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Abstract

The introduction of next-generation sequencing (NGS) technology resulted in an

explosion of genomic sequencing data. To extract new and useful knowledge, new

computational strategies for managing and investigating such data are required.

The first part of this thesis is dedicated to computational methods developed to

model intra-tumor heterogeneity. Cancer is an evolving entity, and the evolutionary

properties of each tumor are likely to play a critical role in shaping its natural

behavior and how it responds to therapy. In fact, during the evolution of the disease,

cancer cells differentiate, giving birth to subpopulations (subclones) characterized

by a distinguishable set of mutations. This phenomenon, known as intra-tumor

heterogeneity (ITH), may be studied using Copy Number Aberrations (CNAs).

Nowadays, ITH can be assessed at the highest possible resolution using single-cell

DNA (scDNA) sequencing technology. However, since the technology required to

generate large scDNA sequencing datasets is relatively recent, dedicated analytical

approaches are still lacking. The first part of this Ph.D. thesis has been dedicated

to designing new computational methods based on statistical and machine learning

techniques to manage scDNA data and unveil spatial ITH.

• In this context, a tool capable of producing multi-sample CNA analysis on

large-scale scDNA sequencing data and investigating spatial and temporal

tumor heterogeneity has been developed. The main methodological contribu-

tion has been leveraging the advantages the of existing approaches, through a

different, completely open, pipeline which, for the first time, integrates scCNA

data from multiple samples to start investigating ITH from a qualitative point

of view.

• Secondly, a study on clustering methods applied to scCNA data is presented.

Clustering methods are increasingly applied to scDNA sequencing data to infer
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the subclonal structure of cancer. However, the complexity of these data exac-

erbates some data-science issues and affects clustering results. Additionally,

determining whether such inferences are accurate and clusters recapitulate the

actual cell phylogeny is not trivial, mainly because ground truth information

is unavailable for most experimental settings. Here, by exploiting simulated

sequencing data representing known phylogenies of cancer cells, a formal

and systematic assessment of well-known clustering methods is presented to

study their performance and identify the approach providing the most accurate

reconstruction of phylogenetic relationships.

• Finally, a tool to explore the extent of spatial heterogeneity in multi-regional

tumor sampling is proposed. The spatial distribution of subclones within a

tumor mass can, in principle, be studied using scCNA profiles from multiple

samples of the same tumor. However, the existing methods for scCNA analysis

are still limited. Many of them only identify the total copy-number, while a few

infer the tumor phylogeny using the computed CNAs. An instrument capable

of exploiting both the granularity of single-cell DNA data and multi-sample

analysis to quantify ITH still does not exist. For this reason, PhyliCS has been

developed.

PhyliCS is the first tool that exploits scCNA data from multiple samples from

the same tumor to estimate whether the different clones of a tumor are well

mixed or spatially separated.

In this regard, the SHscore (Spatial Heterogeneity score) is the key method-

ological contribution. It is a novel metric that allows to quantify how far

cells from various samples from the same patient have diverged in their CN

landscapes. The SHscore has been evaluated in a variety of simulation settings.

Results show that the proposed score accurately represents heterogeneity in

the clonal structure of multiple samples and indirectly reflects the evolutionary

history of tumor subsamples.

Given the significant contribution of AI techniques in the study of complex

biological phenomena characterized by a lack of domain understanding, they were

adopted to investigate the oncogenic potential of gene fusions. Gene fusions are one

of the most common somatic mutations and are considered to be responsible for

20% of global human cancer morbidity. However, not all gene fusions are oncogenic.
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Indeed, some are genuinely expressed in normal human cells or constitute passenger

events. Nevertheless, the biological mechanisms which lead from gene fusions to

tumorigenesis are not fully understood, and theoretical formulations of this complex

phenomenon are still lacking. Therefore, AI algorithms represent an opportunity to

infer the causal links between gene fusions and carcinogenesis directly from data.

The second part of this thesis has been devoted to the application of deep-learning

techniques to the complex task of classifying gene fusions as oncogenic or not

oncogenic.

• In this context, a tool based on a specifically designed neural network has been

proposed to classify gene fusions as oncogenic or not oncogenic. Identifying

potentially oncogenic gene fusions may improve affected patients’ diagnosis

and treatment. Previous approaches to this issue exploited protein domains,

specific gene-related information, to predict the oncogenic potential of the gene

functions. The proposed model profits from the earlier findings and includes

the microRNAs in the oncogenic assessment. Specifically, the designed neural

network integrates information related to transcription factors, gene ontologies,

microRNAs, and other detailed information related to the functions of the

genes involved in the fusion and the gene fusion structure. The designed

neural network outperformed state-of-the-art tools.
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Chapter 1

Introduction

The advent of next-generation sequencing (NGS) technology has enabled extensive

genome sequencing, revolutionizing medical research. NGS allows to extract mil-

lions of sequences, in a single experiment, and use them to analyze relationships,

compute statistics, and model complex biological phenomena with very high ac-

curacy. As a result, the amount of data shared to public and private databases is

continuously increasing, representing an invaluable source of new knowledge on

the human genome [1]. The ability to interpret such data has the potential to help

develop effective diagnostic and predictive tools in the treatment of cancer and other

complex diseases.

However, data produced from complex systems are complex themselves. Se-

quencing data are inherently sparse, noisy, and high-dimensional, and, for this reason,

distinguishing between the relevant interactions in biological networks and those

due to chance is not a trivial task [2].

In this context, Big Data analytics, which allows uncovering hidden patterns and

unknown correlations from large-scale datasets, represents a valuable instrument [3].

In this thesis, machine and deep learning techniques have been applied to human

DNA and RNA sequences to develop instruments to tackle human cancer data

complexity.

The first part of this thesis is dedicated to developing computational methods

to characterize intra-tumor heterogeneity (ITH). ITH refers to the coexistence of

genetically different cancer cell subpopulations (clones or subclones) within the same
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tumor. The clonal composition of each tumor is likely to play a critical role in shaping

its natural behavior and how it responds to therapy. Different subclones within the

same tumor adapt differently to the external environment and, most importantly, react

differently to treatments. For this reason, studying the clonal structure of tumors is

one of the most crucial tasks in cancer research nowadays.

Thanks to the emerging large-scale single-cell DNA (scDNA) sequencing tech-

nology which allows the extraction of the genomic profile of thousands of individual

cells, ITH can be assessed at the highest possible resolution. However, since this

technology is quite recent, dedicated analytical approaches are still lacking.

The main methodological contribution of this part of the thesis has been proposing

methods and applications to assess ITH exploiting copy-number aberration (CNA)

profiles computed on scDNA sequencing data. Specifically, a pipeline to manage

large-scale single-cell CNA (scCNA) data, produced by third-party tools, has been

proposed; the first formal and systematic assessment on clustering techniques applied

to scCNA data has been performed; a tool and a score for the quantification of spatial

ITH exploiting scCNA data from multiple tumor samples has been developed.

Given the significant impact of AI-techniques in the study of complex biological

phenomena characterized by a poor domain understanding, they were adopted to

investigate the oncogenic potential of gene fusions. To this purpose is dedicated

the second part of this thesis. Gene fusions are a somatic mutation in which two

genes break and, erroneously, fuse together to give birth to a hybrid gene that may

be responsible for oncogenesis, tumor development, and poor treatment response.

However, not all gene fusions are oncogenic, and correctly identifying them may

improve affected patients’ diagnosis and treatment.

Unfortunately, the biological mechanisms underlying tumorigenesis initiated by

gene fusions are not fully understood, and theoretical formulations of this complex

phenomenon are still lacking. Therefore, AI algorithms offer the opportunity to infer

the causal links between gene fusions and cancer, exploiting the available abundance

of data.

In this regard, the main methodological contribution has been the creation of

a tool that integrates structural and functional features of the fused genes with the

information about some regulatory and post-regulatory processes. These features are

used to classify gene fusions as oncogenic or not oncogenic, exploiting an ad-hoc

designed MLP-based architecture.
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The thesis is organized as follows.

Chapter 2 will provide biological background and the related computational

problems assessed by this thesis.

Chapters 3, 4 and 5 will present the methods developed to address the problem

of ITH characterization and their results.

Chapter 6 will describe the model designed to identify the oncogenic potential of

gene fusions.

In the end, Chapter 7 will provide some conclusions, highlighting the key

strengths of the proposed methods.



Chapter 2

Background

Cancer is a disease of the genome that arises from the accumulation of mutations

during cell life-cycle [4]. Despite the decreasing trend in cancer mortality, it remains

a severe public health problem worldwide and is the second leading cause of death

in the United States [5]. Nowadays, Bioinformatics is providing the instruments to

speed-up cancer research.

2.1 NGS: genomics and data science

One of the most significant steps forwards in finding new diagnostic and therapeutic

tools has been the advent of next-generation sequencing (NGS) technologies in 2006.

NGS is a high-throughput sequencing technology that allows to determine the order

of nucleotides in entire genomes or targeted regions of DNA or RNA. By comparing

such nucleotide sequences with a reference genome or transcriptome, it is possible to

spot alterations with respect what is considered the normal structure of the sequenced

area and, eventually, make hypotheses on the anomalies which may have caused a

given disease, including cancer [6].

In particular, NGS promoted the advent of precision medicine (PM). In fact, the

possibility of massively sequencing patient’s genomes at a relatively low cost has

enabled the identification of individual tumor mutations (biomarkers) that allow to

predict its evolution and response to therapies. Therefore, it is possible to design

specific therapies for individual patients [7].
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However, NGS poses some technical challenges which require computational

frameworks to be assessed.

2.1.1 The rapid growth of sequencing data

NGS technologies represent a source of big data. In fact, the amount of data generated

by sequencers is continuously increasing thanks to the technical advancements and

the lowering of sequencing costs.

The National Human Genome Research Institute (NHGRI) has been tracking the

costs associated with DNA sequencing performed at the sequencing centers funded

by the Institute since 2001 [8]. According to their results, the costs of sequencing an

entire human genome dropped from $95,263,072 in 2001 to $562 in 2021, with a

considerable decrease in 2008, when the sequencing costs fell from $7,147,571 to

$342,502 in a single year.

The advances in sequencing technology and the evolution of computational

frameworks are speeding up both data generation and data sharing. In the future,

it is estimated that the sequencing of an entire human genome may take less than

24h, dropping from the 2 to 8 weeks required with the current technology, and from

the 13 years required to sequence the first human genome by the Human Genome

Project [9].

Besides, thanks to the continuously emerging sequencing protocols, also the

variety of genomic data is increasing over the years (e.g, WGS [10], ChiP-seq [11],

RNA-seq [12], ATAC-seq [13], sc-seq [14], etc.).

As a result, the volume of genomic data grows more than that of many other

data-intensive disciplines (e.g., astronomy, sociology, TOP 500 supercomputers, IP

traffic) [15]. Researchers believe that if this data generation growth trend remains

constant, soon genomics applications will generate more data than social media [16].

In fact, it is estimated that genomics projects will generate 40 exabytes of data by

2025 [17].



6 Background

2.1.2 AI for genomics

To tackle the growing volume and complexity of genomic data, in the last years, re-

searchers have been moving to Artificial Intelligence to identify meaningful patterns

and extract new biological knowledge.

AI overview

The expression Artificial Intelligence (AI) was coined by John McCarthy during

the Dartmouth Artificial Intelligence conference held in 1956. It was chosen as an

umbrella expression, comprehensive of the many different fields discussed during

the conference.

Nowadays, the term AI refers to the set of devices, algorithms, and applications

that allow computers to mimic human intelligence [18]. In particular, AI provides the

instruments to uncover hidden patterns and unknown correlations from large-scale

and complex datasets. The field of AI is one of the most dynamic ones and is rapidly

evolving.

Machine learning (ML) and deep learning (DL) are two macro-areas of appli-

cation in AI. In particular, machine learning refers to the capability of a machine

to learn from a large dataset without being programmed on what it learns. Deep

learning, instead, is a relatively modern computational paradigm that allows to learn

patterns in the data imitating the working principles of human neurons, using layered

networks of computational units (the artificial neurons) named artificial neural

networks.

Learning may be supervised (when algorithms are fed with labeled training data

representing the categories which the model should learn) or unsupervised (when the

algorithms can recognize patterns in the datasets without any hint from humans). AI

algorithms are, then, used to make informed decisions using what they have learned.

The great advantage of AI algorithms is their ability to find linear and non-linear

correlations in huge datasets made of complex data, with an accuracy and a velocity

that would be impossible to reach by any human being. This is the reason why life

scientists need AI-based tools to profit from the vast amount of genomic data at their

disposal.
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AI applications in genomics

Although AI techniques are at their early stages in genomics, some applications do

exist. For example, they have been used to identify genetic disorders from people’s

faces [19], to discriminate between disease-causing genomic variants and benign

variants [20], to identify the primary type of cancer from a liquid biopsy [21], to

predict the evolution of a specific type of tumor in a patient [22].

2.1.3 AI techniques in cancer research

Cancer genomics is one of the research areas empowered by the explosion of AI

applications.

Many AI-based models have been proposed to improve variant discovery and

classification accuracy, to classify tumors into subtypes, to predict the disease out-

come and response to therapies, to incorporate high-dimensional data sets, and to

integrate multi-omics [23±31].

Many reviews have focused on AI applications for cancer study [32±35]. This

thesis will deal with applications for intra-tumor heterogeneity (ITH) characterisation,

using single-cell copy-number aberration (scCNA) data, and oncogenic gene fusion

prioritization.

Algorithms for ITH characterization

Tumors are caused by the accumulation of somatic mutations. The set of mutations

collected by the tumor founder cell, known as clonal, is inherited by the entire

progeny of the tumor. Mutations that arise in an already existing tumor are only

passed on to subpopulations of cells and are referred to as subclonal [36, 37]. As a

result, cancer cells exhibit intrinsic genetic diversity, known as intra-tumor hetero-

geneity (ITH) [38] which is recognized as a major cause of tumor recurrence, and

treatment failure [39, 38, 40±42].

Regionally separated heterogeneous clones can lead to sampling bias. For in-

stance, there is increasing evidence that resistance to some targeted cancer treatments

may result from the expansion of preexisting low-frequency tumor cell populations

harboring somatic mutations that provide resistance to the targeted drug [43]. Such
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low-frequency populations may not be detected by single-tumor biopsy, affecting

the identification of tumor biomarkers. To this regard, many studies have shown that

using multiple samples taken from different regions of the same tumor improves the

ability to infer the subclonal structure of tumors and to identify the most appropriate

drugs [44±47, 38±40, 48].

Computational frameworks currently used to characterize ITH at the genome

level are mainly based on statistical methods and clustering techniques.

The most common method for assessing ITH is to use deconvolution techniques

on bulk DNA sequencing data [49, 50]. Bulk DNA sequencing allows to sequence a

mix of millions of cells and generate a mixed genomic profile of all subclones. It is

considered the standard tool to generate genomic data at the cell population level,

so its results are considered reliable and stable; however, the main drawback is that

the subclonal tumor structure is hidden, so bioinformatics techniques are required to

infer it. In detail, the generated sequences are first aligned to a reference genome and

then processed with mutation callers [51] to identify the somatic mutations carried

by the tumor sample. The variant allele frequency (VAF) for each somatic mutation

can be calculated by dividing the number of sequence reads matching that variant by

the read coverage at that locus. An estimate of the fraction of tumor cells carrying

each mutation can be obtained using mutation allele frequencies and accounting

for copy number variations. A set of mutations can then be used as a marker for

a population of cells, allowing estimation of the fraction of tumor cells belonging

to the corresponding subclone. Clustering algorithms can be used to determine the

cancer cell fractions of each subclone and, ultimately, the tumor evolutionary tree

(phylogeny) [52±61].

Bulk DNA data deconvolution techniques mainly rely on machine learning mod-

els and statistical computations to infer tumor subclonality indirectly, frequently

resulting in an ensemble view dominated by the prevalent clones. Nowadays, emerg-

ing single-cell DNA sequencing (scDNA-seq) technologies offer an extraordinary

opportunity to tackle such issues, as they allow to sequence the genome of individual

cells and study tumor heterogeneity with unprecedented resolution.

In particular, single-cell low-coverage whole-genome sequencing is suited for

detecting copy-number aberrations (CNAs), which can be exploited to reconstruct

cell population subclonal structure using clustering techniques [62]. CNAs are

a common type of somatic mutation, consisting of the alteration of the expected
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number of copies of one or more regions of the genome (the normal copy-number

for a diploid genome, like the human one, is 2) [63].

The majority of existing methods for single-cell CNA (scCNA) data [64±71]

only identify the total copy-number. A few of them also infer the tumor phylogeny

applying clustering algorithms to the CNAs they computed [72].

Even if it is out of the scope of this thesis, it is worth mentioning that some

studies have proposed methods to evaluate ITH using gene expression [73±75] or

protein networks [76]. Other studies presented imaging techniques based on neural

networks such as CNN’s and ResNets [77] to visualize tumor heterogeneity from a

morphological perspective.

The first part of this thesis, instead, will focus on ML techniques applied to

scCNA data to characterize and quantify ITH from the genomic point of view.

Algorithms for gene fusion classification

Gene fusions are a common type of mutation that results from the joining of two

independent genes [78]. In the most common case, the gene at the 5’ retains the

promoter and the 5’ UTR region while the 3’ gene retains its end sequence in the

fusion. Gene fusions are considered to be responsible for 20% of cancer-related

deaths.

The first fusion gene, the Philadelphia chromosome [79], was identified in chronic

myelogenous leukemia in 1973 [80]. After that finding, other fusion genes have been

associated with various hematological cancers [81±84] and, recently, discovered in

different solid tumors, including sarcomas, carcinomas, and central nervous system

tumors [85±88].

The discovery of many cancer-related gene fusions has impacted clinal care.

They are used to diagnose a variety of cancers [89, 90], identify molecular cancer

subtypes [91, 92], stratify patients [93, 94], monitor residual disease after treat-

ment [95, 96], and predict relapse [96]. Notably, fusion transcripts are also promis-

ing therapeutic targets [97±99], with the potential to improve patient outcomes

significantly.

However, not all gene fusions are oncogenic. Some of them are expressed in

normal tissues [100] while others are discarded by DNA repair mechanisms [101].
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The first step to identify oncogenic gene fusions is analyzing RNA sequenc-

ing data, using one of the existing fusion detection tools (e.g., ChimeraScan [102],

deFuse [103], STARfusion [104], FusionCatcher [105], TopHat-Fusion [106], SOAP-

fusion [107], etc.). Such methods generate a long list of putative gene fusions, most

of which are false positives. Importantly, these tools do not provide any statement

about gene fusions’ involvement in tumorigenesis. Hence, prioritizers are gaining

popularity: these are tools that can automatically recognize which of the many gene

fusions carry an oncogenic potential and, therefore, are the best candidates to be

analyzed in the laboratory.

From a computational point of view, however, the problem of identifying which

gene fusions are actually oncogenic is challenging and anything but simple. This

problem was addressed from 2015 onwards when some prioritizers were released

in the literature. Among the firsts, Oncofuse and Pegasus [108, 109] are to be

mentioned: they exploit general contextual information related to genes (in particular

protein domains) to establish through Decision Trees and Support Vector Machines

whether the new fusions are oncogenic or not. However, both models achieve

precision and recall of no more than 70%. More recently, DEEPrior [110] has been

proposed. It is a prioritizer for the search for oncogenic fusions, based on CNN and

LSTM architectures, that directly exploits the resulting protein sequence to determine

whether the fusion is oncogenic or not. In this case, the recall of prioritized gene

fusions is about 80%.

The computational complexity of this biological problem lies in the fact that

the oncogenicity property is very complex and determined by a set of not fully

known factors within the fused gene and the molecules involved in its regulation and

expression. Indeed, there is no set of genes, protein domains, or transcription factors

that alone can effectively predict the oncogenic potential of gene fusions.

In addition, the task is complicated by the need to measure the results on a set

of gene fusions whose genes have never been used in the training phase. Such an

imposition is necessary as all databases relating to gene fusions cover only a tiny

portion of all possible existing gene fusions. Therefore, it is advisable to have models

that can sufficiently generalize the concepts learned on the training process.

Learning algorithms seem to be a valid technological solution to address this

problem. In fact, they have shown brilliant results when employed to examine com-

plex phenomena with poorly understood properties. Deep learning, in particular,
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has the incredible capacity to learn, on its own, to describe phenomena as a tiered

hierarchy of concepts and finding hidden patterns among them. Because they can

learn directly from data, such approaches are highly beneficial when used to address

problems characterized by a lack of domain understanding of their features. Further-

more, DL algorithms allow to avoid human intervention and feature engineering,

particularly when data size is huge.

Therefore, in the second part of this thesis, DL techniques have been used

to address the complex task of prioritizing gene fusions. The result has been an

application, based on an ad-hoc designed MLP-based architecture, that integrates

structural and functional features of the fused genes with the information about

some regulatory and post-regulatory processes to predict the oncogenic potential

of gene-fusions. Indeed, it is still unclear which features are the most relevant and

how they interact to enable oncogenic functional activities. The MLP-based model

is then used to learn through the data these interdependent relationships.



Part I

Intra-tumor Heterogeneity

Characterization





Chapter 3

Single-Cell Dna Sequencing Data: A

Pipeline For Multi-Sample Analysis

This chapter starts investigating how tumor spatial heterogeneity can be addressed

with large-scale scCNA datasets.

Nowadays, single-cell DNA (sc-DNA) sequencing is showing up to be a valuable

instrument to investigate intra and inter-tumor heterogeneity and infer its evolutionary

dynamics, by using the high-resolution data it produces. That is why the demand for

analytical tools to manage this kind of data is increasing.

In this context, a pipeline capable of producing multi-sample copy-number

aberrations (CNA) analysis on large-scale single-cell DNA sequencing data and

investigate spatial and temporal tumor heterogeneity is proposed.

3.1 Scientific Background

One of the main challenges for cancer researchers is understanding the evolutionary

dynamics of the disease. In fact, it is largely known that cancer is an evolving entity

and the evolutionary properties of each tumor are likely to play a critical role in

shaping its natural behavior and how it responds to therapy [111].

Emerging single-cell DNA sequencing technologies allow profiling individual

cells, highlighting differences among them, and assessing tumor heterogeneity with

an unprecedented detail level. Additionally, it is possible to adopt phylogenetic
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reconstruction techniques to infer the evolutionary history of cell sub-populations

within single-cancer cases. One way of exploiting single-cell DNA sequencing to

address tumor heterogeneity and evolution investigation is performing copy-number

aberration () analysis [112].

At the time of writing, single-cell DNA sequencing usually requires isolating

cells and performing whole-genome sequencing (WGS) on each cell; as a result, only

a few of them can be analyzed together in one experiment, making heterogeneity

studies less effective. A few technological solutions for large-scale single-cell DNA

sequencing have been proposed [113, 114]. The most popular one is 10x Genomics

technology [114]. The company offers a new system, named Chromium System,

which is able of partitioning and barcoding hundreds to thousands of individual

cells into GEMs: the DNA in each GEM can then be fragmented and amplified into

short-read libraries suitable for Illumina sequencing, with each fragment receiving a

14-base molecular barcode unique to its GEM of origin. Additionally, 10x Genomics

provides a proprietary pipeline, Cell Ranger DNA, that identifies events (down

to 2Mbp for a single cell and down to 200kbp for clusters of cells) and infers a

phylogenetic tree, which can be explored, together with its associated heatmap, using

an interactive browser, Loupe scDNA Browser. Cell Ranger DNA, right now, allows

to execute only single-sample analysis and, being a closed platform, it cannot be

customized.

In addition to 10x Genomics pipeline, another pair of tools, capable of performing

calling on sc-DNA data, exist: Ginkgo [67] and SCCNV [115]. For this project,

as an alternative to Cell Ranger DNA, only Ginkgo has been considered, which is

more diffused and has already been considered as a reference tool for this kind of

application [116]. Ginkgo is a freely available open-source web-based application for

copy-number variants’ automated and interactive analysis. Ginkgo allows to upload

single-cell alignment files (one file for each cell) to define different parameters and,

after calling, to analyze the results using a web interface. Additionally, it computes

and shows a phylogenetic tree, which can be computed using different distance

metrics and clustering algorithms, and draws some heatmaps showing clusters of

clones. The main Ginkgo drawback is that being a web application, it is not easy to

embed it into an automated pipeline and run it on a cluster, like an HPC platform;

moreover, it suffers from the delays introduced by the network.
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Additionally, as far as we know, it has been validated on datasets significantly

smaller than the ones managed by 10x software.

Here a different, completely open, pipeline is proposed: it combines the advan-

tage of transparently dealing with 10x sequencing data of Cell Ranger DNA, with

the openness and flexibility of Ginkgo, used in a stand-alone fashion, in order to

perform a multi-sample single-cell analysis, on large-scale datasets. The pipeline is

freely available at the following link: https://github.com/vodkatad/biloba.

3.2 Materials and Methods

The proposed pipeline is organized in two main workflows: the first one manages

data preparation, processing, and validation for each of the tumor samples of interest;

the second one aggregates the results of the preceding phase to perform multi-

sample analysis and evaluate inter and intra-sample heterogeneity. The pipeline is

automatically handled by Snakemake [117] and comprises a stand-alone version of

Ginkgo, deprived of the web utilities, which were not helpful for a command-line

tool. The newly implemented modules have been written in Python and C++.

3.2.1 Single-sample analysis

Data preparation. The pipeline starts with the execution of Cell Ranger DNA. The

tool demultiplexes BCL files obtained from Chromium-prepared sequencing samples

and produces FASTQ files where each read contains the barcode corresponding to the

cell/GEM which originated it. After that, it performs reference alignment, filtering

out poor quality mappings (MAPQ < 30), calls CNA events, and performs hierarchi-

cal clustering of cells on the base of their CNA profiles. Additionally, when the CN

of a cell varies too often and too much in adjacent bins or when the algorithm which

inferred its ploidy emitted a low confidence score, the cell is marked as noisy (please

refer to 10x Genomics documentation for a detailed explanation). 10x pipeline is a

closed software, so it is impossible to customize the analysis. This goal is reached by

re-analyzing data with Ginkgo which internal details and intermediate results are not

hidden to the user. The two platforms have been integrated using a module in charge

of manipulating Cell Ranger DNA results so that they can be used as input files for

Ginkgo. First of all, a demultiplexer, implemented by using functions implemented



3.2 Materials and Methods 17

in the SeqAn C++ template library [118], splits the alignment file produced by Cell

Ranger into separate alignment files for the different cells. After that, a quality filter

is applied to filter out multi-mapping, and poor quality reads (MAPQ< 30). At this

point, data are ready to be provided as input files to Ginkgo, which performs CNA

calling on single-cell aligned data.

Data post-processing. Ginkgo CNA profiles, organized in a matrix, are used to

compute hierarchical clustering using the Euclidean distance and the complete link-

age method. Clustering results are used to draw a heatmap with its associated

dendrogram: in this way, it is possible to compare the results of the two tools and

check if they are consistent. Moreover, in order to provide functional annotations,

CNA events are annotated with the corresponding gene symbols.

Finally, the user can filter out cells considered insignificant for the following

analysis. For example, it is possible to select a range of accepted mean ploidies to

filter out diploid cells and remove the immune, and stromal normal infiltrate from

tumor biopsies.

3.2.2 Multi-sample analysis

CNA calls from multiple data are merged and clustered together to produce an

aggregated dendrogram with its heatmap, where the cells coming from different

samples can be identified using different colored labels. The user can now evaluate,

in a qualitative way, how much the different samples are evolutionary distant: cells

whose profiles are very similar, because they went through a common mutational

pattern, carry on a similar genetic signal, and this will be evident from the heatmap,

which will show a pretty consistent trend. Additionally, the clustering algorithm will

mix up cells, in this case, producing a dendrogram where the leaves, corresponding to

the cells from the different samples, will not segregate in blocks. In the opposite case,

if the two samples are very different (e.g., spatial segregation of clones happened, so

two samples originated by the same original cancer tissue are very different), this

will affect the aggregated results in a way that both the tree and the heatmap will

show well-separated blocks corresponding to the different samples.
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3.4 Conclusions

This chapter has presented a tunable pipeline to analyze large-scale scDNA exper-

iments obtained with the 10x technology. This approach overcomes the limits of

closed source software, giving on the one hand researchers the possibility to explore

the complete breadth of their data and, on the other, a fully-fledged and easy to run

pipeline to obtain multi-sample and heterogeneity visualizations. It has been shown

that Ginkgo produces results equivalent to Cell Ranger DNA pipelines and started

investigating how tumor spatial heterogeneity can be addressed with scCNA datasets.

The development of a fully modular pipeline opens many opportunities for further

applications, such as leveraging the demultiplexer to obtain single-cell alignments

for 10x derived scRNA datasets, to exploit third-party software also for RNAseq, or

to analyze "barnyard" experiments in the scDNA context.



Chapter 4

Effective Evaluation of Clustering

Algorithms on Single-Cell CNA data

Clustering methods are increasingly applied to single-cell DNA sequencing (scD-

NAseq) data to infer the subclonal structure of cancer. However, the complexity of

these data exacerbates some data-science issues and affects clustering results. Addi-

tionally, determining whether such inferences are accurate and clusters recapitulate

the actual cell phylogeny is not trivial, mainly because ground truth information is

unavailable for most experimental settings.

By exploiting simulated sequencing data representing known phylogenies of

cancer cells, this chapter proposes a formal and systematic assessment of well-known

clustering methods to study their performance and identify the approach providing

the most accurate reconstruction of phylogenetic relationships.

4.1 Scientific background

Cancer cells accumulate genetic alterations at every cell division, including sequence

variants and structural variations with gross copy number changes of entire genomic

regions (i.e., copy number alterations, CNAs). On these premises, similarities in

the genomic structure of individual cancer cells can be exploited to estimate the

phylogenetic distance across different cells and consequently infer the subclonal
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structure of a tumor. For this reason, scDNAseq is becoming an increasingly popular

technique [120, 62].

The most common way of inferring a single-cell CNA (scCNA) phylogeny is

by performing hierarchical clustering on the CN profiles [67, 121], assuming that

similar cells are very likely to have experienced the same mutational events. However,

some biases could affect this kind of approach and vitiate the accuracy of the

outcome. Specifically, clustering single-cell data exacerbates some biological data-

science issues [2]. Indeed, the increasing number of cells which can be sequenced

together expands the space of possible cluster assignments, and determining the

most meaningful results is not trivial without knowing the underlying biological

truth. Additionally, the high-dimensional nature of such data harbors the "curse

of dimensionality" [122]: distance metrics stop behaving as expected based on

our low-dimensional intuition, and clustering algorithms fail in determining the

distance between points. Moreover, the infinite-sites model does not apply to cancer

CNAs [123], which intrinsically diminish the power of exploiting similarities in the

genomic structure to predict phylogenies.

Although some of these issues have been partially addressed in the context of

single-cell RNA methodology [124], in the case of scDNAseq, the extent of available

data is still limited, and there is a need for the development of dedicated data analysis

methods.

On these premises, the present work aims at proposing a first formal and sys-

tematic performance evaluation of nine well-known clustering methods on scCNA

data.

A synthetic scCNA dataset has been generated to evaluate the accuracy, stability,

run time, and scalability of nine clustering methods. Moreover, the performance of

the algorithms has been compared following different pre-processing steps. Finally,

we tested the best-performing methods on a real scCNA dataset obtained from

colorectal cancer cells. The code used to perform our analysis is available at https:

//github.com/mmontemurro/clustering_benchmarking.
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4.2 Materials and Methods

In the following, we will describe the procedure to generate the simulated and the

real scCNA datasets and the evaluation methods we have used for this work.

4.2.1 Simulations

A simulation experiment was designed to compare the performance of the cluster-

ing methods on datasets of three different sizes (100, 200, and 400 cells). Each

experiment was iterated 50 times for a total of 150 datasets.

Simulations were performed using the method presented by Fan et al. [125] which

generates a phylogenetic tree starting from a reference genome, using a generalization

of the Beta-Splitting model [126]. When a new edge enters the tree, some new CNAs

are generated by sampling from a Poisson distribution (default λ = 2). The CNA size

is determined by sampling from an exponential distribution (default mean=5Mbp),

plus a minimum CNA size (default 2Mbp). The kind of alteration (gain vs. loss) is

decided by a binomial distribution (default p = 0.5). If a CN gain is sampled, the

number of copies to be gained is determined by a geometric distribution (default

p = 0.5). If a CN loss is sampled, the whole sequence on that region of the allele

is deleted. The allele is chosen by drawing from a binomial distribution (default

p = 0.5). The chromosome and the starting position of the CNA are sampled from a

uniform distribution, bounded between 0 and the genome size. The daughter cell

inherits all CNAs from the parent node, in addition to its unique CNAs. In agreement

with the finite-site model of CNA evolution, new mutations may occur on already

mutated sites. Additionally, to mimic the behavior of punctuated evolution [127],

at the edges to the root, whole-chromosome amplifications may occur, in addition

to focal CNAs. The probability of a chromosome to be amplified at this step is set

using a binomial distribution (default p = 0.2). Finally, a given multiplying factor

may increase the number of CNAs generated at this step. In the end, the leaves of

the generated tree represent the cells sampled from the patient, while the internal

nodes represent intermediate CN states, which do not exist anymore.

In order to evaluate the ability of clustering methods to produce groups of cells

phylogenetically related, the generated trees were converted into easy-to-be-handled

Newick format [128] and a set of clusters, directly from the trees, was identified
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to be used as ground truth. The clusters are extracted as proposed from Balaban et

al. [129] by solving an optimization problem that, given an arbitrary tree, returns the

minimum number of clusters such that the maximum pairwise cophenetic distance

between leaves in each cluster is lower than a given threshold. The threshold has

been chosen according to the empiric observation that using a value equal to the

height of each tree, a set of balanced clusters is obtained.

4.2.2 Clustering algorithms and evaluation methods

Since there is no formal evidence that hierarchical clustering should be preferred to

other clustering paradigms in this scenario, six among the mostly used methods were

selected, which implementation is available: Affinity Propagation [130], Agglomera-

tive Hierarchical clustering [131], Birch [132], DBSCAN [133], HDBSCAN [134]

and K-Means [135]. Additionally, four variants of the agglomerative method [131]

were tested: average linkage, complete linkage, single linkage and ward linkage.

Each clustering method was applied on every simulated dataset in three different

scenarios: (i) without any preprocessing stage; (ii) after low variance feature filtering

and PCA-based dimensionality reduction and (iii) after low variance feature filtering

and UMAP-based dimensionality reduction.

The whole pipeline is fully automated. The Silhouette score maximization heuris-

tic [136] has been used to determine the cluster number for the algorithms requiring

it. Through this, a real-world scenario was simulated, in which the cluster number

is not known a priori and must be arbitrarily chosen. For each dataset, the optimal

number of PCs has been defined based on a randomization method, as described in

Peres-Neto et al. [137]. This method consists in shuffling the dataset many times

(default N_iter = 50) and computing the percentage of variance explained by the

PCs at every iteration. The significance of each PC is then defined as the probability

that the permuted variance is greater than that observed one. Based on this, all the

PCs characterized by a p-value equal to or below the threshold significance level

(default α = 0.05 ) are considered informative.

For each clustering method, the execution time was measured, and the following

indices were computed:
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• (stability) the Average Proportion of Non-overlapping (APN). This score

measures the average incoherence between full data clustering and clustering

based on data in which one dimension was removed. Values closer to 0 indicate

good algorithm stability.

• (accuracy) the Adjusted Rand index (ARI), the Adjusted Mutual Information

(AMI), the V-Measure (VM) and the Fowlkes-Mallows Index (FMI). These

indices measure the similarity between the ground truth and clustering results.

Values closer to 1 indicate good algorithm accuracy.

4.2.3 Single-cell sequencing

A real dataset has been generated by executing a scDNA-seq experiment on the

human non-metastatic colorectal cancer-derived cell-line, SW480.

To this purpose, cells were cultured in L-15 medium supplemented with 10%

FBS and 1% penicillin-streptomycin. Nuclei isolation was performed according to

10X Genomics protocol [138]. Briefly, 1 million cells were centrifuged (300 rcf

for 5 minutes, at 4°C). Cell membranes were then lysed using a pre-chilled lysis

buffer, and nuclei were pelleted by centrifugation (850 rcf for 5 minutes, at 4°C).

Supernatant was removed, and nuclei were washed twice in PBS (0.04% BSA).

After it, nuclei were counted and re-suspended to a 1000 nuclei/ul concentration.

Three thousand nuclei were processed accordingly to manufacturer protocol [139],

to generate a barcoded DNA library from each nucleus. After QC check, libraries

were sequenced on a Novaseq 6000 S1 flow cell (Illumina).

10X Genomics proprietary pipeline [121], Cell Ranger DNA was used to filter-

out sequencing noise, align the reads against the GrCh38 reference genome, and

assign them to valid cell identifiers. The alignment file was demultiplexed into

single-cell .bam files, filtering out poor quality reads (MAPQ < 30), multimappers,

and secondary alignments. Finally, a customized version of Ginkgo [67] was used to

extract scCNA profiles. The choice to use Ginkgo to call CNAs was motivated by

the need for flexibility not fully provided by Cell Ranger DNA.

The resulting dataset contained 399 scCNA profiles.
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Exp100 Exp200 Exp400

No prep. PCA UMAP No prep. PCA UMAP No prep. PCA UMAP

affinity 0.0 0.06 0.25 0.0 0.05 0.35 0.0 0.05 0.33

aggl. average 0.0 0.02 0.11 0.0 0.02 0.15 0.0 0.01 0.21

aggl. complete 0.0 0.03 0.12 0.0 0.03 0.18 0.0 0.05 0.25

aggl. single 0.0 0.02 0.07 0.0 0.01 0.11 0.0 0.0 0.16

aggl. ward 0.0 0.03 0.12 0.0 0.03 0.17 0.0 0.02 0.24

birch 0.0 0.03 0.1 0.0 0.03 0.16 0.0 0.03 0.21

dbscan 0.0 0.12 0.46 0.09 0.09 0.39 0.04 0.08 0.23

hdbscan 0.0 0.05 0.0 0.0 0.05 0.0 0.0 0.06 0.0

kmeans 0.06 0.03 0.13 0.08 0.05 0.18 0.08 0.08 0.25

Table 4.1 Clustering algorithm evaluation: Mean APN scores.

Stability

Table 4.1 shows the mean APN score over different sizes of the input datasets for

the three preprocessing scenarios. All algorithms demonstrated good performance

(APN near to 0), in terms of stability, in all tested conditions.

However, in the absence of any preprocessing stage, K-Means and DBSCAN

achieve the worse scores. Moreover, all the algorithms were less stable when applied

to data preprocessed through PCA or UMAP. This is expected and coherent with the

notion that following dimensionality reduction, all the selected features are relevant

for classification. As a final remark, it is interesting to notice that increasing the

input dataset size from 200 to 400 cells improved the stability of DBSCAN.

Accuracy

Figures 4.2, 4.3 and 4.4 summarize the results of our analysis on clustering accuracy.

Algorithms were ranked to identify the most accurate one for each input dataset

size and preprocessing scenario. To this purpose, a rank was first assigned to each

algorithm based on each validation index, and then the overall performance was

computed as the average of the ranks.

The only algorithm which demonstrated good accuracy even in the absence of

data preprocessing is Affinity Propagation (AP) clustering. This is reasonable since

the AP algorithm was already shown to perform well in various data-science fields,

dealing with various kinds of high-dimensional data [140±143]. The reason for the
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good performance of AP is likely related to the fact that it does not take random

samples for cluster centers but considers all points as possible exemplars [144].

On the contrary, it is interesting to notice that Agglomerative clustering based on

single and average linkage consistently performed worse than the others, possibly

because they are susceptible to noise and, as a consequence, tend to produce a high

number of tiny singleton clusters. In contrast, Agglomerative clustering with ward

linkage performed better, in accordance with the notion that it generally produces

more balanced clusters, and should be preferred when performing hierarchical

clustering on non-reduced scCNA data.

However, a better performance was achieved for all dataset sizes when clustering

was applied following feature selection and dimensionality reduction. This confirms

that this data’s high-dimensional and noisy nature negatively affects clustering results.

In this scenario, PCA preprocessing was more effective when dealing with smaller

datasets, while UMAP worked better with larger ones. It is generally believed that

clustering following UMAP embeddings should be avoided since UMAP affects

the global data structure while maintaining the local relationships between data

points [145]. UMAP can also create false tears in clusters, resulting in excessively

fined grained clustering. Despite these concerns, there are still valid reasons to use

UMAP as a preprocessing step before clustering. Specifically, UMAP is particularly

effective in uncovering the underlying signals from data with a vast number of

dimensions, most of which are noisy or redundant. When this is the case, UMAP

preprocessing may be therefore beneficial, provided that a manual inspection of the

results is performed [146].

Indeed, at least in this experiment, on average, the best performance was obtained

when applying UMAP preprocessing, particularly when combined with density-

based clustering approaches, which suggests that UMAP preprocessing may be

helpful to reduce scCNA data dimensionality before clustering.

In general, it is worth noting that the clustering methods that provided, on average,

the most accurate results are those that do not require seeded with the cluster number.

This may be a consequence of the automatic selection of the K, determined by

maximizing the Silhouette score. This allows to conclude that, when dealing with

large-scale and high-dimensional data, where the number of clusters is unknown,

clustering methods that can infer the number of clusters from the data are always the

best choice.
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clustering algorithms onto single-cell CNA data, raising some data science issues.

The performance of nine well-known clustering algorithms was compared, high-

lighting the pros and cons of the methods in predicting the structure of the real cell

phylogeny. Three different dataset sizes were considered, and both situations in

which data are reduced to a lower-dimensional space (PCA/UMAP) and when they

are not were tested. The computation time, algorithm stability (APN), and algorithm

accuracy (ARI, AMI, FMI, VM) were computed for each algorithm run. They all

produced highly stable results, while density-based algorithms are those in which

computation time increases more rapidly by increasing the dataset size. As for the

accuracy, the algorithms were ranked based on the average of the four indices. The

algorithms that do not require to be seeded with the cluster number outperformed

the others. Specifically, Affinity Propagation won when no dimensionality reduction

was performed, while density-based algorithms had outstanding results on top of

PCA and UMAP results (DBSCAN for 100 and 200 cells dataset, HDBSCAN for

400 cells dataset).

Affinity Propagation and HDBSCAN were tested on a real scCNA dataset. AP

was applied on the non-reduced dataset, while HDBSCAN was performed following

UMAP preprocessing. They both extracted cohesive and well-separated clusters.

Moreover, the clusters identified by the two algorithms were similar, suggesting

that UMAP may be effectively exploited to perform dimensionality reduction. AP

outperformed HDBSCAN in separating the items of two subgroups, which may

indicate that retaining the complete set of features may increase the resolution in

subclones identification.

The main limitation of the present work is that the algorithm benchmarking was

performed on synthetic data due to the lack of an available biological ground truth;

for this reason, an ad-hoc experiment should be designed to produce real data and

extend our analysis.

To conclude, this work has presented a framework to study clustering algorithms’

performance on scCNA data, which can be easily replicated to perform similar

studies.



Chapter 5

PhyliCS: A Python Library To

Explore scCNA Data And Quantify

Spatial Tumor Heterogeneity

Tumors are composed of a number of cancer cell subpopulations (subclones), char-

acterized by a distinguishable set of mutations. This phenomenon, known as intra-

tumor heterogeneity (ITH), may be studied using Copy Number Aberrations (CNAs).

Nowadays, ITH can be assessed at the highest possible resolution using single-cell

DNA (scDNA) sequencing technology. Additionally, single-cell CNA (scCNA)

profiles from multiple samples of the same tumor can, in principle, be exploited to

study the spatial distribution of subclones within a tumor mass. However, since the

technology required to generate large scDNA sequencing datasets is relatively recent,

dedicated analytical approaches are still lacking.

This chapter presents PhyliCS, the first tool which exploits scCNA data from

multiple samples from the same tumor to estimate whether the different clones of a

tumor are well mixed or spatially separated. Starting from the CNA data produced

with third-party instruments, it computes a score, the SHscore (Spatial Heterogeneity

score), to distinguish spatially intermixed cell populations from spatially segregated

ones. Additionally, it provides functionalities to facilitate scDNA analysis, such as

feature selection and dimensionality reduction methods, visualization tools, and a

flexible clustering module.
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PhyliCS represents a valuable instrument to explore the extent of spatial het-

erogeneity in multi-regional tumor sampling, exploiting the potential of scCNA

data.

5.1 Scientific background

Tumors are caused by the accumulation of somatic mutations. The set of mutations

accumulated by the founder cell of a tumor is defined as clonal and inherited by its

entire progeny. The mutations arising in an already existing tumor are passed on

only to sub-populations of cells and are defined as subclonal [36, 37]. As a result,

cancer cells are characterized by an intrinsic genetic diversity, known as intra-tumor

heterogeneity (ITH) [38].

ITH is a major topic of interest for the cancer research community since it has

been recognized as one of the principal responsible for tumor relapse and treatment

failure [39, 38, 40±42]. The most common way to assess ITH is to use deconvolution

techniques on bulk DNA sequencing data [49, 50]. Such techniques are generally

based on machine learning models, used to cluster the mutations into subclones

based on their prevalence and exploit such clusters to infer the tumor phylogenetic

structure [53±61]. Some studies have proposed methods to evaluate ITH based on

gene expression [73±75] or protein-protein interactions [76].

Several studies have shown that using multiple samples taken from distinct

regions of the same lesion improves the ability to infer the subclonal structure of

tumors [44±47, 38±40, 47, 48, 148] and assess ITH. For example, a study conducted

by Jamal-Hanjani et al. [149], sampling 327 regions from 100 early-stage non-small-

cell lung cancers, revealed that 30% of the somatic mutations were subclonal and

stated that if fewer regions had been sampled, many of those mutations would have

misinterpreted as clonal.

In this context, emerging single-cell DNA sequencing (scDNA-seq) technologies

offer an extraordinary opportunity to tackle such issues, as they allow to study tumor

heterogeneity with unprecedented resolution. In particular, single-cell low-coverage

whole-genome sequencing is suited for detecting chromosomal aberrations, which

can be exploited to reconstruct cell population subclonal structure [62].
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However, the existing methods for single-cell CNA (scCNA) analysis are still

limited. Many of them [64±71] only identify the total copy-number, which indicates

the sum of the number of copies at each locus, by analyzing differences between

the observed and expected number of sequences aligned to a locus, or the read-

depth ratio. A few of them also infer the tumor phylogeny using the CNAs they

computed [72].

However, an instrument capable of exploiting both the granularity of single-cell

DNA data and multi-sample analysis to quantify ITH still does not exist.

Therefore, PhyliCS is presented: it is a flexible Python library that explores CNA

calls obtained with third-party tools and exploits them to compute a new metric, the

Spatial-Heterogeneity score (SHscore). This score is helpful to evaluate the spatial

heterogeneity of tumors when multiple regional samplings are available, quantifying

how much cells from different samples from the same patient have diverged in their

CN landscapes. This evaluation allows both to rank different tumors based on their

heterogeneity and to identify the most divergent spatial samples of a given tumor.

Additionally, it may help to explore different tumors without a huge number of

sequenced cells and/or regional samplings to select only the most heterogeneous

ones for further analyses.

Moreover, PhyliCS provides easy access to several clustering methods for both

single and multiple samples to users, making it easy to compare results and tailor

each analysis to each specific experiment. Its potential is shown by running it on

300 simulated datasets to validate the SHscore on some selected ideal scenarios

where it compares sets of cells with known relationships. After that, the correlation

between the proposed SHscore and the evolutionary distance between the cells

of the samples in analysis is demonstrated through a more extensive simulation

experiment. Lastly, PhyliCS has been tested on three publicly available scDNA

datasets: one with multiple spatial samplings from a breast tumor, another comprised

of a primary lung tumor and its derived metastases, and a third with a cell line and

two clonal expansions of two single cells. The last part of this chapter describes the

results of this analysis, using the SHscore to describe how the CN profiles differ

when considering the fine-grained single-cell level in the bigger context of multiple

sampling.
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5.2 Implementation

This section describes the main modules of PhyliCS and presents the mathematical

details of the SHscore and its interpretation.

5.2.1 PhyliCS

PhyliCS is a comprehensive toolkit integrating scCNA calls analysis procedures into

a single and modular Python package.

As Figure 5.1 shows, PhyliCS takes as input the scCNA calls produced by one of

the existing scCNA callers [64±72] and allows the users to perform:

• data preprocessing (feature selection, PCA, UMAP, data filtering),

• data visualization (UMAP-based scatterplots, heatmaps),

• data clustering (Affinity Propagation [130], Birch [132], DBSCAN [133],

HDBSCAN [134], Hierarchical Agglomerative [131], KMeans [135], OP-

TICS [150], Spectral [151]),

• clustering algorithms evaluation (Silhouette Coefficient, Davies-Bouldin Index,

Calinski-Harabasz Index, Adjusted Rand Index, V-Measure, Fowlkes-Mallows

Score, Mutual Information),

• multi-sample clustering, visualization and spatial intra-tumor heterogeneity

estimation (SHscore).

PhyliCS multi-sample analysis module works on the aggregation of input sample

data and produces two main results: a graphical representation and a numerical

quantification of spatial intra-tumor heterogeneity, the SHscore. Specifically, it gen-

erates an aggregated heatmap with a dendrogram computed performing hierarchical

clustering of the cells. Different colored labels identify heatmap rows representing

the cells from the different samples. In this way, it is possible to assess whether the

clustering algorithm segregated cells originating from different samples into different

branches of the dendrogram or if generated mixed clusters: the former case would

indicate that, despite originating from the same tumor, the genomic make-up of the

cells belonging to different samples is different (spatial intra-tumor heterogeneity);
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and the results of each analytical step (e.g., PCA, clustering results, etc.) without

affecting the data matrix. On the one side, this implementation choice simplifies and

speeds up computation; on the other side, it allows experienced developers to extend

the framework and add new functionalities with a low programming effort.

PhyliCS does not represent an alternative to the existing scCNA tools developed

for identifying scCNA events [64±71] or tools designed for the phylogenetic analy-

sis [72]. Indeed, PhyliCS offers an API to work on scCNA data, leveraging different

third-party tools’ outputs and implementing a method to characterize spatial ITH.

5.2.2 Spatial Heterogeity Score

The Spatial-Heterogeneity score (SHscore) is a relative measure of how much the

genomic make-up of different samples taken from the same patient diverges with

respect to the internal variance of each sample.

Definition The principles underlying the SHscore are inspired by those of the

Silhouette score, an index used in classical Data Science, to estimate the quality

clustering results [152]. Cells can be thought of as data points described by their

CNA profile and the samples as the cluster they belong to. It is possible to compute

for each cell, p, the average distance from all other cells belonging to its cluster,

a(p), and then compare it to the average distance from the cells belonging to the

ªnearest", or most similar, cluster, b(p). Figure 5.2 shows a conceptual schema of a

tumor divided into two subsamples: green arrows represent the pairwise distance

between a given cell, p, and all cells of its sample; the orange ones, the distance

between the same cell and cells of the nearest sample. The average computed on

these distances are a(p) and b(p).

These distances are the same used to compute the Silhouette score, so its imple-

mentation has been adapted to the purposes of this work.

For each cell p and sample Sp, such that p ∈ Sp, let a(p) (Equation 5.1) be the

average pairwise-distance between p and the other cells belonging to its sample and

b(p) (Equation 5.2) be the minimum average pairwise-distance between p and other

sample cells. Now, sh(p) (Equation 5.3) can be computed: it measures the difference

between the average pairwise-distance between p and the cells of the sample, nearest
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value means a high level of similarity. Furthermore, a large b(p) indicates that p

CNA profile is highly different from the average profile of the most similar among

the samples in the analysis. Thus, a sh(p) close to 1 means that p CNA profile

matches the average genomic profile of the sample it belongs to. If sh(p) is close to

−1, then by the same logic, it is possible to state that p CNA profile is more similar

to the genomic profile of the neighboring sample than to the genomic profile of the

other cells of its sample. An sh(p) close to 0 means that the CNA profile is on the

border of two natural clusters, so p may belong to both of them.

Mathematically, the SHscore, SHscore(S1,S2, ...,Sn), for the set of samples

S1,S2, ...,Sn, is a measure of how well-separated the samples are and is defined as the

mean sh(p) over all cells in the entire dataset, D = [S1 ∪S2 ∪ ...∪Sn] (Equation 5.4).

SHscore(S1,S2, ...,Sn) =
∑p,p∈D sh(p)

| D |
. (5.4)

From Equation 5.4, it is clear that also the SHscore may assume values in the

interval [−1,1] and its interpretation may be derived from the interpretation of single-

cell scores. Specifically, a SHscore close to 1 indicates that many cells in the various

samples are characterized by a sh(p) close to 1, denoting that samples are internally

homogeneous and segregated with respect to the others. Similarly, a SHscore close

to −1 indicates that many cells in the dataset look more similar to the cells of another

sample than those of their sample; this could denote problems with the sequencing

quality or data pre-processing. Finally, a SHscore close to 0 implies that many

cells may indistinctly belong to their sample or to another, which may indicate two

scenarios: the samples are internally homogeneous but very similar among each

other; thus, they share the same subclonal structure and cells may belong to one or

another; or that the samples are internally heterogeneous so that the CN profiles of

their cells cannot be assigned to any one of them.

Application scenario Let us suppose that three single-cell data-sets, s1,s2,s3,

originated from three different regions of the same tumor, have been provided as

input samples to PhyliCS. The SHscore evaluation phase will proceed as follows:

1. The cells are assigned to three predefined clusters, S1, S2, S3, in the following

way: {p : p ∈ si} ⇒ p ∈ Si, where i ∈ [1,2,3]. The SHscore is computed as

hs1,2,3 = SHscore(S1,S2,S3)
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2. The cells from s1 and s2 are combined in a single cluster, S12, and those from

s3 are assigned to a separate cluster, S3. The SHscore is computed again as

hs12,3 = SHscore(S12,S3).

3. The cells from s1 and s3 are combined in a single cluster, S13, and those from

s2 are assigned to a separate cluster, S2. The SHscore is computed again as

sh13,2 = SHscore(S13,S2)

4. The cells from s2 and s3 are combined in a single cluster, S23, and those from

s1 are assigned to a separate cluster, S1. The SHscore is computed again as

sh23,1 = SHscore(S23,S1).

Let us suppose, now, that hs23,1 is the maximum computed score. Specifically,

we suppose that:

sh23,1 > sh1,2,3. (5.5)

This means that samples S2 and S3 are similar and, in some measure, different from

sample S1 and that considering their cells together resulted in a better clustering.

To conclude, the SHscore represents a way to quantify the genomic distance

numerically, in terms of CNAs, between different samples of the same tumor and to

investigate spatial intra-tumor heterogeneity.

5.3 Results and Discussion

Here, the experiments conducted to study the SHscore behavior in different contexts

are introduced. Additionally, the procedures executed to generate the simulated

datasets are described.

In detail, the SHscore has been used on 200 simulated datasets representing some

ideal scenarios (spatial segregation, spatial intermixing, early metastasis spreading,

and late metastasis spreading) to check if it correctly reflects the heterogeneity in

the clonal structure of multiple samples. After that, the score has been tested on

a set of 100 simulations to analyze its behavior when the mean CNA size and the

mean number of copies gained varies in a controlled way. Then, a more extensive

simulation was conducted to verify the correlation between the SHscore and the

divergence accumulated during the evolution of the samples. Finally, the SHScore
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has been tested on 3 publicly available scCNA datasets to study its behavior in some

real-world scenarios.

5.3.1 Experiment 1: SHscore on synthetic data

Data generation

A simulation study was conducted to analyze the SHscore behavior under four

different scenarios (spatial subclone segregation, spatial subclone intermixing, early

and late metastasis spreading) and to study if and how it correlates with some features

of the CN profiles of cells (CNV region size, CN level).

To this purpose, the model presented by Fan et al. [155] to generate a phylogenetic

tree starting from a reference genome, using a generalization of the Beta-Splitting

model [126], was extended. At the end of the simulation process, the leaves of the

generated tree represent the cells sampled from the patient, while the internal nodes

represent intermediate CN states, which do not exist anymore.

Spatial segregation To simulate the extreme case in which subclones segregate

in isolated niches very early during tumor evolution, the progeny of the first 5 cells

(Figure 5.3a) generated by the simulator was tracked. The trees grew until they

contained 2500 leaves. At that point, the groups of phylogenetically separated cells

were distinguishable and could be considered as subsamples, each containing a

distinct subclone (Figure 5.3b). So, in the end, each dataset was divided into 5

subsamples corresponding to the 5 groups of cells deriving from the first 5 generated

cells. From now on, this scenario is referred to as hom-scenario.

Spatial intermixing Another experiment simulated the scenario in which the tumor

cells subpopulations are spatially well-mixed so that a regional subsampling would

produce very similar samples. This was done by shuffling the leaves of the previously

generated trees and randomly assigning them to 5 subsamples (Figure 5.3c). From

now on, this scenario is referred to as het-scenario.

Metastasis spreading Another and different case of spatial segregation was simu-

lated: the scenario in which a cell seeds a metastasis, initiating a completely isolated
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Simulations with varying parameters 100 datasets were simulated with varying

parameters to generate CN profiles characterized by different structural features and

check if and how those features correlate to the SHscore. Precisely, two parameters

were varied: the expected CNA size (θ ), used by the simulator to sample from an

exponential distribution, and the reciprocal of the expected number of gained copies

(p), used to sample from a geometrical distribution. In details, for each simulation,

θ was chosen by randomly sampling from a uniform distribution defined in the

interval [500,5000000], while p was sampled from a uniform distribution defined in

the interval [0.1,0.9]. Each simulated tree had 1000 leaves and was split into two

subtrees representing a tumor subsample. From now on, this scenario is referred to

as var-scenario.

SHscore statistics

SHscore was computed on the synthetic datasets, built to represent the previously

described heterogeneity scenarios, to evaluate its ability to capture their differences.

Spatial heterogeneity at the same disease site First, the SHscore was computed

on the 100 sets of samples simulating the regional subsampling from the same

disease site. (Figures 5.5a and5.5b). Figure 5.5a shows the SHscores computed

on the hom-scenario (spatial segregation) and the het-scenario (intermixing). The

scores, in the two scenarios, are different (unpaired wilcoxon p-value 3.5×10−18):

in the het-scenario values fall into a very small interval (min: -0.020, max: -0.004,

median: -0.010, IQR: 0.004); the hom-scenario, instead, produced scores ranging on

a broader interval (min: 0.043, max: 0.295, median: 0.151, IQR: 0.064), reflecting

a higher heterogeneity between the simulated samples with different ªclonesº (the

progenies of the first five cells) evenly distributed among them.

The results obtained by this experiment demonstrated that the proposed score is

able to discriminate between the two described scenarios.

Spatial heterogeneity at different disease sites Figure 5.5b shows the results for

the two metastatic scenarios: here too the difference is significant (Mann±Whitney U

p-value 0.0029), albeit less pronounced, underlying how different seeding histories

can result in different SHscores; even if with the parameters chosen for the simu-
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the position of their roots within the parental tree was tracked. From now on, we

refer to this scenario as the 100Kcells experiment.

The same procedure was executed to generate trees with 10K leaves, tracking

subtrees for the first 20 generated cells. Also, in this case, only the datasets with a

cardinality between the 1st and the 3rd quartile (318 and 623.75 leaves, respectively)

were kept. From now on, this scenario is referred to as the 10Kcells experiment.

SHscore and MRCA distance correlation

In order to investigate the correlation between the SHscore and the distance between

the MRCAs of the sample cells, the dataset generated in the 100Kcells experiment

was used. First, the SHscores were computed for the 4950 possible pairs of samples.

After that, 1000 pairs were randomly selected, and the distance between their MR-

CAs, represented by the number of edges connecting the single cells that originated

the two subtrees, was computed. The random selection was representative of the

whole set of pairs since they were equally distributed (Kruskal-Wallis pvalue = 0.941,

Figure 5.7).

Finally, it was possible to demonstrate that the two quantities are positively corre-

lated, with a Pearson correlation coefficient c = 0.628 (pvalue= 1e−11, Figure 5.8a).

This result verified the hypothesis that the heterogeneity measured by the SHscore

captures the evolutionary distance of the cells belonging to the samples analyzed.

SHscore for different evolutionary spans

The SHscore was computed on the 45 pairs of samples generated from the 10Kcells

experiment, and the results were combined with those obtained in the hom_scenario

and the 100Kcells experiment. The samples in the three scenarios contain a compa-

rable number of cells (∼ 500) but derive from trees whose growth was stopped at a

different height. This means that the sample history, in the three scenarios, diverged

at different heights on the parental tree and kept on growing for a comparable number

of doublings at the same mutation rate, which the generating model fixes. Therefore,

sample cells, in the three different scenarios, are likely to have accumulated the

same amount of heterogeneity, starting from their MRCAs, while their divergence is

mainly due to the heterogeneity accumulated by their MRCAs, which are located at
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PhyliCS have been used with five single-cell CNA datasets produced with Cell

Ranger DNA and published on 10x Genomics website [114]. The datasets derive

from five sections (S_A, S_B, S_C, S_D, S_E), of the same frozen breast tumor tissue

and contain data related to 2137, 2224, 1722, 1916 and 2053 cells, respectively.

scCNA calling A few preliminary steps were required to produce PhyliCS input

files. Specifically, 10x multi-cell alignment files were demultiplexed, using a C++

based tool, SCtools, developed with the SeqAn library [156]. After that, some quality

checks were performed, and the CNA events were computed using Ginkgo [67]. At

this point, the scCNA datasets were loaded into PhyliCS.

Data Pre-processing Using the preprocessing module, diploid or pseudo-diploid

cells (ploidy ranging in the interval [1.6, 2.9]) were removed because they were

considered uninformative; also, cells whose CNA profile was characterized by a

high (>95th percentile) median absolute deviation (MAD) were filtered out, because

they were considered noisy, due to single-cell amplification issues or ongoing DNA

replication. As a result, the cells left for the five samples were 110, 1172, 1040,

1137, and 1473. Since S_A contained very few tumor cells compared to the other

samples, it was not included in the following analysis steps.

Multi-Sample Analysis Figure 5.9a shows the graphical results produced after the

aggregation phase. The cells from the four samples share a similar CNA profile and

have been mixed-up by the clustering algorithm.

Figure 5.9b, instead, presents a diagram containing the SHscores computed for

different sample aggregations. The value indicated as ’S_B vs. S_C vs. S_D

vs. S_E’ indicates how much the samples are different from each other. According

to is has been observed in the simulation experiment, the value −0.0201 indicates

that the four samples show a very similar genomic make-up, which makes them

almost indistinguishable. Additionally, it can be noticed that by combining the

samples S_C, S_D and S_E and testing them against S_B, the SHscore grows to

0.182388, indicating that its genomic make-up may be clonally separated from that

of the other samples. SHscores confirm the graphical results shown in Figure 5.9a,

highlighting S_B as the more divergent sample, a result that is backed up by the
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clonal reconstruction made by CHISEL [72], which reveals a subclone (J-I) that is

almost private to that sample.

Spatial subsamples from the different disease sites

The proposed method has also been applied to a pair of samples derived from a

primary tumor and a matched metastasis. The results of the CNA analysis performed

by Garvin et al. on a dataset to validate Ginkgo [67] were used. The dataset corre-

sponded to a primary breast tumor and its liver metastasis (T16P/M) and was used

by Navin et al. [157] for their study on intra-tumor heterogeneity characterization.

Since the CNA calls were available on the Ginkgo website, they could be directly

loaded into PhyliCS.

Data Pre-processing Also, in this case, diploid and pseudo-diploid cells and cells

with a high MAD were discarded, reducing the aggregated dataset cardinality from

100 to 42 cells.

Multi-Sample Analysis Figure 5.10 presents the results obtained from the analysis

performed on this dataset. It shows that, apparently, the same cell population which

initiated the tumor also seeded the metastasis, confirming the findings of the original

publication [157]. The hierarchical clustering algorithm, this time, has organized

cells in two separate blocks, corresponding to the two populations from the primary

tumor and the metastasis. This underlines a certain degree of separation between the

two samples, which the SHscore also represents. Even if it is impossible to compare

scores for different sample arrangements, the SHscore (0.5361) is consistent with

the results we obtained on metastatic scenarios simulations. The high SHscore

means that although the primary and metastatic samples share a common mutational

pattern, their following, independent evolution made them clearly distinguishable.

This suggests that the differences between primary and metastatic pairs that have

always been measured with bulk sequencing can be further studied with scDNA

approaches [158, 159].
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were generated using BEDTools (v2.27.1) [162]. Finally, the CNA events were com-

puted for the three datasets, separately, using a standalone version of Ginkgo [67],

with variable binning (mean bin size = 500kb) and default options. To generate

boundaries for variable-length bins for the reference genome, the method outlined by

Garvin et al. [67] and implemented at the Ginkgo repository was adopted. It consists

in sampling 101bp reads from the reference genome and mapping it back to itself

(BWA), looking for uniquely mapping reads. After that, for the given bin size, reads

are assigned to bins such that each bin has the same number of uniquely mappable

reads. Consequently, intervals with higher repeat contents and low mappability will

be larger than intervals with highly mappable sequences, although they will have the

same number of uniquely mappable positions.

Multi-Sample Analysis The generated CNA matrices were provided to PhyliCS,

and the SHscore was computed for all possible partitions of the three datasets.

Figure 5.11b shows that the best SHscore (0.7102) was obtained when aggregating

the MDA-MB-231-EX1 dataset with the parental one. This result indicates that MDA-

MB-231-EX1 cells share a common genomic pattern with the parental cell line. This

is confirmed by the results of the hierarchical clustering performed on the aggregated

dataset, graphically shown in Figure 5.11a: cells from MDA-MB-231-EX1 are well

mixed with the parental ones, while the cells from MDA-MB-231-EX2 are put into a

completely separate block. This may be due to two reasons: the clonal expansion

from MDA-MB-231-EX2 originating cell generated more heterogeneity than the

other one, or the clonal subpopulation which MDA-MB-231-EX2 originating cell

was sampled from is not represented in the parental dataset. Anyhow, it is possible to

state that the proposed score is capable of capturing the different levels of diversity

among multiple samples, and when using it comparatively, it is highly informative.

SHscore robustness to dataset cardinality MDA-MB-231 dataset was further

exploited to demonstrate the SHscore robustness to dataset cardinality.

In detail, in a real-world scenario, the number of cells sequenced may vary

from sample to sample. For this reason, multiple downsampling experiments were

conducted on the daughter cell lines to test the robustness of the SHscore to the

cardinality of the samples.
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information provided by multi-regional sampling to indicate how much different

sets of cells have diverged in their CN landscapes, allowing to get fast and easy-to-

interpret information about a single tumor.

PhyliCS has been implemented as a modular and flexible Python library, with

many functionalities, which guides bioinformaticians who want to explore their

datasets to use a single API specific for scDNA and tailored to its analysis.

The SHscore has been tested in different scenarios. First, it was computed

on 200 synthetic datasets to study its behavior in four different scenarios (spatial

segregation, spatial intermixing, early metastasis spreading, and late metastasis

spreading). Results obtained on this set of simulations show that SHscore correctly

reflects the heterogeneity in the clonal composition of multiple samples and can

therefore be used to reliably compare the heterogeneity of renal tumors with different

spatial samplings available. After that, the SHscore was tested on a set of 100

simulations generated by randomly varying the mean CNA size and the mean number

of gained copies, showing to be not correlated to such structural features of the CN

profiles. A more extensive simulation experiment, generating two big cell-division

trees, generated datasets with a significant evolutionary history. This experiment

returned the evidence that the SHscore is strongly correlated to the distance between

the copy-number states, which generated the cells of the samples in the analysis.

This confirmed that the SHscore captures the evolutionary history of the tumor

subsamples. The score was used to analyze three real scDNA datasets, reaching

conclusions in agreement with state-of-the-art phylogenetic approaches [72] and the

original papers [157, 113] that presented them. Finally, a downsampling experiment

was conducted on two cell line data to demonstrate that the SHscore is robust to

sample cardinality and may be used on unbalanced sets.

Trying to define clinically relevant thresholds for the SHscore is premature.

Indeed, large cohorts of clinically annotated single-cell datasets from patients affected

by different tumors would be required to correlate the evolutionary features of

each tumor with its clinical characteristics and subsequently define thresholds to

discriminate between ªspatially segregatedº and ªspatially well-mixedº scenarios of

clinical relevance. Unfortunately, such single-cell DNA datasets are not yet available.

However, the presented extended simulation study returned the evidence that a score

lower than 0.2 indicates that the subclones are well-mixed in the tumor sample

or segregated in space, but spatial differences are so small that the tumor may be
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considered homogeneous. A score greater or equal to 0.2 instead suggests that

different regions of the same tumors are separated by a non-negligible evolutionary

distance which made them quite different and this should be considered for further

analyses.

One of the current limitations of PhyliCS is that all its results regarding evolution-

ary distances are derived from samples relationships and clustering-based metrics.

This approach was adopted to draw conclusions that, albeit simplistic, are based

on fewer assumptions on the mechanisms driving CN accumulation than the ones

needed to perform the phylogenetic reconstruction. Being the infinite site assumption

not valid for CNs, the phylogenetic reconstruction is still an open issue for single-cell

data. However, it is possible to foresee that there will be more reliable methods to

call SNVs on single cells in the future, opening new avenues to exploit the theoretical

knowledge built upon bulk sequencing.

In summary, PhyliCS represents a valuable instrument to explore the extent of

spatial heterogeneity in multi-regional tumor sampling, exploiting the potential of

scCNA data.

In the future, scDNA sequencing should gain popularity, and more data will

be available on public repositories; at that point, it will be possible to test and

improve the score on large-scale datasets. Additionally, it will be interesting to

integrate different single-cell measurements, such as ATACseq or scRNA, to extend

its capabilities. The choice to develop a library should ease future endeavors in this

direction.



Part II

Gene Fusion Classification





Chapter 6

Identifying The Oncogenic Potential

Of Gene Fusions Exploiting miRNAs

It is estimated that oncogenic gene fusions cause about 20% of human cancer mor-

bidity. Identifying potentially oncogenic gene fusions may improve affected patients’

diagnosis and treatment.Previous approaches to this issue included exploiting specific

gene-related information, such as gene function and regulation.

This chapter presents ChimerDriver, a tool to classify gene fusions as oncogenic

or not oncogenic. ChimerDriver is based on a specifically designed neural network

and trained on genetic and post-transcriptional information to obtain a reliable

classification.

The designed neural network integrates information related to transcription

factors, gene ontologies, microRNAs and other detailed information related to the

functions of the genes involved in the fusion and the gene fusion structure. As

a result, the performances on the test set reached 0.83 f1-score and 96% recall.

The comparison with state-of-the-art tools returned comparable or higher results.

Moreover, ChimerDriver performed well in a real-world case where 21 out of 24

validated gene fusion samples were detected by the gene fusion detection tool

Starfusion.

ChimerDriver integrates transcriptional and post-transcriptional information in an

ad-hoc designed neural network to effectively discriminate oncogenic gene fusions

from passenger ones.
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6.1 Scientific background

Gene fusions are one of the most common somatic mutations and are considered to

be responsible for 20% of global human cancer morbidity [163, 164]. A gene fusion

is a biological event where two independent genes fuse to form a hybrid gene. In the

most common case, one gene retains the promoter region and the other one provides

the end of the hybrid gene. The former is called 5p’ gene, while the latter is called

3p’ gene. The position where the break occurs is called breakpoint.

The advent of next-generation sequencing (NGS), the spread of machine and

deep learning in bioinformatics [165±168] and the development of fusion detection

algorithms [103, 102, 169, 170] led to the discovery of hundreds of novel fusion

sequences.

However, not all gene fusions are oncogenic. Indeed, some are genuinely ex-

pressed in normal human cells [100] or constitute passenger events [101]. At the

same time, other gene fusions are considered to be responsible for a significant

percentage of specific kinds of tumors [171, 90, 172, 173].

A precise diagnosis of oncogenic gene fusions can inform therapeutics treat-

ments [174, 175] and be used to predict prognosis, patient survival, and treatment

response [164]. Additionally, focusing the research on a smaller number of puta-

tive oncogenic fusions a diagnosis could take less time; thus, the risks related to

misdiagnosis and waiting may be significantly reduced for the patients.

However, discriminating between cancer-driver fusions and non-driver events is

not a trivial task.

The first necessary step to solve this problem is performed by the fusion detec-

tion tools [103, 102, 169], that identify the candidate gene fusions relying on the

sample’s reads, trying to reduce as much as possible the number of false positives

(i.e., detected gene fusions that are not found in the sample in later lab validation).

Additional studies proposed more sophisticated approaches based on machine learn-

ing (ML) techniques applied to the output of fusion detection tools. Specifically,

Oncofuse [108] and Pegasus [109] are noteworthy and use protein domains of the

fusion proteins to train the models and predict the oncogenic potential of a fusion.

Undoubtedly protein domains are highly informative for the characterization of gene

fusions. However, using such information as a feature for the ML model requires
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careful processing from scratch whenever the training database is updated with novel

validated fusions.

Recently, previous works explored deep-learning (DL) techniques [176] and

presented DEEPPrior [110], a DL model to perform gene fusion prioritization us-

ing amino acid sequences of the fusion proteins, based on a Convolutional Neural

Network (CNN) and a bidirectional Long Short Term Memory (LSTM) network.

Compared to the state-of-the-art tools, this approach is highly effective in accomplish-

ing the classification task with the advantage of avoiding labor-intensive processing

of the protein domains.

However, it is known that the oncogenic potential of a molecule depends not

only on the sequence itself but also on the effect of post-transcriptional regulatory

processes[177].

Transcription Factors (TFs) and micro-RNAs (miRNAs) play a decisive role

in the transcriptional and post-transcriptional regulatory processes [178] and can

contribute to determining the gene fusion outcome.

To date, most of the available tools exploit transcriptional information and

common gene properties to accomplish this task without considering the post-

transcriptional regulators affecting the oncogenic processes.

This work proposes ChimerDriver, a new DL architecture based on a Multi-

Layer Perceptron (MLP) that integrates gene-related information with miRNAs and

TFs, including then in the model transcriptional and post-transcriptional regulative

information. Indeed, ChimerDriver exploits the knowledge about TFs and miR-

NAs targetting each of the genes involved in the fusion to perform gene fusion

classification.

ChimerDriver was tested on multiple publicly available datasets and exhibited

better classification performance with respect to the state-of-the-art tools. In the

end, post-transcriptional regulators confirm the central role in discovering oncogenic

processes and miRNAs; in particular, they are a precious source of information to

improve the prediction of the oncogenic potential of gene fusions.

In the following, a detailed description of model, its architecture and the input

datasets is provided into the Material and methods section. Results are illustrated

in Results section. The discussion and conclusion are reported in Discussion and

Conclusions sections, respectively.
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According to grid search results, the best network configuration was denoted

by four layers with 512, 256, 128, 64 nodes, all characterized by the tanh activa-

tion function, and with a learning rate and dropout values equal to 0.01 and 0.2,

respectively.

6.2.3 Dataset

The training and testing sets were carefully designed. Specifically, the training set

consisted of 1765 gene fusion samples: 1059 were oncogenic, and the remaining

706 were not oncogenic. The oncogenic samples were extracted from COSMIC

(Catalog of Somatic Mutations in Cancer), a popular database containing information

about gene fusions involved in solid tumors and leukemias [182]. Besides, chosen

oncogenic gene fusions were already experimentally validated. Finally, the 706

not-oncogenic gene fusions were reported by Babicenau et al. [183] and detected by

a gene fusion detection tool in non-neoplastic tissues.

The testing set consisted of 2623 oncogenic gene fusions and 2254 not-oncogenic

gene fusions. In detail, for the positive samples, the choice fell on the database

provided by Gao et al. [184], which results from the application of three fusion

detection tools on the TCGA database. Upon request, the authors kindly provided

validated gene fusion samples, for which WGS data were available. From this

collection, 2622 oncogenic gene fusions were extracted. In addition, 2254 not-

oncogenic gene fusions found in healthy tissues and reported by Babicenau et

al [183] were incorporated.

Finally, to avoid overfitting, the genes involved in the training set gene fusions

were not present in the tested gene fusions. In this way, it was possible to verify that

the model is sufficiently robust and can learn the oncogenic characteristics of the

gene fusions and not specific information relating to the individual genes.

6.2.4 Input features

The model input features were selected from multiple sources to assess different

gene fusions’ characteristics.

The first five features are obtained from the gene fusion structure and Cancer-

mine [185], a literature-mined database of drivers, oncogenes, and tumor suppressors
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in cancer. In detail, given the breakpoint coordinates, two features correspond to the

retained percentage of 5p’ and 3p’ genes in the gene fusion. One additional feature

analyzes the strands of 5p’ and 3p’ genes, and it is equal to 1 if the two strands

are concordant (i.e., the two genes transcribe in the same direction), 0 otherwise.

The remaining two features correspond to the nature of each gene according to

Cancermine [185]: ’Oncogenic’, ’Driver’, ’Tumor suppressor’ or ’Other’ when none

of the above options applies. This feature contributes to assessing the functional

profiling of the gene fusion.

TFs and GOs involving the fused genes were added to the aforementioned input

features. In fact, multiple studies [108, 186, 187] demonstrated that using these

molecules in the gene fusion classification task has a positive impact on the final

model performance. Specifically, a set of 181 TFs was extracted from the ENCODE

database [186], and only those related to the gene in the 5p’ position were considered.

Additionally, all GOs involving fused genes were selected.

Finally, all miRNAs predicted to target all 5p’ and 3p’ genes were included in

the feature set. This information was extracted from TargetScan, a popular state-

of-the-art database that predicts biological targets of miRNAs by searching for the

presence of sites that match the seed region of each miRNA [188], reporting for

each miRNA all possible target genes. A set of 333 miRNAs was obtained by

investigating the probability of targeting the genes belonging to the gene fusion. In

case of ambiguity, only the highest probability was retained. This should be the

first time that post-transcriptional regulation information has been used in such a

classification task.

The final feature number was 5644, which is a considerably high number com-

pared to the number of samples in our training and test sets. Thus, we performed

feature selection to reduce feature set size to avoid overfitting our dataset. The chosen

feature selection method was Random Forest, by which the number of features was

lowered to 310.



72 Identifying The Oncogenic Potential Of Gene Fusions Exploiting miRNAs

6.3 Results

This section discusses the results obtained with ChimerDriver and the comparison

with the state-of-the-art tools. Additionally, a case study in which ChimerDriver was

applied on a pair of well-known datasets is presented.

6.3.1 Results on the training set

As previously stated, ChimerDriver was trained on 1765 gene fusions, obtained from

COSMIC, Catalog of Somatic Mutations in Cancer [182] and from Babicenau et al.

work [183]. Given each gene fusion’s breakpoint, the aforementioned features are

extracted and then fed to the MLP. The model was cross-validated on the training

set with the k-fold method. K value was set equal to 10. The AUC, Accuracy, F1

score, precision and recall are reported in Table 6.1. The model reached an average

f1-score of 0.98 on our training set with different combinations of learning rate and

dropout values.

Learn rate, dropout AUC Accuracy F1 Precision Recall

0.0001, 0.0 0.981 0.978 0.981 0.981 0.981

0.0001, 0.2 0.979 0.976 0.979 0.980 0.979

0.0001, 0.4 0.981 0.978 0.981 0.981 0.981

0.001, 0.0 0.980 0.976 0.980 0.980 0.980

0.001, 0.2 0.976 0.972 0.975 0.968 0.984

0.001, 0.4 0.977 0.974 0.977 0.980 0.975

0.01, 0.0 0.982 0.979 0.982 0.986 0.979

0.01, 0.2 0.982 0.979 0.982 0.983 0.982

0.01, 0.4 0.980 0.976 0.980 0.983 0.978

Table 6.1 Cross validation results with the k-fold method. The value of k was set equal to 10.

6.3.2 Results on the test set

The model was tested on 4877 gene fusions. 2623 oncogenic gene fusions were

retrieved from the work of Gao et al.[184] and the remaining 2254 were gene fusions

found in healthy tissues and reported by Babicenau et al. [183]. The test samples
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Oncofuse

To test the robustness of the proposed method, the training set and testing set used

by Oncofuse [108] were retrieved and used to train and test the proposed model.

Oncofuse training samples were extracted from TICDB [189], a curated database

that contains gene fusions found in tumor samples, and from a collection of fusion

genes [190], and read-through transcripts [191] found in normal cells named NORM-

RTH. Oncofuse’s authors then built the oncogenic testing set by merging oncogenic

gene fusions from CHIMERDB [192] and NGS, respectively oncogenic fusions

predicted by gene fusion detection tools and fusions discovered and published in

NGS studies about cancer [193±196]. On the other hand, not-oncogenic testing

samples were taken from Refseq [197] and CGC [198], two databases that report

unbroken gene fusions. In particular, the samples that belong to CGC involve

unbroken oncogenic genes.

All the previously listed features (see Material and methods for details) were

processed and gathered, except for the two features related to the retained percentage

of genes since the provided dataset omitted the breakpoint information.

The ChimerDriver model was tailored to this comparison. In detail, obtained

281 input features: the strands and the involvement in oncogenic processes of both

5p’ and 3p’ genes, 93 TFs, 155 miRNAs, and 30 GOs. The maximum number of

epochs was set to 50, and the number of nodes per layer was 256, 128, 64, and

32 (the associated activation functions were the relu, sigmoid, relu, and sigmoid,

respectively). The learning rate was fixed to 0.03, while the dropout value applied to

each layer was 0.4.

Figure 6.3 shows the comparison of the classification results obtained by ChimerDriver

and Oncofuse. Precisely, the green bars correspond to the results achieved by Onco-

fuse, as reported by its authors [108], while the blue ones show the results obtained

by ChimerDriver. Similar to Oncofuse paper, the results are displayed separately for

each database. The bar diagram shows the percentage of driver gene fusions detected

by the model. As it can be noticed, when trained and tested on the samples provided

by Oncofuse, ChimerDriver provided better results with respect to those illustrated

in the original paper.

Specifically, as reported by Figure 6.3, 95% of TICDB samples were correctly

classified as driver gene fusions by ChimerDriver as opposed to the assumed 90%
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and Babicenau et al.’s study [183] and tested on the part of the oncogenic gene

fusion collection validated by Gao et al. [184]. DEEPrior reconstructs the protein

sequences from gene fusion breakpoint information and assigns to each gene fusions

an oncogenic score defining its oncogenic probability. Gene fusions are ordered

according to the oncogenic score and highly scored fusions are prioritized as drivers.

In this sense, DEEPrior main aim consists in providing a reliable classification

prediction (oncogenic or not) according to the oncogenic score.

ChimerDriver was trained and tested on the DEEPrior training set and test set

(Dataset 2 in DEEPrior paper). As a result, ChimerDriver correctly classified 96%

of oncogenic gene fusions from the test set. On the contrary, DEEPrior prioritized

as driver the 32.48% of gene fusions found in the test set. Since DEEPrior aims at

classifying only highly probable oncogenic fusions, the percentage of prioritized

gene fusions is not directly comparable with the classification performances obtained

with ChimerDriver. ChimerDriver provides a classification result for each gene

fusion, while DEEPrior classifies a tiny percentage of gene fusions in the dataset.

It is possible conclude that the ChimerDriver approach exploits different sources

of information (TFs, GOs, miRNAs) while DEEPrior focuses on identifying the

oncogenic potential of a gene fusion through its protein sequence without considering

the effect of post-transcriptional regulators.

At the same time, ChimerDriver ensures a less computationally intensive ap-

proach in the training phase than DEEPrior.

Pegasus

To further assess ChimerDriver classification performances, its performance was

compared to those of Pegasus [109], a state-of-the-art tool for gene fusion detection

and classification purposes. Pegasus exploits a traditional machine learning model to

predict of driver gene fusion, namely a gradient tree boosting algorithm.

Also, in this case, ChimerDriver was trained and tested on the gene fusion

samples used to develop and validate Pegasus.

The training dataset was strongly unbalanced towards the negative samples,

comprising over 9923 negative samples out of 10162 gene fusions. Not to penalize



6.3 Results 77

the MLP architecture, which is particularly sensitive to class unbalance, the number

of negative gene fusions was lowered to 239, namely the number of positive samples.

ChimerDriver was cross-validated on 10 folds using the aforementioned training

samples. It should be noted that, as a result of balancing the classes, the model was

given a fairly small number of training examples. In the end, the f1-score was equal

to 0.89 with a learning rate and dropout, respectively equal to 0.001 and 0.

Pegasus’ test set accounted for 78 gene fusions, 39 oncogenic and 39 not onco-

genic, respectively. According to Pegasus authors, the curated subset of 39 oncogenic

gene fusions was almost entirely correctly classified by Pegasus, which reported 0.97

of AUC and 0.95 of AUC for the not oncogenic samples.

Pegasus intently selected as negative examples 39 not oncogenic gene fusions

containing at least a tumor suppressor or an oncogene. The rationale is that these

gene fusions would be most challenging for a classification task. ChimerDriver

correctly classified 27 out of the 39 not-oncogenic gene fusions enforcing the notion

that the model can generalize even on not oncogenic gene fusions. On the other

hand, the oncogenic test samples represented a more difficult classification task for

ChimerDriver, which detected 17 oncogenic gene fusions. It should be noted that

ChimerDriver model was initially trained and tested on a wide variety of gene fusions

proving its ability to learn and generalize well when given a fair amount of examples.

On the contrary, since Pegasus was developed and refined on particular tissues, a

reduced number of samples is used as a training set.

It is highly probable that the small number of samples in the Pegasus training

set negatively impacted the ChimerDriver training phase, which benefits from a

wider number of gene fusions. Therefore, ChimerDriver performances, when trained

and tested on Pegasus datasets, are negatively affected, hindering the likelihood of

reaching the outcome reported by the Pegasus authors.

Table 6.2 summarizes the results presented in this section.

6.3.5 Case study

Finally, to assess ChimerDriver’s performances in a clinical context, two well-

known studies were selected: 6 breast cancer samples [199] and 4 prostate cancer

1Percentage of highly probable oncogenic gene fusions (prioritization)
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Test set ChimerDriver OncoFuse

CHIMERDB2A 33% 32%

CHIMERDB2B 29% 25%

CHIMERDB2C 33% 20%

NGS1 35% 30%

NGS2 25% 25%

CGC 29% 50%

RefSeq 6% 2%

DEEPrior

DEEPrior test set 96% 32.48%1

Pegasus

Pegasus test set 56% 97.43%

Table 6.2 ChimerDriver vs state-of-the-art tools. ChimerDriver performances compared to

those reported by three related works: Oncofuse, DEEPrior, and Pegasus.

samples [200] in which 24 gene fusions are reported to be experimentally validated.

The samples are all RNA-seq data. They were processed with STAR-fusion [104] to

identify which gene fusions were found in these samples by a standard and accurate

fusion detection tool. 21 out of the 24 validated gene fusions were detected with

STAR-fusion and subsequently processed with ChimerDriver to confirm the ability

to detect oncogenic gene fusions in a real-world case correctly. Figure 6.4 shows

the results of this assessment. Specifically, the gene fusions marked in gray were

not detected by STAR-fusion hence were not available to ChimerDriver for further

processing. The training dataset and the training parameters are described in detail

in the Material and methods section like the ones generally used in the ChimerDriver

training procedure. On the 21 samples, ChimerDriver wrongly classified as not

oncogenic the three oncogenic gene fusions marked in orange. By inspecting the

oncogenic role of 5p’ and 3p’ genes and the retained percentage in the gene fusion, a

possible explanation for the wrong classification could be hypothesized. Concerning

the ACACA-STAC2 gene fusion, no information on the involvement of any of the

two genes was provided to the algorithm. So, although most of the portion of both

genes was retained after the gene fusion event, ChimerDriver was probably unsure

about their role in oncogenic processes. As for the GLB1-CMTM7 fusion, the

algorithm was aware that the latter gene is involved in tumor suppression; on the

other hand, the retained percentage of CMTM7 was less than 45%. This probably

led the network to conclude that there was not enough gene left in the gene fusion
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to cause issues. Similarly, in the CPNE1-PI3 fusion, the percentage of retained

genes (respectively 25% and 40%) was probably too low to label the gene fusion

as oncogenic even if the genes were associated with the roles oncogenic and driver,

respectively. Finally, ChimerDriver correctly classified the 18 remaining gene fusions

as oncogenic. Hence, ChimerDriver correctly classified 18 out of 21 oncogenic gene

fusions, demonstrating that the specifically designed neural network is proficient

in learning and generalizing from a consistent number of gene fusion samples.

Moreover, the information gathered from the different sources and provided to the

tool as features proved to be particularly effective in discerning oncogenic and

not-oncogenic fusions even in a realistic circumstance.

Fig. 6.4 The 24 oncogenic gene fusions validated in prostate and breast tumor samples are

reported. STAR-fusion did not detect the three gene fusions marked in gray hence were

not available to ChimerDriver for further processing. ChimerDriver correctly classified as

oncogenic 18 out of the 21 available gene fusions.

6.4 Discussion

Identifying oncogenic gene fusions is of crucial importance in cancer detection and

prognosis. To date, state-of-the-art tools exploit transcriptional and GOs information

without considering the post-transcriptional regulators in predicting the oncogenic

potential of a gene fusion. Here, ChimerDriver was introduced, a novel tool to ac-

complish the aforementioned task exploiting transcriptional and post-transcriptional

regulators. In detail, ChimerDriver focuses on miRNAs post-transcriptional effect as

a key feature to perform the prediction.
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ChimerDriver is based on an ad-hoc designed neural network embedding miR-

NAs, transcription factors, gene ontologies, and gene-specific information to predict

gene fusions’ oncogenic potential. The model is stable and exhibits excellent classi-

fication performance (f1-score = 0.98).

The classifier was tested against three state-of-the-art tools: Oncofuse, DEEPrior,

and Pegasus.

With respect to Oncofuse, post-transcriptional regulation was introduced to

perform the classification and, as a result, ChimerDriver outperformed Oncofuse in

the great majority of tested cases.

In particular, ChimerDriver performed better than Oncofuse on the test set, cor-

rectly classifying as oncogenic about 1/3 of the oncogenic gene fusions. ChimerDriver

identified a comparable or higher amount of oncogenic gene fusions outperforming

Oncofuse results in each positive test case. ChimerDriver minimized the number

of detected driver fusions in ’unbroken oncogenic genes’ (negative testing samples)

extracted from CGC compared to Oncofuse. This result confirmed the ability of

ChimerDriver in generalizing and taking advantage of the given set of features to

make a correct prediction. As previously presented in the Results section about Pe-

gasus comparison, this statement is true even when the samples contain an oncogene

or a tumor suppressor. ChimerDriver returned a slightly higher number of onco-

genic gene fusions than Oncofuse when tested on the RefSeq database of ’unbroken

not-oncogenic genes’. The breakpoint information was not available in Oncofuse

datasets. Therefore, to perform an unbiased comparison with Oncofuse, the break-

point information was neglected by the ChimerDriver model. Consequently, the

percentage of driver gene fusions detected by ChimerDriver on RefSeq was slightly

higher than expected, probably because the tool could not profit from the breakpoint

information.

ChimerDriver also outperformed DEEPrior in terms of the number of classi-

fied gene fusion. In particular, ChimerDriver correctly identified 96% of onco-

genic gene fusions in the dataset used to test DEEPrior, which prioritized as onco-

genic only 32.48% of the samples. It should be noted that the goals of DEEPrior

and ChimerDriver are slightly different. The first prioritizes gene fusions, return-

ing those with an oncogenic probability greater than a threshold (typically 80%).

ChimerDriver performs an immediate classification of each gene fusion by integrat-
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ing transcriptional and post-transcriptional features in the assessment. The outcome

of ChimerDriver is remarkable in terms of the number of oncogenic samples that

were correctly classified while also enlightening because it stresses the extent to

which miRNAs are involved in the oncogenic processes of gene fusions.

Moreover, the performances of ChimerDriver were compared to the ones re-

ported by Pegasus authors. According to their research, the latter could correctly

classify almost all of the test samples. After training and testing ChimerDriver

on the gene fusions provided by the authors, it was observed that the number of

detected oncogenic samples was lower than the results reported by Pegasus. As

already stated in the Results section, the number of training samples was lowered

in order to balance the oncogenic and not oncogenic classes. However, the limited

number of samples processed by ChimerDriver in the training phase has probably

inhibited the neural network from learning efficiently. In addition, Pegasus’s authors

specify that the negative validation samples included at least one oncogene or tumor

suppressor. Remarkably, to make a prediction, ChimerDriver also relies on the role

of each gene in oncogenic processes (e.g., driver, oncogene, or tumor suppressor),

making the classification task particularly arduous to tackle. In addition, Pegasus

and, consequently, ChimerDriver were trained on a reduced number of samples,

thus impacting ChimerDriver performances. Nevertheless, ChimerDriver correctly

classified most of the not oncogenic gene fusions enforcing the notion that the model

can generalize well in this situation.

This work focused on the integration of information coming from different

databases to improve the current state-of-the-art research on classifying oncogenic

gene fusions. Additionally, a neural network was designed explicitly for this task.

However, the main contribution of the present work is the introduction of miRNAs in

the classification model. In fact, despite miRNAs role in determining the oncogenic

potential of gene fusions has been demonstrated, they had never been considered

in such a task. The present study showed that they could significantly improve the

model performance. In particular, they halved the number of false negatives and

improved the recall of the model. It is possible to conclude that miRNAs, being

involved in the regulation of gene fusion-related protein, are a promising indicator of

the oncogenic potential of gene fusions.
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identify gene fusions to improve cancer detection and prognosis. Considering that

the state-of-the-art tools exploit transcriptional and gene information neglecting post-

transcriptional regulations, this work established the value of miRNAs in achieving

superior classification performances.

To conclude, this chapter presented ChimerDriver, a novel and stable DL archi-

tecture based on a Multi-Layer Perceptron (MLP), that, for the first time, combines

gene-level features with TFs and miRNAs targetting the gene fusion to perform its

classification and prioritization.

ChimerDriver was trained and tested on a consistent number of gene fusions. The

final results highlight the impact of miRNAs in evaluating the oncogenic potential

of gene fusions. It is possible to infer that the inclusion of miRNAs represents a

valuable advantage in identifying oncogenic gene fusions.

ChimerDriver can become a valuable tool for research laboratories to predict

the oncogenic potential of gene fusions. Indeed, the expensive validations could

be targeted cost-effectively with this easy-to-use tool; additionally, it may speed

up identifying novel and potentially oncogenic gene fusions, allowing for better

diagnosis, classification, and treatment of cancer patients.



Chapter 7

Conclusions

The advent of next-generation sequencing (NGS) technologies led to a rapid increase

in the amount and complexity of genomic sequencing data. New computational

techniques are required to exploit such an abundance of data and extract helpful

information. This thesis focused on the study and the application of statistical and

AI-based techniques on human cancer sequencing data.

The first part of this thesis is dedicated to statistical and machine learning methods

to model intra-tumor heterogeneity. In particular, it explored how single-cell CNA

data may be used to characterize and quantify intra-tumor genetic diversity.

The first contribution has been the design of a pipeline capable of producing

multi-sample copy-number aberrations analysis on large-scale single-cell DNA

sequencing data and performing a qualitative inspection of spatial and temporal

tumor heterogeneity. The proposed pipeline, albeit simple, overcomes the limits of

closed source software, giving on the one hand researchers the possibility to explore

the complete breadth of their data and, on the other, a fully-fledged and easy to run

pipeline to obtain multi-sample and heterogeneity visualizations.

The second result consists of a formal and systematic assessment of well-known

clustering methods to study their performance and identify the approach providing

the most accurate reconstruction of phylogenetic relationships. This study demon-

strated that the algorithms that do not require to be seeded with the cluster number

outperformed the others. Specifically, Affinity Propagation outperformed the others

when no dimensionality reduction was performed, while density-based algorithms

had outstanding results on top of PCA and UMAP results.
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Finally, the third and uttermost contribution, in this context, has been the design

and development of PhyliCS, the first tool which exploits scCNA data from multiple

samples from the same tumor to estimate whether the different clones of a tumor

are well mixed or spatially separated, through a specifically designed score, the

SHscore. This score combines the high resolution of scDNA sequencing data

and the information provided by multi-regional sampling to indicate how much

different sets of cells have diverged in their CN landscapes, allowing to get fast

and easy-to-interpret information about a single tumor. The SHscore has been

evaluated in a variety of simulation settings. Results show that the proposed score

accurately represents heterogeneity in the clonal structure of multiple samples and

indirectly reflects the evolutionary history of tumor subsamples. Additionally, having

been developed as a modular and flexible Python library, PhyliCS provides many

functionalities which guide bioinformaticians who want to explore their datasets to

use a single API specific for scDNA and tailored to its analysis.

Considering the effectiveness of AI tools in resolving complicated biological

issues characterized by a scarcity of domain expertise, they were also used to explore

the carcinogenicity of gene fusions. Specifically, the second part of this thesis

consists of developing deep learning-based methods to classify gene fusions as

oncogenic or not-oncogenic. In this regard, the primary contributions have been

the development of a neural network which, for the first time, combines gene-level

features with TFs and miRNAs targetting the gene fusion to perform its classification

and prioritization. The neural network was trained and tested on a consistent number

of gene fusions. The final results highlight that the incorporation of miRNAs in the

classificatio model halved the number of false negatives and improved the recall of

the model. Considering that the state-of-the-art tools exploit transcriptional and gene

information neglecting post-transcriptional regulations, this work established the

value of miRNAs in achieving superior classification performances.

7.1 Global considerations

This thesis presented new methods and applications to exploit the abundance of NGS

data to deconvolve cancer complexity.

In particular, they represent a valuable instrument for life scientists interested

in modeling the processes underlying cancer evolution and leading to inter and
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intra-tumor heterogeneity. They also aim to improve the discovery of biological

hallmarks to classify tumors in subtypes, stratify patients, predict response to drugs,

and improve precision medicine. In the future, they may also be used in the clinical

context.

The proposed methods adopt new approaches to address some well-known bio-

logical questions. In particular, it has been shown how single-cell DNA sequencing,

combined with multi-regional sampling, may help understand the intrinsic complex-

ity of tumors and how multiple heterogeneous genetic features may be integrated to

understand the nature of gene fusions.

In the future, more data will be available on public repositories; therefore, it will

be possible to investigate further the biological phenomena addressed by this thesis

and to continue to improve and validate the presented computational methods.

To conclude, this thesis provided life scientists with some powerful instruments to

better investigate genomic cancer data and produce some advancements in improving

the diagnosis, classification, and treatment of cancer patients.
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