyses and damage assessments immediately after the calamity
ended, without the need for time-expensive in-situ analyses thanks
to the availability of (open) data acquisitions with good resolutions,
generally ranging from 10m to 30m [41]. Satellite images allow
analyzing and characterizing extended areas for multiple purposes,
such as aerosol characterization [5], air quality monitoring [42, 43],
vegetation monitoring [8, 44].

The main difficulty, especially in the context of crisis manage-
ment, is the limited availability of labeled data necessary to train
deep learning models. In this paper, we introduce an open dataset
that can be used for (i) the burned area delineation task and (ii) the
damage severity estimation task. The first task consists in identify-
ing the burned areas after a wildfire, while the second task focuses
on also estimating the severity of the damage. In the dataset we col-
lected, the severity level is an integer value ranging from 0 (undam-
aged area) to 4 (completely destroyed area). It was built leveraging
on the information provided by Copernicus EMS [1] RapidMapping,
Sentinel Hub service [2], and Sentinel satellite missions. The dataset
spans over five different European countries, covering different soil
types, with a total number of 73 regions at different points in time.
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Information is gathered from Sentinel-1 and Sentinel-2 missions.
To the best of our knowledge, no similar open dataset is available
in the context of burned area delineation. The dataset is publicly
available at https://doi.org/10.5281/zenodo.6597139 while the
example code to load the data and apply a baseline deep learning
model is available at https://github.com/lccol/burned-area-baseline.

Section 2 introduces the related work, Section 3 describes the
dataset, the geographical distribution of the monitored areas, and
the damage severity class distributions. Section 4 introduces some of
the tasks that can benefit from the proposed dataset, while Section 5
provides a benchmark for the binary segmentation problem. Finally,
Section 6 concludes the paper.

2 RELATEDWORKS
In the Earth Observation domain, before the development of com-
puter vision based on Convolutional Neural Networks, satellite
imagery analysis was mainly based on spectral index computa-
tion and analysis. Considering the case of burned area delineation,
different studies proposed an in-depth comparative analysis of
different vegetation and burned area indexes [13, 32, 40] and au-
tomatic detection techniques to identify damaged regions based
on thresholding [4, 14, 20, 27, 34]. Furthermore, beyond the burned
area delineation problem, it is extremely important the ability to
estimate severity levels to assess damage to vegetation in case
of widespread wildfires. Such a problem is often tackled by ana-
lyzing the relatedness between different burned area indexes and
the Composite Burned Area Index (CBI) [7, 19, 31, 36], which is
computed by experts after in-situ data measurements and thus is
extremely time-expensive to obtain. Additionally, the robustness of
calibrated methodologies on a specific area to estimate the severity
levels from remote sensing data is not assured to produce good
results when applied to new regions [7]. Over the years, several
methodologies have been proposed based on supervised learning
algorithms [10, 11, 21, 33] to tackle both the delineation and sever-
ity estimation problem. The proposed supervised approaches have
proven to be well-performing and require fewer data preprocessing.
However, the main drawback of such approaches is the need for a
great amount of data, possibly spanning over multiple regions and
countries. Despite multiple methodologies being proposed in the
literature, many researchers analyzed forest fires within a restricted
number of countries [6, 15, 17], making it difficult to quantitatively
compare different methodologies. Furthermore, the data used are
rarely made public.

3 DATASET
Motivated by the lack of labeled datasets representative of different
countries, we created a raster dataset consisting of different burned
areas spread across Europe. For each of the monitored wildfires,
data were retrieved from the Sentinel-2 L2A and Sentinel-1 GRD
missions in a timespan of 2 months given the activation date of each
wildfire provided by Copernicus EMS: 1 month prior and 1 month
after the activation date. More specifically, Sentinel-1 data was
acquired in IW mode with VV+VH polarisation. The images within
the defined temporal range have been selected to (i) be available
for at least the 90% of the desired AoI defined by the delineation,
and (ii) cloud coverage must not exceed 10% of the acquisition.

Figure 1: Sentinel-2 RGB acquisition with missing informa-
tion (left) and its corresponding validity mask (right).

The dataset was collected starting from the Rapid Mapping prod-
ucts publicly released by Copernicus EMS, from which the semi-
automatic annotations are collected for each wildfire event and
the ground truth labels for our semantic segmentation task are
generated. In the following paragraphs, the data retrieval process
is described, as well as the main characteristics of the dataset and
the class distribution.

3.1 Data retrieval
The dataset was collected from the information provided by the
products released by the Rapid Mapping team at Copernicus EMS,
considering the forest wildfire type of events only. Such vector
data completely describes the affected regions, providing useful
information also in the land cover domain, such as the presence of
roads, buildings, and agricultural areas. The vector data of interest
for burned area delineation is the following: bounding box and
delineation of the areas damaged by the wildfire with the associated
severity level.

Given such coordinates and the activation date of a wildfire,
we relied on SentinelHub [2] to download the Sentinel-2 L2A and
Sentinel-1 GRD data available one month before and one month
after the activation date. Each downloaded product available in
the dataset is associated with a prefix, a date, and a validity mask
(coverage), with the prefix being the product name itself (e.g., sen-
tinel2), the date being the point in time in which the product was
acquired from the satellite, and the validity mask (stored as the
last channel of the product itself) being a binary mask indicating
whether a pixel value is valid or not (1 for valid, 0 for invalid pixel).
Invalid pixels are returned in case no valid data was found by the
SentinelHub service at a certain date in the requested area of inter-
est. An example of a Sentinel-2 product with missing information
and corresponding coverage mask is shown in Figure 1.

We downloaded the satellite imagery with the highest possible
resolution, up to a maximum of 5000x5000 pixels. We decided to
download the data available one month before and one month after
the activation date to have information about the pre- and post-
wildfire events, which is needed if we are interested in applying
change detection algorithms. Lastly, the downloaded products were
manually analyzed to determine whether they contained useful
information for the prediction task, i.e., images where the area of
interest was covered with clouds or where data was absent were
discarded.

To generate the ground truth mask necessary for the semantic
segmentation task, we leveraged the vector data of Copernicus
annotations: the coordinates of the area of interest and the bound-
ing box. Such information was used to produce grayscale images
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Figure 2: Forest wildfires event distribution in the dataset.

Figure 3: Pre-fire (top) and post-fire (bottom) samples with
different morphological features and lighting conditions.

representing pixel-by-pixel damage severity levels. Ground truth
masks have the same resolution as the downloaded products.

3.2 Dataset characteristics
The dataset is composed of 73 different forest wildfires, from 2017 to
2019, spread across Europe (Figure 2), for a total area of∼ 19.000km2

with different morphological features and terrain types. Domain
experts may leverage Sentinel information to perform preliminary
analyses, data cleaning, and lighting condition normalization to
improve the robustness of the proposed solutions and assess the
performance of machine learning-based methodologies. The areas
of interest are mainly covered by forests. In some acquisitions,
human settlements and buildings are also present. Some examples
are shown in Figure 3.

Diversity in geographical locations and terrain types underlines
the importance of developing new methodologies compared to
the simplest threshold-based classification, which suffers from the
difficulty of finding a unique threshold and a unique index valid
for every region worldwide [13]. As a motivating example, we
consider the NBR2 burned area index, defined as follows on Sentinel-
2 data:𝑁𝐵𝑅2 = 𝐵11−𝐵12

𝐵11+𝐵12 , where 𝐵𝑁 stands for band𝑁 of Sentinel-2.
Figure 4 represents the NBR2 index distribution of two different
burned areas: one in Sweden (depictedwith blue curves), one in Italy,
near the volcanic area of Vesuvio (depicted with red curves). In such

cases, the definition of a single threshold to classify burned areas,
which is valid for both cases of the NBR2 index is not a trivial task.
This high-level analysis shows the diversity in the collected data
and, hence, its potential usefulness to assess the quality of different
burned area detection techniques under different conditions.

Figure 4: Burnt vs Unburnt pixel distribution for NBR2 index.
Darker curves represent undamaged areas, lighter curves
represent burnt areas instead.

3.3 Severity classes
Annotations released by Copernicus specify 5 different severity
levels, which were encoded in a greyscale image in range [0− 255],
from no damage to completely destroyed area.

Such classes are highly imbalanced: unburnt areas are the 91.9%
of the whole images. Focusing on burnt areas only, class 1 covers
around the 12%, while class 2 to 4 coverages stay around 30% (1%,
2.25%, 2.35%, and 2.5% of the total, respectively for the 4 classes).

4 TASKS
In the experimental section, we focus on the benchmarking of one
specific segmentation problem: the burned area delineation task
based on post-fire imagery only. However, our dataset can be a
valuable resource for benchmarking several tasks.

Some of the tasks that can be performed on our dataset are:
• Burned area delineation based on post-wildfire imagery only
and supervised techniques. In this scenario, a machine learn-
ing algorithm is trained on the post-wildfire images only and
is used to predict for each pixel of the satellite acquisition if
it represents a burned or an unburned area.

• Damage severity estimation based on post-wildfire imagery
only and supervised techniques. This task is similar to the
previous one. However, the damage severity level is predicted
for each pixel of the analyzed post-wildfire images.

• Burned area delineation based on pre- and post-wildfire im-
ages and supervised or unsupervised techniques. For the
unsupervised case, change detection techniques can be used
to identify burned areas by comparing pre- and post-wildfire
images. Labeled data can be used to either assess the per-
formance of the proposed unsupervised approaches or train
and assess the quality of supervised methods.

• Comparison of different spectral indexes and evaluation of
separability by means of separability index [22, 28].
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5 EXPERIMENTS
To assess the complexity and quality of the proposed dataset and
to provide reference performance values, we report the prediction
results for a baseline model. Considering the semantic segmenta-
tion task, we chose the UNet [35] architecture for our evaluation
and compared it to the Otsu method [29] on NBR2. It demonstrated
state-of-the-art performances in many segmentation tasks [16, 24],
including burned area delineation [11]. The experiments were per-
formed using only post-fire Sentinel-2 acquisitions.
Data pre-processing Being the satellite images in the proposed
dataset of variable pixel resolution, we decided to generate 512x512
resolution tiles from the data and perform a random shuffle before
training. The total number of tiles is 957. Partial overlap was ad-
mitted only when the original image was not a multiple of size 512
pixels. In this case, the second-to-last and last tiles overlap. Data
were split into 7 folds according to geographical location, such that
data belonging to the same fold maintains similar morphological
features.
Data augmentation During the training phase, random data aug-
mentation methodologies were applied to improve the performance
and robustness of the model. We applied the following transforma-
tions: rotation (up to 50° on both sides), shear (up to 20°), horizontal
flip, and vertical flip, all of them with a probability of 50%.
Training configurationWe used a system with 128GB of RAM
and an NVIDIA Tesla V100 with 16GB. The training was performed
using 50 epochs, the Adam optimizer with a learning rate of 0.0001
with no weight decay. The Dice loss was used for training. To
evaluate the performance, a 7-fold cross-validation approach was
chosen: 5 folds were used as a training set, 1 fold as a validation
set, and 1 fold as a test set. We implemented an early stopping
mechanism with patience of 5 epochs and tolerance of 0.01 on
validation loss. The final evaluation is performed on the test set.
Experimental results Table 1 shows the results achieved by the
UNet architecture and the Otsu method in terms of accuracy, preci-
sion, recall, and F1-score on every test fold. The UNet achieves good
results in the majority of the folds, being the lime fold the worst
performing one. Such fold contains acquisitions from wildfires that
took place in Southern Italy, including two volcanic areas (Etna and
Vesuvio). The low performance is mainly due to the difficulty of
correctly identifying burned areas in such aforementioned volcanic
areas and by the presence of small burned regions. Three examples
are shown in Figure 5. The first two examples show two areas near
a volcano, with a high overestimation of burned areas. The last
example represents an area with different small burned regions that
are not correctly identified by the model. Otsu achieves low results,
confirming the low quality of threshold-based techniques.

6 CONCLUSIONS
In this paper, we introduced an open dataset for the burned area
delineation and severity estimation task. The dataset covers over 70
regions in Europe with different morphologic features. Data span
over two years (from June 2017 to July 2019) and were collected
from two different satellite missions: Sentinel-2 and Sentinel-1.
Furthermore, since data collection may return incomplete products
with missing information, all data available is associated with a
binary coverage mask, indicating invalid pixel values.

Test Accuracy Precision Recall F1-score
fold UNet Otsu UNet Otsu UNet Otsu UNet Otsu

coral 92.0 75.3 82.9 62.6 97.2 73.9 89.5 67.8
cyan 91.4 82.3 79.0 55.8 80.4 76.1 79.7 64.4
grey 95.0 73.6 70.4 27.5 97.3 80.3 81.7 41.0
lime 92.2 59.0 35.6 8.4 86.9 80.1 50.6 15.1
magenta 94.3 79.4 80.1 51.8 98.5 88.9 88.3 65.5
pink 96.4 79.9 84.8 45.3 97.4 65.3 90.7 53.5
purple 97.5 66.3 86.1 23.5 93.0 90.5 89.4 37.4

Mean 94.1 73.7 74.1 39.3 93.0 79.3 81.4 49.2
Median 94.3 75.3 80.1 45.3 97.2 80.1 88.3 53.5
Std dev 0.02 0.08 0.18 0.20 0.07 0.09 0.14 0.19

Table 1: Performance for each test fold. Values are expressed
in %.

Figure 5: Samples obtained from lime fold: RGB acquisition
(top), ground truth (center) and prediction (bottom).

We believe this dataset can be beneficial to researchers and pub-
lic authorities for many tasks, such as recovery planning, constant
monitoring of affected areas, and the development of deep learn-
ing models for severity estimation. The dataset is made publicly
available to encourage future use and research activities.
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