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Abstract 

The hybrid electric vehicle aims to minimise energy consumption and 𝐶𝑂2 
emission. This goal should be achieved without compromising battery operating 
limits to avoid the risk of thermal runaway and to minimise ageing. Accurate state 
of charge (SOC) estimation plays a crucial role in reducing this risk and in 
decelerating battery ageing. A model-based SOC estimator is designed with a sigma 
point Kalman filter (SPKF) and experimentally validated under dynamic load 
conditions with an estimation root means square error (RMSE) of 2.2%. 

The state of health (SOH) of the battery is monitored at regular intervals to keep 
track of the battery health status and to improve SOC estimation accuracy across 
the battery cycle life. As a starting point, SOH estimation is experimentally 
analysed under constant load conditions using the parallel layer extreme learning 
machine (PL-ELM) at room temperature. This solution demonstrates an improved 
generalisation of SOH estimation for the set of cells in a battery pack. Optimum 
RMSE of 0.064% to 0.473%, and the mean absolute error of 0.034% to 0.355% are 
verified. The algorithm was tested on a Texas F28379D microcontroller unit 
(MCU) board with an average execution speed of 93 µs in real-time, and 0.9305% 
CPU occupation. 

Furthermore, SOH estimation is analysed under dynamic load conditions using 
the ANN-based classifier at room temperature. The classifier is validated 
experimentally under dynamic varying load, constant load, and step load 
conditions. The model accuracies for validation data are 96.2%, 96.6%, and 93.8% 
for the respective load conditions. It is further demonstrated that the model can be 
applied to multiple cell types of similar specifications with an accuracy of about 
96.7%. The classifier was tested on a Texas F28379D microcontroller unit board. 
The result shows that an average real-time execution speed of 8.34 µs is possible 
with a negligible memory occupation. 

Finally, to achieve the HEV goal of minimising energy consumption and 𝐶𝑂2 
emission, an electro-thermal model of a lithium-ion battery is developed for energy 
storage and for defining the battery operating constraints. Energy optimization is 
performed in presence of these constraints for P2 HEVs using an adaptive model 
predictive control (MPC) strategy. The simulation results of the HEV SUV (Mazda 
CX9 2016) demonstrate that, by applying thermal constraints, energy consumption 
for a 0.9 kWh battery capacity can be reduced by 11.3% relative to the conventional 
vehicle. However, by increasing the battery capacity to 1.5 kWh (14s10p battery 
configuration), it is possible to reduce the energy consumption by 15.7%. 
Additional benefits associated with the predictive capability of MPC are reported 
in terms of thermal improvement.
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Chapter 1. Introduction 

The main design goal of hybrid electric vehicles (HEVs) is to minimise energy 
consumption and 𝐶𝑂2 emission. This has to be achieved without compromising the 
battery life and avoiding the risk of thermal runaway. The choice of lithium-ion 
batteries for application in HEVs is mainly influenced by the high energy density 
per weight. In addition, its large number of charge/discharge cycles, and reduced 
memory effect enhance this choice [1]. However, ageing affects the lithium-ion 
battery's operational life and the amount of energy that it can deliver. The battery 
capacity of HEV is often in the range of 0.5 to 2 kWh [2]. Considering such low 
capacity, ageing is accelerated by the high peak current and the consequent high 
operating temperature that is associated with the HEV. Monitoring the state of 
health (SOH) and the state of charge (SOC) of the battery is essential to keep track 
of the battery ageing status, and to avoid the risk of thermal runaway. Therefore, 
energy optimization in HEVs should be performed, applying the necessary 
constraints. 

Energy management in HEV powertrain requires accurate measurement of the 
battery SOC. Also, accurate SOC measurement is essential for proper energy 
balancing and reliability in energy distribution [3,4]. Many authors have 
demonstrated alternative procedures for SOC estimation employing direct method, 
traditional method, fuzzy logic, model-based and data-based approaches. Reviews 
of such procedures are given in [5,6]. The direct method takes advantage of the 
relationship that exists between the SOC and measured variables such as OCV, 
terminal voltage and impedance under different conditions. The traditional 
approaches include; ampere-hour integration or charge counting, open-circuit 
voltage (OCV) and internal resistance. The charge counting method performs 
poorly with inaccurate initialization. The OCV measurement is non-trivial and 
time-consuming. The internal resistance approach has limited application since 
internal resistance has low sensitivity at high SOC for many battery technologies 
and almost no sensitivity for some battery technologies. More information about 
these traditional approaches can be found in [7].  

The model-based approaches include the use of filters and observers while the 
data-based approaches are dominated by the application of artificial intelligence for 
SOC estimation. The artificial intelligence approach is often limited by the training 
data size and quality. On the other hand, filtering and observer methods are limited 
by the accuracy of the base model. Also, the nonlinearity of SOC for different 
operating conditions increases the problem complexity. These issues can be 
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minimised using nonlinear filters that are equipped with feedback mechanisms for 
adaptation. The extended Kalman filter (EKF) is the most widely used nonlinear 
Kalman filter. This filter however has some flaws that limit its performance. The 
primary issue is how the EKF propagates the mean and covariance of a random 
vector through a static nonlinear function to estimate the mean and covariance of 
the output random vector. This flaw is further explained in [8]. Other limitations 
associated with the use of EKF are reported in [9,10]. Using the SPKF, the analytic 
linearization of the EKF is replaced by an efficient empirical or statistical 
linearization using a small number of function evaluations [11,12]. Such an 
approach eliminates the need to compute derivatives, hence the original function 
does not need to be differentiable. Better covariance approximations are achievable 
with SPKF with comparable computation complexity. 

One major challenge encountered in SOC estimation is the limitation imposed 
by battery ageing. The adaptation ability of the SPKF is also limited by this effect. 
As a solution, SOH is estimated and used as a correction factor for SOC 
enhancement. In [13], a method is demonstrated for correcting the SOC based on 
combined SOC and SOH estimation using the neural network backpropagation 
algorithm. The performance obtainable with this method is as good as the quality 
and size of the data used in the training. 

Regarding the SOH estimation, data-based approaches are being adopted more 
and more. Support Vector Regression (SVR) in [14] is used to estimate the battery 
SOH based on equivalent internal resistance (EIR). In [15], an AC impedance 
measurement is applied with fuzzy logic data analysis for the online estimation of 
SOH. The authors of [16] demonstrate a data-based estimation of SOH by fusion of 
an open circuit voltage model with a noise-free incremental capacity curve. 
Estimation of SOH with a multilayer perceptron algorithm is investigated in [17]. 
Training some of these algorithms require feature extraction from the training 
dataset. Useful features for SOH estimation must show some relevant correlation 
with battery ageing. Many algorithms exist in the literature for feature extraction. 
In [18], the authors demonstrate that partial constant-voltage capacity information 
shows a good correlation with SOH. In [19], SOH is characterised using the 
importance sampling (IS) strategy. The drawback is that it requires the battery 
charges or discharges to be sufficient for the feature variables to be extracted. ICA 
[20–22] and differential voltage analysis (DVA) are other common strategies, but 
their sensitivity to noise limits their application [23]. Alternative feature extraction 
is demonstrated in [24], where the relative battery internal resistance and voltage 
are used as features in a time-series momentum backpropagation neural network. 

The production process of the lithium-ion battery is not fully mature. This 
results in a cell-to-cell variation of the parameters of the cells within a battery pack 
[25]. This variation influences the pattern of ageing of each cell. A SOH estimation 
model should accurately predict the SOH of the cells in the battery pack over the 
range of this variation. However, it is often the case that many trained SOH 
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prediction models experience deviation or drift when applied to the unobserved cell 
of similar specification. Given this variation, some authors adopt complex transfer 
learning approaches [19] with domain adaptation [26] to share knowledge across 
the distribution of the observed cells and the unobserved cells. Also, a less complex 
model based on ICA is proposed by [27] for enhancing generalization across cells 
of similar specifications. The high prediction accuracy and learning speed of PL-
ELM make it an elegant alternative for applications where computational resources 
are a constraint. 

SOH estimation under constant conditions is a good starting point as will be 
seen with PL-ELM. However, it has very limited applications in HEV. Many 
authors have demonstrated several alternative strategies for SOH estimation. 
However, only a few have attempted to analyse SOH estimation under dynamic 
load conditions that are obtainable in real-life practice. One reason for this is the 
enormous time required for battery ageing, especially under such conditions. Many 
authors have proposed time series regression approach in the literature [28–30]. The 
authors of [31] estimated the SOH under dynamic load conditions with a time-series 
independent recursive neural network model. The major problem with the time 
series approach is the fact that it is almost impracticable to keep track of the time 
history of the entire ageing process. The performance of time series models is 
hindered by time discontinuity that may result from the loss of data points. A 
classifier model is a viable option to minimise time dependency and avoid the need 
for continuous initialisation. Some methods for estimating the SOH of lithium-ion 
cells by classification are presented in [13,32]. To demonstrate the SOH estimation 
using a classification approach under dynamic load conditions, the classifiers 
reported in [13,32] are trained with a synthetic battery dataset in the discharge 
phase. Although the classifiers used in [13,32] demonstrate the potential for real-
life application, the model has been validated under dynamic load conditions only 
in the discharge phase. 

The aggressive dynamic operating load conditions of the HEVs expose the 
batteries to the risk of thermal runaway. To reduce this risk while minimising 
energy consumption, the energy management strategy (EMS) has to implement 
constraints to respect battery operating conditions such as the current request, 
voltage and temperature. To apply these constraints and to understand the impact 
of temperature on energy minimisation of HEV, an electro-thermal model of the 
battery pack is needed. Barcellona and Piegari propose a model that can predict the 
thermal behaviour of a pouch lithium-ion battery based on its current input and 
ambient conditions [33]. The model only takes the effect of the OCV and internal 
resistance into account. The resistive-capacitive (RC) parallel branches are not 
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included in the model of the battery considering that the thermal time constant 
greatly outweighs the electrical one. Such approximation simplifies the model with 
a compromise of increases in the model uncertainty. Madani et al. in [34] review 
the determination of thermal parameters of a single cell, such as internal resistance, 
specific heat capacity, entropic heat coefficient, and thermal conductivity. These 
parameters are then used for the design of a suitable thermal management system. 
A lumped-parameter thermal model of a cylindrical LiFePO4/graphite lithium-ion 
battery is developed in [35] to compute the internal temperature.  

One way to prevent the risk of thermal runaway is to incorporate an adequate 
cooling mechanism in the battery thermal management system. Many of the electro-
thermal models in the literature are designed for active cooling. The common active 
cooling medium includes liquid cooling, air cooling and the use of refrigerant. 
Passive cooling, on the other hand, includes phase change material (PCM) and heat 
pipe techniques. Some cooling strategies are reviewed and compared in [36,37]. On 
the basis of complexity and cost, these cooling systems are however not justified 
for 48 V HEV applications as in the current work. A simple passive cooling that 
dissipates heat from the battery surface by natural convection is assumed. 

Various EMS strategies have been explored by researchers and they are 
generally grouped into rule-based and optimization strategies [38–41]. Rule-based 
strategies decide the operation modes and energy distribution scheme of power 
sources according to the characteristics of each source component [42]. Rule-based 
controls can be designed based on deterministic strategies [43] or according to 
fuzzy logic that requires expert knowledge [44]. Such control algorithms can ensure 
stability, robustness and computational efficiency with low memory consumption. 
However, the complex powertrain structure of the HEVs and inadequate knowledge 
of the driving information leads to sub-optimum results.  

Optimization-based strategies can minimise 𝐶𝑂2 emission or energy 
consumption within a defined time horizon while respecting the system constraints. 
A local time horizon optimisation determines the optimum energy distribution for 
minimising fuel consumption instantaneously or within a short time horizon [45]. 
Energy consumption minimisation strategy (ECMS) [46] is one of the approaches 
for local energy optimisation. At each time step, ECMS evaluates the instantaneous 
cost function as a sum of the fuel consumption and the equivalent fuel cost of 
electric energy [47,48]. The ECMS is causal and offers a fast computation. 
However, the results are not globally optimum  [49] since the optimization is non-
predictively solved at each time instant [4,50,51]. Tuning the ECMS can be a 
complex task since the weighting parameters are determined heuristically. The 
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ECMS strategy can be applied online as a closed-loop controller. However, the 
decisions are non-predictive, and the plant model dynamics are not fully exploited. 

When the entire driving conditions represented by a drive cycle are known a 
priori, the energy management can be treated as an optimal control problem and 
solved by global optimization strategies. Some strategies for global optimisation 
adopted in the literature include dynamic programming (DP) [41,52], Pontryagin’s 

minimum principle (PMP) [53] and quadratic programming [54]. These approaches 
are sufficient for theoretical analysis and serve as a benchmark. However, it lacks 
practicability since the results are dependent on the knowledge of the entire drive 
cycle. The results of the DP are a global optimum, but the procedure is 
computationally expensive and non-causal. On the other hand, the ECMS procedure 
is causal and results in a fast computation but optimum only at a given time instance 
and, hence, suboptimum in a global context. As a compromise that extracts the best 
features from these two approaches, the model predictive control (MPC) performs 
optimization over a moving finite horizon [55–57]. The MPC strategy may not be 
as fast as ECMS or as optimum as DP, but it is causal, fast enough and optimum 
over a practical range of a prediction horizon. 

As nonlinearity grows as in the HEVs, the controlling capability of linear MPC 
shrinks. Nonlinear MPCs are efficient in handling nonlinear prediction problems. 
In [58,59], nonlinear MPC is adopted for power splitting and energy optimisation 
of HEVs. However, nonlinear MPCs are computationally expensive and have 
limited online applications, especially in the case of HEVs. An adaptive MPC is a 
viable option that offers a solution to nonlinear problems with moderate 
computation demand [60,61]. An adaptive MPC strategy applied in iterative tasks 
is reported in [61]. Such a strategy is an improvement on the linear MPC with the 
advantage that the internal prediction model parameters can be modified at every 
time step. The benefits of future prediction as a means of improving fuel economy 
in the presence of thermal constraints are still an open topic for research. 

As a contribution, the starting point of this work is the estimation of the SOH 
of the cell experimentally under constant load conditions with PL-ELM at room 
temperature of the cell. The analysed deterministic PL-ELM algorithm provides an 
alternative solution for improving generalization in SOH estimation of the cells in 
a battery pack. Furthermore, SOH estimation is analysed under dynamic load 
conditions at room temperature taking advantage of the time-independent ANN-
based classifier. Relevant features are extracted for the training and validation of 
the models. A SOC estimation model is designed with an SPKF and the model is 
experimentally validated. The estimator is built on a developed cell model and 
experimentally validated under dynamic load conditions. The developed SOH 
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estimator is then integrated with the SPKF to improve the accuracy of SOC 
estimation as the cell ages across the cycle life. This approach takes advantage of 
the adaptability of the SPKF and the time-independent ANN-based SOH classifier 
to enhance SOC prediction. Finally, the work investigates the influence of the 
battery pack capacity on the thermal behaviour and the fuel consumption of the 
HEV using an adaptive MPC strategy. The information from the prediction horizon 
of the MPC helps to minimise overdesign by reducing the minimum battery 
capacity that prevents thermal runaway. Hence, a minimum battery capacity that 
allows battery use without thermal implications is defined. 
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Chapter 2. State of Health 
Estimation with Parallel Layer 
Extreme Learning Machine (PL-
ELM) 

This work begins with designing a SOH estimation algorithm with the 
objective to enhance the generalisation of the estimation for all the cells in a 
battery pack. The analysis was experimentally conducted with the PL-ELM 
algorithm under constant load conditions. The advantages in terms of its low 
complexity and computational efficiency, especially for SOH estimation 
make it attractive for industrial applications and research purposes. As a 
contribution, this section demonstrates the application of a deterministic PL-
ELM algorithm as an alternative solution for improved generalization of 
SOH estimation of the set of cells in a battery pack. A set of suitable feature 
variables that provide significant correlations with the SOH are derived for 
training the algorithm. The PL-ELM model was trained with an experimental 
battery dataset collected at room temperature under a constant current load 
condition at the discharge phase. Model validation was performed with a 
dataset of other cells of similar specifications that were aged under a constant 
load condition. 
 

2.1. Methodology 

2.1.1 Deterministic Extreme Learning Machine 

The ELM is a building block for developing the PL-ELM. The ELM is 
a method for developing a single hidden layer feedforward artificial neural 
network [62]. Contrary to the traditional neural network that solves 
optimization problems with a slow iterative training process, the ELM model 
implements a non-iterative least square regression and local minima is not a 
concern. 
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According to [63], the weights and biases of a single-layer feedforward 
network (SLFN) can be assigned randomly given that the activation function is 
infinitely differentiable. ELM can also be used to train SLFN with non-
differentiable activation functions [64]. If the number of neurons on the hidden 
layer is less than the number of measurements, input weights can be randomly 
assigned. The output weights, which form the only unknown parameter, can then 
be determined analytically. ELM computes the estimated model output, 𝑦𝑘 by 
solving Equation 2.1. 

𝑦𝑘 = ∑Φ𝑗,𝑘  γ (∑ω𝑖,𝑗𝑥𝑖 + 𝑏𝑗  

𝑛

𝑖=1

) 

𝑚

𝑗=1

                                  (2.1) 

where ω𝑖,𝑗 and 𝑏𝑗 are the input weight and bias, respectively; 𝑖 and 𝑛 are the 
respective index and number of neurons on the input layer. The number of 
neurons corresponds to the number of feature variables, 𝑗 and 𝑚 are the 
respective index and number of neurons on the hidden layer, and k is the sample 
index. γ() is a sigmoid activation function and Φ𝑗,𝑘 is the output weight. 

Many activation functions including; hyperbolic and cosine activation 
functions exist in the literature. With an equal number of input neurons, a 
sigmoid activation function (SAF) returns an enhanced dataset discrepancy or 
separation when compared with a host of existing activation functions according 
to [64]. Also, increasing the number of input neurons (independent 
characterising feature variables) improves the discrepancy of the dataset.  

Equation 2.1 can be re-written as Equation 2.2 given the hidden layer 
matrix, 𝐻 = γ(ω𝑖,𝑗𝑥𝑖 + 𝑏𝑗). 

HΦ = 𝑦                                                            (2.2) 

It is necessary to compute Φ̂ to approximate Φ such that an estimated value 
�̂� approximates the true 𝑦. The work of [64] highlights the variants of ELM 
defined based on the output weight Φ̂, including backpropagation tuning 
ELM (tELM) and regression-based ELM  (rELM).  In this work, Φ̂ is 
computed least square approximation based on the generalized Moore–

Penrose inverse method to minimise the estimation error. 

Φ̂ = 𝐻+𝑦                                                               (2.3) 

where 𝐻+ is the generalized Moore–Penrose inverse matrix. 

In the original ELM, the weights and biases of the hidden layer are 
assigned randomly. Although the estimated result may occasionally track the 
reference, the learning process is not deterministic and lacks repeatability. 
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The resulting model can be unstable [64] under certain conditions. This is 
based on the fact that the randomly assigned input weights and biases have 
infinite possibilities. In addition, it has been shown that the input weights and 
the hidden layer biases do not necessarily have to be tuned when assigned 
and that the output layer matrix can remain unchanged [63]. Therefore, a 
deterministic ELM is designed by assigning the weights and biases using 
Equation 2.4. This increases the likelihood of having different values of 𝐻𝑗 
while limiting the weight within the distribution range of 0  to 1 [64]. The 
bias is distributed within the range of 0 to 1. By assigning the weights and 
biases deterministically, a stable PL-ELM model is obtained. 

𝜔𝑖,𝑗 = 
1

2
[(−1 + 

2

𝑛
𝑖) + (−1 + 

2

𝑚
𝑗)] ;        𝑏𝑗 = 

𝑗

𝑚
             (2.4) 

 

2.1.2 Deterministic Parallel Layer Extreme Learning Machine 

PL-ELM is developed from the building blocks of ELM. The PL-ELM 
provides independent projection into the feature space with a two-parallel 
layer network. Each of the projections is nonlinearly activated and they 
combine through a product. This generates a more powerful nonlinear mapping 
than just a single activation function, and the prediction capacity is enhanced 
[65–68]. Since ELM is based on adjusting only the linear parameters using the 
least squares estimate (LSE), the PL-ELM network provides more freedom 
for proper adjustment [66].  

To develop the PL-ELM model, a second nonlinear layer is introduced in 
parallel with the hidden layer of the deterministic ELM. The additional parallel 
layer helps to improve the nonlinearity handling. Adopting PL-ELM is justifiable 
since it is possible to achieve model improvement in terms of accuracy with only 
a little increase in model complexity. 

The weights of the second component of the PL-ELM are also assigned 
deterministically but with a low-discrepancy sequence (LDS) [65,69]. Some 
families of LDS have been developed to efficiently generate a sequence of points 
deterministically [65]. An LDS tries to maintain the discrepancy of the resulting 
points within [0, 1]𝑛 as small as possible, and provides a favourable asymptotical 
rate of convergence of the discrepancy itself. The weights and biases of the first 
component of PL-ELM are assigned with Equation 2.4, while the weight of the 
second component is assigned with Halton’s LDS [65] but with zero bias. The 
structure of PL-ELM is shown in Figure 2.1. 
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Figure 2.1: Parallel layer extreme learning machine architecture [65]. The weights 
and biases of the upper layer are assigned with Equation 2.4. The lower layer is 
weighted with Halton’s low-discrepancy sequence (LDS) and zero-biased. 

 
By introducing a parallel layer, Equation 2.1 is modified for PL-ELM as Equation 
2.5. 

𝑦𝑘 =∑Φ𝑗  (γ(𝜔𝑗𝑥𝑘 + 𝑏𝑗)  ⊗  β(𝑣𝑗𝑥𝑘))

𝑚

𝑗=1

                                   (2.5) 

β and γ are the nonlinear SAF of the two parallel ELM layers;  𝑣𝑗  and 𝜔𝑗 are the 
weight matrices for the respective parallel input layers; and 𝑏𝑗 is the bias; 𝑥𝑘 ∈
ℝ1×𝑛. Equation 2.5 can then be written compactly in form of Equation 2.2 such 
that the overall hidden layer matrix, 𝐻 is computed as the element-wise product 
(⊗) of the individual parallel hidden layer matrices in Equation 2.6. 

𝐻 = 𝐻γ ⊗ 𝐻β                                                                (2.6) 

The parallel layer matrices 𝐻γ and 𝐻β are expressed in Equations 2.7 and 2.8 
respectively for N distinct samples of (𝑥𝑘, 𝑦𝑘).  

𝐻γ =  (
𝛾(𝜔1𝑥1 + 𝑏1) … 𝛾(𝜔𝑚𝑥1 + 𝑏𝑚)

⋮ ⋮ ⋮
𝛾(𝜔1𝑥𝑁 + 𝑏1) … 𝛾(𝜔𝑚𝑥𝑁 + 𝑏𝑚)

)   ∈   ℝ𝑁 ×𝑚                       (2.7) 
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𝐻β =  (
𝛽(𝑣1𝑥1) … 𝛽(𝑣𝑚𝑥1)

⋮ ⋮ ⋮
𝛽(𝑣1𝑥𝑁) ⋯ 𝛽(𝑣𝑚𝑥𝑁)

)  ∈   ℝ𝑁 ×𝑚                                 (2.8) 

It is desired to compute Φ̂ as in Equation 2.3 such that the error between the 
estimated and the measured output is minimised as in Equation 2.9.  

 
‖𝐻Φ̂ − 𝑌‖ =  min

Φ
‖𝐻Φ− 𝑌‖                                               (2.9) 

 

2.1.3 Experimental Dataset Description 

The analysis was conducted with the dataset of a set of 2 Ah capacity 
18650 lithium-ion cells provided by the prognostic centre of excellence 
(PCoE) at NASA’s Ames Research Centre for fault prediction and diagnostic 
studies [70]. The experiment was conducted at room temperature, completely 
cycling different batteries until their end-of-life (EOL). Each cycle involved 
a complete charging and discharge of the cell. Charging was carried out in a 
constant current (CC) mode of 1.5 A (about 0.75 C-rate) until the cell voltage 
reached 4.2 V and then continued in a constant voltage (CV) mode until the 
charge current dropped to 20 mA. Discharge of cells B0005, B0006, B0007, and 
B0018 was done at a constant current (CC) load of 2 A (that is a 1 C-rate) until 
the cell voltage reached the minimum allowable voltage. 

2.1.4 State of Health (SOH) 

The health of a lithium-ion cell is affected by cycle life ageing due to usage, 
and calendar ageing due to storage time. Since the cell has been cycled until the 
end of life (EOL) with negligible storage time, the calendar ageing is neglected 
in this work. SOH as a health state index is computed based on the capacity 
measurement over the cycle life of a cell to account for the capacity fading. When 
a cell is fully charged, it has a maximum releasable capacity, 𝐶𝑚𝑎𝑥. This capacity 
can change relative to the capacity at the beginning of life (BOL), 𝐶𝑏𝑜𝑙 which is 
assumed to be the maximum cell capacity when newly installed. 𝐶𝑚𝑎𝑥 decays 
with storage time and usage. The computation of SOH in Equation 2.10 is 
based on capacity fading SOH [71]. 

 SOH =  
𝐶𝑚𝑎𝑥

𝐶𝑏𝑜𝑙
 × 100 %                                                (2.10) 

Considering one of the datasets (B0005), the EOL of the battery was 
reached after 170 cycles. The SOH that describes the ageing of the battery 
until the EOL is shown in Figure 2.2 for the charge and discharge phases.  
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Figure 2.2: Similarity of state of health (SOH) in the charge and discharge phases. 
SOH of B0005 is shown to decrease with the number of cycles. 

The slight mismatch at the BOL of the cell is attributed to a measurement 
error which was corrected over the rest of the cycle life of the cell.  

2.1.5 Characterisation and Feature Selection 

The training of the PL-ELM requires suitable inputs or feature variables 
obtained from the characterisation of the SOH of the cells. The characterising 
variables are the combination of the internal states and an operational variable. 
The internal states are often not measurable. These states are estimated and they 
include the SOC and the state of energy (SOE). The operational variable such 
as terminal voltage can be measured directly by the management system 
(BMS). The feature variables used in this model are the discrete variation of 
the characterising variables captured in a buffer of 90 seconds time length. 
This variation of the characterising variables (∆V, ∆SOC, ∆E) helps to 

capture the ageing dynamics of the cell. Hence they are adopted for training 
the SOH estimation algorithm.  The features and the characterising variables 
are listed in Table 2.1. 

 
Table 2.1: Model feature and output variables. 

# Characterising Variable Model Train Features Unit 

Training Feature 
1 Voltage (V) ∆𝑣 [V] 
2 State of Charge (SOC) ∆SOC [%] 
3 Energy (E) ∆SOE [Wh] 

Model Output 
1 State of Health (SOH)  [%] 

 

The variation of the discrete points of the indicator variables are acquired 
with a buffer of 90 seconds time length and was used as input to the SOH 
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estimation model. The choice of the discrete point variation interval was 
based on model tuning for accuracy. 

The experimental dataset consists of the measured cell terminal voltage and 
the corresponding current delivered based on request. Theoretically, the measured 
terminal voltage is a contribution of open-circuit voltage (𝑣𝑜𝑐), polarization 
voltage (𝑣𝑝) and the Ohmic voltage (𝑣𝑜ℎ𝑚) according to Equation 2.11.   

 
𝑣(𝑡) =  𝑣𝑜𝑐(SOC(𝑡)) + 𝑣𝑝(𝑡) + 𝑣𝑜ℎ𝑚(𝑡)                                  (2.11) 

 

    The 𝑣𝑜𝑐 is the equilibrium voltage and it is a function of SOC. The 𝑣𝑝 
models the transient of the voltage dynamics. The presence of the 𝑣𝑜ℎ𝑚 implies 
that the energy state is not conserved and hence with usage, the energy capacity 
of the cell reduces and ageing occurs. To demonstrate the capacity 
fading/ageing, a two-dimensional voltage–capacity plot of the experimental 
dataset is shown in Figure 2.3. Each curve represents a single cycle. 

a b 

 
Figure 2.3: Voltage characterisation and feature extraction. a: voltage - capacity 
for a constant current discharge profile. The arrow is the reverse direction of 
ageing across cycles. b: The data points are taken with a buffer of 90 seconds 
time length for computing the variation of voltage used as the feature variable. 

 
As the lithium-ion cells age, the maximum and minimum voltages of the 

cells are reached quicker during charge and discharge respectively, as a 
consequence of the degraded charge/energy capacity. Cell SOC is an important 
battery parameter upon which many variables and other parameters are dependent. 
SOC is commonly defined as the percentage of the maximum possible charge 
that is present inside a rechargeable battery. Thus, the SOC serves as the fuel 
gauge for batteries. SOC can be expressed as the ratio of current capacity and 
the capacity releasable at the end of discharge. It is computed in Equation 
2.12. Equation (2.13) computes the relative state of charge, ∆SOC across a buffer 
of defined time length 𝑡𝑏 with respect to the initial time 𝑡0. 
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SOC(𝑡) = SOC(𝑡0) + 
∫ 𝜂𝑐
𝑡𝑏
𝑡0

𝑖(𝑡)𝑑𝑡

𝐶𝑚𝑎𝑥
                                              (2.12) 

 
∆SOC(𝑡) =  SOC(𝑡𝑏) −  SOC(𝑡0)                                                 (2.13) 

 
The total amount of charge deposited in the cell in the charge phase is often 

not completely recoverable in the discharge phase [72,73]. This could result in an 
offset of SOH between the charge and discharge phases. To compensate for 
this offset, the charge current is weighted with a Coulombic efficiency 𝜂𝑐. 
This value is chosen such that the error between the SOH in the charge and 
discharge phases is minimized. The low offset between the charge and 
discharge phases in Figure 2.2 is an indication of very high cell Coulombic 
efficiency. For this reason, a Coulombic efficiency 𝜂𝑐 = 100% is assumed. 𝐶𝑚𝑎𝑥 
is the maximum capacity of the cell for a given cycle. It is updated at each cycle 
as the cell ages such that the SOC is always in the range of 0% - 100% but the 
slope varies. 

 
The SOE provides information about the integrated power that can be 

released from the battery. A large SOE error may lead to over-charging or 
over-discharging, consequently accelerating ageing life, and increasing 
safety hazards. Therefore, SOE is a critical index for energy optimization 
and management. The SOE is computed by integration of the product of 
voltage and current over time. For a constant discharge current, the equation 
for SOE computation is shown in Equation 2.14. 

SOE(𝑡) =  ∫ 𝜂𝑒𝑣(𝑡)𝑖(𝑡)𝑑𝑡

𝑡𝑏

𝑡0

                                     (2.14) 

In a similar way, the energy efficiency  𝜂𝑒 is computed as the best fit 
comparison between the maximum absolute SOE distributions across the ageing 
cycles [73] and applied to the charge phase. An energy efficiency 𝜂𝑒 = 100% 
is assumed. Figure 2.4a shows a three-dimensional plot of SOC, voltage, 
and energy, while Figure 2.4b shows the variations in voltage, SOC, and 
SOE. It can be seen from Figure 2.4a that the total amount of energy that 
can be delivered by the cell significantly reduces as the cell ages.  
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a b 

 
 

Figure 2.4: three-dimensional characterisation and feature extraction. a: SOC–

SOE–voltage characterisation for a constant current discharge profile. The arrow 
points in the reverse direction of ageing across cycles. b: Feature variables obtained 
as variations of voltage, SOC, and SOE. 

 

From Figure 2.4b, it can be seen that the variation of voltage between 300–3000s 
(90–10% SOC) is almost constant. For this reason, SOH discrimination in this 
zone is poor with only voltage and SOC. On the other hand, the variation of 
energy does not show this behaviour. The energy variable thus provides an 
additional feature for characterising SOH. 

2.1.6 Summary of Scheme Setup Procedure 

The SOH estimation scheme using the PL-ELM algorithm as proposed in this 
paper is summarized below. 

Model Input:  𝒙 = [∆𝒗, ∆𝐒𝐎𝐂, ∆𝐄]  ∈  ℝ𝟑×𝐍 
Model Output:  𝒚 = 𝐒𝐎𝐇 ∈ ℝ𝟏×𝐍 

o The dataset consists of voltage that is acquired by ageing the battery with 
a constant current profile; 

o The input of the PL-ELM model is computed as a discrete point variation 
of the voltage, SOC, and energy at a 90 seconds interval, as in Figure 
2.4b; 

o The discrete point output is computed as the mean SOH within the same 
interval; 

o The discretized input and output data are used to train the model, to 
determine the parameters (weight and bias) of the PL-ELM model; 
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o The number of hidden layer neurons is adjusted to obtain an optimum 

model, allowing for a compromise between performance and complexity; 

o The designed SOH estimation model is then validated using the dataset 
of other cells of the same type that have been aged under the same current 
load conditions as in the training. 

 
 

2.2. Results and Discussion 

2.2.1 PL-ELM Model Training 

The results shown in this section demonstrate the estimation of SOH with 
deterministic PL-ELM to enhance generalization over a set of batteries of similar 
specifications. The result demonstrates that although each cell used in the test 
had a distinct distribution, the estimation algorithm performance was optimum 
over the entire set. In other words, the designed model is not affected 
significantly by the drift problem. The PL-ELM estimation model performance 
is compared with other methods, including the deterministic ELM algorithm and 
an ICA-based algorithm reported in [27]. The performance evaluation was 
computed with root mean square error (RMSE) and mean absolute error (MAE) 
indices, considering a 99% confidence interval of the errors. This consideration 
helps to provide information about the percentage of errors outside the defined 
error bound. The difference between RMSE and MAE is useful for understanding 
the error variations in the predictions. The small difference between the RMSE 
and the MAE errors indicates low error variance in the prediction set. The root 
mean square error (RMSE) and mean average error (MAE) indices were 
computed using Equations 2.14 and 2.15, respectively. 

RMSE = √
1

N
∑ (𝑦𝑖 − �̂�𝑖)2
N
𝑖=1                                                 (2.15)    

The quadratic scoring RMSE is desirable to amplify large errors while 
diminishing small ones. A linear scoring MAE is defined as 

MAE =  
1

N
∑ |𝑦𝑖 − �̂�𝑖|

N

𝑖=1
                                              (2.16) 

The inputs to the PL-ELM network are the model training features 
derived as the discrete variation of the characterising variables in Table 2.1. 
The structure of the PL-ELM is defined by varying the number of neurons 
in the training phase. The number of neurons chosen was a compromise 
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between model complexity and accuracy. To fix the model structure, the 
number of neurons was varied from 1 to 20, as seen in Figure 2.5c. It may be 
sufficient to use about twelve (12) neurons to obtain an optimal model in 
terms of complexity. However, by increasing the number of neurons 
sufficiently (20 neurons in this case), the estimation accuracy of the model 
was improved. The scheme was designed and simulated with Matlab software, 
and the total number of 5523 data samples from the B0007 dataset was used 
to train the model. Figure 2.5a shows the result of the training phase of PL-
ELM while Figure 2.5b shows the normal distribution of the error. Figure 
2.5c shows the performance based on model complexity when the number of 
neurons varied. 

 
Figure 2.5: The result of parallel layer extreme learning machine (PL-ELM) model 
trained with B0007 dataset and consideration of a 99% confidence interval on the error. 
a: the result of SOH estimation with 20 neurons; b: normal distribution of the error for 
99% confidence interval; c: performance versus model complexity over 20 neurons. 

The RMSE of the trained model performance was computed as 0.046, while 
the mean average error (MAE) is 0.034 using 20 neurons in the parallel layer 
network. Error estimation was obtained for a 99% confidence interval. The 
resulting model error is an approximation of natural distribution. The percentage 
out of bound error %𝐸𝑂𝐵 indicates the percentage of the error that is outside the 
99% confidence interval. In the training phase, %EOB is about 1.57% of the 
training data points were outside the 99% confidence interval. The %EOB for the 
training and validation phases are reported together with the performance 
result in Table 2.2. The number of data points used in the training and 
validation is also tabulated. 
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Table 2.2: SOH estimation performance comparison between PL-ELM and 
incremental capacity analysis (ICA) model in training and validation. and out of bound 
error (%EOB) information are also provided. 

 PL-ELM ICA Model [27] 

  Data Point RMSE MAE %𝐄𝐎𝐁 RMSE 

Training B0007          5523 0.046 0.034 1.570 0.66 

Validation 
B0005          5154 0.362 0.345 2.037 0.87 
B0006          5115     0.473     0.355   3.240   2.49 
B0018          4021 0.170 0.158  0.250 - 

 

The model performance is influenced by the choice of the discrete point 
variation interval of the input features. The choice of the interval was based 
on model tuning for accuracy. The results of the interval variation are not fully 
reported in this work. However, it can be shown that extremely short intervals 
result in noisy feature variable points, while extremely large intervals result 
in loss of information. In both extreme cases, the model accuracy is impacted 
adversely. In this work, a sampling interval of 90 seconds is believed to be 
optimum. Using a 60 seconds interval increased the training RMSE from 
0.046% to 0.053%. On the other hand, with a 120 seconds interval, the 
training RMSE was reduced to 0.043%. However, the maximum validation 
RMSE increased from 0.473% to 1.089%. 

2.2.2 PL-ELM Model Validation 

The training of the estimation model was done with the battery B0007 
dataset. The model was validated with other batteries of the same type: 
B0005, B0006, and B0018. All the batteries were aged with a constant current 
profile of 2 A. The performance of the designed model was compared with the 
result obtained with the ICA-based model using the same dataset as reported 
in [27]. The performance results are reported in Table 2.2. From the 
comparison, the proposed model shows relatively improved performance. 

The variation of RMSE, as shown in Table 2.2, is in the range of 0.170–

0.4736 in the validation phase. Moreover, the variation of the MAE range is 
in the range of 0.158–0.355. Figure 2.6 shows the validation of the PL-ELM 
model with batteries B0005, B0006, and B00018. 
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Figure 2.6: PL-ELM model validation. a–c: model validation with B0005, B0006, and 
B0018 dataset, respectively. 

 
It can be seen from Figures 2.5 and 2.6 that the ageing pattern is different for 

the individual batteries even though they were aged under the same load 
condition. This difference results from cell-to-cell parameter variation due to 
production tolerance [25].  From the results, the PL-ELM model can cope with 
the nonlinearity of SOH for all the cells with reasonable accuracy.  

 To evaluate the limitation of this model, it is important to account for 
uncertainties that result from sensor noise and model inaccuracy. Input data is 
affected by noise which interacts with the model inaccuracy to increase the model 
uncertainty. The PL-ELM model has been designed considering the influence of 
this noise. In this work, only the current sensor noise has been analysed since the 
information about the voltage sensor is not available at the time of publication. The 
analysis of the sensor noise gives an idea of the quality of the sensor that should 
be adopted in practice. SOH estimation models can be integrated as a subsystem 
to improve SOC estimation results. In our case, SOC is estimated with SPKF, and 
it is important to analyse the valid operating range of the PL-ELM model based 
on the noise distribution. Such information helps to define limits that guarantee 
the stability of SPKF. Figure 2.7 shows the distribution of the input sensor noise 
and model uncertainty in the validation phase.  
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Figure 2.7: Distributions of noise and model uncertainty of PL-ELM; a: input current 
sensor noise distribution, b: model uncertainty distribution. 

From Figure 2.7a, the input data is corrupt with a noise of 0.0014 A standard 
deviation (SD), corresponding to ± 0.0042 A (3×SD) within a 99.7% confidence 
interval. The frequency of the current sensor noise is in the range of  3.5 × 10−6 
to 3.1 rad/s. With such a range of input current noise in consideration, the model 
can be trusted to estimate SOH with an uncertainty of ± 0.113% SD as seen in 
Figure 2.7b.  

2.2.3 Model Comparison with Deterministic ELM and 
Demonstration of the Drift Problem 

Although ELM is the building block of PL-ELM, it does not have as much 
nonlinearity handling capacity as PL-ELM. ELM may be suitable for systems 
with fairly low nonlinear behaviour. Like many machine learning algorithms, the 
ELM model often experiences a drift when the level of dissimilarity between the 
distribution of the training and the validation dataset is high. To compare results 
between ELM and PL-ELM, the experiment was repeated as summarized in 
Section 2.1.6, replacing the PL-ELM with the deterministic ELM single-layer 
model. The results of SOH estimation using the ELM model are shown in Figure 
2.8. As in the PL-ELM, the ELM model was trained with the battery B0007 
dataset and validated with the B0005, B0006, and B0018 datasets. The training 
RMSE performance of the battery is 0.245, while the MAE was 0.191. In the 
validation, the RMSE is in the range of 0.501–1.563, while the MAE is in the 
range of 0.361–0.907. The ELM model performance is reported in Table 2.3.  
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Figure 2.8: Extreme learning machine (ELM) model training and validation. a: model 
trained with the B0007 dataset; b–d: Model validated using the B0005, B0006, and 
B0018 datasets, respectively. 

 The model estimation tends to drift away from the true SOH across the 
entire cycle. Although the model results shown here were obtained for twenty 
(20) neurons, the drift problem never disappears regardless of the number of 
neurons used. 
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Table 2.3: SOH estimation performance of deterministic ELM model for training and 
validation. The %EOB information are also provided 

  Data Point RMSE MAE %𝐄𝐎𝐁 
Training B0007 5523 0.245 0.191  0.615 

Validation 

B0005 5154 1.117 0.762   1.24 

B0006        5115 1.563 
 0.907   0.19 

B0018 4021 0.501 0.361   0.89 
 
From the results of Tables 2.2 and 2.3, the PL-ELM and the ELM can be 

compared based on performance. The training RMSE of the deterministic ELM 
relative to PL-ELM increased from 0.046% to 0.245%. The MAE increased from 
0.034% to 0.191%. The maximum validation RMSE of the ELM increased from 
0.473% to 1.563%, while the maximum MAE increased from 0.355% to 0.907%. 
These highlight the improvement in the performance of the PL-ELM as 
compared with the ELM. The poor performance of the deterministic ELM 
model is evident in the SOH estimation results. The model drifting that 
affects the ELM becomes more pronounced as the battery ages. 

The model was set up, simulated, and validated using Matlab and 
Simulink software, version 2020b. To understand the real-time performance of 
the model in terms of computational cost and memory consumption, the 
algorithm was deployed to a Texas Instruments Delfino™ F28379D device. 

The 32-bit duo core MCU was connected to Simulink via serial connection 
and a processor-in-the-loop (PIL) model simulation was performed. On the 
basis of the simulation, an average execution speed of 93 µs was recorded 
with 0.9305% average CPU utilization. This suggests that the model is 
suitable for online applications. 
 

2.3. Summary and Conclusions 

The SOH estimation of lithium-ion cells is analysed under constant load 
conditions using the regressive PL-ELM algorithm. The work demonstrates 
the possibility of using a single model to estimate the SOH of a set of similar 
cells in the battery pack. This is possible due to the improved nonlinearity 
handling capability of the PL-ELM.  

SOH was experimentally characterised using voltage, SOC, and SOE of 
the cell. The PL-ELM model was trained and validated for SOH estimation 
using the discrete variation of the characterising variables captured in a buffer 
of 90 seconds time length. The RMSE of the validated model varies from 
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0.046% to 0.473% and the MAE error from 0.034% to 0.355% with low error 
deviation beyond the 99% confidence interval for the set of cells tested. An 
improved relative performance was obtained for the proposed model in 
comparison with the other highlighted algorithms. 

The model was tested on an MCU board with PIL simulation. An 
execution time of 93µseconds in real-time is recorded with 0.9305% CPU 
occupation. On the basis of the low model complexity, performance, and 
computation efficiency, the model is suggested as being suitable for online 
applications. 
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Chapter 3. State of Health 
Estimation under Dynamic  Load 
Conditions 

In electric vehicle (EV) applications, accurate SOH estimation minimises 
failure risk and improves reliability by predicting battery health conditions. The 
challenge of accurate estimation of SOH is based on the uncertain dynamic 
operating condition of the EVs and the complex non-linear electrochemical 
characteristics exhibited by the lithium-ion battery. This section presents an 
artificial neural network (ANN) classifier, designed and experimentally validated 
for the SOH estimation of lithium-ion batteries under dynamic load conditions.  

As the main contributions, a set of suitable feature variables that provide 
significant correlations with the SOH are derived.  An artificial neural network 
classifier is designed and trained experimentally with these features under dynamic 
load conditions at room temperature of the battery. Furthermore, the classifier 
model is experimentally validated under different load scenarios, including 
dynamic load, constant load, and step load conditions. Finally, the classifier is 
validated for use in multiple cells of similar specifications under dynamic load 
conditions. 

3.1. Methodology 

3.1.1 System Description and Experiment 

The system-level application architecture for SOH estimation is shown in 
Figure 3.1. Given a load request from the cell, the measured current and the 
corresponding voltage are acquired from the cell. The SOC and SOE are computed 
with suitable functions that are embedded in the Battery Management System 
(BMS). The SOH estimation algorithm is executed periodically with no dependence 
on the data log of previous estimations. When the algorithm is triggered, the feature 
extraction algorithm extracts the relative voltage, SOC and SOE within a buffer of 
40 seconds time length. The discrete instantaneous values of the SOC and SOE are 
also acquired at this time interval. These contribute to the training features that are 
given as input to the ANN-based classifier. Considering the slow dynamics of SOH, 
the algorithm can be triggered on an hourly basis. 
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Figure 3.1: Architecture for SOH estimation using ANN-based classifier. The yellow 
signals are measurements from the cell. 

 
The proposed method aims at estimating the SOH of a lithium-ion cell under 

dynamic varying load conditions. In the present analysis, the SOC and SOE are 
computed analytically. The analysis is conducted with a single cell in a module 
consisting of six (6) individual LG MJI 18650 lithium-ion cells of 3500mAh 
capacity connected in series. The characteristics of the cells are shown in Table 3.1. 
The procedure has been designed for a single cell. The SOH of a battery pack can 
be developed by series and parallel connection of cells, putting into consideration 
the capacity variations in the cells and the error introduced by the interconnection 
resistance [17]. 

 
Table 3.1: Nominal characteristics of cylindrical LG 18650 MJ1 lithium-ion cell [74] 

Cell chemistry LiNiMnCoO2 

Nominal capacity (@ 0.2C, 4.2V-2.5V, 23°C) 3500mAh 
Nominal voltage 3.635V 
Cut-off voltage 2.5V 

Max. discharge current 10A 
Cycle life (charge@1.5A, discharge@4A) > 400 cycles 

Charge 
Condition 

Max. current 1C (3400mA) 

Max. voltage 4.2  0.05 V 

Operating 
Condition 

Charge 0 - 45℃ 
Discharge -20 - 60℃ 

Mass 49.0g 

Dimension Diameter 18.5mm 
Height 65mm 

 
The data used for the experiment was acquired from a test bench that is 

developed in-house. The test bench shown in Figure 3.2 consists of a module of six 
cells connected in a series and the cell voltages are measured with Elithion standard 
generic cell boards 1PR0000. Two LM35 Texas Instrument temperature sensors 
measure the cell surface temperature. An Elithion (Lithulmate) BMS is installed on 



3—26 State of Health Estimation under Dynamic Load Conditions 

 
the test bench to enhance the safety of the acquisition process. An Arduino Mega 
board connected via LAN to a dedicated PC is used to acquire the measured data. 
As an extra safety measure, the system is equipped with an emergency stop device. 
 

 

Figure 3.2: Experimental setup for data acquisition of lithium-ion batteries connected in 
series. 

 
The experiment is conducted in a controlled ambient room temperature 

condition. The cells are cooled by natural convection with proper air circulation, 
and it is ensured that the room temperature is unaffected by the heat from the cells. 
The two temperature sensors are mounted on the surface of the cells to ensure 
measurement consistency and the information is fed to the BMS for detecting 
overheating. 

The model is trained and validated with ageing profiles that are comparable to 
standard automotive drive cycles. To age the cell, a major cycle consisting of 
seventeen (17) profiles is repeated fourteen (14) times corresponding to about 470 
cycles. The ageing profiles are either charge or discharge phases or a sequence of 
charge and discharge phases as in the dynamic load profile. The profiles include 
constant current (1.75 A) charge, constant current (0.7 A) discharge, step current (0 
A to 4.23 A) charge, constant power discharge, step current (0 A to -10 A) 
discharge, and dynamic current profile. The distribution of the dynamic profile is 
comparable to that of the standard dynamic stress test (DST) drive cycle. Each 
charge or discharge phase is completed with the respective SOC of 100% or 0% 
and followed by a rest period. The choice of these ageing profiles is to create the 
possibility to validate the cells under different load conditions. The profiles are 
shown in Figure 3.3. The entire ageing process lasted for about 77 days. 
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Figure 3.3: Characteristics of the major profiles used for cell ageing. a: constant current 
constant voltage charge (1.75 A); b: constant current (0.7 A) discharge; c: step current (0 
A to 4.23 A) charge; d: cell module constant power discharge (75 W); e: step current (0 A 
to -10 A) discharge; f: dynamic current profile. 

3.1.2 State of Health (SOH) 

The SOH of an energy storage system is defined in Section 2.1.4. The 
experiment for SOH estimation was conducted at room temperature, cycling the 
cell with the sequence of different load profiles until the EOL is reached. According 
to the standard adopted by the automotive industry, the EOL of a cell is reached 
after 20% capacity fading. Therefore, the useful life of the cell is considered 
between 100% to 80% SOH [75]. To benchmark the SOH, a constant current 
discharge profile of 0.7A (0.2C) is applied at the intervals in-between the sequence 
of profiles to compute the SOH. With such a low C-rate, the internal resistance of 
the cell is low, and the approximate value of SOH with minimum load stress can be 
obtained. With this current profile, the cell is completely discharged in 238 minutes 
in the first cycle when the cell is new. When the cell gets aged, as represented by 
the last cycle, it gets completely discharged in 166 minutes. The SOH of the lithium-
ion cell is plotted in Figure 3.4 computed according to Equation 2.10 for the ageing 
cycles from 100% to 70% SOH. 
                          

 
Figure 3.4: SOH of cylindrical LG MJI 18650 lithium-ion cell across the ageing cycles 
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To design a classifier, SOH is categorized into five (5) classes. Class 1 to Class 

4 represent the range of 100% to 80% SOH, where each class corresponds to an 
interval of a length of 5%. Class 5 represents the SOH below 80%. These classes 
will be the output of the classification algorithm. The conservative interval of 5% 
used in this analysis is within the range of acceptance for similar applications.  

3.1.3 SOH Characterisation and Feature Extraction 

The cell variables that influence the SOH have been defined in Section 2.1.5. 
The variables include voltage [V], SOC [%], and SOE [Wh]. It is important to 
clarify the distinction between SOC and SOE. While SOC is the percentage of the 
Ampere-hour (Ah) in the cell, SOE is the area under the Ah-voltage curve. Clear 
distinctions also exist in the time variation of these variables as will be seen 
subsequently. Although SOH estimation is also influenced by environmental 
temperature, the analysis here is considered only for room temperature. 

The SOH characterization for LG 18650 MJ1 lithium-ion cell is shown in 
Figure 3.5 for a constant discharge current of 0.7 A profile is applied to discharge 
the cell to a minimum cut-off voltage of 2.5 V. As the cell ages, the capacity and 
SOE depreciates and the voltage gradient becomes steeper.  

 
 

(a) (b) 

  
 
Figure 3.5: Characterisation of the SOH based on the cell at ambient environmental 
temperature; a: characterisation based on voltage and capacity; b: characterisation based 
on voltage, SOC and SOE. 
 

Cell Coulombic efficiency is influenced by temperature and C-rate. The cell 
SOH across the cycle life of the cell in the charge and discharge phases is shown in 
Figure 3.6a for the dynamic load profile. The clear offset between these phases is 
an indication of relatively low cell Coulombic efficiency due to the high C-rate. 
The value 𝜂𝑐 = 94% is chosen such that the error between the SOH across the cycle 
life in charge and discharge phase is minimised. The SOH of the charge and 
discharge phases become comparable when 𝜂𝑐 = 94% is applied as in Figure 3.6b. 
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Figure 3.6: SOH of the cell computed with the dynamic profile across the cycle life of 
the cell. a: the charge-biased phase is not corrected with the Coulombic efficiency. b: 
the charge-biased phase is corrected with the Coulombic efficiency. 

 
Similarly, the energy efficiency  𝜂𝑒 =  88%  is computed as the best fit 

comparison between the maximum absolute SOE distributions across the ageing 
cycles [73]. As in the SOC computation, to compensate for the energy difference 
between the charge and discharges phases, 𝜂𝑒 is applied as a weighting factor to the 
computed energy of the charge phase. 

 
The feature extraction block in Figure 3.1 consisting of a buffer of 40 seconds 

time length is designed to acquire the feature variables for training the classifier. 
The buffer size is chosen as a good compromise to minimise the impact of 
measurement noise and loss of data points. The relative values of voltage, SOC, and 
SOE in the buffer are computed at the interval of this buffer length. Also, the 
instantaneous values of both SOC and SOE are recorded. The classifier input and 
outputs are listed in Table 3.2. 

 
Table 3.2:  Dataset characterisation: the input and output of the ANN-based algorithm. The 
input features are computed on a buffer with a time length of 40 seconds. 

Model Input Model Output Classes 

# Variable Feature Unit Class Range [%] 

1. Voltage ∆𝑣 [V] 1 100 – 95 

2. State of charge 
SOC [ % ] 2 95 – 90 

ΔSOC [ % ] 3 90 – 85 

3. State of energy 
SOE [Wh] 4 85 – 80 

ΔSOE [Wh] 5 < 80 
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The outputs of the feature extraction block are given as input to the classifier. 

Figure 3.7 shows the relative values of voltage, SOC and SOE taken at intervals 
that correspond to the buffer time length of 40 seconds. Figures 8a and 8b show the 
values against time for BOL and EOL respectively. As mentioned earlier, the 
complete discharge of the cell lasted for 238 minutes in the first cycle when the cell 
is new. When aged, in the last cycle, the discharge lasted for 166 minutes. 
 

(a) 

   
(b) 

   
Figure 3.7: Feature extraction across buffer of time length of 40 seconds. a: Relative values 
of voltage, SOC, and SOE for BOL. b: Relative values of voltage, SOC, and SOE for EOL. 

 
Information provided by the feature variables is learned by the classifier 

during the training. The magnitude of the variation of voltage, SOC and SOE can 
be seen to change significantly as the cell ages from the first to the last cycle. The 
Δ𝑣 magnitude doubled from the original value of -0.0015V. The ΔSOC changed 
from -0.28% to -0.4%. The gradient of ΔSOE increases as the cell ages.  

In estimating the SOH under constant load conditions, it is sufficient to train 
the model with 𝛥𝑣, ΔSOC and ΔSOE as can be seen with PL-ELM in Section 2. 
However, under dynamic load conditions, the instantaneous values of SOC and 
SOE are needed to enhance the model accuracy. 

3.1.4 Design of the Classifier Model 

The choice of a classification method for SOH estimation is considered 
suitable since it eliminates the need of staying consistent with the time history of 
the cell ageing and eliminates the need for model initialisation. The architecture of 
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the neural network classifier is shown in Figure 3.8. The network consists of the 
input layer, two hidden layers with ten neurons each, and the output layer. The input 
layer has five (5) neurons that correspond to the number of feature variables while 
the output layer has five (5) neurons that correspond to the number of classes. The 
number and the size of the hidden layers and the hidden layer neurons are 
determined heuristically. 

 

 
Figure 3.8: Architecture for pattern recognition feed-forward artificial neural network 
(ANN) for SOH classification. x(n): input, w: weight of layer neurons, b: bias of the 
layers, HAF: hidden layer activation function, OAF: output layer activation function. 

 
The classifier is designed with a network training function that updates the 

weights 𝑤 and bias 𝑏 values according to Levenberg-Marquardt (trainlm) [76,77]. 
The Levenberg-Marquardt algorithm is a higher-order adaptive algorithm that 
minimises the mean square error (MSE) 𝑒 of a neural network output layer. To 
minimises the error, a second order algorithm uses the Hessian to determine the 
weight and biases update as in Equation 3.1. The error gradient ∇𝑒(𝛽) is computed 
from Equation 3.2. Refer to [77] for more information. 

 

min
𝛽

𝑒(𝛽) =  
1

2
∑𝑒𝑖(𝛽)

2 = 
1

2
𝑒(𝛽)𝑇𝑒(𝛽)                                       (3.1) 

 
∇𝑒(𝛽)  =  𝐽(𝛽)𝑇𝑒(𝛽)                                                            (3.2) 

 
where 𝐽(𝛽) is the Jacobian matrix; 𝛽 is the weight and bias parameters obtained by 
least-square; 𝑒(𝛽) is a vector of the sample point errors. The hidden layer activation 
function (HAF) is the hyperbolic tangent sigmoid, and the output activation 
function (OAF) is the softmax function. The parameters of the neural network 
classifier are reported in Table 3. 
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Table 3.3: Parameters of the neural network classifier 

Parameter Value 

Number of inputs 5 

Number outputs 5 classes 

Training data sampling time 1 second 

Number of Hidden layers 2 

Number of neurons per hidden layer 10 

Performance goal 0 

Minimum performance gradient 1 × 10−20 

Adaptive factor, mu 0.001 
Maximum validation fails 50 

 
With the training dataset sampled at 1 second interval, the classifier model is 

trained once and the cross-entropy cost function is used to evaluate the 
performance. The training processes ended after 821 epochs using a personal 
computer that has an Intel(R) Core (TM) i5-2450M CPU @ 2.50GHz dual-core 
processor. The cross-entropy returns a low MSE performance value of 0.01035 
based on Equations 3.1 and 3.2. The MSE plot is shown in Figure 3.9. 
 

 
Figure 3.9: Mean square error performance result for ANN-based classifier training 
using Levenberg-Marquardt function. 

 

3.2. Results and Discussion 

The training and validation results are discussed in this section. The classifier 
is trained with the dynamic load profile whose maximum current amplitude is 5A 
in both charge and discharge phases. At room temperature, the model is validated 
with the dynamic load profile, a constant load profile, and a step load profile. The 
dynamic load  distribution is in the frequency range of 5.8 × 10−6 to 2.9 rad/s. 
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Finally, the model is validated for applicability in multiple cells under dynamic load 
conditions. 

3.2.1 Training and Validation with the dynamic load profile 

The dynamic load profile consists of a total number of 130 profiles of which 
118 profiles are used for the training while the rest are used for the validation. 
Figure 3.10 shows the first two dynamic load profiles from the set of the ageing 
profiles used in the model training and validation. 

 
Figure 3.10: First-two dynamic load profiles of the ageing cycles applied for model 
training and validation. a: dynamic current profile; b: measured voltage 

 
The measured voltage of the dynamic varying load profile is corrupted by some 

high-frequency noise of the order of 2mV and irregular spikes of up to 80mV that 
result from a rapid change of the load input. To avoid the impact of this noise on 
the classifier, the measured voltage data is smoothened using the moving average 
function with a smoothing factor of 0.01. 

 The training dataset consists of the 𝑋(𝑛)  ∈  ℛ5×𝑁 feature variables and 
𝑌(𝑛)  ∈  ℛ5×𝑁 output. The matrix rows correspond to the five (5) features and the 
five (5) classes respectively. 𝑁 corresponds to the number of training data points 
which is the number of buffers.  The original dataset is sampled at 1 second rate 
while the buffer has a time length of 40 seconds. Some information may be lost in 
the long timespan between the buffer intervals. Also, the initial SOC of a cell may 
vary in practice.  Considering these limitations, the model training is enhanced by 
repeating each ageing cycle with a moving window that is shifted at an interval of 
10 seconds. 

The 118 dynamic profiles were used for the model training. That results in 
77608 buffers, which is 90% of the entire buffers extracted from the profile.  The 
dynamic load profiles are polarised to either charge or discharge the cell for each 
given cycle. 

The training and validation results are analysed with the help of the confusion 
matrix. Figure 3.11 shows the confusion matrix of the trained model. The columns 

a: 

b: 
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of the matrix are the five (5) target or true classes.  The rows are the predicted 
classes. The diagonal cell corresponds to the buffers that are correctly classified. 
The off-diagonal cells are the misclassified buffers. The number of observations is 
shown in each cell. The last column shows the precision of prediction per class. In 
other words, it shows the percentage of consistency of prediction with the true value 
for each class. The last row shows the percentage of each class that is correctly 
classified. This is also known as the true positive rate, TPR. The total accuracy is 
shown in the bottom-right cell. The accuracy of the model in the training phase is 
98.2%. This corresponds to an error of 1.8% which is equivalent to 1370 
misclassified buffers over 77608 total training buffers. 

 
Figure 3.11: Confusion matrix for performance analysis of ANN-based classifier 
in the trained with LG 18650 MJ1 lithium-ion dataset. 

 
After training the model, the model is validated with buffers from dynamic 

profiles that the trained model has not yet seen. To do this, the remaining 12 profiles 
corresponding to 10% of the entire buffers are given as inputs to the trained model. 
The performance of the model is then analysed with a confusion matrix as in Figure 
3.12. The accuracy of the model in the validation phase is 96.2% and results in a 
total number of 317 misclassified buffers over 8273 buffers. 
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Figure 3.12: Confusion matrix for performance analysis of ANN-based classifier 
under dynamic changing load profile validation. 

From Figure 3.12, it can be seen that the TPR of the classifier at validation is 
considerably high and in the range of 76% to 100%. This means that the percentage 
of the number of data points that are correctly classified is high. Also, the model 
precision is in the range of 80% to 99.7%, indicating that the model can be trusted 
to this degree. 
 

3.2.2 Validation with the constant current constant voltage 
(CCCV) load profile 

 
The constant current validation is performed with a CCCV load profile. The 

cell is charged with a constant current of 1.75 A until the voltage reaches about 3.8 
V. The constant voltage mode is then activated until the minimum current of 0.3 A 
is reached. The consideration of this profile is relevant to provide validation of the 
model for constant current applications such as in the charging model of the plug-
in electric vehicle. A CCCV profile of the first ageing cycle is shown in Figure 3.13.   
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Figure 3.13: Constant load profile of the first ageing cycle for model validation a: 
constant current profile; b: measured voltage. 

The constant current profile consists of 12 charge cycles and the features are 
extracted into 5879 buffers. The model performance under constant current charge 
conditions is shown in Figure 3.14 with a confusion matrix. 

 

Figure 3.14: Confusion matrix for performance analysis of ANN-based classifier under 
constant charge current profile validation      

The model accuracy under constant current charge condition is 96.6% with 197 
misclassified buffers over 5879 total buffers. TPR is in the range of 93.7% to 98.9% 
while the precision is in the range of 86.2% to 100%. No buffer is in Class 3. 

a: 

b: 
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3.2.3 Validation with the step load profile 

Here the step current profile is applied to validate the model for aggressive 
applications. The step current changes at 0.47A interval in the range of 0-4.23A. 
the step current profile consists of 11 cyclic charge profiles captured within 2700 
buffers. The profile with the corresponding voltage is shown in Figure 3.15. 

 

 
Figure 3.15: Model validation with step current profile of the first ageing cycle. a: step 
current profile; b: measured voltage. 

The confusion matrix-based performance of the classifier under step current 
charge condition is shown in Figure 3.16. The accuracy of the classifier under step 
current charge condition is 93.8% with 163 buffers misclassified over 2700 total 
buffers. TPR is in the range of 82% to 100% while the precision is in the range of 
84.8% to 100%. 

 
Figure 3.16: Confusion matrix for performance analysis of ANN-based 
classifier under the step charging current profile validation. 

a: 

b: 
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The validation with the step current profile represents a relatively aggressive 

validation with respect to the other profiles. For this reason, a relatively lower 
performance is acceptable. 

3.2.4 Model validation with new cell 

The final validation of the model is performed with an entirely new cell of 
slightly similar specification. The experiment and analysis performed above are 
repeated for a Sanyo NCR 18650 GA Lithium cell. Although the Sanyo NCR cell 
shares a similar specification with the LG MJ1, their chemistries are different. The 
characteristics of the cell is given in Table 3.4. 
 
Table 3.4: Nominal characteristics of cylindrical Sanyo NCR 18650 GA lithium-ion cell 
[78] 

Cell chemistry LiNiCoAlO2 
Nominal capacity (@ 0.2C, 4.2V-2.5V, 25°C) 3300mA 

Nominal voltage 3.6V 
Cut-off voltage 2.5V 

Max. discharge current 10A 
Cycle life (charge@1.5A, discharge@4A) > 300 cycles 

Charge 
Condition 

Max. current 1C (3350mA) 
Max. voltage 4.2  0.03 V 

Operating 
Condition 

Charge 0 - 40℃ 
Discharge -20 - 60℃ 

Mass 49.0g 

Dimension Diameter 18mm 
Height 65mm 

      
The cell is aged in a similar procedure as demonstrated earlier with similar load 

profiles in a repeated pattern. The cell reached the SOH of about 70% after about 
120 cycles. The SOH of the cell across the ageing cycle is shown in Figure 3.17. 
 

 
Figure 3.17: SOH of cylindrical Sanyo NCR 18650 GA lithium-ion cell across the 
ageing cycles 
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To extract the feature variable data for validating the neural network, the 𝜂𝑐 

and 𝜂𝑒 are computed as 0.91 and 0.83 respectively to obtain the best fit between the 
charge and discharge SOH across the ageing cycles. This stage of validation applies 
only to the dynamic load profile. The feature variables are then computed as 
described earlier and applied as input to the trained classifier. The model 
performance is again analysed with a confusion matrix as in Figure 3.18. A total 
number of 4371 buffers are extracted from the dynamic load profile. About 4228 
buffers are correctly classified while 143 buffers are wrongly classified. This results 
in 96.7% total accuracy of the model. 

 

 
Figure 3.18: Confusion matrix for model validation with NCR 18650 GA 
lithium-ion cell under dynamic load profile. 

 
These results of the training and the various validations of the classifier model 

are summarized in Figure 3.19 including information on the model precision, the 
TPR, and the total accuracy. 
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Figure 3.19: Result summary of the training and validation of the classifier indicating the 
TPR, precision per class and the total accuracy of the classifier according to the confusion 
matrices. 

The analysis of the limitations of the estimation model based on the sensor 
noise is deferred to the next chapter. 

To compare the proposed model with the state of the art, it was observed that 
only a few authors have reported the SOH estimation under dynamic load 
conditions employing classification. [13] reported the estimation of SOH under 
such conditions using a similar classification approach. However, SOH was 
estimated only in the dynamic discharge modes and with a synthetic dataset. The 
resulting model offers an accuracy of 97.5%. In the more realistic proposed model 
designed with a real dataset, the accuracy of 96.2% is obtained when validated 
under dynamic profiles according to Figure 3.12.  

 The classifier is designed, trained and validated on Matlab/Simulink 2020b 
that is equipped with a Neural network toolbox. After the training and validation, 
the trained classifier is deployed to a Texas F28379D microcontroller unit (MCU) 
target. The real-time execution speed is estimated by a PIL simulation to verify the 
model for online applicability. Given some sampling points of the feature variables 
as input from Simulink software, the model is simulated in the MCU. The model 
execution speed is verified as 8.34 µs in real-time, and with a negligible CPU 
occupation. In comparison, the PL-ELM performs a similar operation by regression 
with an execution speed of 93 µs [79]. In the real implementation, the classification 
algorithm is periodically triggered to extract the feature variables of the classifier 
in the buffer using information from an installed battery. These features are then 
applied as input to the trained classifier for predicting the battery SOH. 
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3.3. Conclusions and Recommendation 

Analysis of battery SOH under dynamic load conditions is essential for the 
design of high fidelity estimation model. This however has been sparingly 
addressed in the literature. In this work, the SOH of a lithium-ion cell is analysed 
and estimated under dynamic load conditions by implementing an ANN-based 
classifier. This approach minimises the time history dependency and the need for 
continuous initialization of the model. 

The SOH is experimentally characterised by the cell’s voltage, SOC, and SOE 
at room temperature. An ANN-based classifier model is trained using features that 
are extracted from the characterising variables. These features include the 
instantaneous values of SOC and SOE, and the relative value of voltage, SOC, and 
SOE across the buffer of defined time length. 

The trained model is validated for application under different scenarios, 
including dynamic load conditions, constant load conditions and step load 
conditions. The performance of the resulting validated model is analysed with 
matrices and the accuracy of the model are 96.2%, 96.6% and 93.8% for the 
respective load conditions. The model is further validated for use on other cells that 
have similar specifications. The results show that an accuracy of 96.7% is possible 
under dynamic load conditions.  

Finally, the model is validated for online applicability through PIL simulation. 
An average execution time of 8.34 µs and a negligible CPU occupation is verified 
with a Texas F28379D microcontroller unit (MCU) board. This makes the model 
suitable for online automotive applications where computational resources impose 
a constraint. 

For future work, it was noticed that the model poorly classifies buffers whose 
SOH are very close to the boundary of two classes. For instance, buffers whose true 
SOH are close to 95% (say 95.01%) may partly be misclassified as class 2. 
Improving the precision of the model for such cases will be the focus of future work. 
Also, SOH is impacted by temperature. However, this model is validated only for 
ambient room temperature. This limits its application to only such a condition. It 
will be of useful research interest to further validate the model over a wider range 
of temperature conditions. Lastly, the model has been validated for the dynamic 
load of frequency in the range of 5.8 × 10−6 to 2.9 rad/s. It will be interesting to 
validate the model at higher frequency load conditions. 
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Chapter 4. Battery and Electro-
Thermal Model 

The powertrain of the HEVs is equipped with a battery pack to serve as an 
energy reservoir for electrical energy. A cell model is designed and experimentally 
validated with a dataset from Sanyo NCR 18650 GA lithium-ion cell which has a 
nominal capacity of 3.3 Ah and a nominal voltage of 3.6 V. The cell model forms 
the basis for designing the SPKF. Also, the state information is derived from the 
cell model and applied in the design of the HEV energy optimization model to 
ensure that the operating limits of the battery are not violated. A model of the battery 
pack is obtained by extrapolation of the cell model. The specifications of the cell 
are provided in [80] as provided in Table 3.4. 

4.1. Electro-Thermal Model 

Developed according to the enhanced self-correcting (ESC) model procedure 
[8], the cell electrical model is integrated with the cell thermal model to obtain the 
electro-thermal cell model. The cell model is then used as a building block for the 
battery pack model shown in Figure 4.1. The dynamic process of the ESC computes 
the voltage losses associated with the battery power request 𝑃𝑏𝑎𝑡. The electric ESC 
model is developed from the combination of the dynamic process and the 𝑣𝑜𝑐. The 
thermal model is developed from the computed voltage losses. The developed 
electro-thermal model of the lithium-ion cell is validated experimentally at an 
ambient environmental temperature of 20°C and extrapolated to obtain a battery 
pack. 

 
Figure 4.1: Schematic component of the battery pack electro-thermal model. The variables 
in dotted blue and grey blocks are the inputs and the states of the battery model respectively. 
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4.1.1 Cell electric model 

The electro-thermal model of the lithium cell is developed and validated 
experimentally at an ambient environmental temperature in [4]. The equivalent 
circuit of the electric model according to [8] is shown in Figure 4.2. The circuit 
consists of a single parallel resistor-capacitor (RC) branch connected in series with 
a resistor and a Warburg impedance. Given a current request 𝑖𝑘 (derived from 
battery power request 𝑃𝑏𝑎𝑡) to the cell model, the diffusion-resistor current 𝑖𝑅1,𝑘 
passes through the parallel resistor. The single parallel RC branch with 𝑅1 and 𝐶1 
model the relatively high frequency diffusion loss due to mass transfer, and the 
activation loss due to charge transfer. 𝑅0 models the Ohmic internal resistance of 
the cell. The low frequency Warburg impedance models the hysteresis losses [81]. 

 
Figure 4.2: Equivalent circuit that describes the dynamic model designed for 
terminal voltage and voltage loss prediction [8]. 

 
The 𝑣𝑜𝑐 is known to be a function of temperature and SOC. However, it is 

considered here only as a function of SOC assuming ambient environmental 
temperature. The 𝑣𝑜𝑐 of the cell under consideration is provided on the datasheet 
[80]. Figure 4.3 shows the voltage variation across SOC under open and closed-
circuit conditions. 

 
Figure 4.3: The open-circuit and closed-circuit voltages across SOC in charge and 
discharge phases. The open-circuit voltage from the datasheet is between the measured 
terminal voltage in the charge and discharge phases. 
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The middle blue curve shows the 𝑣𝑜𝑐 as a function of SOC, as acquired from 

the datasheet. The red curve is the closed-circuit voltage at a constant charge load 
of 1.675 A. The yellow curve is the closed-circuit voltage at a constant discharge 
load of 0.66 A. It can be seen that the 𝑣𝑜𝑐 taken from the datasheet approximates 
the true 𝑣𝑜𝑐 at the mean of the closed-circuit voltages of the charge and discharge 
phases. The larger deviation of the charge phase results from the relative higher C-
rate with respect to the discharge phase. 

 The cell electric model computes the state of the charge (SOC) at every time 
step 𝑘 by Coulomb counting as in Equation 4.1. 

𝑆𝑂𝐶𝑘+1 = 𝑆𝑂𝐶𝑘 −
𝜂𝑐 𝑖𝑘𝑇𝑠
𝐶𝑚𝑎𝑥

                                              (4.1) 

where 𝑖𝑘 is the requested current – positive at discharge; A sampling time 𝑇𝑠 =
0.5 seconds is applied to the model; 𝐶𝑚𝑎𝑥 [Ah] is the maximum releasable capacity 
when the cell is fully charged and 𝜂𝑐 is the cell Coulombic efficiency in the charge 
phase  [72,73].  

Other states of the cell model include the diffusion-resistor current 𝑖𝑅𝑗 and the 
hysteresis voltage ℎ. 𝑖𝑅𝑗 expressed in Equation 4.2 and ℎ in Equation 4.3 [8]. 

𝑖𝑅1,𝑘+1 =   𝑒𝑥𝑝 (
−𝑇𝑠
𝜏𝑅𝐶

) 𝑖𝑅1,𝑘 + (1 − 𝑒𝑥𝑝 (
−𝑇𝑠
𝜏𝑅𝐶

)) 𝑖𝑘                                 (4.2) 

where 𝜏𝑅𝐶 = 𝑅1𝐶1 is the time constant of the RC circuit shown in Figure 4.2. 

ℎ𝑘+1 = 𝑒𝑥𝑝 (− |
𝜂 𝑖𝑘 𝛾𝑇𝑠
𝐶𝑚𝑎𝑥

|) ℎ𝑘 + (𝑒𝑥𝑝 (− |
𝜂 𝑖𝑘 𝛾𝑇𝑠
𝐶𝑚𝑎𝑥

|)  −1) 𝑠𝑔𝑛𝑘              (4.3) 

The non-dimensional parameter γ determines how quickly the hysteresis state 

changes with the SOC. 𝑠𝑔𝑛𝑘 is a sign function, i.e. 1 for positive current input, –1 
for negative input and zero otherwise. 

The predicted cell terminal voltage 𝑣 results from the summation of the open 
circuit voltage 𝑣𝑂𝐶 and the voltage loss contributions 𝑣𝑙𝑜𝑠𝑠 as in Equation 4.4. 

𝑣𝑘 = 𝑣𝑂𝐶(𝑆𝑂𝐶𝑘)   +  𝑣𝑙𝑜𝑠𝑠,𝑘                                                (4.4) 

The 𝑣𝑂𝐶 is a function of SOC. The 𝑣 is the cell terminal voltage predicted from 
an electric model. The 𝑣𝑙𝑜𝑠𝑠 models the voltage losses that result from the 
contributions of the cell's internal resistance, diffusion resistance and hysteresis. 
The 𝑣𝑙𝑜𝑠𝑠 contributions are expressed in Equation 4.5. 

𝑣𝑙𝑜𝑠𝑠,𝑘 = 𝑀𝑎ℎ𝑘 +𝑀0 𝑠𝑔𝑛𝑘  −  ∑ 𝑅𝑗𝑖𝑅𝑗,𝑘
𝑗

 − 𝑅0𝑖𝑘                   (4.5) 
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𝑀𝑎 is the maximum absolute analog hysteresis voltage at ambient temperature; 

𝑀0 is the instantaneous hysteresis voltage; ℎ is the hysteresis voltage; 𝑅𝑗 is the 
parallel branch resistance. The parameters of the model 𝑀𝑎, 𝑀0, 𝑅𝑗 , and 𝑅0 appear 
linearly according to Equation 4.6 and are computed by least square approximation. 

[

𝑣𝑙𝑜𝑠𝑠,1
𝑣𝑙𝑜𝑠𝑠,2
⋮

𝑣𝑙𝑜𝑠𝑠,𝑁

] =  

[
 
 
 
 
ℎ1 𝑠𝑔𝑛1 −𝑖𝑅𝑗,1

𝑇    − 𝑖1

ℎ2 𝑠𝑔𝑛2 −𝑖𝑅𝑗,2
𝑇    − 𝑖2

⋮
ℎ𝑁 𝑠𝑔𝑛𝑁 −𝑖𝑅𝑗,𝑁

𝑇  − 𝑖𝑁]
 
 
 
 

 [

𝑀𝑎

𝑀0

𝑅𝑗
𝑅0

]                       (4.6) 

where 𝑁 is the number of data points of the experimental dataset. Refer to Table 
4.1 for the electro-thermal model parameters. 

𝑀0 can be assumed to be negligible. However, this is not often the case for all SOH 
of the cell as will be seen in the next chapter. 

Table 4.1: List of electrical and thermal model parameters with the estimated values 
 Variable Units Value 

Electric 
Model 

Max absolute analogue hysteresis 
voltage at ambient temperature, 𝑀𝑎 - 0.017 

Instantaneous hysteresis height, 𝑀0 - 1.0 × 10−8 
Instantaneous series resistor, 𝑅0 Ohms 0.024 

Parallel branch resistance, 𝑅𝑗 Ohms 0.018 

Thermal 
Model 

Specific heat capacity, 𝑐𝑝 J/kg K 1200 
Thermal resistance, 𝑅𝑐𝑜𝑛𝑣 K/W 14.6 

Cell mass, 𝑚𝑐𝑒𝑙𝑙 kg 48.5 × 10−3 

The dynamic current profile used for data collection during the experiment is 
applied as input to the model to compute 𝑣𝑙𝑜𝑠𝑠 according to Equation 4.5. This 
profile consists of a sequence of random charge and discharge current values 
applied in the range of -4.5 [A] and +4.5 [A]. The current profile and 𝑣𝑙𝑜𝑠𝑠 are 
shown in Figure 4.4. 
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Figure 4.4: Simulation of cell electro-thermal model. a: dynamic current profile b: 
dynamic voltage loss. 

4.1.2 Cell thermal model 

When the 𝑣𝑙𝑜𝑠𝑠 is computed, the thermal component of the electro-thermal 
model is computed by lumped parameter approach. The dynamic thermal model is 
designed considering only the heat transfer by convention while neglecting the 
conductive component. The heat source, 𝑃𝑙𝑜𝑠𝑠 of the thermal model is derived from 
𝑣𝑙𝑜𝑠𝑠,  and a thermal model is derived from an energy balance equation of a lumped 
capacity model [82]. Using a forward Euler discretization, 𝜃𝑠𝑢𝑟𝑓 of the cell is 
computed according to Equation 4.7.  It is assumed that the cell is cooled by natural 
convection without active cooling system. 

𝜃𝑠𝑢𝑟𝑓,𝑘+1 = 𝜃𝑠𝑢𝑟𝑓,𝑘 +
𝑇𝑠

𝑐𝑝 ⋅ 𝑚𝑐𝑒𝑙𝑙
(𝑃𝑙𝑜𝑠𝑠,𝑘 − 

𝜃𝑠𝑢𝑟𝑓,𝑘 −𝜃𝑎𝑚𝑏

𝑅𝑐𝑜𝑛𝑣
)              (4.7) 

𝑇𝑠 is the sampling time; 𝑐𝑝 is the cell’s specific heat capacity; 𝑚𝑐𝑒𝑙𝑙 is the cell mass;  
𝜃𝑎𝑚𝑏 is the ambient temperature; 𝑅𝑐𝑜𝑛𝑣 = (ℎ𝑐𝑜𝑛𝑣  ×  𝐴𝑐𝑒𝑙𝑙)

−1 is the thermal 
resistance by convection; ℎ𝑐𝑜𝑛𝑣 is the thermal convention coefficient; and 𝐴𝑐𝑒𝑙𝑙 is 
the cell surface area. The thermal model parameters are highlighted in Table 4.1. 

4.2. Cell Model Validation 

The experiment setup for the battery model validation is described in Section 
3.1.1. The experimental data consisting of current input, battery surface temperature 
[°C] and voltage [V] outputs were collected at room temperature from NCR 18650 
GA cell. The model is validated under different load conditions, including constant 

(a) 

(b) 
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current discharge, step current discharge and dynamic charge-discharge load 
conditions.  

A constant current of 10 A corresponding to 3 C-rate is applied to completely 
discharge the cell. The estimated and the measured voltages under constant load 
conditions are compared as in Figure 4.5b. The model temperature is equally 
validated in Figure 4.5c. 

 

 
Figure 4.5: Electro-thermal model experimental validation under constant current load 
condition. a: the constant current profile; b: estimated and measured voltage compared; 
c: estimated and measured temperature compared. 

 
The model is further validated under step discharge load conditions. A 

sequence of current steps is applied to span a range of 0 A to 10 A in 5 steps. This 
sequence is repeated periodically to completely discharge the cell. The estimated 
and the measured voltages under discharge step load conditions are compared as 
in Figure 4.6b. The model temperature is validated as in Figure 4.6c. 

(a) 

(b) 

(c) 
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Figure 4.6: Electro-thermal model experimental validation under discharge step load 
condition. a: the step current profile; b: estimated and measured voltage compared; c: 
estimated and measured temperature compared. 

 
Finally, the model is validated under dynamic load conditions. The dynamic 

current profile is composed of a sequence of charge and discharge current in the 
range of −4.5 to 4.5 [A]. The estimated and the measured voltages are compared 
as in Figure 4.7b. The thermal model was equally validated and the result is shown 
in Figure 4.7c. 

 

 
Figure 4.7: Electro-thermal model experimental validation under dynamic load 
condition. a: the dynamic current profile; b: estimated and measured voltage 
compared; c: estimated and measured temperature compared. 

(
a) 

(
b) 

(
c) 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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The limitation of the developed cell model is analysed here based on the input 

noise and the model uncertainty. The input noise analysis can be extended to the 
SOH estimation described in Chapter 3 since the same current measurement device 
has been used in both cases. Two different multimeters were used for input current 
acquisition. Figures 4.8a and 4.8b show the distribution of noise from the two 
multimeters. The Fluke multimeter offers improved precision and has been adopted 
to minimise the model uncertainty. The noise distribution of the current 
measurement with the Fluke multimeter is shown in Figure 4.8b. By using this 
multimeter, the 99.7% confidence interval (3×standard deviation) of the noise 
distribution was improved from ± 0.06 A to ± 0.0172 A with fewer outliers in the 
lower and upper fences. The lower fence is computed as 𝑄1 − 1.5 × interquartile 
range (IQR) while the upper fence 𝑄3 + 1.5 × IQR. The model performance and 
uncertainty are analysed with the current input measured with the Fluke multimeter. 
Figure 4.8c shows the distribution of voltage estimation uncertainty while Figure 
4.8d shows the distribution of temperature estimation uncertainty. 

(a) (b) 

  
(c) (d) 

  
Figure 4.8: Input current noise distribution and model uncertainty (a) low precision current 
noise distribution; (b) Fluke multimeter current noise distribution; (c) voltage estimation 
uncertainty from model deviation and measurement noise; (d) temperature estimation 
uncertainty from model deviation and measurement noise. 
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Putting into consideration the sensor noise and the model inaccuracy, the model can 
be trusted to estimate voltage with uncertainty in the range of ± 0.165 V within a 
99.7% confidence interval. The voltage measurement cell board has a maximum 
accuracy of ±15mV.  On the other hand, temperature estimation can be trusted with 
an uncertainty of ± 2.5 °C within a 99.7% confidence interval. 

 

4.3. Battery pack 

The configurable battery pack model is developed from the building block of 
the electro-thermal model of a single cell according to the work of [8]. The pack is 
a series module pack (SMP) composed of modules that are connected in series. 
Each of the modules consists of cells connected in parallel modules, otherwise 
known as parallel cell modules (PCM). To design a 1.9 kWh battery, a 14s6p 
configuration is used. This configuration consists of 6 parallel cells in each of the 
14 modules that are connected in series.  

4.3.1 Parallel Cell Module (PCM)  

With the single-cell model designed and validated, the model forms a building 
block for developing the PCM and the SMP for further integration in a complete 
vehicle model. A battery PCM consists of cells that are connected in parallel while 
the SMP consists of battery modules that are connected in series to make a battery 
pack. A 14s6p battery pack configuration entails 14 SMP and 6 PCM. The parallel 
cell configuration is often useful for increasing the energy capacity of the battery 
pack, especially for various high-energy applications. 

The current 𝑖𝑘 through each cell in a PCM can be computed from Equation 4.8 
if the module voltage 𝑣 can be derived. By Kirchhoff’s law, the sum of all the 

individual current 𝐼𝑗,𝑘 that passes through a module is equal to the pack's current 𝐼𝑘. 
Also, the voltages at the terminal of all the cells in the module are equal. The cell 
voltage in Equation 4.8 has two contributions: the instantaneous voltage that 
changes instantly with the current and the non-instantaneous state voltages 𝑣𝑓. 

𝑣𝑘 = 𝑣𝑓,𝑗,𝑘 − 𝑖𝑘𝑅0,𝑗                                              (4.8) 

𝑅0 is the instantaneous resistance modified to accommodate the losses of the cell 
connection terminals. The sum of the current in each module 𝐼𝑗,𝑘 can be computed 
from Equation 4.9. 
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 𝐼𝑗,𝑘 = 𝐼𝑘 =  ∑(
𝑣𝑓,𝑗,𝑘 − 𝑣𝑘 

𝑅0,𝑗
)

𝑝

𝑗

                                           (4.9) 

𝑝 is the number of parallel branches in the module and  𝑗 is the branch (module) 
index. By simultaneous computation of Equations 4.8 and 4.9, the current through 
each cell in the module and the voltage can be derived. The modules are connected 
in series to develop an SMP. To analyse a 48V, 0.9 kWh battery pack, a 14s6p 
configuration is used. 

The temperature distribution within the battery pack was evaluated based on 
the variation of the SOC and the capacity of the cells within the battery pack. The 
battery pack was simulated to show these variations. Figure 4.9a shows the 
variation of temperature when the initial SOC varies from 0.85 to 0.95, assuming 
an equal capacity of 3.0Ah for the individual cells. Figure 4.9b shows the variation 
of temperature when the cell capacity varies from 2.7Ah to 3.0Ah, assuming equal 
initial SOC of 0.95 for all cells. 

 
Figure 4.9: Surface temperature variation of the cells in the 14s6p battery pack 
configuration. a: initial SOC variation between 0.85 - 0.95, b: capacity variation 
between 2.7Ah – 3.0Ah. 

 
Based on the result of the simulation shown in Figure 4.9, the maximum 
temperature of the battery pack is in the range of 60°C to 70°C at the end of the 
tests. The temperature variation is larger for varying SOC than for varying capacity. 

  

(
a) 

(
b) 

(a) 

(b) 
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Chapter 5. State of Charge 
Estimation 

To prevent thermal runaway and to enhance cell longevity, it is necessary to 
respect the operating conditions of the cells. Accurate measurement of SOC can 
help to prevent overcharge and over-discharge which could accelerate cell ageing. 
Also, the battery performance is improved by minimising conservativeness in the 
operating range of the cell with a reliable confidence interval. In addition, a 
consistent and dependable estimation model is developed and validated with 
dynamic profiles, and over-design can be avoided by permitting aggressive usage 
within the design limit. The SPKF analysed in this section is developed with the 
cell model that was discussed in Chapter 4.  

The nonlinear SPKF is equipped with an update or feedback mechanism to 
minimise the effect of measurement noise and model deviation in SOC estimation. 
This feedback mechanism is however limited by cell ageing. Our goal in this 
chapter is to enhance SOC estimation by integrating the benefits of the adaptive 
mechanism of SPKF and the time-independent ANN-based SOH estimator. This 
approach improves the accuracy of SOC estimation across the cycle life of the cells. 
The model is validated experimentally under dynamic load conditions using the 
dataset from LG MJI 18650 lithium-ion cells. 

5.1. Methodology 

The SOC has been computed so far by Coulomb counting. This procedure 
however has some drawbacks. Since Coulomb counting is not equipped with any 
feedback, it integrates all the errors that corrupt the true current value. The true 
current 𝐼𝑡𝑟𝑢𝑒 can be corrupted by the error due to sensor bias 𝐼𝑏𝑖𝑎𝑠, sensor noise 
𝐼𝑛𝑜𝑖𝑠𝑒, sensor nonlinearity 𝐼𝑛𝑜𝑛𝑙𝑖𝑛, self-discharge current 𝐼𝑠𝑑, and leakage current 
𝐼𝑙𝑒𝑎𝑘 [8]. These contributions make up the measured current 𝐼𝑚𝑒𝑎𝑠 as in Equation 
5.1. 

𝐼𝑚𝑒𝑎𝑠(𝑡) =  𝐼𝑡𝑟𝑢𝑒(𝑡) + 𝐼𝑏𝑖𝑎𝑠(𝑡) + 𝐼𝑛𝑜𝑖𝑠𝑒(𝑡) + … 
+ 𝐼𝑛𝑜𝑛𝑙𝑖𝑛(𝑡) + 𝐼𝑠𝑑(𝑡) + 𝐼𝑙𝑒𝑎𝑘                                  (5.1) 
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It is desired to accurately estimate the SOC of cells in the battery over the cycle 

life. The cell SOC is estimated with high accuracy with SPKF giving measured 
current input and terminal voltage output at ambient room temperature. However, 
as the battery ages, the parameters changes, the model error increases and the SPKF 
lose its performance. Based on the knowledge of the SOH, these parameters are 
updated and SOC can be estimated with SPKF over the battery cycle life. 

5.1.1 SOC Estimation with SPKF 

To design an SPKF, some sigma points 𝒳 are deterministically defined such 
that the weighted mean and covariance of these points are exactly equal to the mean 
�̅� and covariance ∑ �̃� of the input random variable to nonlinear system function. 
These points are then individually passed through the nonlinear function, resulting 
in a transformed set of output sigma points У. The mean �̅� and the covariance ∑ �̃� 
of the output’s random variables are then approximated by the weighted mean and 
covariance of these transformed sigma points У. In general, the input randomness 

is represented by sigma points, these sigma points are propagated through the 
nonlinear function, and then the predicted state �̂�𝑘− is computed as the average of 
the output sigma points. The sources of the randomness include the state, the 
process noise and the measurement noise. An augmented state 𝑥𝑘𝑎 and the 
covariance is then defined to capture the randomness at k time instant as in Equation 
5.2.  

𝑥𝑘
𝑎 = [

𝑥𝑘
𝑤𝑘

𝑣𝑘+1
]              𝛴�̃�𝑘

𝑎 = [

𝛴�̃�𝑘   0      0   

0    𝛴𝑤    0  
0     0      𝛴𝑣

]                                 (5.2) 

Where 𝑥𝑘 are the states of the electrical components of the battery model 
described in Equations 4.1, 4.2 and 4.3 with the input current 𝑖𝑘 replaced with 𝑢𝑘 +
𝑤𝑘. The current input noise is modelled as the process noise denoted by 𝑤𝑘. The 
noise distribution of the current input is shown in Figure 4.8b with an SD of ±0.0057 
A and the frequency is in the range of 4.3 × 10−5 to 3.1 rad/s.  For 
conservativeness, however, the model input noise has been set to an SD of 0.1414 
A to guarantee the stability of the model over wider noise variation. The output of 
the cell model is the measured cell terminal voltage measured by the cell board 
which has a maximum accuracy of 15mA. The output noise is modelled with 𝑣𝑘 
and the estimation uncertainty is shown in Figure 4.8c. The SPKF assumes a noise 
with normal distribution and a zero mean. The noise distribution in Figures 2.7 and 
4.8a-c are good approximations of normal distributions. To guarantee the 
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performance of SPKF across different noise frequencies, white noise can be 
assumed at the input. This can be achieved by applying a shaping filter with white 
noise input to shape the model input noise. This procedure is demonstrated in [8]. 
However, it has not been applied in this work.  

The augmented sigma-point is defined as in Equation 5.3. 

  𝒳 =  {�̅�,   𝑥 ̅ +  𝛾√𝛴�̃� , 𝑥 ̅ −  𝛾√𝛴�̃�  }                                (5.3) 

where 𝛾 is a weighting constant for tuning the performance of SPKF. 
 
The design of SPKF for SOC estimation using the battery model is described 

in the following steps. The first step is the state prediction is defined in Equation 
5.4. 

�̂�𝑘 
− = ∑𝛼𝑖

(𝑚)
𝑓(𝒳𝑘−1,𝑖 

𝑥,+ , 𝑢𝑘−1, 𝒳𝑘−1,𝑖 
𝑤,+ ) 

𝑝

𝑖=0

 =  ∑𝛼𝑖
(𝑚)

𝒳𝑘,𝑖
𝑥,−

𝑝

𝑖=0

                  (5.4) 

where 𝛼𝑖
(𝑚) is the weighting factor defined according to the central-difference 

strategy [83,84]. The 𝑓() is a function of the input and the posterior sigma points 
of the respective states and the sensor noise, all in the previous time step. 𝒳𝑘,𝑖

𝑥,− is 
the predicted sigma point in the current time step. 

The second step is the error covariance prediction step which is expressed in 
Equation 5.5. 

𝛴𝑥,̃𝑘
− = (�̃�𝑘

𝑥,−) 𝑑𝑖𝑎𝑔(𝛼(𝑐)) (�̃�𝑘
𝑥,−)

𝑇
                                  (5.5) 

 
where 𝛼𝑖

(𝑐) is the weighting factor defined according to the central-difference 
strategy. The sigma point error �̃�𝑘

𝑥,− is computed as the difference between the 
predicted sigma point of the state and the predicted state. 

The last prediction step is the system output prediction �̂�𝑘. The output 
prediction is computed according to Equation 5.6 

 

�̂�𝑘 
− = ∑𝛼𝑖

(𝑚)
ℎ(𝒳𝑘,𝑖 

𝑥,−, 𝑢𝑘 , 𝒳𝑘,𝑖 
𝑣,+) 

𝑝

𝑖=0

 =  ∑𝛼𝑖
(𝑚)

У𝑘,𝑖
 

𝑝

𝑖=0

                     (5.6) 

The ℎ() is a function of the input, the predicted sigma points of the states and the 
sensor noise, all in the current time step. 
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The remaining steps of the SPKF are applied to update the model states. First, 

a time-varying Kalman gain matrix 𝐿𝑘 is derived according to Equation 5.7 

 𝐿𝑘 = 𝛴�̃��̃�,𝑘
−  𝛴�̃�,𝑘

−1                                                       (5.7) 

The 𝛴�̃��̃�,𝑘−  is the covariance associated with the state error and output error 
while 𝛴�̃�,𝑘−1  is the covariance of the output error. Using 𝐿𝑘, the state estimate is 
updated thus: 

�̂�𝑘 
+ = �̂�𝑘 

− + 𝐿𝑘(𝑦𝑘 − �̂�𝑘)                                         (5.8) 

where 𝑦𝑘 is the true output voltage and �̂�𝑘 is the predicted output voltage.  

 The final step of the SPKF is to update the covariance. The step is computed 
by optimal formulation such that the error variance should be reduced as in 
Equation 5.9. This is because the second part of the equation on the right-hand side 
is positive-semi-definite. 

𝛴�̃�,𝑘
+ = 𝛴�̃�,𝑘

− − 𝐿𝑘𝛴�̃�,𝑘
 𝐿𝑘

𝑇                                          (5.9) 

For more details on the implementation of SPKF, readers are advised to refer 
to [8,83,84].  

5.1.2 Improving SOC Estimation with SOH 

At the BOL of the cell, the performance of SPKF for SOC estimation is 
optimum. The battery model is designed with the parameters of Class 1 SOH as 
given in Table 5.1. As the battery ages, the parameters of the battery also change. 
To maintain the performance of SPKF, the parameters of the battery model should 
be updated as the battery ages. The parameters are estimated using the ESC 
procedure described in Section 4. These parameters are defined for each class of 
the battery SOH such that on estimation of the SOH, the parameters are updated 
accordingly. The Classes 1-5 are the SOH classes defined in Section 3.1.2. 
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Table 5.1: Estimated cell (LG MJI 18650 lithium-ion cells) parameters over different SOH 
classes 

Parameter Class 1 
100%-95% 

Class 2 
95%-90% 

Class 3 
90%-85% 

Class 4 
85%-80% 

Class 5 
< 80% 

Cell Capacity, 𝐶𝑚𝑎𝑥 [Ah]  3.09 2.92 2.76 2.65 2.38 
Max absolute analog 
hysteresis voltage at 
ambient temperature, 𝑀𝑎 

1 × 10−8 0.029 0.031 0.034 0.078 

Instantaneous hysteresis 
voltage, 𝑀0 [V] 

1 × 10−8 1 × 10−8 1 × 10−8 1 × 10−8 0.002 

Instantaneous series 
resistor, 𝑅0 [Ohm] 

0.042 0.044 0.047 0.05 0.06 

Parallel branch 
resistance, 𝑅𝑗 [Ohm] 

0.032 0.024 0.033 0.037 0.027 

RC time constant, 𝜏𝑅𝐶 
[seconds] 

42.08 37.82 40.74 24.98 49.86 

 
It can be observed from Table 5.1 that as expected, the cell SOH shows some 

correlations with 𝐶𝑚𝑎𝑥 and 𝑅0. This justifies the reason why these parameters are 
often used for the prediction of SOH. While 𝐶𝑚𝑎𝑥 decreases as SOH decreases, 𝑅0  
increases. The 𝑀𝑎 parameter also increases consistently with SOH although it is not 
commonly used as an SOH predictor. 

The SOH estimated with the ANN classifier is explained in Section 3. Figure 
5.1 shows the scheme of the SOC estimation model. Due to the slow dynamic of 
SOH, the SOH algorithm is triggered on an hourly basis and the class of the 
estimated SOH is maintained until the next time step. The SOC estimation 
algorithm, on the other hand, is triggered every second-time step. The parameters 
of the battery model that corresponds to the SOH class are applied for the SOC 
estimation. 
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Figure 5.1: Applying SOH estimation to enhance SOC estimation with SPKF as 
battery ages. 

5.2. Results 

In this section, the result of SOC estimation with SPKF will be analysed. First, 
the SOC estimation is analysed without the influence of the SOH, and secondly, it 
is analysed considering the influence of SOH. 

5.2.1 The SOC estimation with no SOH Correction 

 In this case, the parameters of a single class in Table 5.1 are used on the cell 
model for the estimation of SOC.  This demonstrates the performance degradation 
of SPKF as the cell parameters change while the cell ages. Figure 5.2 shows the 
SOC estimation that is computed with the parameters of the battery from Class 1. 
Figure 5.2b shows the RMSE at every time step in a discharge phase. 
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Figure 5.2: The SOC estimation using SPKF for the cell model designed with the 
parameters of Class 1. a: the estimated and true SOC in discharge phase when SOH is 
98.7%. b: the RMSE of estimation for different SOH. 

 
Figure 5.2a shows the estimated and true values of SOC in the discharge phase 

when the SOH of the cell is equal to 98.7%. Similar plots are obtainable for the rest 
of SOH but are not shown to avoid over-clustering. The RMSE of 0.65% at this 
value of SOH of the cell is the least. It can be seen from Figure 5.2b that as the cell 
ages, the RMSE increases. The RMSE increases to 1.69% at 97% SOH, and to 
2.34% at 96.4% SOH. Until this point, the RMSE is within the acceptable range of 
± 4% designed for a 99.7% confidence interval. As the battery ages beyond the 
SOH of class 1 (i.e. below 95%), the RMSE becomes more pronounced. This is 
because, as the cell ages, the parameters change significantly. If the parameters are 
not updated, there is a high tendency for model drift. In this case, the RMSE of the 
cycle is found to deviate beyond the confidence bound when the SOH decreases to 
92%. 
  

5.2.2 The SOC estimation considering the influence of SOH 

To enhance SOC estimation by putting cell ageing into consideration, the 
parameters of the cell model that is used for the estimation of SOC is updated based 
on the cell SOH. The performance of SPKF is analysed across the entire cycle life 
of the cell. Figure 5.3 shows the SOC estimation when the cell SOH is 83.5% and 
the RMSE error over the cell cycle life. 
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(a) (b) 

 

Figure 5.3: The SOC estimation using SPKF for the battery model parameters updated 
with the SOH. a: the estimated and true SOC in the charging phase when the SOH is 
83.5%; b: the RMSE of estimation over the cell cycle life. 

 
Figure 5.3a: shows the estimated and true values of SOC in the charge phase 

when the SOH of the cell is equal to 83.5%. The RMSE of the estimation over the 
cell cycle life is shown in Figure 5.3b: By updating the parameters of the cells, the 
RMSE of the estimation is maintained within the acceptable error bound over the 
cell cycle life. 
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Chapter 6. Adaptive MPC including 
Battery Thermal Limitations for Fuel 
Consumption Reduction in P2 HEV 

This chapter is dedicated to demonstrating a strategy for energy optimization 
in HEV. Figure 6.1 shows the scheme of a parallel P2 configuration of HEV that is 
adopted for this analysis. A P2 configuration can be On-axis or Off-axis depending 
on the position of the EM. In the Off-axis P2 HEVs as in the figure, the ICE shaft 
can be linked to the EM shaft through the axis gear, chain or belt. A generic case 
with a P2 off-axis configuration has been analysed putting into consideration the 
additional variables, such as the transmission ratio and efficiency of belt drive. 
However, an off-axis can be converted to an on-axis configuration by setting the 
aforementioned parameters to unity. When C0 is open, the vehicle runs on pure 
electric mode with an efficient regeneration of the braking energy. The presence of 
a clutch C1 creates the possibility to use the EM as a starter to crank the ICE and 
for gear shifting. 

 
Figure 6.1: P2 Off-axis Configuration HEV powertrain integrated with an energy 
management system (EMS). 

For energy optimization and control based on a backward model, the 
powertrain torque request at the transmission model (TM) is satisfied with the 
combination of torques provided by the ICE and EM. The battery pack serves as an 
energy reservoir to store and release energy to the EM. The EMS interfaces with 
the ICE, the EM and the battery pack through the engine control unit (ECU), the 
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electric machine control (EMC) and the battery management system (BMS), 
respectively.  

The present section aims to investigate the influence of the battery pack 
capacity on the thermal behaviour and the fuel consumption of the HEV using an 
adaptive MPC strategy. The analysis is conducted, observing the influence of 
predictability with a practically implementable prediction horizon. Hence, the 
minimum battery capacity, which allows its operation without thermal implications 
is defined. The information from the prediction horizon helps to minimise 
overdesign by lowering the minimum battery capacity that the battery can be 
operated without thermal runaway. Moreover, there is an overall improvement in 
fuel consumption and battery thermal behaviour. 

6.1. Methodology 

6.1.1 The Hybrid Electric Vehicle (HEV) 

Energy consumption optimisation through power splitting is the major goal of 
HEVs. The strategy for this optimisation is developed considering the necessary 
constraints to stay consistent with the physical limitations coming from the vehicle 
systems. This paper focuses on the P2 HEV powertrain that is shown in Figure 6.1. 
The vehicle is modelled using a backward approach that computes the wheel torque 
and speed to follow a given drive cycle. The wheel torque and speed are then 
propagated to the power sources through the powertrain [85].  

The power request that corresponds to a given drive condition is acquired for a 
given gear combination from the transmission control. Applying MPC strategy, the 
torque values of EM, 𝑇𝑒𝑚 and ICE, 𝑇𝑖𝑐𝑒 are decided for the optimum energy 
consumption, considering the operating constraints of the ICE and the EM. The 
subsystems of the backward model are addressed in the following sections, and the 
parameters of the vehicle model are defined in Table 6.1. 

 
Table 6.1: The vehicle specifications for Mazda CX9 2016 [86] 

 Parameter Unit Variable Value 

Vehicle 
Description 

Nominal mass kg 𝑀 2041  
Frontal Area m2 𝐴𝑓 2.4207 

Aerodynamic drag coefficient - 𝑐𝑥 0.316 
Gear ratios - 𝑖𝑔 6-speed gear shift 

Final Drive Ratio - 𝑖𝑓𝑖𝑛𝑎𝑙 4.41 
Tire size -  P255/50VR20 

Passenger Capacity   7 

Internal 
Combustion 

Engine 

SAE Net Torque @ rpm Nm  310 @ 2000 
Fuel System -  Gasoline Direct Injection  

SAE net power @ rpm kW  169 @ 5000 
Displacement L  2.5 
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Electric Motor Maximum power  kW  27  
Maximum torque @ rpm Nm 𝑇𝑒𝑚.𝑚𝑎𝑥 65 @ 4000 

Battery 
(Sanyo NCR 
18650 GA 

Lithium-ion 
cell) 

Single-cell nominal voltage V 𝑣𝑛𝑜𝑚 3.6 
Single-cell nominal capacity  Ah  𝐶𝑛𝑜𝑚 3.2 

Minimum battery SOC % 𝑆𝑂𝐶𝑚𝑖𝑛 0 
Maximum battery SOC % 𝑆𝑂𝐶𝑚𝑎𝑥 100 
Operating temperature °C 𝜃𝑠𝑢𝑟𝑓 −20~60 
Ambient temperature °C 𝜃𝑎𝑚𝑏 20 

Battery Pack Configurations -  14s6p and 14s10p 

The detailed description of the backward model and its experimental validation 
for the case with a conventional powertrain (Mazda CX9 2016) is illustrated in [4]. 
Furthermore, the experimental design and validation of the battery electro-thermal 
model described here are illustrated in Chapter 4. Both the model and the control 
strategy are designed and simulated in MATLAB and Simulink platform with a 
sampling time, 𝑇𝑠 of 0.5 seconds. Figure 6.2 shows the backward model simulation 
scheme that is discussed in detail in the subsequent sections. 

 
Figure 6.2: The backward model simulation scheme for HEV with integrated MPC. 

6.1.2 Vehicle Longitudinal Dynamic Model 

The power request on the axle 𝑃𝑤 is computed considering the drag losses on 
the axle bearings 𝑇𝑙𝑜𝑠𝑠 and the contribution of the wheels’ inertia 𝐽𝑤 according to 
Equation 6.1. The required longitudinal traction force 𝐹𝑤 is transmitted to the 
wheels to overcome the aerodynamic resistance, the rolling resistance and the 
vehicle inertia as expressed in Equation 6.2. Since homologation cycles assume flat 
road and simulations in this work are performed based on these homologation 
cycles, the resistive force due to road inclination is neglected. 
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𝑃𝑤 = 𝑇𝑤 ⋅ 𝜔𝑤 = (𝐹𝑤 ⋅ 𝑅𝑤 + 4 ⋅ 𝐽𝑤 ⋅
𝑑𝑣

𝑑𝑡
⋅
1

𝑅𝑤
+ 𝑇𝑙𝑜𝑠𝑠) ⋅ 𝜔𝑤  (6.1) 

𝐹𝑤  =
1

2
⋅ 𝜌𝑎𝑖𝑟 ⋅ 𝐶𝑥 ⋅ 𝐴𝑓 ⋅ 𝑣

2 +𝑀 ⋅ 𝑔 ⋅ 𝑓𝑟  +  𝑀 ⋅
𝑑𝑣

𝑑𝑡
  (6.2) 

where 𝑀 is the vehicle mass; 𝑣 and 𝑑𝑣/𝑑𝑡 are the longitudinal speed and 
acceleration; 𝑓𝑟 is the coefficient of rolling resistance; 𝐶𝑥 is the aerodynamic drag 
coefficient; 𝜌𝑎𝑖𝑟 is the air density; 𝐴𝑓 is the vehicle's frontal area; 𝑅𝑤 is the wheel 
rolling radius; 𝑇𝑤 is the torque request on the axle; and 𝜔𝑤 is the angular speed of 
the wheel shaft. 

6.1.3 Vehicle Transmission Model (Gearbox) 

The transmission model converts 𝑇𝑤 and 𝜔𝑤 to the corresponding gearbox 
torque 𝑇𝑔 and gearbox angular speed 𝜔𝑔 based on the selected gear ratio 𝑖𝑔 and the 
final gear ratio 𝑖𝑓. 𝑇𝑔 is computed according to Equation 6.3. A speed-based 
gearshift strategy of the 6-speed gearbox is implemented in the model accounting 
for the constraint of ICE maximum speed. The gearshift applied in this work is 
given in [4] by analysing the gearshift experimental data from Argonne National 
Laboratory (ANL) [86,87]. 

{
 
 

 
 𝑇𝑔 =

𝑇𝑤
𝑖𝑓 ⋅ 𝜂𝑓 ⋅ 𝑖𝑔 ⋅ 𝜂𝑔

      𝑖𝑓         𝑇𝑤 > 0 

𝑇𝑔 =
𝑇𝑤 ⋅ 𝜂𝑓 ⋅ 𝜂𝑔

𝑖𝑓 ⋅ 𝑖𝑔
          𝑖𝑓         𝑇𝑤 ≤ 0

  (6.3) 

where the efficiencies of the final gear and the gearbox are considered as 𝜂𝑓 = 𝜂𝑔 =

0.98. The 𝜔𝑔 is computed accordingly from Equation 6.4. 

𝜔𝑔 = 𝜔𝑤 ⋅ 𝑖𝑓 ⋅ 𝑖𝑔                                                  (6.4) 

 

6.1.4 The Internal Combustion Engine 

Conventional vehicles rely solely on the ICE as the traction source. It is a 
common practice to model the fuel consumption of the ICE with static maps. The 
fuel consumption map for Mazda CX9 2016 ICE is used for analysis in this work 
[87]. The map is shown in Figure 6.3 where the fuel consumption rate 𝑚 𝑖𝑐𝑒 is 
defined as a two-dimensional function of engine torque 𝑇𝑖𝑐𝑒 and speed 𝜔𝑖𝑐𝑒. The 
maximum operating torque 𝑇𝑖𝑐𝑒,𝑚𝑎𝑥 of the ICE is limited by the engine wide open 
throttle (WOT) characteristics. The steady-state map was obtained without loads of 
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alternator and water pump. The oil pump load was included in the experimental 
tests [87]. 

 
Figure 6.3:  a: Fuel consumption map of Mazda CX9 2016 ICE as a function of engine 
torque and speed. The dots are the estimated values. b: The maximum operating engine 
torque as a function of engine speed. 

The analytical model of the fuel consumption rate 𝑚 𝑖𝑐𝑒 was derived using 
polynomial curve fitting as described in Equation 6.5. The regression coefficients 
of the polynomial function were estimated with a fit goodness indicator R-square = 
0.91. Figure 6.3b shows the maximum engine torque and visualizes the goodness 
of fit of the two fuel consumption rates: experimentally obtained (solid lines–EXP) 
and approximated from Equation 6.5 (dashed lines–APPROX). 

𝑚 𝑖𝑐𝑒(𝑇𝑖𝑐𝑒, 𝜔𝑖𝑐𝑒) = 𝑝00 + 𝑝10 ⋅ 𝑇𝑖𝑐𝑒 + 𝑝01 ⋅ 𝜔𝑖𝑐𝑒 + 𝑝20 ⋅ 𝑇𝑖𝑐𝑒
2 + 

𝑝11 ⋅ 𝜔𝑖𝑐𝑒 ⋅ 𝑇𝑖𝑐𝑒 + 𝑝02 ⋅ 𝜔𝑖𝑐𝑒
2 + 𝑝30 ⋅ 𝑇𝑖𝑐𝑒

3 + 𝑝21 ⋅ 𝑇𝑖𝑐𝑒
2 ⋅ 𝜔𝑖𝑐𝑒

 + 

 𝑝12 ⋅ 𝑇𝑖𝑐𝑒 ⋅ 𝜔𝑖𝑐𝑒
2 + 𝑝03 ⋅ 𝜔𝑖𝑐𝑒

3  

(6.5) 

6.1.5 Electric Machine (EM) 

The presence of the EM provides an alternative or supporting power source for 
the powertrain of the HEV. The electric machine can either act as an electric motor 
or as a generator. When the vehicle is accelerated, the EM acts as an electric motor, 
drawing energy from the battery to lower or eliminate the ICE fuel consumption. If 
the vehicle is decelerated, the EM acts as a brake, and the generated energy is stored 
in the battery. Equation 6.6 computes the power requested from the battery in 
charge and discharge modes. Similar to the ICE, the maximum operating torque of 
the EM is limited by maximum motor torque 𝑇𝑚𝑜,𝑚𝑎𝑥 and maximum generator 
torque 𝑇𝑔𝑒𝑛,𝑚𝑎𝑥 defined as functions of 𝜔𝑒𝑚 as shown on the efficiency map in 
Figure 6.4. 
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𝑃𝑏𝑎𝑡 = {
𝑇𝑒𝑚 ⋅ 𝜔𝑒𝑚 ⋅ 𝜂𝑔𝑒𝑛,  𝑐ℎ𝑎𝑟𝑔𝑒

𝑇𝑒𝑚 ⋅ 𝜔𝑒𝑚 𝜂𝑚𝑜𝑡⁄ ,  𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
  (6.6) 

𝜂𝑔𝑒𝑛 and 𝜂𝑚𝑜𝑡 are the respective generator and motor efficiencies. 

 

Figure 6.4: Efficiency map of the electric machine in both motor and generator 
operating modes. The maximum motor torque and maximum generator torque, 
defined as functions of electric machine speed. 

6.1.6 Battery and Electro-Thermal Model 

The battery pack serves as the energy reservoir for the storage of electrical 
energy. The electro-thermal model is incorporated in the vehicle model to provide 
the state information to the controller for optimization of fuel consumption and to 
prevent thermal runaway. At each time instant 𝑘, the adopted controller requires the 
battery state  information. This information is the output of the battery pack electro-
thermal model that takes the power request 𝑃𝑏𝑎𝑡 as input. 

Two battery packs of 0.9 and 1.5 kWh capacities are designed using 14s6p and 
14s10p configurations, respectively. These capacities correspond to the range of 
commercially available HEV batteries [2]. The configuration indicates the series 
and parallel combination of cells. 14s6p means 14 modules of six parallel cells 
connected in series. The battery packs are built from the electro-thermal model 
developed in Section 4.1 with Sanyo NCR 18650 GA lithium-ion cells that have a 
capacity of 3.3 Ah and a nominal voltage of 3.6 V [80]. The difference in the 
capacities of these two batteries is useful to analyse the influence of battery sizing 
on thermal behaviour and fuel consumption. Refer to Table 6.1 for the cell 
specification. 
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6.2. Energy Management System (EMS) Strategy with 
Adaptive MPC 

The EMS in HEVs is responsible for minimising energy consumption without 
violating the operating limitations of the vehicle system. Using an MPC, this task 
is defined as the objective or cost function that is minimised across a defined 
prediction horizon while respecting the defined constraints. A prediction horizon 
𝑝 = 20 is applied in the final design. This corresponds to a prediction distance of 
80–90 m at an average driving speed of 31.5 km/h for the UDDS cycle considering 
a sampling time of 0.5 seconds.  

 

6.2.1 Design of an MPC Internal Prediction Model 

The MPC is equipped with a linearized internal plant model for making 
predictions across a defined horizon. The MPC internal prediction model and the 
constraints are derived as the linear approximation of the model of the internal 
combustion engine and the battery electro-thermal model. The model has three (3) 
inputs, four (4) states and three (3) outputs as highlighted in Table 6.2. The inputs 
include the torque of EM, torque of ICE and speed of ICE. The torque of EM and 
torque of ICE are the manipulated variables while the speed of ICE is assumed to 
be a measured disturbance to the model. The speed of the EM is derived by scaling 
the speed of the ICE with the off-axis gear ratio of 2.7. The states include: the SOC, 
diffusion-resistor current 𝑖𝑅𝑗, battery surface temperature 𝜃𝑠𝑢𝑟𝑓 and fuel consumed 
𝑚𝑖𝑐𝑒, which is an integration of 𝑚 𝑖𝑐𝑒. The outputs of the model are the SOC, 𝜃𝑠𝑢𝑟𝑓 
and 𝑚𝑖𝑐𝑒.  

For the MPC prediction model design, 𝑃𝑙𝑜𝑠𝑠,𝑘 is computed neglecting the 
hysteresis components and the model is evaluated at a single operating point. This 
simplifies the model without significant deviation from the true model. 
Furthermore, the presence of feedback in the control strategy compensates for such 
deviation. 
 

Table 6.2: Inputs, states, eigenvalues and output variables of the linearized nominal 
internal plant model. 

Input States Variable Nominal 
Eigenvalue Output 

Torque of EM (   ) State of charge (SOC) 0 SOC 
Torque of ICE (    ) Diffusion-resistant current (𝑖𝑅𝑗) −0.002s 𝜃𝑠𝑢𝑟𝑓 

Speed of ICE (𝝎   ) 
Battery temperature (𝜃𝑠𝑢𝑟𝑓) −0.0282 

𝑚𝑖𝑐𝑒 Fuel consumed (𝑚𝑖𝑐𝑒) 0 
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From Table 6.2, the presence of zero eigenvalues resulting from the presence 

of the integrators in SOC and 𝑚𝐼𝐶𝐸 contributes to the marginal stability of the 
nominal plant model. The small magnitude of the non-zero eigenvalues is an 
indication of the slow dynamics of the model. 

 

6.2.2 Design of Standard MPC 

The adaptive MPC is built on the standard MPC [88,89]. In general form, the 
MPC optimisation problem is formulated in discrete time as an argument that 
minimises the cost function 𝐽(𝑢𝑘) subject to the states of the model and the 
constraints as in Equation 6.7. 𝐽(𝑢𝑘) is a contribution of the cost due to output 
reference error (𝑒) minimisation, 𝐽𝑦; the cost due to input variation minimisation, 
𝐽∆𝑢; and the cost due to constraint violation (𝜀) minimisation 𝐽𝜀; 𝜀 = 0 implies a 
hard constraint. The constraint is softened with an increase in non-negative 𝜀. 

arg min
𝑢𝑘

(𝐽(𝑢𝑘) = 𝐽𝑦(𝑢𝑘) + 𝐽∆𝑢(𝑢𝑘) + 𝐽𝜀(𝑢𝑘)) ;  𝑢𝑘 = [𝑇𝑒𝑚, 𝑇𝑖𝑐𝑒]  

subject to 
𝑆𝑂𝐶 =  𝑓1(𝑇𝑒𝑚, 𝜔𝑒𝑚) 

𝑖𝑅𝑗  =  𝑓2(𝑇𝑒𝑚, 𝜔𝑒𝑚) 

𝜃𝑠𝑢𝑟𝑓  =  𝑓3(𝑇𝑒𝑚, 𝜔𝑒𝑚) 

𝑚𝑖𝑐𝑒  =  𝑓4(𝑇𝑖𝑐𝑒, 𝜔𝑖𝑐𝑒) 

  

and the constraints 

𝑇𝑒𝑚,𝑚𝑖𝑛 ≤ 𝑇𝑒𝑚 ≤ 𝑇𝑒𝑚,𝑚𝑎𝑥 

𝑇𝑖𝑐𝑒,𝑚𝑖𝑛 ≤ 𝑇𝑖𝑐𝑒 ≤ 𝑇𝑖𝑐𝑒,𝑚𝑎𝑥 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤  𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 
𝜃𝑠𝑢𝑟𝑓,𝑚𝑖𝑛 ≤ 𝜃𝑠𝑢𝑟𝑓 ≤ 𝜃𝑠𝑢𝑟𝑓,𝑚𝑎𝑥 

𝑇𝑟𝑒𝑞 = 𝑇𝑒𝑚 + 𝑇𝑖𝑐𝑒 + 𝑇𝑏𝑟𝑎𝑘𝑒 

 (6.7) 

where 𝐽𝑦(𝑢𝑘) =  ∑ 𝑤𝑒 𝑒𝑘+𝑖
2𝑝

𝑖=1 ; 𝐽𝑢(𝑢𝑘) =  ∑ 𝑤∆𝑢 ∆𝑢𝑘+𝑖
2𝑝−1

𝑖=1 ; and 𝐽𝜀(𝑢𝑘) =
𝑤𝜀𝜀𝑘

2, 𝑤𝑒, 𝑤∆𝑢 and 𝑤𝜀 are the penalising weights on the respective costs. Increasing 
the weight increases the importance of the corresponding component whose cost is 
desired to be minimised. 𝑤𝑒 is set to 0.0001 for all the outputs since our goal is not 
to track the reference. 𝑤∆𝑢 is set to 0.01 for all the inputs to give some importance 
to minimising the input variation. 𝑤𝜀 is set to 100,000 to minimise violation of 
constraints. 𝑇𝑟𝑒𝑞 =  𝑇𝑔 is the torque request computed from the transmission 
control. The subscripts 𝑚𝑖𝑛 and 𝑚𝑎𝑥 indicate the minimum and maximum values 
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of the variables. Table 6.3 lists the minimum and maximum limits of the input and 
output constraints. 

Table 6.3: The minimum and maximum limits of the input and output constraints. 

   𝒐 (Nm)  𝒈 𝒏 (Nm)  𝑰𝑪𝑬 (Nm) SOC 𝜽𝒔𝒖𝒓𝒇 (°C) 
min 0 −𝑇𝐸𝑀,𝑚𝑎𝑥  0 0.1 0 
max 𝑇𝐸𝑀,𝑚𝑎𝑥  0 𝑇𝐼𝐶𝐸,𝑚𝑎𝑥  0.9 50 

The MPC problem is solved for the prediction horizon to compute the control 
sequence such that Equation 6.8 holds. The first element of the optimum control 
sequence is applied, and the control procedure is repeated. 

𝑇𝑟𝑒𝑞 = 𝑇𝐸𝑀 + 𝑇𝐼𝐶𝐸 + 𝑇𝑏𝑟𝑎𝑘𝑒  (6.8) 

The mechanical brake 𝑇𝑏𝑟𝑎𝑘𝑒 is applied to augment the 𝑇𝑟𝑒𝑞 in the charge phase 
when 𝑇𝐸𝑀 cannot provide the required torque. It is desired to minimise 𝑇𝑏𝑟𝑎𝑘𝑒 as 
much as possible to use the maximum power of the electric machine. 

 

6.2.3 Adaptive MPC 

Adaptive MPC provides an intuitive approach for handling nonlinear control 
problems with linear controllers. A linearizer is developed to linearize the plant 
model at every time step. Since the HEV model is highly nonlinear both on the 
states and on the constraints, the standard MPC is suitable for controlling the model 
only at a single operating point. The main nonlinearity of the plant model comes 
from 𝑃𝑙𝑜𝑠𝑠, 𝜃𝑠𝑢𝑟𝑓 as well as the 𝑚 𝑖𝑐𝑒. Furthermore, 𝑇𝐸𝑀,𝑚𝑎𝑥 and the 𝑇𝐼𝐶𝐸,𝑚𝑎𝑥 
introduce nonlinear constraint functions. These constraints are shown in Figure 6.4 
and Figure 6.3b, respectively. They are in polynomial form in Equations 6.9 and 
6.10 as suitable for applying in an MPC. 

 

𝑇𝐸𝑀,𝑚𝑎𝑥 = 1.6838×10
−8𝜔𝑒𝑚

3 − 4.4193×10
−5𝜔𝑒𝑚

2 − 0.0023𝜔𝑒𝑚+68.4266   (6.9) 

𝑇𝐼𝐶𝐸,𝑚𝑎𝑥 = {

2.569𝜔ice+ 2.699 𝑖𝑓 𝜔𝑖𝑐𝑒 < 154 𝑟𝑎𝑑/𝑠

-3.687 × 10−6𝜔𝑖𝑐𝑒
3  + 0.002866𝜔𝑖𝑐𝑒

2 −  0.6857𝜔ice +…

 450.3 𝑒𝑙𝑠𝑒𝑖𝑓 𝜔ice > 154 𝑟𝑎𝑑/𝑠

 (6.10) 

The Adaptive MPC controls the nonlinear HEV model with a standard linear 
MPC whose prediction model is updated at every time step 𝑘. To update the linear 
MPC, the HEV model is linearized at every time step and the linear parameters are 
used to update the parameters of the MPC prediction model. The linearized model 
is obtained by computing the Jacobian matrix at each time step. The stability and 
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disturbance rejection properties for this approach are addressed in the literature in 
[90,91]. The linearized model is computed according to Equation 6.11. 

𝑥𝑘+1 = 𝐴 𝑥𝑘 +   𝑢𝑖,𝑘 + �̃�𝑢𝑑,𝑘

𝑦𝑘+1 = 𝐶 𝑥𝑘 +  ̃𝑢𝑖,𝑘 + 𝐸 𝑢𝑑,𝑘
  (6.11) 

where 𝐴 =  (
𝑑𝑓

𝑑𝑥
)
(𝑥𝑘,𝑢𝑖,𝑘,𝑢𝑑,𝑘) 

,   =  (
𝑑𝑓

𝑑𝑢𝑖
)
(𝑥𝑘,𝑢𝑖,𝑘,𝑢𝑑,𝑘) 

, �̃� =  (
𝑑𝑓

𝑑𝑢𝑑
)
(𝑥𝑘,𝑢𝑖,𝑘,𝑢𝑑,𝑘) 

, 

 𝐶 =  (
𝑑𝑦

𝑑𝑥
)
(𝑥𝑘,𝑢𝑖,𝑘,𝑢𝑑,𝑘) 

 ,  ̃ =  (
𝑑𝑦

𝑑𝑢𝑖
)
(𝑥𝑘,𝑢𝑖,𝑘,𝑢𝑑,𝑘) 

, 𝐸 =  (
𝑑𝑦

𝑑𝑢𝑑
)
(𝑥𝑘,𝑢𝑖,𝑘,𝑢𝑑,𝑘)

; 

𝑥𝑘,  𝑢𝑖,𝑘 𝑎𝑛𝑑 𝑢𝑑,𝑘 are the current values of the states, the manipulated inputs and the 
disturbances of the system, respectively. 

For the HEV fuel consumption minimisation problem, at each time step, 
assuming that the velocity of the vehicle is known for a defined prediction horizon, 
the states of the model can be predicted within this horizon, and the MPC problem 
is solved to compute the control sequence. The prediction information helps the 
return optimum results within the prediction horizon. The energy consumption is 
minimised, and the thermal behaviour is enhanced as reported in Section 6.3. The 
presence of prediction information helps to avoid overdesign by reducing the 
minimum battery capacity that is needed to avoid thermal runaway. This can be 
verified by comparing the adaptive MPC results with that of ECMS [4]. 

6.3. Results and Discussion 

The HEV model performance is first analysed under an optimized On/Off 
condition (without MPC) to define a reference for comparing the optimized results 
when a temperature limit is imposed. The analysis is conducted with the 0.9 kWh 
battery of configuration 14s6p. Second, the model performance is analysed with the 
adaptive MPC, first, with no limit on temperature. The prediction horizon is set to 
𝑝 = 2. The energy consumption and 𝐶𝑂2 emission are computed under these 
conditions. To understand the influence of the prediction horizon, the MPC is set to 
𝑝 = 20, and the model performance is analysed with no temperature limits. 
Furthermore, a thermal constraint is imposed, and the influence of temperature on 
energy consumption is evaluated. Finally, battery sizing is demonstrated as a means 
to efficiently enhance the thermal behaviour of the battery pack while improving 
energy savings. The battery capacity is gradually increased to determine the 
minimum battery capacity suitable to avoid thermal runaway. A minimum capacity 
of 1.5 kWh with the configuration 14s10p is determined for the performance 
analysis. The results of the analyses are summarized in Table 6.4. 
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6.3.1 Fuel Consumption Computation Based on On/Off Model 

The first attempt in imposing battery temperature limitations in fuel 
consumption optimization is to define a reference based on an optimized model 
upon which the optimized results can be compared. The HEV model is run in this 
mode without the MPC. To obtain the temperature limitation in the On/Off mode, 
the electric machine is allowed to work only when the battery surface temperature 
is less than the maximum operating temperature of the battery. When the battery 
temperature approaches the maximum, the system runs on pure ICE mode. In other 
words, the electric-assist mode is activated only when the battery temperature is 
below the maximum operating temperature. Considering the temperature operating 
range of the battery, a maximum battery surface temperature of 55 °C is defined in 
this work. This scenario is considered the worst-case fuel consumption case since 
the EM is utilized with no optimization. The analysis is carried out considering the 
14s6p battery configuration and an ambient temperature of 20 °C. The main results 
are shown in Figure 6.5. 

 
Figure 6.5: On/off model evaluated with 14s6p battery configuration. a: the state of 
charge; b: the battery surface temperature; c: the EM torque; d: the ICE torque; and e: 
the velocity of the UDDS drive cycle. 

The acceleration phase of the drive cycle velocity profile in Figure 6.5e 
corresponds to a positive torque request, while the deceleration corresponds to a 
negative torque request. Although the maximum battery temperature is defined as 
55 °C, there is a slight overshoot at 200 s. The reason for this overshoot is that, in 
one simulation step, the temperature raised fast and the action to turn off the use of 
electric traction was performed with a delay at the next simulation step.  

This can be avoided by using smaller simulation step size. However, this does 
not impact the results of the analysis significantly. To realize a charge sustaining 
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mode, the SOC starts and ends at approximately equal values. In this on/off mode, 
the computed fuel consumption is equal to 672 g corresponding to 𝐶𝑂2 emission 
values of 175.7 g/km [92] as reported in Table 6.4. The 𝐶𝑂2 emission is computed 
from gasoline by multiplying fuel consumption in litre with a gain of 2330 [g/L] 
value according to the EU technical guidelines (Regulation (EU) No 510/2011). 

6.3.2 Adaptive MPC Strategy Results 

6.3.2.1. No Thermal Limitation Constraint: 
The MPC is analysed here applying no limits on the battery surface temperature 

to optimize fuel consumption and the corresponding 𝐶𝑂2 emission for the 14s6p 
battery pack configuration. The results of this analysis will be used as a benchmark 
to evaluate the model performance when thermal constraints are imposed. The 
adaptive MPC in this section is set to 𝑝 = 2.  

This is a good approximation of an ECMS implementation where the 
computation is instantaneous or non-predictive. Under this condition, the 
simulation of the plant dynamics (especially the electro-thermal model) is within a 
very limited horizon. This results in a low adaptation of the controller. The 
minimum value of 𝑝 = 2 (against 𝑝 = 1 as in the case of ECMS) is due to the 
structural limitation of MPC. This is because the input constraint 𝑢𝑚𝑖𝑛 operates in 
the range of 𝑘 𝑡𝑜 𝑘 + 𝑝 − 1. The results are shown in Figure 6.6. 

 
Figure 6.6: MPC evaluated with 𝑝 = 2 using 14s6p battery configuration, no thermal 
limitations. a: is the state of charge; b: is the battery surface temperature; c: is the EM 
torque; d: is the ICE torque; e: is the velocity of the UDDS drive cycle. 

With no constraint applied to limit the temperature of the battery, the fuel 
consumed is 618.5 g while the 𝐶𝑂2 emissions are 161.8 g/km. This corresponds to 



6—72 Adaptive MPC including Battery Thermal Limitations for Fuel 
Consumption Reduction in P2 HEV 

 
an energy saving of 11.6% relative to the conventional vehicle and 8% relative to 
the On/off model. However, it can be seen from Figure 6.6b that the surface 
temperature of the battery can reach as high as 160 °C. This is way beyond the 
maximum operating temperature 𝜃𝑚𝑎𝑥 = 55 °C of the battery that is shown with a 
dotted line. 

 
6.3.2.2. Increased Prediction Horizon with No Thermal Limitation 

Constraint: 
Increasing the prediction horizon of the adaptive MPC enhances its thermal 

handling capability. In this case, the model is simulated with an increased prediction 
horizon. By increasing the prediction horizon, MPC can predict a possible 
disturbance in advance and act accordingly to minimise the effect. Thermal shock 
can also be minimised in the process. The analysis is repeated as in Section 6.3.2.1 
but with the prediction horizon set to 𝑝 = 20. Figure 6.7 shows the results of the 
analysis. 

 
Figure 6.7: MPC evaluated with 𝑝 = 20 using 14s6p battery configuration, no thermal 
limitations; a: is the state of charge; b: is the battery surface temperature; c: is the EM 
torque; d: is the ICE torque; e: is the velocity of the UDDS drive cycle. 

By increasing the prediction horizon from 2 to 20, the battery surface 
temperature is reduced from 160 to 111 °C and thermal shock is minimised as 
shown in Figure 6.7b. In this case, 610 g of fuel is consumed. This corresponds to 
159.5 g/km 𝐶𝑂2 emission, hence, an improvement relative to a low prediction 
horizon of 2. This corresponds to an energy saving of 12.8% relative to the 
conventional vehicle and 9.2% relative to the On/Off mode. 
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6.3.2.3. Introducing Thermal Limitation Constraint: 
The adaptive MPC is desired to maintain the temperature of the battery below 

the maximum temperature of 55 °C while minimising the energy consumption. It is 
possible to achieve this temperature limit using the 0.9 kWh (14s6p configuration) 
battery with a reduced maximum EM torque output, however. The classical 
approach for temperature limitation with MPC is to impose a boundary constraint 
on the maximum temperatures. However, due to the high nonlinearity that is 
associated with the temperature variable, the boundary constraint is violated 
occasionally in this case. An alternative approach is to impose a constraint on the 
range variation of the battery SOC. This limits the magnitude of energy that can be 
delivered by the battery. 

The 𝑇𝑟𝑒𝑞 is satisfied with the increase in the use of the 𝑇𝑏𝑟𝑎𝑘𝑒 in the vehicle 
deceleration mode to dissipate the surplus energy produced. In acceleration mode, 
however, there is an increase in the use of the 𝑇𝑖𝑐𝑒 and consequently, an increased 
fuel consumption. Figure 6.8 shows the results of this analysis for 𝑝 = 20. 

 
Figure 6.8: MPC evaluated with 𝑝 = 20 using 14s6p battery configuration, applied 
thermal limitation; a: is the state of charge; b: is the battery surface temperature; c: is 
the EM torque; d: is the ICE torque; e: is the velocity of the UDDS drive cycle. 

The thermal limitation is achieved by limiting the SOC of the battery to vary 
in the range of 0.3 to 4.5. The fuel consumed in the process is 621.5 g and the 𝐶𝑂2 
emissions are 162.6 g/km. This corresponds to about 11.3% energy saving when 
compared to the conventional vehicle and about 7.6% when compared to the On/Off 
model. The results in Figure 6.8 show that the adaptive MPC can maintain the 
battery surface temperature below the defined maximum limit of 55 °C. However, 
this is possible with a compromise on the limit of the operating EM torque output 
and on the fuel consumption. Figure 6.9 compares the torques in this case with the 
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cases when there are no thermal limitations in the operating point efficiency map 
of EM and ICE. 

(a) (b) 

 

Figure 6.9: Operating torque comparison between the case with thermal limitation and 
without thermal limitations in the efficiency map. a: The electric machine torque 
comparison; and b: the ICE torque comparison. 

It can be seen from Figure 6.9b that the operating torque of the electric machine 
is reduced in the case of a thermal limitation compared to the cases when there are 
no thermal limitations. 

 
6.3.2.4. Battery Thermal Enhancement with Battery Sizing: 
From Section 6.3.2.3, it is possible to maintain the temperature of the battery 

below 55 °C but at a cost of increased fuel consumption resulting from the 
underutilization of the EM power. Optimum use of EM in presence of the defined 
thermal constraint is possible by increasing the battery capacity. The battery 
capacity can be increased by increasing the number of cells connected in parallel. 
By doing this, the maximum current that passes through each of the parallel cells is 
reduced by an approximate product factor of 1/𝑁𝑝, where 𝑁𝑝 is the number of cells 
in parallel. Increasing the capacity of the battery permits softening the constraint 
imposed on the variation of SOC and the battery can deliver more energy. 
Maintaining the prediction horizon of 20, the experiment is repeated varying 𝑁𝑝 in 
the fuel consumption optimization process. Without overdesigning, a suitable 
battery pack configuration of 14s10p (1.5 kWh) was chosen to satisfy the desired 
requirements. Figure 6.10 shows the results. 

(
b) 
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Figure 6.10: MPC evaluated with 𝑝 = 20 using 14s10p battery configuration, a: is the 
state of charge; b: is the battery surface temperature; c: is the EM torque; d: is the ICE 
torque; e: is the velocity of the UDDS drive cycle. 

 
By increasing the battery capacity from 0.9 to 1.5 kWh, the fuel consumed 

computed is 590.4 g while the 𝐶𝑂2 emissions are equal to 154.4 g/km. This 
corresponds to the energy saving of 15.7% relative to the conventional vehicle and 
12.1% relative to the On/Off model. The battery operating temperature is 
maintained as desired with a maximum value of 55 °C while satisfying the torque 
request across the drive cycle. 

The results of all the cases analysed here are summarised in Table 6.4. 
 

Table 6.4: Result summary for different prediction horizons, battery pack configurations 
and operating conditions. 

Operating 
Condition 

Prediction 
Horizon 

Pack 
Configuration 

Maximum 
Temperature 

[°C] 

Fuel 
Consumption 

[L/100 km] 

Fuel 
Consumed 

[g] 

Fuel 
Saving 

[%] 

𝑪𝑶𝟐 
Consumption 

[g/km] 
Conventional  
vehicle - - - 8.03 699.9 0 187.1 

On/Off - 

14s6p 

55 7.54 672 4 175.7 
No. Temp Limit 2 160 6.94 618.5 11.6 161.8 
No. Temp Limit 20 111 6.85 610 12.8 159.5 
Temp. Limited 20 55 6.98 621.5 11.3 162.6 
Increased 
battery capacity 20 14s10p 55 6.63 590.4 15.7 154.4 

(a) 

(b) 

(c) 

(d) 

(e) 
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The percentage fuel savings computed in Table 6.4 is with respect to the 

conventional vehicle. The results shown in this work addressed the influence of 
MPC prediction capability and battery capacity on the thermal behaviour and fuel 
consumption of P2 HEV. By comparing the results of Sections 6.3.2.1 and 6.3.2.2, 
there is clear evidence that the future prediction capability of the MPC helps to 
improve the battery thermal behaviour. The battery temperature reduced from 160 
to 111 °C when the prediction horizon was changed from 2 to 20. Section 3.2.3 
demonstrates that the desired battery temperature range cannot be achieved using a 
0.9 kWh battery while reducing fuel consumption. An optimum battery size with a 
capacity of 1.5 kWh was therefore chosen in Section 6.3.2.4 to achieve the desired 
temperature with an overall reduction in fuel consumption. 

As a limitation of this model, the electro-thermal model used in this analysis 
was validated without considering battery ageing. 

 

6.4. Summary and Conclusions 

This work demonstrated the application of adaptive MPC for energy 
optimisation of P2 HEV considering battery pack thermal limitations. Two battery 
pack configurations, 14s6p and 14s10p with 0.9 and 1.5 kWh capacities, 
respectively, were considered. The developed electro-thermal model of the cell was 
used for predicting the electrical and thermal states of the battery pack. 

The adaptive MPC strategy offer solutions to the nonlinear HEV energy 
management problem. The proposed solution is obtained respecting the system 
constraints over a defined prediction horizon of 20. This prediction horizon 
corresponds to about 80–90 m of prediction distance at an average driving speed of 
31.5 km/h for the UDDS cycle. This prediction horizon can be realized by means 
of modern onboard ADAS systems. 

The system was analysed with and without the thermal limitations of the 
battery pack using two different pack configurations and two prediction horizons 
(2 and 20). Based on this analysis, the reduction of CO2 emission and fuel 
consumption was obtained by increasing the battery capacity and the prediction 
capability of the MPC model. High battery temperature and thermal shock were 
also minimised in the process. Minimum CO2 emissions and fuel consumption were 
obtained using the prediction horizon of 20 and with the 14s10p battery 
configuration pack. The battery surface temperature was approximately 55 °C with 
the relatively lowest maximum temperature and with the least thermal shock. 

It can be seen from the analysis that the prediction capability of the MPC can 
help to improve the thermal behaviour of the battery pack. However, to fully exploit 
the benefits of the MPC in minimising fuel consumption, an increase of the battery 
pack to 1.5 kWh is required. This minimum battery capacity is comparably smaller 
than that of non-predictive ECMS where the minimum capacity is 1.9 kWh [4]. 

In this work, a realistic prediction horizon realizable with onboard vehicle 
systems was considered. However, in future research, it would be interesting to see 
the potential of fuel consumption and thermal control improvement using MPC with 
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an optimal prediction horizon to obtain comparable results with dynamic 
programming-based optimization. The results shown in this paper were obtained 
without considering the influence of battery ageing. Therefore, such analysis could 
be of interest for future research. 
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