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Abstract

Optical modulation is one the most important elements in optical telecommunication
systems. Due to the increasing usage of internet and social media at every place in
the world, the demand on modulator performance is dramatically increasing. In other
words, to meet the need for the telecommunication systems of the future, modulators
with higher speeds and bandwidths must be developed, possibily compliant with
low-cost silicon-based plaftorms. Several structures and technologies can be used to
create an optical modulator. Among these, plasmonic modulator have great potential
to be responsive to the needs of future demands. In this study, the modeling of
modulators based on plasmonic waveguides is investigated. The two types of Mach-
Zehnder and directional coupler modulators are the main focus of the study. The
devices contain nonlinear polymers exhibiting the Pockels effect as an active material.
This kind of polymer can be grown on silicon photonics chips. The modulator
operating wavelengths considered is 1550 nm, which is typical of data center and
long-haul telecommunication systems. Chapter 1 covers the review of the modulation
of light and nonlinear optical effects. Also, the models of phase modulators and
Mach-Zehnder modulators are recalled and the plasmonic modulators are introduced.
In chapter 2, the modeling of the plasmonic modulator is addressed both through
analytical techniques and by means of commercailly available simulation codes.
The introduced analytical methods are very helpful to have a better insight on the
intrinsic physics of plasmonic devices. But such simplified models are not enough to
simulate and design actual devices. To this aim, more complex methods such as the
finite-difference eigenmode method (FDE), the Finite Element Method (FEM) and
the Finite-Difference Time-Domain (FDTD) method should be adopted. The FDE
and FEM methods are very fast but they can be used in waveguide-level simulations
only. For 3D analysis of a full device, FDTD is required, which is very accurate.
However, the FDTD method is very computationally demanding in terms of memory
and CPU. On the other hand, accurate numerical optimization is an indispensable tool



vi

for device design, and cannot be practically performed, dut to its huge computational
intensity, through FTDT. To overcome this limitation, the modal-FDTD method
developed in this study can be used. This technique is much faster than FDTD
and exhibits the same degree of accuracy. Chapter 3 is dedicated to the modeling
of plasmonic Mach-Zehnder modulator and the modal-FDTD is adopted on the
reference structure. In Chapter 4, a novel geometry for directional coupler modulator
is introduced, and the required simulation and device design are perfomed. Some
conclusions are drawn in Chapter 5.
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Chapter 1

Introduction

In this chapter, after reviewing the modulation of light, nonlinear optical effects
(which are necessary for electro-optic modulation) are discussed. Also, the phase
modulator and Mach-Zehnder modulator are reviewed. At the end of the chapter, the
plasmonic modulators are introduced.

1.1 Modulation of light

In the telecommunication systems, information can be transmitted by changing the
properties of the light source (intensity, amplitude, phase and frequency); this is
called modulation [1]. Two types of modulation are used: field modulation and
intensity modulation. In field modulation, the amplitude (or phase, or frequency)
of the optical wave is changed according to the information signal (Fig.1.1). In
the intensity modulation, the optical power or intensity is varied according to the
information signal (Fig.1.2). Since most commercialized fiber communication are
designed based on intensity modulation, we only consider here intensity modulation.

The modulation systems can be classified in internal (direct) modulation and
external (indirect) modulation. Internal modulation consists in varying the instanta-
neous bias point of the light source by changing the voltage (or current) applied to it.
Conversely, in the external modulation the bias point of the light source is fixed and,
for modulation, the optical wave enters another component, called the modulator.
Based on the structure and on the physical mechanism exploited, modulators can
divided into Electro-optic modulators (EOM) and Electro-absorption modulators
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(EAM). Internal modulation is more compact than external modulation, but has
lower extinction ratio (defined as the power ratio between the ON state and OFF
state), narrower modulation bandwidth and worse chirp (defined as the spurious
phase modulation following intensity modulation of light).

External optical modulation systems, are based on the interaction between the
electric field and the material optical properties. To achieve this goal, the material of
the modulator has nonlinear optical behavior. Hence, the next section is dedicated to
a discussion of the main nonlinear optical effects.

Modulator

Fig. 1.1 Different types of field modulation[1].

1.2 Nonlinear optical effects

Before the middle of the 20th century, optical components were based on linear
materials [1]. In linear material, the refractive index and permittivity are assumed
to be independent from the optical intensity. Another consequence of linearity is
that the frequency of optical waves remains unchanged when they pass through
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Modulator

Fig. 1.2 Different types of intensity modulation[1].

a linear material, i.e., no new frequencies are generated, such as harmonics or
mixing products. The nonlinear optical effects attracted attention after the successful
experiment of second harmonic generation by Peter Franken et al. in 1961 [2]. In
this experiment, since the nonlinear optical coefficient are very small, a very intense
optical wave with wavelength λ = 694.3 nm was used on the crystalline quartz and
a second harmonic was observed at wavelength λ = 347.2 nm. Four Wave Mixing,
Phase Conjugate Mirror, Raman Scattering, Brillouin Scattering are other examples
of non-linear optical interactions [1].

In linear, dispersionless materials, the relation between electric field (E) and
polarisation (P) satisfies the following equation [1]:

P = ε0χE (1.1)

where ε0 is the vacuum permittivity and χ is susceptibility of material. However, in
nonlinear material this relation becomes [1]:

P = ε0

(
χ
(1)+χ

(2) ·E +χ
(3) ·E ·E + ...

)
·E (1.2)

where χ(1) is the first order susceptibility, χ(2) is the second order susceptibility, and
so on. Usually, the value of susceptibilities with order larger than three are very
small and can be neglected. The nonlinear relation between P and E in (1.2) can
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also be described by a field-dependent susceptibility χ , i.e., by a modulation of the
material refractive index or permittivity due to an applied electric field. If the applied
field is the superposition of a (weak) optical field and of a (strong) slowly varying
(radio-frequency, RF) field, we can approximately assume that the optical refractive
index is modulated by the RF field.

In the following subsections, the most commonly used nonlinear effects in
modulators are reviewed.

1.2.1 Pockels effect

In some crystals, χ(2) is much larger than χ(3), and χ(3) (and the higher order
terms) can be neglected. In these types of crystal, the change in refractive index is
proportional to the electric field and the refractive index is obtained as follows [1]:

n = n0 −
1
2

rn3
oE (1.3)

where n0 is the refractive index of the material at zero applied field and r is the
Pockels coefficient. Asymmetric crystals such as CdTe, LiTaO3 and LiNbO3 exhibit
the Pockels effect and are used in optical modulators.

1.2.2 Kerr effect

The Kerr effect is related to the third-order nonlinear susceptibility χ(3) [1], that
is dominant in crystals (like Si) where χ(2) = 0 for reasons related to the crystal
symmetry. The refractive index of the material changes by applying an external
electric field like the field square or intensity I. In the materials exhibiting the Kerr
effect, the refractive index changes according to the following equation:

n = n0 +n2I (1.4)

where n2 is the nonlinear Kerr coefficient and I is the intensity of the input field.
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1.2.3 Charge-carrier (plasma) effect

In semiconductors, the optical refractive index depends on the free carrier (electron
and/or hole) density, that can be varied by orders of magnitude for example by
injection or depletion in a forward- or reverse-biased pn junction. The charge-
carrier effect (also called the plasma effect) is present in all semiconductors, but it is
particularly important in Si, where the Pockels effect vanishes because of the crystal
symmetry.

The following formulas represent the variation of refractive index and absorption
due to the charge-carrier effect in Si [3]:

∆n =−(e2
λ

2/8π
2c2

ε0n0)[∆Ne/m∗
ce +∆Nh/m∗

ch] (1.5)

∆α = (e3
λ

2/4π
2c3

ε0n0)[∆Ne/m∗2
ce µe +∆Nh/m∗2

ch µh] (1.6)

where e is is the electron charge, λ is the wavelength, ∆Ne is the variation of electron
concentration, ∆Nh is the variation of hole concentration, m∗

ce is the conduction
effective mass of electrons, m∗

ch is the conduction effective mass of holes, µe is the
electron mobility, and µh is the hole mobility.

1.2.4 Franz-Keldysh effect

The Franz-Keldysh effect is the variation of absorption coefficient (α) due to the
applied electric field. In the presence of an applied field, absorption of a photon with
an energy slightly lower than the semiconductor energy gap EG assist the electron
tunneling into the conduction band. Due to the Franz-Keldysh effect, the presence of
an external electric field has effect on the electron tunneling and therefore shifts the
material absorption edge towards lower energies [4]. Because of the Kramers-Kronig
relations connecting the variations of the real and imaginary parts of the material
refractive index, the Franz-Keldysh effect also implies a variation of the material
permittivity.

1.2.5 Quantum-confined Stark effect

While the Franz-Keldish effect typically occurs in bulk materials, the Quantum-
confined Stark effect takes place due to the application of an external field to a
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quantum well. The change in the quantum-well profile due to the field implies a
variation in the conduction and valence band subband energy levels, that finally leads
to a red shift of the absorption edge of the well. Further complexities derive from the
presence of exciton states whose absorption response is modulated by the field. Also
in this case, the variation of the absorption profile near the absorption edge leads to a
corresponding variation of the material permittivity and refractive index [5].

1.2.6 Thermo-optic Effect

The Thermo-optic effect is the dependence of refractive index on the material tem-
perature [6]. The refractive index of material can be expressed by the following
equation:

n = n0 +
dn
dT

·T (1.7)

where T is the crystal temperature. Since the variation of the refractive index depends
on crystal heating in the presence of an applied heat source, the thermo-optic effect
is comparatively slow and cannot be used in high-speed modulators. However, it
can be exploited to electrically tune the response of phase modulator sections or
of resonant components (like optical rings). By improving material processes in
the silicon foundry, it is now possible to integrate heaters on optical components in
different ways [7].

1.3 Modulator Parameters

In order to compare modulators, we need to define first their characteristic parameters,
often used as figures of merit. Similar to other devices, the modulator behavior
includes the static and dynamic response. Here, the most useful static and dynamic
parameters are listed.

1.3.1 Transmission

The modulator transmission T is the ratio of the optical output power to the optical
input power. In cases where the input and output cross section of the modulator are
the same, this is equivalent to the ratio of the output intensity (or power density) to
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input intensity. Since the modulator output optical power is determined by the input
modulator voltage Vin, the transmission is a function of the (DC or slowly varying)
input voltage:

T (Vin) =
Pout(Vin)

Pin
(1.8)

1.3.2 ON-state and OFF-state voltages

Ideally, the ON-state voltage VON is the input voltage at which the input power is
completely transmitted to the output (T = 1). In practice, some ON-state insertion
loss is always present, and therefore VON is defined as the input voltage that gives
the maximum transmission. Conversely, the OFF-state voltage (VOFF ) is the input
voltage for which the input power is not transmitted to the output, or, in practice, the
transmission reaches its minimum value. In Mach-Zehnder modulators the OFF-state
voltage is also called Vπ since in such modulators the OFF state is reached when a π

phase difference occurs between the two modulator arms.

1.3.3 Extinction Ratio

The extinction ratio (ER) is the ratio of the transmission at VON to the transmission
at VOFF . A higher extinction ratio leads to a better light modulation. Usually, the ER
is expressed in logarithmic units:

ER|dB = 10log10

[
T (VON)

T (VOFF)

]
(1.9)

1.3.4 Insertion loss

The insertion loss (IL) is the modulator loss in the ON state, i.e. the inverse of the
ON-state transmission. In logarithmic units we have:

IL|dB = 10log10

[
1

T (VON)

]
=− T (VON)|dB (1.10)
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1.3.5 Modulation bandwidth

From the electrical standpoint, the input of an electro-optic (lumped) phase modulator
is a capacitor. Assuming sinusoidal excitation, the effective input voltage from a
real generator of open-circuit voltage V0 and generator resistance RG will experience
low-pass filtering described, in the simplest case, by a 3 dB cutoff frequency:

f3dB =
1

2πRGCin

where Cin is the modulator capacitance. This parameter is usually defined as the
modulation bandwidth of the modulator, often expressed as speed in terms of the
highest bit rate supported by the modulator. In distributed, traveling-wave modulator
structure the speed limitation instead depends on the synchronous coupling of the
electrical and optical signals, and on the electrical transmission line losses; this case
will not be discussed in detail since, due to their extremely small footprint, plasmonic
modulators are always electrically concentrated (lumped) rather than distributed.

1.3.6 Optical bandwidth

The optical bandwidth is defined as the wavelength range on which the modulator
operates within specifications. Mach-Zehnder modulators based on LiNbO3 or non-
nonlinear polymers have a comparatively large optical bandwidth (of the order of
100 nm); the optical bandwidth is narrower in Mach-Zehnder modulators based on
the Quantum confined Stark effect or even worse in resonant ring modulators [8].

1.4 Phase Modulator

An optical phase modulator can be simply implemented by an optical waveguide
whose core region is realized with a nonlinear material. Fig.1.3 shows an integrated
phase modulator on lithium niobate (LiNbO3), a nonlinear anisotropic material with
strong Pockels effect. Optical waveguides can be created in lithium niobate by
titanium in-diffusion, that leads to a local increase of refactive index and therefore
to the creation of a waveguide with a spot size of the order of 10 µm. By applying
a voltage to the electrodes, an electric field of proper direction is created in the
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optical waveguide and, due to the material nonlinearity, the refractive index is varied
and thus the propagation constant (β ) of the fundamental mode; this causes the
variation on the phase of optical signal with respect to the zero applied field (voltage)
condition. The phase variation ∆φ is given by the following relation:

∆φ = ∆βL =
2π∆ne f f

λ
L (1.11)

where ∆β is the variation of propagation constant, L is the length of waveguide,
∆ne f f is the variation of the mode effective index and λ is wavelength. In a Si-based
photonic integrated platform, phase modulators can be implemented by exploiting
the charge-carrier (plasma) effect in a pn or pin junction integrated in the optical
waveguide (Fig.1.4) [9]. The variation of effective refractive index due to the charge-
carrier effect is proportional to the reverse voltage applied to the junction. By
applying different voltages, the electron and hole density vary due to the increase in
junction depletion, thus affecting the effective index (Fig.1.5) [9] Since, the variation
of refractive index is small, the length of phase modulator would be around one mm.

Fig. 1.3 Phase modulator structure[1].

Fig. 1.4 Cross section of a pin phase modulator structure[9].
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Fig. 1.5 Variation of the mode effective index as a function of the input applied voltage in a
pin phase modulator structure[9].

1.5 Mach-Zehnder Modulators

The Mach-Zehnder modulator structure, widely used in telecommunication systems,
is based on the Mach-Zehnder interferometer (Fig.1.6) [1]. The optical input is split
into two arms and in each arm a phase shifter is present. Ideally, if the arms introduce
the same phase shift, constructive interference occurs, the output power is maximum
and all input power transfers to output. In practice, however, some insertion loss
is introduced by the phase shifters, and the maximum output power is lower than
the input power. If the phase difference between the arms is ∆φ = π , destructive
interference occurs, and the power in the output waveguide is minimum (ideally
zero). We express the input intensity (Ii) and electric field (Ei) as:

Ei = E0ei(ωt−β z) (1.12)

Ii ∝ |Ei|2. (1.13)

Fig. 1.6 Scheme of the Mach-Zehnder modulator.
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The input splitter (assumed as symmetric) divides the input intensity Ii into two
equal parts I1 = I2 = 0.5Ii so that the input electric fields in the arms (E1 and E2) are
equal:

E1 =
Ei√

2
=

E0ei(ωt−β z)
√

2
(1.14)

E2 =
Ei√

2
=

E0ei(ωt−β z)
√

2
. (1.15)

Assuming that the phase shifters have different length (L1 and L2, respectively) and
diffrent propagation constant (β1 and β2, respectively), the electric fields at the phase
shifter outputs are:

Eo1 = E1e−iβ1L1 =
Eie−iβ1L1

√
2

(1.16)

Eo2 = E2e−iβ1L1 =
Eie−iβ2L2

√
2

(1.17)

The field Eo1 and Eo2 are combined at the end of modulator by the output combiner,
and the output intensity (Io) and electric field (Eo) will be:

Eo =
Eo1 +Eo2√

2
=

Ei

2

(
e−iβ1L1 + e−iβ2L2

)
(1.18)

Io =
Ii

4

∣∣∣e−iβ1L1 + e−iβ2L2
∣∣∣2 (1.19)

If the arms have the same length (L1 = L2), the Io can be simplified to the
following equation:

T =
Io

Ii
=

1
2
[1+ cos(∆βL)] =

1
2
[1+ cos(∆φ)] (1.20)

where:
∆β = β1 −β2 (1.21)

T is transmission of modulator and ∆φ is the phase difference between arms. The
Mach-Zehnder modulator can be fabricated by exploiting a pin phase shifter in the
silicon foundry (Fig.1.7) [10]. The implementation shown has 40 Gbit/s speed and
6 dB insertion loss. The transmission of modulator is presented in Fig.1.8 for two
different arm lengths.
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Fig. 1.7 Mach-Zehnder Si-based pin modulator structure[10].

Fig. 1.8 Mach-Zehnder transmission versus wavelength[10].

1.6 Plasmonic Phase and Mach-Zehnder Modulators

Plasmonic modulators operate by exciting a plasmonic mode that is supported by at
least one interface between a metal and a dielectric. In comparison with conventional
modulators, they work at higher speed (i.e., with a wider modulation bandwidth)
due to their extremely compact (a few µm2) footprint. Thanks to their technological
features and small size, plasmonic modulators can be integrated with electronic
CMOS circuits in the same chip, a feature that is promising for next generation
of integrated photonic platforms based on Si. Disadvantages of the plasmonic
modulators are the comparatively high insertion loss and the need to include in the
modulator transitions between photonic and plasmonic waveguides. A plasmonic
phase modulator can be fabricated as a plasmonic slot by placing a non-linear
polymer (DLD-164 in this case [11]) layer between two gold layers, see Fig.1.9
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Fig. 1.9 Plasmonic phase modulator: (a) SEM image (b) Simulated Ex at RF (ωRF ) (c)
simulated Ex at optical frequency (ωoptical)[12].

Fig. 1.10 Plasmonic Mach-Zehnder modulator: (a) SEM image (b) Transmission versus
applied voltage[12].

[12]. When a voltage is applied to the electrodes, a strong electric field is induced
in the nanometer-scale slot, thus changing the refractive index of the non-linear
polymer and affecting the phase of the output. This geometry is very compact, and
the length of modulator (L) is in the order of few µm. The width (W ) and height
(H) of slot are in the range of 30 nm-200 nm and 90 nm-600 nm, respectively. This
phase modulator design can be exploited in plasmonic Mach-Zehnder modulators,
where two slots are excited by a photonic-plasmonic splitter and converter, and the
output slot fields are combined and converted to a photonic mode by the output
combiner/converter (Fig.1.10). This modulator has an electro-optic bandwidth of
about 70 GHz with a length of 10 µm. Low energy consumption of 25 fJ per bit,
related to the small footprint and reduced capacitance, is another advantage of this
modulator. The insertion loss due to plasmonic and photonic-plasmonic conversion
losses is as high as 8 dB.



Chapter 2

Plasmonic Modulators Modeling

The chapter is focused on modeling method and tools of plasmonic structures,
presented in [13, 9]. In our study, plasmonic modulators rely on surface plasmon
polaritons. Surface plasmon polaritons are electromagnetic propagation modes which
exist at the interface between a metal and a dielectric.

2.1 Analytical Method

In general, the interaction of metal and electromagnetic fields can be investigated
by a classical framework based on Maxwell’s equations. To analyze the behavior of
surface plasmon polaritons, the well-known wave equation can be used:

∇
2E − ε

c2
∂ 2E
∂ t2 = 0 (2.1)

where ε is the permittivity of the material, c is the speed of light. In practice, for each
region with constant ε this equation is solved, and by imposing continuity conditions
on the regions’ boundaries the final solution is computed. Consider E as a separable
function of space (r) and time (t) with the following form:

E(r, t) = E(r)e−iωt (2.2)

By substituting equation (2.2) into (2.2), equation (2.3) is obtained, called the
Helmholtz equation:
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∇
2E + k2

0εE = 0, k0 =
ω

c
(2.3)

If the geometry considered, described in a Cartesian coordinate system, is similar
to Fig. 2.1 [13], the permittivity ε = ε(z) is a function of z and the electric field
propagates waves along the x direction, i.e., if we assume E(x,y,z) = E(z)eiβx,
equation (2.3) is equivalent to two sets of self-consistent equations according to
the electric field polarization (TM or TE modes). In the TM mode, the magnetic
field in y direction (Hy) is the only component, and the electric field in the x and z
directions (Ex and Ez, respectively) is computed from Hy. Similarly, in the TE mode,
the electric field in y direction (Ey) is the only component and the magnetic field in
the x and z directions (Hx and Hz, respectively) is computed from Ey.

Fig. 2.1 Geometry of the considered structure[13].

For TM propagation, the following set of equations apply:

∂ 2Hy

∂ z2 +(k2
0ε −β

2)Hy = 0 (2.4)

Ex =−i
1

ωε0ε

∂Hy

∂ z
(2.5)

Ez =− β

ωε0ε
Hy (2.6)
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For TE propagation, the following set of equations results:

∂ 2Ey

∂ z2 +(k2
0ε −β

2)Ey = 0 (2.7)

Hx = i
1

ωµ0

∂Ey

∂ z
(2.8)

Hz =
β

ωµ0
Ey (2.9)

2.1.1 Plasmonic Single Interface

In this section, the electromagnetic wave is investigated on a single metal-dielectric in-
terface (Fig. 2.2) [13]. The permittivities of metal and dielectric are ε1(ω) and ε2(ω),
respectively. The surface plasmon polaritons are generated when the Re [ε1(ω)]< 0.
In this case, however, the TE set of equations has no non-zero solution, which implies
that surface plasmon polaritons are not excited for the TE polarization. Conversely,
TM set of equations for a plasmonic single interface yields solutions under the form
of an electromagnetic wave with evanescent decay in the perpendicular z direction.
An analytical expression of the field components for the TM wave in the metal and
dielectric regions is given below:

Fig. 2.2 Geometry of single interface between metal and dielectric [13].
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• TM wave for z < 0 (i.e., in the metal):

Hy = Aeiβxek1z (2.10)

Ex =−iA
1

ωε0ε1
k1eiβxek1z (2.11)

Ez =−A
β

ωε0ε1
eiβxek1z (2.12)

• TM wave for z > 0 (i.e., in the dielectric):

Hy = Aeiβxe−k2z (2.13)

Ex = iA
1

ωε0ε2
k2eiβxe−k2z (2.14)

Ez =−A
β

ωε0ε2
eiβxe−k2z (2.15)

In the above equations, A is a constant, k1 and k2 are wave vectors having the
following relationship with the propagation constant β :

k2
1 = β

2 − k2
0ε1 (2.16)

k2
2 = β

2 − k2
0ε2 (2.17)

β = k0

√
ε1ε2

ε1 + ε2
(2.18)

For instance, the Hy component for a gold-Silicon dioxide (SiO2) interface is
illustrated in Fig. 2.3. The Hy component decays faster in the metal than in the
dielectric since the wave vector is larger.

Suppose now that ε1(ω)= εm(ω) has negligible imaginary part and ε2(ω)= εd is
constant over the frequency range considered. According to the excitation frequency,
three propagation regimes exist :

• if εm > 0 → β is real, but the modes are radiative rather than plasmonic;

• if εm < 0,εm − εd > 0,→ β is imaginary and mode is under cut off;

• if εm < 0,εm + εd < 0,→ β is real and the mode is plasmonic.
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Fig. 2.3 Real part of normalized HY for gold-SiO2 interface at wavelength λ = 1550 nm.

The transition point form real β (plasmonic mode) to imaginary β is very impor-
tant. The angular frequency corresponding to the transition point is called the surface
plasmon (angular) frequency ωsp. The plasmonic mode exists only for ω < ωsp. In
order to find an expression for ωsp and gain a better insight on it, the Drude model is
exploited for the metal permittivity:

εm(ω) = 1−
ω2

p

ω2 (2.19)

Where ωp is the plasma frequency, related to the characteristic of the metal. Inserting
equation (2.19) into equation (2.18), we obtain:

β = k0

√
(ω2 −ω2

p)εd

(1+ εd)ω2 −ω2
p
. (2.20)

At low frequency (ω → 0), εm is a huge negative number, εm + εd < 0; thus, β is
real and almost equal to k0

√
εd . By increasing ω , |εm| decreases and β increases.

At the surface plasmon frequency (ω → ωsp), εm ≈ −εd and β (εm + εd → 0)
tends to infinity. By using equation (2.19) and putting ω = ωsp and εm =−εd , the
surface plasmon frequency ωsp can be computed:

ωsp =
ωp√
1+ εd

(2.21)
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2.1.2 Plasmonic Multilayer System

The plasmonic multilayer system is a combination of dielectric and metal layers
which contains more than one plasmonic (metal-dielectric) interfaces. If the plas-
monic interfaces are close enough, they affect each other and cause coupling from
one plasmonic interface to the adjacent interface. For simplicity, the plasmonic
multilayer is considered as a three-layer structure in two cases:

• MIM: a dielectric (insulator) layer is placed between two metal layers.;

• IMI: a metal layer is placed between two dielectric (insulator) layers.

Fig. 2.4 Geometry of MIM system[13].

Since the MIM system is more compatible than the IMI system with the desired
plasmonic modulators, the TM set equations is solved for the MIM system only
(Fig. 2.4)[13]. In the metals, the solution is similar to single interface and the fields
decay exponentially. In the dielectric middle layer, solutions can be an even or odd
mode (even mode means even Hy and Ez and odd Ex; odd mode means odd Hy and
Ez and even Ex). For the even mode we have:

Hy =



Aeiβexek1z, z <−a

Beiβexcosh(k2z), −a < z < a

Aeiβexe−k1z, z > a

(2.22)
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Ex =



−iA 1
ωε0ε1

k1eiβexek1z, z <−a

−iB 1
ωε0ε1

k2eiβexsinh(k2z), −a < z < a

iA 1
ωε0ε1

k1eiβexe−k1z, z > a

(2.23)

Ez =



−A βe
ωε0ε1

eiβexek1z, z <−a

−B βe
ωε0ε1

eiβexcosh(k2z), −a < z < a

−A βe
ωε0ε1

eiβexe−k1z, z > a

(2.24)

For the the odd mode:

Hy =



Aeiβoxek1z, z <−a

Beiβoxsinh(k2z), −a < z < a

−Aeiβoxe−k1z, z > a

(2.25)

Ex =



−iA 1
ωε0ε1

k1eiβoxek1z, z <−a

iB 1
ωε0ε1

k2eiβoxcosh(k2z), −a < z < a

−iA 1
ωε0ε1

k1eiβoxe−k1z, z > a

(2.26)

Ez =



−A βo
ωε0ε1

eiβoxek1z, z <−a

−B βo
ωε0ε1

eiβoxsinh(k2z), −a < z < a

A βo
ωε0ε1

eiβoxe−k1z, z > a

(2.27)
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For each mode, k1 and k2 are the same as in equation (2.16) and (2.17). The βe

and βo are the propagation constants for the even and odd modes, respectively, and
obey to the following relation:

tanh
(

a
√

β 2
e − k2

0εd

)
=−

εm

√
β 2

e − k2
0εd

εd

√
β 2

e − k2
0εm

(2.28)

tanh
(

a
√

β 2
o − k2

0εd

)
=−

εd

√
β 2

o − k2
0εm

εm

√
β 2

o − k2
0εd

. (2.29)

2.1.3 Coupled mode theory

The coupled mode theory (CMT) is based on a perturbative solution of the Maxwell’s
equations [14]. In our study, CMT is used for the analysis of a directional coupler
consisting of two or more coupled waveguides. According to the CMT, for a two-
waveguide directional coupler, the electric field can be expressed in terms of the
following equations [15]:

E(x,y,z) = A1(z)E1(x)ei(wt−β1z)+A2(z)E2(x)ei(wt−β2z) (2.30)

dA1(z)
dz

=−iK11A1(z)− iK12A2(z)ei(β1−β2) (2.31)

dA2(z)
dz

=−iK21A1(z)ei(β2−β1)− iK22A2(z) (2.32)

K11 =
1
4

ωε0

∫ ∫
ε
∗
1 (x)∆n2

2(x,y)ε1(x)dxdy (2.33)

K12 =
1
4

ωε0

∫ ∫
ε
∗
1 (x)∆n2

1(x,y)ε2(x)dxdy (2.34)

K21 =
1
4

ωε0

∫ ∫
ε
∗
2 (x)∆n2

2(x,y)ε1(x)dxdy (2.35)

K22 =
1
4

ωε0

∫ ∫
ε
∗
2 (x)∆n2

1(x,y)ε2(x)dxdy (2.36)

where E1(x)ei(wt−β1z) and E2(x)ei(wt−β2z) are individual propagating waves of each
waveguide, assumed as uncoupled from the other one.
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Fig. 2.5 Mode profile of FDE example.

2.2 Finite-Difference Eigenmode Method

The Finite-Difference Eigenmode (FDE) method implemented in commercial soft-
ware [9] is used to analyze the propagation characteristics of the single plasmonic
slot and of plasmonic coupled-slot directional coupler. The FDE is solves Maxwell’s
equations on a defined area (usually, the cross-section of a waveguide) and than com-
putes the spatial profile and frequency dependence of the modes. Also, it provides a
complex refractive index related to the each mode supported by the geometry, which
can be easily translated into propagating constants. The method is quite fast, but it
is not sufficient to derive realistic estimates of the main parameters of a modulator,
such as the extinction ratio and the insertion loss. Fig. 2.5 presents the mode profile
in a single plasmonic slot, simulated by the FDE method at λ = 1550 nm. Also, the
propagation constant of the structure are computed (Fig. 2.6). The FDE method is
also useful for analysing directional couplers. The first step consists in considering
only one of the waveguides and then, by FDE, the mode profile is calculated. After
that, modes existing in the presence of both wavegudes is computed, and by decom-
posing the mode profile into them, the propagation constant of each supported mode
is estimated.
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Fig. 2.6 Propagation constant of FDE example versus wavelength.

2.3 Finite-Difference Time-Domain Method

The Finite-Difference Time-Domain method (FDTD) is widely used in optical
component modelling, especially for the modelling of photonic integrated circuits
(PIC). This method numerically solves Maxwell’s equations in the time domain
on a discrete mesh in space, without any assumption or approximation [9]. The
electromagnetic components are defined on a Yee cell (Fig. 2.7)[9]. The method
is very accurate but it has very demanding memory requirements. Since it is a
time-domain technique, it is possible to obtain broadband frequency-domain results
from single time-domain simulation. The FDTD is mainly used when the size of the
structure is of the order of a wavelength. For larger structures, other method such as
ray tracing are more computationally convenient.

Fig. 2.7 Yee cell[9].
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2.4 Finite Element Method

The finite element method (FEM) is a well know technique to numerically solve
partial differential equations, and can be used in the modeling of an electro-optic
structure. In our study, an in-house electromagnetic mode solver based on FEM
is used [16]. Considering the plasmonic slot on Fig. 2.5, this solver can find the
plasmonic mode in the slot, and also the radio frequency (RF) field excited when a
voltage is applied between the left and right metal layers (Gold in this case). In this
way, if the slot is filled with an electro-optic material, the refractive index variation
induced by the RF field can be evaluated, and the effective index variation of the
plasmonic mode can be obtained from the optical solution.

2.5 Modal-FDTD Method

In this section, the modal-FDTD method presented in [17] is reviewed. The FDTD is
very accurate but it is computationally demanding in terms of memory and CPU time
requirements, which makes the optimization of a structure through repeated analyses
harder. To overcome the huge computational costs of FDTD, is it possible to use the
modal-FDTD method. The method is much faster than FDTD (more than ten times),
with the same accuracy. Even though the compact footprint of plamonic modulators
makes the direct use of FDTD not impossible, it is rather prohibitive, considering
that, in the simulation of the static modulator transfer characteristic, each applied
voltage level requires a different FDTD simulation. In plasmonic Mach-Zehnder
modulators (Fig. 1.10 ), by inspecting the top view of the device shown in Fig. 2.8,
one can imagine to apply an intermediate modelling strategy between FDTD and
waveguide-only simulations (FEM or FDE). It is possible to divide the geometry
in three sections: the input splitter, two coupled waveguides (the phase shifters)
as a central part, and the output combiner, that is the same structure as the input
splitter, but mirrored. The modal-FDTD method exploits FDTD simulations only
for the splitter/combiner and waveguide simulations for the central part. In the
final stage, by using transmission line theory, the full performance of the device
can be estimated, with good agreement with FDTD. Since the phase modulators
consist of two (coupled) waveguides, this device resembles a bimodal Fabry-Pérot
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interferometer (BFPI) [18], whose concept is sketched in the left-bottom part of Fig.
2.8.

Fig. 2.8 Top-left:The view of plasmonic Mach-Zehnder modulator. Bottom-left: schematic
representation of a bimodal Fabry-Pérot interferometer, indicating the correspondence with
the blocks of the MZM on top. Right: top view of the 3D model of the splitter to be simulated
for the Modal-FDTD strategy.

At the first step of the modal-FDTD strategy, the splitter part is simulated by
FDTD at applied voltage V = 0. This simulation provides by itself interesting data,
such as an estimate of the photonic-plasmonic coupling losses. In the following,
we will discuss how to combine this simulation to the waveguide-only analysis.
Considering only 2 internal modes to describe the modulator response, FDTD
Lumerical allows to compute, through the S-parameter functionality, a 3×3 matrix
where, e.g., port 1 indicates the fundamental mode of the Si waveguide, and ports 2
and 3 the two plasmonic modes considered for the slot waveguides. This matrix can
be re-arranged as:

S̄L =

[
S̄L

oo S̄L
oi

S̄L
io S̄L

ii

]
=

 S̄11 S̄12 S̄13

S̄12 S̄22 S̄23

S̄13 S̄23 S̄33

 (2.37)
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Coherently with Fig. 2.8 (left), the subscripts “o” and “i” are used to indicate the
ports located outside and inside the modulator, respectively. In equation (3.3), the
superscripts “L” are used to remark that the scattering matrix blocks include the
transmission line segment with length Lport indicated in Fig. 2.8 (right). In order to
obtain the final 0 volt splitter matrix S̄0, one should de-embed such transmission
lines, defining (at VRF = 0 V) the phase shift matrix Eport as:

Eport = diag{i=1,2}

{
e(− jk0(ne f f ,i− jκi)Lport)

}
(2.38)

where ne f f ,i, κi can be obtained from (possibly multiphysics) waveguide simulations.
Finally, de-embedding is performed by applying:

S̄0
oo = S̄L

oo

S̄0
io = E−1

port S̄L
io

S̄0
oi = S̄L

oi E−1
port

S̄0
ii = E−1

port S̄L
ii E−1

port .

(2.39)

2.6 Electro-optic Effect Model

In the electro-optic modulator, a material with nonlinear optical properties is essential.
In our case, the plasmonic modulator under study is assumed contain a nonlinear
organic polymer (NLO) called DLD164 [19, 20, 11], which exhibits strong Pockels
effect. Fig. 2.9 shows the refractive index of NLO (nNLO) versus wavelength [21].
During deposition of this material, a large poling voltage (Vpoling ≈ 400 V ) is applied
to the structure; the large resulting electric field allows, with a convenient process
temperature, to rotate the active molecules (chromophores) of the NLO, making them
align to the applied field. The alignment resulting from the poling process remains
at ambient temperature even after that the poling voltage is removed. Imposing a
now a RF electric field, the material refractive index nNLO changes according to the
equation:

∆nEO =
1
2

r33n3
NLOERF (2.40)

where ∆nEO is the refractive index variation, r33 is the electro-optic coefficient of
the NLO and ERF is RF electric field. If the ERF has a component along the same
direction as the poling field, ∆nEO is positive; otherwise, ∆nEO is negative. Also, the
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Fig. 2.9 Refractive index of NLO DLD164 polymer[21].

Fig. 2.10 Cross section of a plasmonic slot[12].

permittivity can be easily calculated from following equation:

εEO = (nNLO +∆nEO)
2 (2.41)

Considering the plasmonic phase modulator in Fig. 1.9, the cross section of the
plasmonic waveguide is similar to the one in Fig. 2.10. By applying a RF voltage
VRF between the right and left metals, the electric field in the electro-optic material
varies, thus providing the required ∆nEO. if the optical propagation direction is z
direction, the cross section would be in the x− y plan similar to Fig. 1.9. Assuming
that ERF has negligible z component, the ERF can be decomposed to x and y direction
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(Ex and Ey, respectively):

∆nEO =
1
2

r33n3
NLO

√∣∣E2
x +E2

y
∣∣ (2.42)

The Ex component, much larger than Ey, is dominant. Since the width of slot
(W ) is small (of the order of 100 nm), Ex can be approximated by a parallel-plate
approx as VRF/W , leading to:

∆nEO ≈ 1
2

r33n3
NLOE2

x ≈ 1
2

r33n3
NLO

VRF

W
(2.43)



Chapter 3

Plasmonic Mach–Zehnder Modulator

This chapter is focused on the modeling of plasmonic-organic hybrid Mach-Zehnder
modulators. The interest in these devices is related to their natural compatibility with
silicon photonics platforms and to the non-diffraction limited characteristics of the
plasmonic waveguide enable nanoscale cross-sections and microscale total lengths,
which allow chip-scale integration [22, 23]. Such small cross-sections lead to very
large radiofrequency (RF) electric fields with reduced driving voltages, enhancing
the E/O effect and allowing for sub-THz bandwidths. These exceptional features
are paid with the very strong propagation losses characterizing plasmonic modes,
which are about 1 dB/µm. Nevertheless, the extremely compact achievable footprints
enable an energy consumption of the order of fJ/bit, making these devices attractive
for low-power communication systems [24–26].

As mentioned in previous chapters, in plasmonic modulators, the E/O material
is based on chromophore molecules dispersed in a host polymer medium, which
are previously oriented by a static poling electric field [19, 20, 11]. Modulation of
the material refractive index is enabled by applying a RF electric field to the poled
material. This material fills the phase shifters slots, which are designed to support
plasmonic modes [27]. Thanks to the nanometer scale of slot widths, very large RF
electric fields can be obtained with low applied voltages.

It is therefore clear how a comprehensive model should predict the E/O modu-
lation from RF electrical simulations, whose results are used to obtain a complex,
position-dependent refractive index profile as the input of the optical model.
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In the last decades, the Microwave and Optoelectronics Group (MOG) of the De-
partment of Electronics and Telecommunication (DET) of Politecnico di Torino has
developed several competences in the modeling of semiconductor electro-absorption
and electro-optic modulators. Starting from these foundations, the contribution
developed in the framework of this chapter has been the set-up of a new simulation
framework for plasmonic-organic hybrid electro-optic modulators. In this view,
different simulation approaches have been developed. First, I have attacked the
problem with 3D-FDTD, which is the most comprehensive optical model for these
devices, capable of studying the entire geometry, paid at the price of extremely severe
memory and computational requirements. Then, I have investigated the limitations
of 2D modal simulations, which allowed to obtain a first estimate of the modulator
static/dynamic response [28]. In an attempt to achieve results comparable to those of
the 3D-FDTD with computational requirements comparable to modal simulations, I
have contributed to the theoretical development, implementation and validation of
the modal-FDTD method presented in this chapter.

3.1 Geometry

The plasmonic Mach-Zehnder modulatore (PMZM) under analysis, sketched in
Fig. 3.1, is similar to the one presented in [12]. The structure is fabricated on a SiO2

layer 3 µm thick, grown on a Si substrate (not shown in the figure but included in
the electrical simulations). The two arms of the PMZM are the slot waveguides
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Fig. 3.1 Left: 3D representation of the device under test, including all the relevant geometrical
in Tables 3.1–3.2. Right: sketch of the (x,y) cross-section of the device under test, including
the RF voltage circuit.
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Table 3.1 Geometrical parameters of the cross-section shown in Fig. 3.1(right).

Quantity wslot,1 wslot,2 hslot hNLO wisland wrail

Value, unit 90 nm 100 nm 220 nm 300 nm 400 nm 520 nm

Table 3.2 Parameters of the geometry shown in Fig. 3.1(left)

Quantity Lmod Lrail Lt,Au dt Lt,Si LWG hWG wWG

Value, unit 6 µm 12 µm 1 µm 500 nm 1 µm 4 µm 200 nm 440 nm

embedded between the central gold island and the two lateral gold rails. The optical
input signal is assumed to be the fundamental mode of the input (left) Si waveguide.
This mode reaches a splitter, consisting of a couple of facing tapers (left in Si, right
in Au), which convert the dielectric waveguide mode into the plasmonic modes
supported by the slots. The device is symmetrical with respect to the central z
section (the center of the gold island), so that, after propagating in the slots, the
plasmonic modes are recombined and couple to the output Si waveguide. The device
is immersed in the DLD-164 non-linear optic (NLO) material, with thickness hNLO.
Modulation is achieved through the electro/optic effect induced by the RF voltage,
which is applied to the central island contact. The RF field changes the effective
refractive index of the plasmonic modes in the phase shifters, leading to a voltage-
dependent interference at the output combiner, which ranges from constructive (ON
state) to destructive (OFF state).

The phase modulators are driven in push-pull operation by a single signal, using
the coplanar ground-signal-ground transmission line sketched in Fig. 3.1(right)[29–
31, 23]. This is obtained by aligning the poling field for the E/O polymer to the
modulation RF field, the latter having opposite polarity in each modulator arm. By
inspecting the geometrical details reported in Table 3.1, one can notice that the two
slot widths are different. This comes from a precise choice, as it allows to tune the
PMZM to operate around the quadrature point (where linearity is maximum) at zero
bias voltage [12].

3.2 Multiphysics simulations

The simulation strategy is explained in the following subsections.
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Fig. 3.2 Top: effective index of an isolated slot waveguide versus slot width performed with
no E/O effect (VRF = 0 V). Bottom: 0 V phase shift of a PMZM with Lmod = 6 µm with one
slot width fixed to 100 nm and varying the other. The simulations have been performed at
λ = 1.55 µm. The blue curve has been simulated with an electromagnetic mode solver based
on FEM, including all the geometrical details presented in Fig. 3.1(right) for x ≥ 0. The red
curve has been obtained approximating the geometry as a metal-insulator-metal waveguide
and using semi-analytical expressions.

3.2.1 Cold (zero voltage) device simulations

As a first result, Fig. 3.2(top) shows the effective index of a slot waveguide, at zero
applied voltage, as a function of the slot width. Here, the results of two models are
presented at λ = 1.55 µm. The blue curve has been obtained by simulating the 2D
cross-section of an isolated slot (i.e., simulating the (x,y) cross-section shown in
Fig. 3.1(right), just for x ≥ 0). The simulation of plasmonic slot waveguides has been
widely addressed in the literature, with a broad spectrum of techniques including the
effective index method [32], circuit approaches [33, 34], finite difference schemes
either in time [35] or in frequency [36] domains, finite elements [37], Fourier
modal methods [38], and integral-equation schemes [39]. In this work, waveguide
simulations have been performed with an in-house electromagnetic mode solver
based on the finite element method (FEM) [16]. On the other hand, the red curve
has been obtained with a much simpler and widely-available model, based on
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approximating the slot geometry as a metal-insulator-metal waveguide (therefore,
y-invariant) and using semi-analytical expressions from [40, Ch. 10]. From the
top panel one could deduce that the simpler model, even though capturing the
general trend vs. the slot width, is inadequate for design purposes. This is partially
contradicted by the analysis in the bottom panel. Here, recalling that the phase
shift of a single PMZM arm at 0 V applied voltage is Φ = k0neffLmod, we plot the
phase difference between the two arms (where one of the arms is 100 nm wide), as a
function of the width of the other arm:

∆Φ(wslot) = k0Lmod |neff(wslot)−neff(100nm)| , (3.1)

where k0 = 2π/λ , and the phase modulator lengths are assumed to be Lmod = 6 µm.
Obviously, ∆Φ = 0◦ at wslot = 100nm, which corresponds to the symmetric PMZM
case. While the semi-analytic model fails to predict ∆Φ for wider slots, it is pretty
accurate for narrower cases. Targeting at ∆Φ = 90◦, i.e., setting the half-power
point at VRF = 0 V, both models predict wslot ≃ 85 nm (indicated with the blue
and red open bullets), with a deviation smaller than 1 nm. Intuitively, this partial
success of the semi-analytic approach could be ascribed to the slot aspect ratio
(hslot = 220 nm). Being the slots narrow, they are quite similar to metal-insulator-
metal (MIM) waveguides, justifying the partial validity of the simplification that
results useful to perform preliminary optical characterizations of passive plasmonic
slots before their electro-optic implementation in a PMZM [41].

3.2.2 Multiphysics-augmented waveguide simulations

The results discussed in the previous section pertain cold device operation. Because
of the absence of the modulating radiofrequency field, optical-only simulations are
sufficient in this case. Modulation is enabled by imposing an RF electric field, which
causes the optical dielectric permittivity of the E/O material to change according
to equation (2.41). We neglected the z-dependence of the electro-optic coefficient.
This is acceptable in the splitter/recombiner, where the electric field profile is much
weaker than in the slots. It is to be remarked that, even if the device under study is
simplified (vertical slot walls, isotropic permittivity), in the transverse (x,y) plane
this model can describe complex geometries, e.g., including slanted walls such as
in [21, Fig. 10(c)], and sophisticated electromagnetic properties, e.g., position-
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dependent anisotropic permittivity. On the other hand, 2.41 ignores a possible
z-dependence of the poling field, which could arise for example from fluctuations
of the slot width/height. The experimental characterizations (see the SEM image
from [21, Fig. 10(b)]) suggest that it is reasonable to simulate an average slot width.
With this hypothesis, the device geometry can be designed on the basis of parametric
simulation campaigns, and only the final design verification could be performed by a
full 3D electro-opto simulation, limiting the overall computational cost. Because the
modulator length is much shorter than the RF wavelength, its frequency response
can be reasonably approximated with that of a RC circuit, R being the device and
driver total equivalent resistance and C its static capacitance. This allows to reduce
the electrical analysis to a quasi-static problem in the 2D cross-section, as shown
in Fig. 3.1(right), and to introduce this z-independent E/O effect only in the phase
modulators. Electrical simulations lead to the position-dependent Ex,RF, Ey,RF field
components. They should be interpolated on the optical problem mesh to evaluate
∆nmat in its cross-section (the one simulated to produce Fig. 3.2), thus requiring a
coupled, multiphysics approach.

In this view, Fig. 3.3 shows the effective refractive index versus the RF voltage
VRF. There are three groups of curves, obtained with different degrees of approxi-
mations. The green dashed curves are obtained simulating the two slot waveguides
separately, treating them as isolated just like in Fig. 3.2, and the approximated E/O
refractive index variation model in equation (2.43) has been adopted. These curves
clearly are straight lines, intersecting at VRF ≃ 4 V, which corresponds to the PMZM
ON state (that is the two slot line optical fields are in phase, having the same optical
path length).

Still within the approximation (2.43), the dash-dotted red curves have been
obtained simulating a cross-section including both slots. Rather than being straight
lines, these curves exhibit an almost-parabolic behavior in the proximity of the
ON state, and become linear far from it, with almost the same slope of the dashed
green lines. Because the two neff curves are not intersecting, the corresponding
phase shift is not zero, suggesting that operation at VRF ≃ 4 V should be a quasi-ON
state, characterized by an excess loss; this point is further discussed in Section
3.3.3. Finally, the solid blue curves have been obtained including mode coupling
and the full description of the E/O effect from (2.43). Here, the RF fields have been
simulated with our in-house quasi-static (QS) FEM electric solver [42]. Compared
to the dash-dotted red curve, the multiphysics simulation result exhibits a higher
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Fig. 3.3 Effective refractive index versus RF voltage VRF. The green dashed curves are
obtained simulating two isolated slots (just like in Fig. 3.2) and the red dash-dotted curves
considering in the cross section both the slots; both these simulations have been performed
under the approximation equation (2.43). The solid blue curves have been performed
including mode coupling effects and the multiphysics description equation (2.42) of the E/O
effect.
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ER = 14.3 dB

Δneff

Fig. 3.4 Left: neff(VRF) curves for the device under analysis, for different central island
widths; the red, blue and orange curves are obtained for wisland = 200 nm, 400 nm (nominal
device) and 600 nm, respectively. The plot shows the definition of ∆neff, i.e., the difference
of the effective indexes at the ON voltage VON. Right: ∆neff as a function of wisland. These
simulations have been performed with the multiphysics model.

slope, which makes the ON voltage to be shifted at about 3.5 V. In this view, it is
clear that (2.43) underestimates the E/O effect.

The parabolic behaviour of the red and blue curves is caused by coupling effects
between the two slot modes. Despite in the device under study the slots are quite far
away, separated by the gold island, mode coupling is fostered by the surface plasmons
of its top/bottom walls. Such behaviour, commonly referred to as anticrossing, is
indicative of coupling between two modes [43]. This occurs in several EM structures,
such as dielectric and photonic crystal waveguides [44, 45] and high-contrast gratings
[46–48], but also in semiconductor crystals where coupling between waveparticle
modes is present [49].

The strong losses of the top surface plasmonic mode make the anticrossing
strongly dependent on the slot separation wisland. This is investigated in Fig. 3.4. In
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Fig. 3.5 Top: ∆Φ(VRF) characteristics evaluated with (3.2) using the waveguide simulations
shown in Fig. 3.3, assuming Lmod = 6 µm. The green dashed, red dash-dotted and blue
solid curves are obtained considering the slots isolated, coupled, and coupled including
multiphysics effects, respectively. The horizontal arrows indicate the Vπ definitions for
the three simulations. Bottom: the curves show the behaviour of Vπ versus Lmod using the
definition indicated in the top panel.

particular, the left panel shows the neff(VRF) characteristics curves for three different
island widths. Here, the blue curve corresponds to the reference (wisland = 400 nm)
case reported with the same color in Fig. 3.3. Instead, the red curve (wisland =

200 nm) exhibits a much broader neff splitting, ∆neff (definition in the figure), as a
consequence of the increased mode coupling. On the other hand, the orange curves
(wisland = 600 nm) are almost intersecting, therefore tending to the isolated slot case
of Fig. 3.3. A more quantitative information is provided by the right panel, showing
∆neff as a function of wisland.

Waveguide simulations can be tentatively used to perform preliminary estimates
of the PMZM performance. To this aim, in Fig. 3.5, the electro/opto simulation
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results from Fig. 3.3 have been used to obtain a first estimate of the modulator Vπ .
To this aim, the top panel shows the phase shift ∆Φ(VRF) between the two PMZM
modes at the recombiner section computed as

∆Φ(VRF) = k0Lmod
∣∣neff,1(VRF)−neff,2(VRF)

∣∣ , (3.2)

where neff,1, neff,2 come from the effective index curves reported in Fig. 3.3. The
Vπ has been approximated as the difference between the OFF voltage, at which
∆Φ(VOFF) = 180◦, and the ON voltage, at which ∆Φ(VON) is minimum (zero, in
the isolated slots case). Remarkably, the estimate obtained with the multiphysics-
augmented simulation (blue curve) are very close to the experimental findings
discussed in [12, 41].

To further clarify the importance of a multiphysics treatment, the bottom panel
of Fig. 3.5 shows Vπ as a function of the modulator length Lmod, evaluated as in the
top panel. From these results it is not possible to appreciate significant differences
between the isolated (green dashed) and coupled (red dash-dotted) slot cases. Instead,
it appears that the multiphysics simulation might lead to relevant variations of
Vπ , which can reach almost 4 V for short modulators. These differences can be
understood by analyzing the results reported in Fig. 3.6(left), showing the magnitude
of the electric field simulated the QS solver.

The slots can be identified as the regions where the electric field is stronger
(tending to red). Moreover, it could be noticed that the field level is slightly higher
in the left slot (i.e., the narrower one). The electric field is non-vanishing also
out of the slots, which cannot be taken into account by (2.43). This can be better
appreciated in Fig. 3.6(right), which shows field cuts performed in the slot center
(blue, y = 110 nm), at the slot top (red, y = 220 nm), and the end of the NLO material
(orange, y = 300 nm). From the blue curves it can be seen that the estimate (2.43) is
very accurate inside the slot (considering VRF = 1 V, the left slot field is 11.1 V/cm,
the right one is 10 V/cm). Looking at the red curve, one could notice that the optical
field diverges at the slot corners [50, 51]. However, the most relevant effect in this
context is the non-vanishing field corresponding to the island, which is related to a
residual y field component associated to the island surface plasmons. This is even
more evident at the end of the NLO material.
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Fig. 3.6 Left: RF electric field map simulated with the QS solver. The black lines are used
to indicate the device geometry, to assist the direct comparison with Fig. 3.1(right). The
three dashed horizontal lines intersect the slot center (blue, y = 110 nm), the slot top (red,
y = 220 nm), the end of the NLO material (orange, y = 300 nm). Right: cuts of the maps on
the left (the small oscillations result from the interpolation of the different meshes, necessary
to perform the multiphysics coupling (2.42)). The three cuts correspond to the horizontal
lines intersecting the slot center (blue, y = 110 nm), the slot top (red, y = 220 nm), the end
of the NLO material (orange, y = 300 nm).

3.3 Efficient comprehensive 3D simulation

In the previous section, the Vπ voltage has been estimated only on the basis of the
effective refractive indexes obtained from waveguide simulations, emphasizing how
a multiphysics-augmented framework is instrumental to reproduce the experimental
findings. Simple system-level models for the slot optical fields interference at the
output combiners, also accounting for the plasmonic loss in each slot (see, e.g., [28,
Sect. 6.4]), are customarily exploited to provide an estimate of other important
device figures of merit, as the modulator insertion loss (IL) and extinction ratio (ER).
However, such simple models neglect a number of effects related to both slot mode
coupling and the detailed description of the splitter and recombiner sections, which
feed the plasmonic phase modulators and extract the signal from it.

From this viewpoint, the maximum realism is provided by 3D full-wave simu-
lations of the entire device, which in principle can be carried out by commercially-
available electromagnetic simulators implementing the finite-difference time-domain
method (FDTD), such as RSoft FullWave [52] and Lumerical FDTD Solutions [9]
(all the 3D-FDTD simulations used in this work have been performed with the latter).
Lumerical, starting from a defined input field source (in this case the Si waveguide
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mode in the input splitter), returns the position-resolved 3D profile of the vector
electromagnetic field on the entire device. The PMZM response can be defined
by post-processing this information. Because the modulator is embedded within
a complex optical system featuring grating couplers and other components which
can filter out spurious contributions, it is reasonable to base this definition on the
fundamental mode of the output waveguide. By projecting the total (3D) field on it,
a mode transmission coefficient S21 can be defined, whose absolute value squared
can be interpreted as a Pout/Pin.

3.3.1 Mixed modal-FDTD simulation and cold splitter character-
ization

Even if the compact footprint of POH MZMs makes such an all-in-one approach not
impossible, it is rather prohibitive, considering that each RF voltage level requires a
different 3D-FDTD simulation. For example, Fig. 3.7 shows a top view (xz plane)
of the magnitude of the optical electric field in a PMZM in the OFF (top) and ON
(bottom) states. This information is completed by Fig. 3.8, which reports, in the
same conditions, the magnitude of the optical electric field in the output dielectric
waveguide. Both figures clearly show that at VON the fields at the recombiner are in
phase and interfere constructively while, at VOFF, destructive interference lead to the
extinction of the output field.

Fig. 3.7 shows a. This information is completed by Fig. 3.8, which reports, in the
same conditions,

By inspecting the top view of the device in Fig. 2.8, one can imagine an intermedi-
ate strategy between all-in-one 3D-FDTD and waveguide-only simulations: instead
of modeling numerically the entire device, it is possible to focus the 3D-FDTD
simulations only on the splitter/recombiner (which are actually equal, just mirrored),
and the central part by means of waveguide simulations and transmission line theory.
Since the phase modulators consist of two waveguides, this device resembles a
bimodal Fabry-Pérot interferometer (BFPI) [18]. Here, the cavity transmission lines
describe the plasmonic modes supported by the PMZM, whose voltage-dependent
dispersion properties have been presented in Section 3.2.1 and now are be re-used
to avoid to simulate by 3D-FDTD the phase modulators, minimizing the simulation
number and cost, and are coupled mutually and to the outer ports (fundamental
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Fig. 3.7 Top view (xz plane) of the magnitude of the optical electric field in a PMZM for
OFF and ON states.
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Fig. 3.8 The magnitude of the optical electric field in the output dielectric waveguide in a
PMZM in for OFF and ON states.
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Si waveguide modes) by the scattering matrices describing the splitter/recombiner.
Then, the device response can be computed as the cascade of the splitter, cavity and
recombiner transmission matrices.

The first step of this mixed modal-FDTD (MFDTD) strategy requires simulating,
with the 3D-FDTD, only the section sketched in Fig. 2.8(right), at VRF = 0 V. This
starts from the input waveguide, and is terminated after a length Lport from the
splitter end, as indicated by the dashed vertical line; this transmission line segment
is introduced just to avoid problems that originate from terminating the device too
close to metal corners. This simulation provides by itself interesting data, such as an
estimate of the coupling losses due to photonic-plasmonic interference (PPI) (see [41,
Fig. 11]). Considering only 2 internal modes to describe the modulator response,
Lumerical allows to compute, through the S-parameter sweep functionality, a 3×3
matrix where, e.g., port 1 indicates the fundamental mode of the Si waveguide, and
ports 2 and 3 the two plasmonic modes considered for the slot waveguides. This
matrix can be re-arranged as

SL
=

[
SL

oo SL
oi

SL
io SL

ii

]
=

 S11 S12 S13

S12 S22 S23

S13 S23 S33

 . (3.3)

Coherently with Fig. ??(left), the subscripts “o” and “i” are used to indicate the
ports located outside and inside the modulator cavity, respectively. In (3.3), the
superscripts “L” are used to remark that the scattering matrix blocks include the
transmission line segment long Lport indicated in Fig. ??(right). In order to obtain the
final 0 volt splitter matrix S0, one should de-embed such transmission lines, requires
defining (at VRF = 0 V) the phase shift matrix Eport as:

Eport = diag
i=1,2

{
exp

(
−jk0(neff,i − jκi)Lport

)}
,

where neff,i, κi can be obtained from (possibly multiphysics) waveguide simula-
tions analogous to those shown in Fig. 3.3. Finally, de-embedding is performed by
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applying:
S0

oo = SL
oo

S0
io = E−1

port SL
io

S0
oi = SL

oi E−1
port

S0
ii = E−1

port SL
ii E−1

port.

(3.4)

3.3.2 Voltage-dependent mode coupling effects

The superscript “0” in (3.4) indicates that the matrices (3.4) are computed and valid
only for VRF = 0 V. Even under the hypothesis of introducing the E/O effect in the
phase modulators only, the splitter/recombiner scattering matrix depends on voltage,
since the ports and transmission line parameters are defined starting from modal
basis of the phase modulators, whose elements are voltage-dependent.

This is shown in Fig. 2.8, which reports the cuts of the real part of Ex in the slot
center (y = 110 nm) for the two modes. Invoking the molecular orbital taxonomy, the
coupled slots supermodes 1 and 2 are antibonding- and bonding-like, respectively.
Three VRF values are considered: 0 V (green dash-dotted curves: cold regime),
VON = 3.5 V (blue dashed curves), and 8 V (red solid curves). The mode topographies
are clearly voltage-dependent. In fact, at VRF = 0 V modes are mostly localized in
the left and right slots, respectively. At VRF = 8 V, modes are still localized, but with
switched order. Instead, at VON modes tend to assume odd and even parities. This
is a signature of mode coupling, just like the parabolic-like behaviour of neff(VRF)

in Fig. 3.3: coupling is strongest at VON and decreases at smaller or lower applied
voltages. For this reason, the matrix S0 from (3.4) differs from the S′

ii indicated in
Fig. 2.8, as it does not take into account such mode coupling. Therefore, obtaining
the voltage-dependent S′ from S0 still requires a change of basis matrix W(VRF)

from the modes computed for the cold device to those with a non-zero E/O effect:

S′oo(VRF) = S0
oo

S′
io(VRF) = WH(VRF)S0

io

S′
oi(VRF) = S0

oi W(VRF)

S′
ii(VRF) = WH(VRF)S0

ii W(VRF),

(3.5)
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Fig. 3.9 Cuts of the real part of Ex in the slot center (y = 110 nm) reported for the two modes.
The top and bottom panels show mode 1 (antibonding-like) and mode 2 (bonding-like),
respectively, for three VRF values: 0 V (green dash-dotted curves: cold regime), VON = 3.5 V
(blue dashed curves), and 8 V (red solid curves)

Computing the 2× 2 change of basis matrix W(VRF) in principle requires a
mode-matching technique, where the field continuity at the interface between cold
and biased waveguide sections should be performed including the complete mode
spectrum. This is the case occurring, e.g., in high-contrast gratings: even if their
operation can be described just by 3×3 scattering matrices, computing their entries
requires a mode-matching with a large number of modes to expand/project the fields
at the bar-air discontinuities [53]. In the case of dielectric waveguides this is even
more troublesome, since the electromagnetic problem is theoretically unbounded,
and one should include also the continuum part of the mode spectrum. A possibility
is mimicking free-space by closing the problem within a very large computational
box, whose modal expansion is known analytically [54]. A handier, still very general
approach is through 3D-FDTD simulations of a discontinuity between a plasmonic
slot without/with E/O effect. In practice, this could be achieved by simulating
two short transmission line segments, and then de-embedding the lines in a similar
fashion to (3.4).

As it could be appreciated in the cuts reported in Fig. 3.9, the mode topographies
are very localized, which is a signature of their plasmonic character. Moreover,
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Fig. 3.10 Excitation coefficients at the onset of the modulator section (end of the splitter)
versus voltage; the solid and dashed curves are obtained for Lmod = 6 µm and for a very long
modulator (Lmod > 40 µm).

voltage introduces just a mild dielectric discontinuity within the slots, without
introducing any other significant change in the geometry. This explains why the
mode topographies without/with voltage are so similar. In this view, in these devices,
one can approximate the mode basis at a given voltage as a linear combination
of the elements of the basis at a different voltage. This consideration allows the
matrix W(VRF) to be derived from the coefficients of this linear combination, which
can be obtained solving a least-squares problem, whose formulation is reported in
Appendix B. It has been verified that the change-of-basis matrices obtained with the
two methods agree well, enabling to use both approaches with similar results.

The effect of the voltage-dependent mode coupling on the plasmonic modulator
feed can be appreciated in Fig. 3.10. Here, the dashed curves are obtained plotting
S′

oi(VRF), which corresponds to the case of a very long modulator (Lmod ≥ 40 µm).
The solid curves are obtained plotting (I−S′

iiS
′′
ii)

−1S′
io for Lmod = 6 µm, i.e., includ-

ing cavity effects (which are instead negligible in long interferometers due to the
high plasmonic losses). In both cases, the curves can be interpreted as the excitation
coefficients of the modes (being, more specifically, the magnitudes of the progressive
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waves) at the onset of the modulator section, with/without cavity effects. It should be
noticed how two groups of curves exhibit similar trends for every VRF, and are almost
equal in the VON region. This suggests that in opposite to VOFF, which is strongly
affected by the modulator length, the VON and the corresponding mode excitation
coefficients are quite independent on it.

3.3.3 Evaluating the modulator response

Once S′ is determined, it can be used to find the matrix S′′ as:

S′′oo(VRF,Lmod) = S′oo(VRF)

S′′
io(VRF,Lmod) = Emod S′

io(VRF)

S′′
oi(VRF,Lmod) = S′

oi Emod(VRF)

S′′
ii(VRF,Lmod) = Emod S′

ii(VRF)Emod,

(3.6)

where Emod depends both on VRF and on the modulator length Lmod:

Emod = diag
i=1,2

{
exp

(
−jk0(neff,i(VRF)− jκi(VRF))Lmod

)}
.

Finally, the modulator reflection (S11) and transmission (S21) coefficients can be
obtained by cascading the two matrices from (3.5) and (3.6):

S11 = S′oo +S′
oiS

′′
ii(I−S′

iiS
′′
ii)

−1S′
io

S21 = S′′
oi(I−S′

iiS
′′
ii)

−1S′
io.

(3.7)

The validation of the MFDTD is performed versus the all-in-one 3D-FDTD
results, as shown in Fig. 3.11. Each of the all-in-one simulations (one different 3D-
FDTD simulation for each RF voltage) consist of 144 millions Yee nodes, requiring
about 7 hours on a HP ProLiant DL560 Gen9 computer (featuring 512 GB RAM),
parallelizing on all the Intel Xeon E5-4627 v3 (10-core) four CPUs. On the other
hand, MFDTD requires a single 3D-FDTD simulation performed at VRF = 0 V,
involving just the splitter section (48 millions Yee nodes), which are combined to the
multiphysics-augmented waveguide simulations to trace the full (voltage-dependent)
modulator response.
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The responses simulated with the two methods are reported with solid red and
dashed black curves. The 3D-FDTD simulations (both all-in-one and splitter-only)
have been performed using a uniform mesh (5 nm step in all directions) within
the modulator section (central island, slots, part of the rails and gold tapers), and
with the Lumerical auto non-uniform setting, with mesh accuracy parameter set to
5 (high accuracy). In the phase modulators, the E/O effect is evaluated from 2D
quasi-static analyses (multiphysics approach) just like in Fig. 3.3, blue curve. The
figure shows also the definitions of extinction ratio (ER) and insertion loss (IL),
which are about 14.5 dB and 4.7 dB, agreeing qualitatively with the experimental
findings from [12, 41] (measured ER is 20 dB, measured IL is 5 dB).

The remarkable agreement between the two curves, even at −18 dB levels is vali-
dating not just the MFDTD algorithm, but demonstrates also the bimodal character
of the PMZM under study. It is to be remarked that the MFDTD algorithm could be
extended, in a straightforward fashion, to devices whose operation involves a higher
number of modes. In such cases, the rightmost matrix in (3.3) would be larger than
3×3, but it could be still possible grouping the parameters as SL

oo, SL
oi, SL

io, and SL
ii .

Even though these blocks would have different dimensions, eqs. (3.4)–(3.7) could
be still applicable.

This method allows parametric investigations versus the modulator length at no
additional computational cost. As an example, Fig. 3.12(left) shows the modulator
responses obtained for Lmod = 3 µm, 5 µm, and 7 µm (blue, red, and orange curves,
respectively). Considering the longer modulators (smaller Vπ ), it appears that the
curves are almost periodic. It is to be remarked that neither the orange nor the purple
curves exhibit appreciable differences between the ILs evaluated at the two ON states,
which instead could be expected from the waveguide simulations reported in Fig. 3.3.
This could be understood from the analysis of Fig. 3.10: at the first ON voltage (about
3.5 V) the first, antibonding-like supermode, which in this case is quasi-odd (see
Fig.3.9, top), is weakly excited. On the other hand, the bonding-like supermode is
strongly excited. Being one supermode almost suppressed, no interference between
the supermodes takes place at the recombiner, and the field propagates in both slots
only according to the lower neff from Fig.3.3. This is why no excess loss can be
observed. At the higher VON, the modes are strongly decoupled, i.e., localized in the
single slots (as one can infer from Fig.3.9), and the output power results from their
constructive interference at the recombiner, which in this situation can be estimated
with equation (3.2).
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Fig. 3.11 Modulator response simulated with the all-in-one 3D-FDTD model (solid red
curve), and with the MFDTD approach (dashed black curve). The 3D-FDTD and MFDTD
curves have been evaluating |S21|2 from equation (3.7). The figure reports also the definitions
of extinction ratio (ER) and insertion loss (IL).

A synthetic representation of the relation between the three fundamental fig-
ures of merit is reported in Fig. 3.12(right): Vπ , ER, IL. Focusing on the abscissas,
Fig. 3.5(bottom) suggests that it can be, in first approximation, interpreted as 1/Lmod,
as reported on the upper horizontal axis. (Indeed, according to a simplified modulator
model, the product VπLmod is constant). The thinner curves exhibit an oscillatory
behaviour, which is particularly evident in the ER curve, whose calculation involves
the logarithm (dB) of small quantities. These oscillations can be ascribed to cavity
effects (also visible in the results of Fig. 3.10); as a matter of fact, their amplitude
decreases at increasing Lmod (and therefore at increasing losses in the phase modula-
tors). Focusing on the average trends (thicker curves), the lower plasmonic losses in
shorter modulators lead to reduced insertion loss. The interpretation of the trend of
the ER (generally decreasing with Vπ and correspondingly increasing with Lmod) is
less obvious. Longer modulators are characterized by lower Vπ , therefore closer to
VON, which is independent of Lmod. In this case, the excitation of the even mode at
Vπ increases (approaching the mode 2 peak at 3.5 V in Fig. 3.10), thus deteriorating
field extinction.
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Fig. 3.12 Left: plot of the PMZM response for different modulator lengths: the blue, red,
and orange curves refer to Lmod = 3 µm, 5 µm, and 7 µm, respectively. Right: plot of the
extinction ratio (ER, thinner blue curve, referred to the left axis) and insertion loss (IL,
thinner red curve, referred to the right axis) as a function of Lmod, obtained from S21 from
the simulated modulator response equation (3.7). The thicker curves are used to emphasize
the average trends. The top abscissas axis shows the corresponding Vπ .

This analysis provides some guidelines towards the design of these devices.
In MZMs, mode coupling is a detrimental effect, impacting in particular on the
ER. As suggested by Fig. 3.4, which characterizes mode coupling on the basis
of ∆neff at VON, better performance could be achieved for large wisland. As an
example, the device presented in [55], exhibiting ERs greater than 20 dB, falls in this
situation (slot separation of about 100 µm). In order to achieve good ERs without
increasing the transverse footprint, Fig. 3.12 suggests to sacrifice Vπ and design
short interferometers. In this way the resulting modulator will have good IL, due
to the moderate plasmonic losses, and reduced mode coupling at Vπ . As a different
route, one could investigate coupler modulators where, as opposite to MZMs, mode
coupling is the enabling physical mechanism [56].



Chapter 4

Plasmonic Directional Coupler
Modulator

One of the outcomes of the previous chapter, focused on Mach-Zehnder modulators,
is that their operation is limited by the coupling of the phase modulator modes,
fostered by presence of surface plasmons on the island separating the two slot
waveguides. Starting from this observation, I figured that mode coupling could be
exploited as an asset, proposing the plasmonic directional coupler (PDC) modulator
concept. In addition to their conception, my individual contribution has been the
set-up of a simulation framework for PDC modulators based on 2D FDTD and FDE,
presented also in [57]. Then, I have investigated possible advantages of realizing
PDC modulators based on three, rather than just two waveguides, demonstrating
better modulation in terms of length of device and operating voltage. Finally, I
have contributed to the theoretical development and validation of the semianalytical
simulation approach presented in [58] and in this chapter.

The operation principle of plasmonic directional coupler modulators (PDCM) is
similar altogether to the one of other directional coupler modulators that have been
proposed as an alternative to MZ modulators both in III-V technologies [57, 58] and
on lithium niobate, in concentrated [59] or traveling-wave [60] form. With respect to
MZ solutions, DC modulators exhibit some interesting features, like the possibility
of dual complementary output and of achieving zero or bias-tunable positive or
negative chirp [61].
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In what follows, after reviewing the plasmonic directional coupler behavior, a
detailed study is presented on coupled-slot coplanar PDC EO modulators, whose aim
is to show that a PDC modulator with interesting performance can be implemented
with layout and fabrication processes similar altogether to those presented in [12, 41,
21] for the realization of POH coupled-slot MZ modulators.

4.1 Plasmonic Directional Coupler

The directional coupler consists of two (or more) waveguides which are close
together enough to allow optical power to couple between them. Fig. 4.1 top
illustrates a common directional coupler in Silicon foundry [ipkiss]. A common
application of directional coupler is as an optical power splitter and the separation
between waveguides (d) plays an essential role in the coupling efficiency. As seen
in the FDTD simulations (Fig. 4.1 bottom), for large separation distance, d = 2µm,
the optical signal remains in one waveguide and does not interact with the other
waveguide. Conversely, for low separation distance, d = 200nm, after propagating
for a certain interaction (coupling) length (Lc), the optical signal is transferred to the
other waveguide. If directional coupler lenght is large enough, the power coupling
periodically repeats over Lc.

Because of the interaction between waveguides, two supermodes are present,
where one of them is even and another one is odd. By using FDE, the computed
even and odd supermodes for (d = 2µm) are presented in Fig. 4.2. When the optical
signal is only in the right waveguide, it can be represented by adding supermodes;
conversely, when the optical signal is only in the left waveguide, this can be rep-
resented by mode subtraction (Fig. 4.2 bottom-right and bottom-left, respectively).
If the signal exists between the right and left waveguides, it will a superposition,
with complex amplitude coefficients, of the supermodes. A FDE simulation shows
that, for large d, the effective refractive index of the even supermode (neven) and
the effective refractive index of the odd supermode (nodd) are the same, and by
decreasing d, their values increasingly differ. For instance, at d = 2µm the effective
refractive index for both supermodes are equal to neven = nodd = 2.4452; while at
d = 200nm they are different neven = 2.4565 and nodd = 2.4361. This variation of
the effective refractive index can be related to Lc. The CMT method can be used to
prove that the coupling length Lc depends on the difference between the propagation
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Fig. 4.1 Top: geometry of a silicon direction coupler. Middle: electric field FDTD simulation
for d = 200nm. Bottom: electric field FDTD simulation for d = 2µm.
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Fig. 4.2 Top-left: The even supermode for a direction coupler with d = 2µm. Top-right:
The odd supermode. Bottom-left: subtraction of supermodes. Bottom-right: Addition of
supermodes.

constants of the supermodes (βeven and βodd) according to [? ]:

Lc =
π

βeven −βodd
=

λ

2(neven −nodd)
(4.1)

The βeven and βodd are computed over d (Fig. 4.3). Also, according to equation
(4.1), the Lc is estimated from them(Fig. 4.4). The Lc has strong sensitivity to d. For
instance, Lc = 76.19 µm at d = 200nm, and dramatically increases to 1025.24 µm
for d = 500nm.

Similar to the silicon directional coupler, the plasmonic directional coupler can
be implemented by implementing two plasmonic waveguides close together. If the
waveguides are close enough, the power can couple between them. Fig. 4.5 shows
the cross section of a plasmonic directional coupler with 2 slot waveguide (PDC2).
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Fig. 4.3 The propagation constant of even and odd supermodes in a Silicon directional
coupler versus d.

The propagation constant of the even and odd supermode are calculated by using
FDE method (Fig. 4.5 bottom) for different values of d.

Considering equation(4.1), when d larger than 700 nm, βeven ≈ βodd and Lc tends
to a very large value (of the order of hundred mm); which means that negligible or
no power coupling occurs. The waveguides are not interacting with each other. For d
smaller than 700 nm, βeven and βodd exhibit an increasing difference for decreasing
d , leading to a decrease of Lc (of the order of a few µm); which means waveguides
interact and the optical waves are coupled from one waveguide to the other one.

Let us now suppose that the plasmonic slots are filled by an electro-optic material
(e.g., by the DLD-164 polymer). If a voltage is applied to the metals, due to the
electro-optic effect of DLD-164, the refractive index of DLD-164 is changed, thus
affecting the propagation parameters βeven and βodd , which leads to the change of Lc.
In a suitable geometry, a modulator can be implemented based on controlling the
coupling length Lc of PDC. In the other words, the idea behind plasmonic directional
coupler modulator is changing Lc of the directional coupler by applying a voltage
and thus controlling the power in the output (coupled) waveguide. This will be
explained in detail in the next section.
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Fig. 4.4 The LC versus d.

Fig. 4.5 Cross section of a PDC2.
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Fig. 4.6 The propagation constant of even and odd supermode of PDC2 versus d.

4.2 PDC2 Modulator

Directional coupler modulators generally exploit two coupled optical waveguides,
where coupling can be controlled externally. In the implementation described in this
paper, coupling is controlled through the electro-optic effect, by varying the refractive
index in the slot waveguides through the application of an electric field, induced by
the input voltage. In principle, the device has two input and two output ports, since
it allows both through and cross-coupling transmission to the output port. For the
sake of definiteness, we will mainly focus on the through configuration, where the
input and output ports are located on the same plasmonic slot; the performance of
the cross-coupling configuration, which is complementary as far as the EO response
is concerned, but with different chirp [61], will also be mentioned.

The layout of the PDC2 modulator under investigation is shown in Fig. 4.7.
Each color indicates a different material. The main figure reports a top view of the
device, with an inset representing the xy cross-section indicated by the red dashed
line. As shown in the inset, the device is fabricated on a SiO2 layer, grown on a Si
substrate (omitted in the figure). On top of the SiO2 layer, three parallel Au pads are
deposited, one connected to the input voltage source, comprising the radiofrequency
(RF) modulating signal and the DC bias, the other two connected to ground. The
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Fig. 4.7 Geometry of the device under investigation. The main figure reports the xz top view
for y corresponding to the slot center. The inset reports the xy cross-section indicated by
the red dashed line. Each color indicates a different material: the NLO polymer DLD-164
is green, air is gray, Au is yellow, SiO2 is dark blue, Si is lilac. The DLD-164 layer only
extends to the straight portion of the device of length L marked by the dash-dotted rectangle.

shape of these contacts is designed in such a way as to obtain two single-mode
plasmonic slot waveguides between them. As shown in Fig. 4.7, which is a y-cut
with y corresponding to the middle of the slot, the plasmonic slot waveguide having
width w2 is denoted as the I/O slot, since it is connected to two dielectric (photonic)
waveguides, from which the input signal is provided (left) and the output signal is
extracted (right) at the through port. The slot having width w1 is referred to as the
coupled slot, that is assumed to be matched at the output (cross-coupled) port.

The two slots, both having height h, are separated by a gold ridge having width
d, and are designed to be parallel for the length L. The plasmonic slots are filled by
the DLD-164 EO material [20, 21], having thickness hEO measured from the surface
of the SiO2 layer. Table 4.1 reports the geometry parameters that are not going to be
changed in this investigation. In particular, the average slot width w̄ = (w1 +w2)/2
is chosen as 100 nm (following [12, 41, 55, 62]) in order to obtain a strong EO
effect already at low applied voltage while keeping the structure feasible from a
fabrication standpoint, and h has been designed to be 220 nm to guarantee that each
slot, considered individually, exhibits only the fundamental plasmonic mode along
the vertical direction.

As already suggested in the simulation study [63] for a different coupled-slot
plasmonic modulator structure, the device in Fig. 4.7 can be properly designed to
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Fig. 4.8 Squared magnitude of the optical electric field (in arbitrary units, where blue
corresponds to zero field), for the xz top view for y corresponding to the slot center, of a
symmetric PDC modulator simulated with 3D-FDTD. The top and bottom plots are obtained
in the OFF and ON states, respectively. For a cross-coupling modulator configuration, the
OFF and ON states will be exchanged.

operate as an EO amplitude modulator. To demonstrate its principle, Fig. 4.8 presents
the squared magnitude of the electric field for an example of a properly designed
modulator, simulated with the 3D FDTD, in OFF (top) and ON (bottom) conditions.
The two conditions differ due to the variation of the slot refractive index induced
by the input voltage Vin, defined as the sum of the DC bias point VDC and the RF
signal VRF , which controls the slot coupling. At VOFF , all the input power is coupled
to the coupled slot, thus extinguishing the power in the output section of the I/O
slot. For the same modulator, Fig. 4.9 reports the electro-optic response, evaluated as
the of output-to-input power ratio at the modulator through output port. The figure
reports two curves, which have been obtained with two different choices of the I/O
terminations in the 3D-FDTD simulation. The blue curve is obtained simulating the
entire device, including a silicon input waveguide, with x- and y-widths Wx = 450 nm,
Wy = 200 nm, and photonic-plasmonic converters (PPCs) consisting in triangular
tapers extended 200 nm in the z direction and designed in such a way as to keep a
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Vin (V)

Fig. 4.9 Normalized EO response of the PDC2 modulator of Fig. 4.8. The blue and red curves
are obtained with two different sets of 3D-FDTD simulations including and neglecting the
PPC section, respectively (details in the text).

constant distance of 50 nm from the corresponding oblique taper in the dielectric
waveguide [56]. The red curve is obtained launching directly the plasmonic mode
into the input of the plasmonic I/O slot and measuring the power at its output, i.e.,
neglecting the PPC section and the corresponding losses. It is to be noted that the
blue and red curves are almost parallel in logarithmic scales, suggesting that the
overall (input and output) coupling losses amount to ≈ 1 dB.

For a symmetric PDC2 modulator, as in the case of Fig. 4.9, the OFF state,
corresponding to maximum coupling, is achieved at VOFF = 0, provided that the
length L is chosen properly. Conversely, at VON , coupling to the coupled slot is
suppressed due to the refractive index asymmetry induced by the applied field, and
the power remains in the I/O slot, thus reaching its output section (ON state). An
asymmetric design allows to shift, virtually without any change, the EO response
along the input voltage axis, e.g., in such a way as to place the half-power state at zero
input voltage. An example of EO response for a symmetric modulator is shown in
Fig. 4.10; the complementarity of the through port and cross-coupled port responses
is clearly visible. Contrarily to the MZ case, the EO response is not periodic in the
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Fig. 4.10 Normalized EO response of PDC modulator for positive applied voltage: through
port (red line); cross-coupled port (blue line). The modulator slot widths w1 and w2 are both
100 nm, with d = 150 nm, and length L = 6.8 µm.

input voltage, since for |Vin|> |VOFF | coupling is increasingly suppressed, leading
to ripples in the response only.

The modulation principle of this device is therefore completely different from
that of the plasmonic MZ modulator described in the previous chapter. In such
modulators, a two-slot plasmonic waveguide is excited with an even input optical
field. If the structure is symmetrical and no voltage is applied, the even-mode
excitation travels to the output combiner, where positive interference allows for the
excitation of the output Si photonic waveguide (ON state). The ON-state insertion
loss (IL) is due to both the attenuation of the plasmonic mode and to the coupling
losses of the input divider and the output combiner.

At an applied voltage equal to Vπ , the phase difference between the fields excited
into the two MZ slots leads, in the output combiner, to destructive interference, i.e.,
to the OFF state with (ideally) zero output optical power. However, the ON/OFF
power ratio (extinction ratio, ER) is affected both by the slot asymmetry (that can
be useful in shifting the half-power bias value to zero bias, see [12], but may lead
to a different optical power being carried by the two slots), and by the coupling
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between the two slots. A laterally compact design like the one in [12, 41], with
a comparatively narrow ridge between the two slots, leads to modal coupling and
to a decrease of the ER, as discussed in [17, Sec. 3.2]. Notice that the effect of
mode coupling is always present, also in a MZ with symmetrical slots. In fact, while
for zero applied voltage the structure is strictly symmetrical and the coupled slots
host an even and an odd mode, only the even one being excited at the MZ input,
the application of an input voltage causes the refractive index of the EO material
to be different in the two slots, thus leading to an increased mode localization in
each slot, and therefore to quasi-even and quasi-odd mode input excitation. As a
result, in the OFF state the input even excitation can be decomposed in two modes
whose superposition at the modulator output slots includes an odd part (to be radiated
at the combiner) but also an even part (that is transmitted to the output photonic
waveguide). Under this respect, slot coupling, while allowing for a more compact
layout of the modulator, leads in principle to a worse ER. Decreasing coupling, as
done in the wide-ridge layout in [55],1 allows for an improvement of the ER but
at the same time increases the length and therefore the losses in the splitter and
combiner. Representative values for such coupling losses can be found in [41, Fig.
11], where two splitter and combiner solutions are discussed for slots separated by a
narrow ridge, with loss of approximately 3 dB and 1 dB, respectively (leading to a
total coupling loss of 6 dB and 2 dB), while in [55], where a wide ridge is introduced
separating the two slots, the losses in feeding waveguides and PPCs are estimated as
3 dB. Conversely, as already mentioned, 3D simulated values of total PPC losses for
the PDC modulator are as low as 1 dB.

With respect to MZ solutions, coupled-slot based modulators follow a different
design criterion, since slot coupling is essential for their operation, and therefore
a laterally-compact layout is indispensable. Moreover, they may achieve a better
output signal extinction in the OFF state, which is not negatively affected by slot
asymmetry, and exploit a simpler input and output PPC structure. The simulation
study presented in the following sections aims at presenting design criteria for the
PDC EO modulator, with result that support the above preliminary conclusions.

1In [12] an experimental value ER = 6 dB for a ±3 V swing is reported for a narrow-ridge
asymmetric slot MZ [12] while in [55] a DC ER > 25 dB is quoted for a wide-ridge symmetric MZ.
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Table 4.1 Fixed geometrical parameters.

Quantity w h hEO

Value, unit 100 nm 220 nm 300 nm

4.2.1 Modeling strategy

To model the EO response of PDC2 modulators, two simulation steps are required for
each Vin. The first is the evaluation of the modulating field, which changes the optical
dielectric permittivity of the electro-optic material. In the calculations presented r =
180 pm/V is used [21]; in RF simulations, Au is treated as an impedance boundary
condition, with conductivity σAu,RF = 410 kS/cm [64]. The second step requires to
perform an optical simulation of the modulator, including the voltage-dependent
∆nEO evaluated according to equation (2.43). The voltage-dependent modulator EO
response is then evaluated as a post-processing of the optical simulation.

As suggested by Fig. 4.9, the PPC losses do not depend significantly on Vin,
hence they can be included a posteriori. Moreover, mode coupling, which is at the
basis of the PDC modulation mechanism, only occurs when the slot waveguides are
parallel, i.e., in the length L indicated in Fig. 4.7. It is therefore possible to reduce
the problem to a 2D problem. The results presented here after have been obtained
following this strategy. First, this requires to neglect the z-dependence in (2.41),
which, however, could arise only from second-order effects such as fluctuations of
the slot width/height. Under this assumption, the RF field can be evaluated in the xy
cross-section through a 2D solver [42]. As an example, the top panel of Fig. 4.11
reports the x-component, which is dominating in the slot, of the simulated RF field
profile for a geometry with w1 = w2 = 100 nm, spaced by d = 100 nm. It is to be
remarked that, inside the slots, the simulations fit quite well the approximate formula
Ex = Vin/w, w being the slot width. This result is used to evaluate ∆nEO(Vin,x,y)
and finally used as an input of the 2D optical FDE solver [16]. The center and
bottom panels of Fig. 4.11 report, for the same device of the top panel and in the
case Vin = 0, the real part of the x-components of the optical mode field profiles,
which, in this case, are odd and even, respectively. The imaginary part, not reported
here, exhibits the same behavior. The figure allows to appreciate how, thanks to the
localized nature of the plasmonic modes, the overlap with the RF field is excellent,
maximizing the electro-optic interaction. The numerical approaches in [42] and
[16] have been implemented in MATLAB [65]. First, the RF field is evaluated on
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proper RF discretization mesh, and ∆nEO(x,y) derived from (2.43) and (2.41) is
interpolated on a denser (optical) mesh required to accurately compute the plasmonic
modes. All simulations presented in this section, except the ones in Figs. 4.8 and 4.9,
have been performed with this modeling strategy.

In addition to the plasmonic mode profiles, the optical simulations allow to
evaluate the complex propagation constants ki = βi − jαi, βi = k0ne f f i and αi being
the propagation and attenuation constants for the i-th mode (i = 1 or 2), and the
corresponding voltage-dependent mode profiles |Vi⟩. The idea is to express the
input field of the modulator, |I⟩, as a linear combination of the voltage-dependent
plasmonic modes. In coupler modulators, |I⟩ is the mode of the I/O waveguide
considered as isolated from the rest of the device. So, we have

|I⟩= c(I)1 |V1⟩+ c(I)2 |V2⟩ , (4.2)

where the coefficients c(I)i of the linear combination can be evaluated through the
projection-based method described in Appendix C. Having expressed the input field
in terms of the natural modes of the cross-section, the field at the modulator end,
|O⟩, can be evaluated by propagating the coefficients with the appropriate complex
propagation constants:

|O⟩= c(I)1 exp(−jk1L) |V1⟩+ c(I)2 exp(−jk2L) |V2⟩ . (4.3)
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Fig. 4.11 Examples of x-components of electric field profiles. The top panel reports the RF
electric field (units V/µm) for Vin = 1 V. The center and bottom panels report the real parts
of the odd and even optical mode profiles (arbitrary units), respectively.

Considering that the input and output sections of the modulator have the same
cross section, the modulator response can be evaluated as the fraction of |O⟩ over-
lapping with the input field |I⟩. In particular, through another projection, |O⟩ can be
represented as

|O⟩= c(O)
1 |I⟩+ c(O)

2 |C⟩ , (4.4)

where |C⟩ indicates the mode of the coupled slot waveguide shown in Fig. 4.7 but
considered isolated from the rest of the device. We may note that this approach,
described here for PDC modulators, applies also to MZ modulators. The only
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difference is that, in MZ modulators, the splitter excites the two slots in the same
measure, so that |I⟩ and |C⟩ are quasi-even and quasi-odd modes (including possible
slot asymmetries). Then, the output response has the physical meaning of the even
fraction of |O⟩, that is the only part that is not radiated after reaching the output
combiner.

4.2.2 Symmetric and asymmetric modulators

Having already fixed the height and the average width of the slots, the remaining
design parameters for the cross-section are the asymmetry between the slot widths,
∆w = w2 −w1, and the width of the ridge, d, which separates the slots. As a first
investigation, in Fig. 4.12 we present the voltage-dependent effective refractive
indices, neff1,2(Vin), resulting from two groups of parametric simulations.

In particular, Fig. 4.12(a) reports the results of a symmetric modulator, i.e., ∆w =

0, for different ridge widths. All curves show similar trends. For Vin → 0, they exhibit
stationary points. These are a signature of coupling between the two waveguide
modes. Indeed, in absence of mode coupling, the curves would be perfectly straight
lines and cross at 0 V. Instead, the linear behaviour appears only for larger voltages,
where the two neff exhibit linear asymptotes. The ridge width d impacts the mode
coupling strength: for small d the slots are closer, hence more coupled, as indicated
by the larger ∆neff(0) = neff1(0)− neff2(0). Instead, for distant slots, the effective
indices reach the linear regime even for very small voltages. Fig. 4.12(b) reports the
results of simulations performed with d = 300 nm, for different width asymmetries.
The only effect of the asymmetry appears to be a translation of the curves on the Vin

axis proportional to ∆w, with no visible impact on the mode coupling strength.

By inspecting Fig. 4.8, it is clear that, in these devices, the extinction mechanism
is based on mode coupling. In this view, it it possible to define the OFF state voltage
VOFF as the state where ∆neff(VOFF) is minimum. This is represented in Fig. 4.13(a),
which reports VOFF(∆w). The curve is a straight line, further demonstrating the
proportionality of the horizontal shift of the curves of Fig. 4.12(b) to ∆w. This plot
presents also a green shading, which corresponds to varying the ridge width d as a
parameter: this shows that VOFF exhibits a weak dependence on it. In this view, ∆w
can be chosen according to the targeted OFF-state voltage.
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Fig. 4.12 Voltage-dependent effective refractive indices. Each pair of top and bottom curve
with the same color indicates neff1 and neff2, respectively. The left (a) panel results from a
parametric investigation for fixed slot asymmetry ∆w = 0 and changing the ridge width d.
The right (b) panel is obtained results from a parametric investigation for fixed d = 300 nm
ridge width and changing the slot asymmetry ∆w.

There are two parameters left to complete the modulator design: the ridge width
d, and the modulator length L. However, the two parameters are related, as the red
curve in Fig. 4.13(b) clearly suggests. This behaviour can be better understood by
considering the modal field distributions in the coupled slots. To this aim, Fig. 4.14
shows cuts, at y corresponding to the slot center, of |V1⟩, |V2⟩, |I⟩, and |O⟩, for a
symmetric modulator with d = 150 nm, at Vin = 0, where mode coupling is strongest
(so that VOFF = 0). The |V1⟩ and |V2⟩ plots in Fig. 4.14 stress another signature of
mode coupling, i.e., the fact that the mode profiles at Vin = 0 are odd (|V1⟩) and even
(|V2⟩). (On the other hand, for large Vin, it could be seen that the mode profiles tend
to be localized in either slot.) These modes are sorted in decreasing order by their
energy, |V1⟩ being the mode with larger effective refractive index. From a careful
inspection of the top-right panel of Fig. 4.14, one could notice a small spurious field
in the left waveguide. This is related to the fact that the coefficients c(I)i of the linear
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Fig. 4.13 Design plots for coupler modulators. Left (a) panel: OFF state voltage VOFF versus
the slot asymmetry ∆w; the green shading indicates the sensitivity of VOFF to the ridge width
d, varied in the range [50÷300] nm. Right (b) panel: ON-OFF state swing ∆V (blue curve
and shading) and L (red curve and shading) versus d, varying ∆w as a parameter in the range
[0÷40] nm. The red shading is almost invisible, demonstrating the very weak dependence
of L on the slot asymmetry.

combination defining |I⟩ in (4.2) are obtained with a 2×2 least-squares optimization
performed over the entire cross-section (see Appendix C), so minor local errors are
in order. The very low ER achievable with this method (see, e.g., Figs. 4.9 and 4.15)
suggests that this artifact should not affect significantly the predictions.

On the top-right panel |I⟩ is reported, represented as a linear combination of |V1⟩
and |V2⟩ as in (4.2). Due to the aforementioned symmetries, it is understood that |I⟩
excites |V1⟩ and |V2⟩ with the same magnitude. At the output section, i.e., after the
two modes propagate for a length L, the relative phase-shift:

∆φ(Vin) = k0L∆neff(Vin), (4.5)

is introduced. If ∆φ(VOFF) = π , then, at the output section, the excitation coefficients
have opposite sign with respect to the input section, leading to a field localized in
the left slot only. This is the case of the bottom-right plot of Fig. 4.14, resulting in a
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Fig. 4.14 Cuts of the optical field component Ex performed at y corresponding to the slot
center, of the waveguide modes |V1⟩ and |V2⟩, input field |I⟩, and output field |O⟩, for a
symmetric modulator with d = 150 nm and L = 6.8 µm at the OFF state voltage Vin = 0.
Blue and red curves indicate the real and imaginary parts of the field profiles. The small
spurious field in the left waveguide is indeed a numerical artifact; it has been verified that it
does not affect the final results.

modulator length designed as

L =
π

k0L∆neff(VOFF)
. (4.6)

With the data in Fig. 4.14, we obtain L = 6.8 µm. Obviously, the L value in (4.6)
could be generalized using an odd multiple of π , i.e., (2n+1)π , but this choice is not
convenient, since it would lead to longer modulators and to higher ON-state losses.

Equation (4.6) allows to obtain the relation L(VOFF) shown in Fig. 4.13(b). Just
like the left panel, this is a parametric plot on ∆w; yet, the impact of ∆w is negligible.
Fig. 4.13(b) also includes (blue curve), the voltage swing required ∆V = |VON −
VOFF|. VON is defined as the voltage at which the modes excited in the input section
recombine in phase at the output section, i.e., such that the phase shift (4.5) is equal
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to 2π (notice that the definition is not critical, since for |Vin|> |VON| the modulator
practically remains in the ON state). Also in this case, the dependence on the
parameter ∆w (shown as a blue shading) is quite weak. This demonstrates that ∆w
and d are virtually orthogonal in determining VOFF and the set [∆V,L], respectively.
The opposite trends of ∆V and L vs. d in Fig. 4.13(b) suggest that the design results
from a trade-off. Indeed, modulators with strong mode coupling (small d) are
characterized by large ∆neff(VOFF), but also by a weaker dependence of ∆neff(Vin).
This has a positive impact on L, which can be shorter, but results also in a larger ∆V .

As discussed at the end of Section 4.2.1, the modulator EO response simply is the
coefficient c(O)

1 from (4.4). As an example, Fig. 4.15 reports the EO response of the
symmetric modulator presented in Fig. 4.14. From the blue curve, the insertion loss
(IL, about 4 dB) can be obtained as the EO response at the ON state, corresponding
to a voltage 15 V; the computed ER (i.e., the ratio of the OFF and ON responses,
the former occurring at Vin =VOFF = 0 V) is in excess of 25 dB. On the other hand,
it can be shown (by means of calculations similar to those described in Sec. 4.2.1)
that the ER of a POH MZ modulator varies almost linearly from 0 dB to 25 dB for
d increasing from 100 nm to 500 nm (the upper limit of this interval is consistent
with the value d = 410 nm reported in [12, Table S 1]). Indeed, as discussed in [17,
Sec. 3.3], mode coupling is a detrimental effect in MZ modulators, impacting in
particular on the ER, while the PDC modulator shows a computed ER well in excess
of 25 dB on the whole d interval.

The EO response has been simulated over a broad Vin range (extending well
beyond |VON|) to emphasize some peculiar features of PDC modulators. This is
shown in the inset of Fig. 4.15. As already noticed, contrarily to the MZ modulator
whose EO response is periodic, only one ON state is present, with two OFF states
corresponding to VOFF ±∆V . Indeed, the extinction mechanism of PDC modulators
is based on mode coupling, which is strong only at VOFF; for |Vin| > |VOFF ±∆V |,
the field profiles are increasingly localized in the slots and no stationary points
are encountered in the neffi(Vin) characteristics. However, since complete mode
localization is only achieved for Vin → ∞, implying that the PDC is in the ON
state independent on the device length L, for finite L response maxima still imply a
constructive interference of the even and odd mode components, which only occurs,
for a given L, at specific values of Vin. The increase in localization with increasing
Vin leads to a decrease of the amplitude in the response ripples. Finally, notice that,
for the symmetric device, the maximum applied voltage is of the order of 20 V,
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Fig. 4.15 EO response of the symmetric PDC modulator of Fig. 4.14 (d = 150 nm, ∆w = 0,
L = 6.8 µm), evaluated as the coefficient c(O)

1 from (4.4). The blue curve refers to the
same excitation scheme of Fig. 4.14. The red curve is obtained exciting the left slot, i.e., by
exchanging the I/O and coupled slots.

corresponding to a maximum field in the DLD-164 polymer of the order of 200
V/µm, still compatible with the material breakdown field, which exceeds 250 V/µm
in DC, see [25, Fig. 2]. The VON and VOFF ranges discussed here are also compatible
with those of experimentally realized POH MZ modulators [12, 41]. Moreover, an
asymmetric coupler design allows to shift to VDC = 0 the half-amplitude bias point,
thus reducing by a factor of 2 the maximum electric field in the slot.

Another peculiarity of PDC modulators are the asymmetries arising for Vin ≷

VOFF. Consider for instance the blue curve in Fig. 4.15, corresponding to excitation
in the right slot as presented in Fig. 4.14: the IL for Vin >VOFF is about 1 dB larger
than that for Vin < VOFF. Even if the slots are symmetric, i.e., ∆w = 0, the device
is not symmetric due to the fact that one slot only is excited at the input. In this
view, positive or negative voltages lead to opposite EO effect, leading to different
group velocity, losses and mode profiles. The red curve, corresponding to left-slot
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Fig. 4.16 EO response of the coupler modulator with d = 150 nm and ∆w = 20 nm, for
different length L. The solid blue curve, referring to L = 6.8 µm, is the reference design
following (4.6).

excitation, exhibits an opposite behaviour. This points out that there is an optimum
excited slot, to be chosen coherently with the modulator bias voltage.

4.2.3 Parametric sensitivity and optical bandwidth

In MZ modulators, extinction is obtained through destructive interference at the
output of the phase shifters, and the VπL product depends on the cross-section
geometrical parameters. This implies that the OFF state can be always obtained
(albeit with non-ideal extinction), independent of L, with a suitable Vπ . On the other
hand, in PDC modulators, L has to be designed according to (4.6) and/or Fig. 4.13(b)
to have extinction at a certain VOFF.

To assess to which extent this design constraint is critical vs. variations of the
modulator geometry, Fig. 4.16 presents the results of an investigation versus the
parameter L. (Notice that, since the modulator length L depends on the design
wavelength, the performance sensitivity with respect to L also is a limiting factor
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for the optical bandwidth.) The analysis has been performed on a modulator with
d = 150 nm, targeted to be similar, in terms of mode coupling (hence, with the same
L), to that presented in the previous section, but with a slot asymmetry ∆w = 20 nm.
This choice of parameters sets the half-power point in Vin = 0 V: the IL is about
3 dB, and the half-power bias point (corresponding to ≈ −6 dB level) is at about
0 V. This is consistent with Fig. 4.13, since this choice leads to VOFF ≈ 8 V and
∆V ≈ 16 V, the half-power point being approximately midway the OFF and ON
voltages. This allows to design the PDC bias around the quadrature point (where
linearity is maximum) at zero bias voltage, so that the ON-OFF condition can be
reached with a halved Vin, with consequent advantages in terms of energy-per-bit,
stability of the polymer (due to the reduced maximum field) but also simplicity of
the driving electronics (since VDC = 0 no bias-T is required). Fig. 4.16 suggests
that the exact value of L is not very critical, since −22 dB levels are still possible
with ±400 nm variations with respect to the nominal length L = 6.8 µm (it has been
verified that similar results hold for shorter L, i.e., L = 6.4 µm and L = 6.0 µm).

Fabrication issues may also affect the width and height of the plasmonic slots
[21]. For the widths, [55] indicates that the lateral uncertainty is ±10 nm. Such
fluctuations could either introduce asymmetries between the two slot widths, or
change both widths in the same way. For the former case, Fig. 4.13 demonstrates that
a slot asymmetry leads only to a change of VOFF, without requiring to re-design L.
This is also clear from Figs. 4.15 and 4.16, which are obtained for designs differing
only for ∆w. Figure 4.17 presents a sensitivity analysis for fluctuations in w1 and
w2 having the same value (dash-dotted lines). It is apparent that, with respect to
the reference device (solid blue curve), this case does not lead to any appreciable
difference. Indeed, even if neff1 and neff2 change, their difference is almost constant
in the strong mode coupling regime (i.e., for Vin close to the VOFF), at least for small
variations in the individual slot widths. The dashed curves of Fig. 4.17 finally report
an investigation of the sensitivity of the EO modulator response with respect to
h. This suggests that this parameter does affect the ER of the device, which could
be ascribed to a change of ∆neff, so that the nominal L does not longer guarantee
∆φ = π at the designed VOFF. For a ±10 nm variation, however, an ER in excess of
20 dB is anyway obtained.

Changes in the operating wavelength vs. the nominal (design) value lead to a
variation of the L/λ ratio, with effects, as already stressed, similar to a variation in
L, but also to a variation of the effective index in the plasmonic mode. The analysis
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Fig. 4.17 Sensitivity investigations of the EO response of the symmetric PDC modulator of
Fig. 4.14 (d = 150 nm, ∆w = 0, L = 6.8 µm) to w1,2 (dash-dotted curves) and h (dashed
curves). The dash-dotted curves are obtained for w1 = w2. The response of the nominal
device is reported with the solid black curve for reference.

on the sensitivity versus L already suggests that the PDC modulator does not exhibit
a strongly resonant behavior (as in resonant ring modulators), corresponding to a
moderately broad optical bandwidth. This is confirmed by the simulations shown in
Fig. 4.18, showing that the ON state behavior is practically unaffected by varying
the operating wavelength, while the ER remains in excess of 27 dB on a 100 nm
optical bandwidth, and in excess of 20 dB on a 200 nm optical bandwidth. These
values compare favourably with those of the POH MZ modulators, which exhibit a
typical optical bandwidth in excess of 100 nm [12].

4.2.4 Modulation bandwidth and energy consumption

Since the modulator length is much smaller than the RF wavelength, even assuming
THz operation, the PCM frequency response can be approximated with that of
the RC circuit shown in the inset of Fig. 4.19, R being the device and driver total
equivalent resistance and C its capacitance. It has been verified, by quasi-static
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Fig. 4.18 Behaviour of the EO response for different operation wavelengths around 1550 nm
for the reference structure in Fig. 4.17.

simulations [42], that the device resistance is negligible compared to the typical
Rd = 50 Ω high-frequency driver resistance, and that its capacitance is frequency-
independent. More in detail, Fig. 4.19 reports a parametric study of the per-unit-
length capacitance C (such that C = C L) of PDC modulators for ∆w ∈ [0,40] nm.
These results demonstrate that C depends weakly on ∆w, and shows a moderate
increase with d in the design range.

In the parameter range investigated in this work, C is lower than 0.28 fF/µm.
Using this as an upper bound and considering a modulator length L = 7 µm, bounds
can be estimated for the intrinsic device bandwidth and energy-per-bit consumption.
Starting from the former, the intrinsic cutoff frequency fc = 1/(2πτ) can be evaluated
from the time constant τ =RC, resulting to be about 1.6 THz (net of possible parasitic
capacitances external to the device). As for the POH modulator in [12], the extrinsic
device bandwidth is expected to be dominated by external parasitics. For what
concerns the power consumption, it can be quantified by the energy-per-bit, which
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Fig. 4.19 Per-unit-length capacitance C of PDC modulators versus d, varying ∆w as a
parameter in the range [0÷ 40] nm. The black curve is the average value, and the green
shading indicates the sensitivity of C to ∆w. The inset reports the RC circuit describing the
PDC dynamics.

can be approximately estimated with the expression [66, 25]:

Wbit =
1
4

CV 2
RF, (4.7)

resulting, for a VRF =±3 V peak-to-peak drive voltage swing, to be about 18 fJ/bit.
This compares well with the POH MZ modulator value of 25 fJ/bit reported in [12]
for the same peak-to-peak drive voltage swing.

4.2.5 Modulator chirp

The chirp performance of directional coupler based modulators is discussed in [61],
where an analytical model, based on the perturbative treatment of coupling between
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interacting waveguides, is provided for the Henry chirp parameter αH:

αH (t) = 2

dφ (t)
dt

1
pout (t)

dpout (t)
dt

,

where φ (t) is the phase of the output optical field, pout (t) the optical output power.
In the customary bias-dependent small-signal approximation, it is:

αH = 2
∆φ

1
Pout

∆Pout

= 2

∆φ

∆Vin
1

Pout

∆Pout

∆Vin

,

where Pout is the optical output power at the modulator bias voltage V . According to
[61], αH = 0 identically for the cross-coupled modulator while it depends on bias
for the through modulator. Values of αH for the half power point in the through
modulator, as shown in [61, Fig. 5], are around unity.

The numerical model presented in Sec. 4.2.1 allows for a straightforward eval-
uation of the small-signal αH, since it directly provides the bias-dependent output
field amplitude and phase both for the through output port (the one considered in
the present paper, see Fig. 4.7) and the cross-coupled port. The results obtained are
shown as a function of the applied voltage, for both ports, in Fig. 4.20. The PDC
modulator considered is symmetrical, with VON = 0, VOFF ≈ 16 V and half-power
bias around 8 V. In agreement with [61], the cross-coupled port shows very low
(albeit not identically zero) chirp, while the through port αH is odd with respect the
bias voltage, with half-power values again around ±1. Contrarily to MZ symmetric
modulators (e.g., lithium niobate X-cut modulators), where αH = 0 independent on
bias, see e.g., [28], the present analysis confirms that PDC modulators exhibit either
zero chirp (in the cross-coupled configuration) or tunable (positive or negative, ac-
cording to the sign of the bias voltage) chirp, which may be interesting for dispersion
compensation.
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Questa roba deriva da uno smoothing.

Main_4_PCM_Chirp.m

VDC (V)
Fig. 4.20 Small-signal Henry parameter αH as a function of the bias point for the through
port (blue curve) and the cross-coupled port (red curve). The modulator geometry is that of
Figs. 4.14 and 4.15.

4.3 PDC3 Modulator

The directional coupler modulator discussed so far is based on two coupled waveg-
uides (PDC2). A similar device can be devised, based on three coupled waveguides
(PDC3). In order to compare PDC2 with PDC3, by FDE method the propagating
optical modes2 are computed and shown in Fig. 4.21. The wavelength considered is
1550 nm and W is 100 nm. By applying a voltage between the signal V pad and the
ground GND pad, the propagation constant changes. For PDC2, there are two modes
with effective refractive index larger than the SiO2 index. For the PDC3, three prop-
agating modes exist, corresponding to globally odd and even field distributions in
the coupled slots. The mode profiles of these three modes are presented in Fig. 4.22.

2Notice: the modes with neff higher than nSiO2 are considered as propagating modes.
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Fig. 4.21 Top: The geometry of the three-coupled slots directional coupler. Bottom: β versus
applied voltage.

Fig. 4.22 The mode profile of propagating modes of PDC3.

If we look at the electric field resulting from the 3D-FDTD simulation along the
optical path, Fig. 4.23, we can see that the coupling length Lc is smaller for PDC3
than PDC2 with the same values of d and W . This reduction is due to the presence of
the middle slot waveguide, which interacts with two slots instead of one. In this way,
the power in the middle slot is coupled to both sides and complete power transfer
takes place sooner, thus implying a smaller coupling length Lc.
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Fig. 4.23 The absolute value of electric field in PDC2 and PDC3.

4.3.1 Modeling strategy

The behavior of directional coupler can be simulated by FDTD method, which is very
accurate, but very computationally intensive. In order to optimize the geometry and
find the best W and d value, a faster method based on FDE are used. First, consider
only the middle slot exist and then by FDE the mode profile is calculated (Fig. 4.24).
After that, the modes of all slots are computed (Fig. 4.22) and by decomposing the
mode profile into them, the propagation of each supported mode is estimated [9].
In this way, the simulation are 20 times faster than FDTD, with the same accuracy.
Fig. 4.25 shows the normalized power in each slot versus the length and compares
results from the FDE and FDTD method, showing good agreement.

Fig. 4.24 The mode profile considering just S2.
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Fig. 4.25 The FDTD and FDE result comparison.

4.3.2 Proposed Geometry

Fig. 4.26 shows the proposed modulator. The optical power enters the modulator
from the input Si photonic waveguide and is converted to a plasmonic mode into
S2. The optical power is then coupled to S1 and S3. Finally, at the end of device, the
power remaining in S2 is converted to the output Si waveguide. The device operates
based on controlling the coupling length LC. Applying a voltage, the propagation
constant in DC3 is changed, thus affecting LC. If the length of directional coupler
section (L) is the same as LC, no power remains at the end of S2 and output waveguide.
If L = 2LC, the coupled power to S1 and S3 come back to S2 and the power in the
output waveguide is increased.

S3
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S2
𝐿

80𝑛𝑚

220𝑛𝑚
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𝑑 𝑑 𝑑

𝑊𝑊

C1

220𝑛𝑚

450𝑛𝑚

𝐼𝑛𝑝𝑢𝑡 𝑂𝑢𝑝𝑢𝑡

C1 C2

DLD164

Gold

Silicon

SiO2

𝑥

𝑧

𝑦

𝑥

𝑦

𝑥

𝐺𝑁𝐷 𝑉

𝑉 GND

Fig. 4.26 The proposed plasmonic modulator.
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4.4 Optimizing Geometry

The widths W , d and the length L are three critical parameters in the geometry. In
order to find the best value for them, several simulations are done for W = 100nm to
W = 200nm and d = 100nm to d = 300nm (Fig. 4.27). According to the results, in
some states LC is decreased by applying voltage which is exactly what is needed for
modulation. The following formula is used to find the best state for each W and d:

LC |V=0≥ 2LC |V=1:20 (4.8)

Fig. 4.27 The LC versus W and d for different values of V .

Fig. 4.28 The LC have satisfied Eq.2 .

There are 38 states which satisfy this condition, as shown in the Fig. 4.28. Among
them, one state has lowest L (state1) which is indicated by the red circle, and one
state has lowest Vpi (state2), which is indicated by blue circle. Fig. 4.29 shows the
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transmission for these two cases. The on-off voltage Vpi is 19 V for state1 and 11 V
for state2. The extinction ratio is 18.32 dB and 8.22 dB, respectively. The optical
insertion loss is 4.78 dB and 6.83 dB respectively.

Fig. 4.29 The Transmission for state1 and state2.



Chapter 5

Conclusions and outlook

This study presents an overview of physic-based and system-oriented modeling of
modulators based on plasmonic waveguides. The focus of thestudy is on two types
of modulator, Mach-Zehnder and directional coupler modulators. Both of them can
be implemented from plasmonic waveguides deposited on silicon substrates. The
device is compatible with a silicon photonics platform and an elector-optic polymer
is exploited as an active material. The polymer has Pockels effect and its refractive
index is varied by the applied electric field. The proposed devices operates at 1550
nm wavelength, typical of data center or long-haul telecommunication systems.

As mentioned in chapter 2, there are several methods to simulate and analyze the
behavior of plasmonic devices. For the primary investigation of modulator behavior,
the finite-difference eigenmode method (FDE) and Finite Element Method (FEM)
are adopted. They are waveguide-level simulation techniques, and they are quite
fast (each simulation takes a couple of minutes). The more precise simulations are
done by the help of Finite-Difference Time-Domain Method (FDTD). FDTD is very
accurate but it is computationally demanding in terms of memory and CPU time
requirements (each simulation takes a few hours), being unfeasible for computer-
aided design based design approaches exploiting parametric investigation campaigns.
To overcome the huge computational costs of FDTD, the modal-FDTD method is
used which is much faster than FDTD (more than ten times), with the same accuracy.

For Mach-Zehnder modulators, a multiphysics method is provided which allows
for eficient optimization of the geometry, without huge computational cost. For
the directional coupler modulator, a new geometry is introduced. The modulator
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can be optimized for different applications - this has been discussed focusing on
representative symmetric and asymmetric devices. Asymmetry has been shown to
affect the E/O response by a rigid shift on the Vin axis, thus allowing to have the half-
power bias at VDC = 0 V. Insertion loss is around 4 dB, the Vπ ·L product around 110
V·µm, the extinction ratio is in excess of 25 dB, the intrinsic modulation bandwidth
is in the THz range, with an energy consumption of the order of 20 fJ/bit and
optical bandwidth in excess of 100 nm, comparable with the one of Mach-Zehnder
modulators.

In summary, the performance of directional coupler modulators in terms of
area, plasmonic losses, optical bandwidth, intrinsic modulation bandwidth and
energy dissipation are comparable to already proposed Mach-Zehnder solutions.
Yet, the present analysis suggests that directional coupler modulator may have some
advantages with respect to Mach-Zehnder modulators. First, because a single slot has
to be excited, the launching scheme is simpler, mitigating the photonic-plasmonic
conversion losses, that we demonstrate being around 1 dB in the ON state. Secondly,
in directional coupler modulators, reducing the lateral extent of the device (and
hence its footprint and capacitance) does not introduce any extinction ratio penalty.
Also, the insertion loss is lower in directional coupler modulator since some part of
power transfer to adjacent waveguide instead of dissipating in the middle island of
Mach-Zehnder modulator.

The focus of this Dissertation has been placed on the physics-based modeling
of standalone devices. Having at our disposal mature device-level models capable
of reproducing experimental results, a possible follow-up of this Ph.D. program
could be assessing the impact of novel devices within system-level simulations on
the entire optical telecommunication chain (Tx/fiber/Rx). To this aim, rather than
inserting directly physics-based models in the simulation flow, a possible alternative
could be to use behavioural models based, e.g., on neural networks trained by the
models developed within this Thesis.
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Appendix A

Material parameters

This appendix provides details about the material parameter used in this work. The
refractive indexes adopted in the simulations, mostly coming from typical literature
values, are listed in Table A.1. In particular, Au in the electrical simulation is
treated as an impedance boundary condition, with conductivity σ = 4.1×107 S/m.
Even though not visible in Fig. 3.1(right), the Si substrate has been included in the
electrical simulations. The complex dielectric constant used for Au has been taken
from [12], valid at λ = 1.55 µ . Also the DLD-164 polymer optical refractive index
has been taken from the same reference. However, to the best of our knowledge no
information is provided about its radiofrequency response (all the details we have
found come from [21, Fig. 4]), so we assumed nNLO = 1.83, with no dielectric
losses, also in the quasi-static RF problem.

Table A.1 Refractive indexes used in the simulations.

Material nelectrical noptical

Au – 0.2524− j10.4386
Si 3.42 3.5

SiO2 1.97 1.44
DLD-164 1.83 1.83



Appendix B

Voltage-dependent change of basis

The approach described in this appendix could be seen as a mode-matching technique,
where only two modes are used to represent the transverse field at the discontinuity.
In other words, the modes of a waveguide subjected to E/O effect, |V1⟩, |V2⟩, are
expressed as a linear combination of the zero-voltage modes |Z1⟩, |Z2⟩ (the situation
at which the splitter 3D-FDTD is simulated):

|V1⟩=W11 |Z1⟩+W12 |Z2⟩
|V2⟩=W21 |Z1⟩+W22 |Z2⟩ .

(B.1)

Because this equation involves four coefficients Wi j, their determination requires
formulating a 4×4 linear system, which is obtained projecting these two equations
on two functions. In standard mode-matching techniques great attention is put on the
projectors’ definitions. In this case, being the system quite small, it is sufficient that
the projecting modes are independent. For this reason, the equations are projected
on ⟨Z1| and ⟨Z2|, leading to:

⟨Z1|V1⟩=W11 ⟨Z1|Z1⟩+W12 ⟨Z1|Z2⟩
⟨Z2|V1⟩=W11 ⟨Z2|Z1⟩+W12 ⟨Z2|Z2⟩
⟨Z1|V2⟩=W21 ⟨Z1|Z1⟩+W22 ⟨Z1|Z2⟩
⟨Z2|V2⟩=W21 ⟨Z2|Z1⟩+W22 ⟨Z2|Z2⟩

, (B.2)
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where the bra-ket notation indicates the dot product:

⟨A|B⟩=
∫

S
At ·B∗

t dσ ,

where, as in the standard mode-matching, S is the (x,y) cross-section of the waveg-
uide discontinuity, the star superscript indicates complex conjugation, and At, Bt are
the transverse fields, which must be continuous to satisfy the boundary conditions of
Maxwell’s equations.

It can be noticed that the first and last groups of two equations are independent,
leading to two uncoupled linear systems:

[
⟨Z1|Z1⟩ ⟨Z1|Z2⟩
⟨Z2|Z1⟩ ⟨Z2|Z2⟩

][
W11

W12

]
=

[
⟨Z1|V1⟩
⟨Z2|V1⟩

]
, (B.3)

[
⟨Z1|Z1⟩ ⟨Z1|Z2⟩
⟨Z2|Z1⟩ ⟨Z2|Z2⟩

][
W21

W22

]
=

[
⟨Z1|V2⟩
⟨Z2|V2⟩

]
. (B.4)

The solutions of the systems (B.3), (B.4) are the elements of the matrix W in (3.5).



Appendix C

Evaluation of the field expansion
coefficients

The purpose of this Appendix is to provide additional details on the numerical
approach summarized by (4.2)–(4.4). The first step regards the evaluation of the
coefficients c(I)i . These coefficients are obtained by projecting (4.2) on the voltage-
dependent mode profiles |Vi⟩. This leads to the following system of equations:[

⟨V1|V1⟩ ⟨V1|V2⟩
⟨V2|V1⟩ ⟨V2|V2⟩

]
︸ ︷︷ ︸

A(I)

[
c(I)1

c(I)2

]
︸ ︷︷ ︸

c(I)

=

[
⟨V1|I⟩
⟨V2|I⟩

]
︸ ︷︷ ︸

b(I)

(C.1)

where projections are based on the bra-ket product ⟨Vj|Vi⟩ defined as

⟨Vj|Vi⟩=
∫∫

E∗
j(Vin) ·E i(Vin)dxdy, (C.2)

and the scalar product (performed over the cross-section simulated with the FEM
mode solver) involves the transverse (x and y) components of the electric field.
The evaluation of the right-hand side is similar, but it involves the projection of
the input field |I⟩, which is voltage-independent. Representing the input field as
a linear combination of the voltage-dependent modes is advantageous because it
allows to evaluate the output field |O⟩, for each Vin, by propagating these coefficients
with propagation constants evaluated with the voltage-dependent effective refractive
indices, with (4.3). Assuming that the output field has the same profile of the
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excitation field, which is the case of both MZ (even mode) and PDC (I/O waveguide
mode) modulators, the modulator EO response is evaluated as the fraction of |I⟩
in |O⟩, i.e., the coefficient c(O)

2 in (4.4). These coefficients can be estimated with a
procedure similar to that of (C.1), i.e., by projecting the output field on the fields |I⟩
and |C⟩, leading to the system:[

⟨I|I⟩ ⟨I|C⟩
⟨C|I⟩ ⟨C|C⟩

]
︸ ︷︷ ︸

A(I)

[
c(O)

1

c(O)
2

]
︸ ︷︷ ︸

c(O)

=

[
⟨I|O⟩
⟨C|O⟩

]
︸ ︷︷ ︸

b(O)

(C.3)

from whose solution c(O)
1 and c(O)

2 are obtained.


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Modulation of light
	1.2 Nonlinear optical effects
	1.2.1 Pockels effect
	1.2.2 Kerr effect
	1.2.3 Charge-carrier (plasma) effect
	1.2.4 Franz-Keldysh effect
	1.2.5 Quantum-confined Stark effect
	1.2.6 Thermo-optic Effect

	1.3 Modulator Parameters
	1.3.1 Transmission
	1.3.2 ON-state and OFF-state voltages
	1.3.3 Extinction Ratio
	1.3.4 Insertion loss
	1.3.5 Modulation bandwidth
	1.3.6 Optical bandwidth

	1.4 Phase Modulator
	1.5 Mach-Zehnder Modulators
	1.6 Plasmonic Phase and Mach-Zehnder Modulators

	2 Plasmonic Modulators Modeling
	2.1 Analytical Method
	2.1.1 Plasmonic Single Interface
	2.1.2 Plasmonic Multilayer System
	2.1.3 Coupled mode theory

	2.2 Finite-Difference Eigenmode Method
	2.3 Finite-Difference Time-Domain Method
	2.4 Finite Element Method
	2.5 Modal-FDTD Method
	2.6 Electro-optic Effect Model

	3 Plasmonic Mach–Zehnder Modulator
	3.1 Geometry
	3.2 Multiphysics simulations
	3.2.1 Cold (zero voltage) device simulations
	3.2.2 Multiphysics-augmented waveguide simulations

	3.3 Efficient comprehensive 3D simulation
	3.3.1  Mixed modal-FDTD simulation and cold splitter characterization
	3.3.2 Voltage-dependent mode coupling effects
	3.3.3 Evaluating the modulator response


	4 Plasmonic Directional Coupler Modulator
	4.1 Plasmonic Directional Coupler
	4.2 PDC2 Modulator
	4.2.1 Modeling strategy
	4.2.2 Symmetric and asymmetric modulators
	4.2.3 Parametric sensitivity and optical bandwidth
	4.2.4 Modulation bandwidth and energy consumption
	4.2.5 Modulator chirp

	4.3 PDC3 Modulator
	4.3.1 Modeling strategy
	4.3.2 Proposed Geometry

	4.4 Optimizing Geometry

	5 Conclusions and outlook
	References
	Appendix A Material parameters
	Appendix B Voltage-dependent change of basis
	Appendix C Evaluation of the field expansion coefficients

