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Series Expansions and Approximations of the
Nakagami-m Sum Probability Density Function

Giorgio Taricco

Abstract—The numerical evaluation of the pdf of a sum
of Nakagami-m random variables is considered in this letter.
Different methods are proposed to obtain this approximation:
i) a power series expansion based on elementary properties of
unilateral convolution of power signals; ii) a Laplace approxi-
mation stemming from Laplace’s method for asymptotic integral
approximations; and iii) a Gaussian series expansion capturing
the deviation of the wanted pdf from the Gaussian with the same
mean and variance. Numerical results are included for validation
and comparison with the literature and a critical assessment of
the different methods is provided.

Index Terms—Nakagami-m distribution. Power series expan-
sion. Gaussian series expansion. Laplace approximation.

I. INTRODUCTION

The distribution of the sum of i.n.i.d. (independent non
identically distributed) Nakagami-m random variables (RV’s)
has received considerable attention in the literature since
the introduction of this distribution in [1]. The Nakagami-m
distribution is a flexible tool to model the multipath fading
gain in a number of different scenarios [1]. The interest in the
distribution of the sum of i.n.i.d. Nakagami-m RV’s derives
mainly from the analysis of multi-antenna receivers based on
Equal Gain Combining (EGC). In fact, the average bit error
probability of BPSK is given by Pb(e) = E[Q(Γ

√
2Eb/N0)]

where Γ represents the sum of a number of Nakagami-m RV’s
equal to the number of receive antennas used with ECG in a
diversity receiver [2, Sec. 9.3.3]. The authors of [2] observed
that finding the pdf of Γ requires the convolution of different
Nakagami-m pdf’s and can be quite difficult to evaluate.

The derivation of approximations and series expansions for
the sum of Nakagami-m RV’s has received much attention in
the literature. Nakagami himself gave an approximation for
the sum of i.i.d. Nakagami-m RV’s [1]. A series expansion
has been proposed by [3] for the complementary cumulative
distribution function of a sum of i.n.i.d. Rayleigh RV’s (which
represents a special case of the sum of i.n.i.d. Nakagami-m
RV’s, see [4] for a discussion on the convergence of multipath
fading to the Rayleigh distribution). More recently, other
approximations have been given in [5], [6]. Several works
consider special limited cases and provide exact results for
the i.n.i.d. Nakagami-m RV’s [7]–[10].

More recently, a series expansion based on the Lauricella
multivariable hypergeometric functions has been suggested
in [11]. Unfortunately, Lauricella functions are very difficult
to evaluate and are not implemented in standard software
programs.

In this work we propose a new power series expansion that
presents several advantages with respect to other approaches in

the literature. First of all, it does not involve the computation
of special functions of any kind, except for the Gamma
function, which is widely available in standard computational
packages. Secondly, the coefficients of this series expansion
can easily be computed by simple recursive relationships.
Finally, the accuracy of the result can be made as high as
required by taking a sufficient number of terms of the power
series. We compare the numerical results obtained against
existing literature results and with the Gaussian approximation.
The letter is organized as follows. Section II introduces the
power series expansion and provides the derivation of the
recursive relationships for its coefficients. Section III proposes
an approximation based on the multidimensional Laplace’s
asymptotic method to approximate integrals of the type (12).
Section IV illustrates an approach based on the Edgeworth
series expansion applied to the Nakagami-m sum distribution
[12]. Section V summarizes the implementation of the methods
considered and provides numerical results which are compared
with those in the literature [11].

II. POWER SERIES EXPANSION

In this section we provide our first series expansion of the
sum of N i.n.i.d. Nakagami-m RV’s without resorting to the
transform of the pdf. The approach relies on a basic property
of signal convolution and its derivation is very straightforward
though novel in the literature. We consider the RV

Γ ,
N∑
k=1

Γk, (1)

where each Γk is a RV with Nakagami-m distribution charac-
terized, for k = 1, . . . , N , by the pdf

fΓk
(γ) = 2

mmk

k γ2mk−1

Ωmk

k Γ(mk)
exp

(
− mkγ

2

Ωk

)
u(γ). (2)

Here, Γ(z) ,
∫∞

0
uz−1e−udu is the Gamma function and

u(γ) is the unit step function defined as u(γ) = 0 if γ < 0 and
1 otherwise. The parameter Ωk represents the average value of
the square of Γk and the parameter mk ≥ 0.5 is called the fad-
ing number. When mk = 1, the Nakagami distribution reduces
to the Rayleigh distribution. When mk = (K+1)2/(2K+1),
it approximates the Rician distribution with factor K.

In order to obtain the pdf of the RV Γ defined in (1), we
need the convolution of all the pdf’s of the Γk, namely,

fΓ(γ) = fΓ1
(γ) ∗ · · · ∗ fΓN

(γ). (3)



Now, we note that the pdf’s fΓk
(γ) admit the series expansion

fΓk
(γ) = 2

mmk

k γ2mk−1

Ωmk

k Γ(mk)

∞∑
`=0

1

`!

(
− mkγ

2

Ωk

)`
u(γ). (4)

This series expansion is absolutely convergent for every γ.
Then, we can calculate the series expansion corresponding
to the lhs of (3) by term-by-term convolution of the series
components, which can be done by resorting to the following
elementary result:

xm−1

Γ(m)
u(x) ∗ x

n−1

Γ(n)
u(x) =

xm+n−1

Γ(m+ n)
u(x), (5)

holding for all m,n > 0. We get:

fΓ(γ) = 2N
N∏
k=1

mmk

k

Ωmk

k Γ(mk)

∞∑
`1=0

· · ·
∞∑

`N=0

N∏
k=1

1

`k!

(
− mk

Ωk

)`k
×
{
γ2(m1+`1)−1u(γ)

}
∗ · · · ∗

{
γ2(mN+`N )−1u(γ)

}
=

∞∑
`=0

α`γ
2(m+`)−1u(γ). (6)

Here, we defined m ,
∑N
k=1mk and

α` , 2N
N∏
k=1

mmk

k

Ωmk

k Γ(mk)
× (−1)`β`[N ]

Γ(2(m+ `))
(7)

β`[n] ,
∑

`1+···+`n=`
`1≥0,...,`n≥0

n∏
k=1

Γ(2(mk + `k))

`k!

(
mk

Ωk

)`k
(8)

for n = 1, . . . , N . The coefficients β`[n] can be calculated
recursively as

β`[n] =
∑̀
p=0

Γ(2(mn + p))

p!

(
mn

Ωn

)p
β`−p[n− 1] (9)

with

β`[1] =
Γ(2(m1 + `))

`!

(
m1

Ω1

)`
. (10)

We can see that |α`| is decreasing for sufficiently large ` and
its asymptotic behavior (for `→∞) is given by

ln |α`| . −` ln `+O(`). (11)

See Appendix A. Hence, the series (6) is absolutely convergent
and alternating, so that the truncation error upper bound is
given by (11).

III. LAPLACE APPROXIMATION

In this section we consider the case of asymptotically large
values of γ → ∞ and apply Laplace’s method to obtain
an asymptotic approximation of the pdf fΓ(γ). The multi-
dimensional Laplace method is summarized in the following
equation (see [13, Sec. 27]) holding for x→∞:

f(x) ,
∫
g(t)e−xh(t)dt

∼ det(Hh(t0)/(2π))−1/2g(t0)e−xh(t0). (12)

Here, t0 is the asymptotic (for x → ∞) global maximum
of h(t) and Hh(t) is the Hessian matrix of h(t). We start
by writing the N -fold convolution of the pdf’s of Γk as the
following integral:

fΓ(γ) =

∫
RN−1

fΓ1
(γ1) · · · fΓN−1

(γN−1)

× fΓN
(γ − γ1 − . . .− γN−1)dγ1 . . . dγN−1

= γN−1

∫
RN−1

fΓ1
(γt1) · · · fΓN−1

(γtN−1)

× fΓN
(γ(1− t1 − . . .− tN−1))dt1 . . . dtN−1

= κ1 · · ·κNγµ1+...+µN+N−1

×
∫
SN−1

tµ1

1 · · · t
µN−1

N−1 (1− t1 − . . .− tN−1)µN

× exp{−γ2[t21/ρ1 + . . .+ t2N−1/ρN−1

+ (1− t1 − . . .− tN−1)2/ρN ]}dt1 . . . dtN−1. (13)

Sn , {(t1, . . . , tn) : tk ≥ 0, k = 1, . . . , n,
∑n
k=1 tk ≤ 1}

is the n-dimensional simplex region. Here, we set, as short-
hand notation, κk , 2mmk

k /(Ωmk

k Γ(mk)), µk , 2mk − 1,
and ρk , Ωk/mk, so that the Nakagami-m pdf’s from (2)
becomes fΓk

(γk) = κkγ
µke−γ

2/ρk for k = 1, . . . , N . We can
easily check that the asymptotic global maximum required by
Laplace’s method is t0 = (ρ1, . . . , ρN−1)/(ρ1 + · · · + ρN ).
The Hessian matrix of h(t) in t = t0 is Hh(t0) =
2γ2(IN−1 + 1(N−1)×(N−1)).1 Thus, the asymptotic approxi-
mation becomes

fΓ(γ) ∼
2Nπ(N−1)/2ρm1−1

1 · · · ρmN−1
N γµ1+...+µN

√
NΓ(m1) . . .Γ(mN )(ρ1 + · · ·+ ρN )µ1+...+µN

× e−γ
2/(ρ1+···+ρN ). (14)

This approximation is a scalar multiple of the Nakagami-m
pdf with parameters

m̃ = m1 + . . .+mN −
N − 1

2
, Ω̃ = m̃

N∑
k=1

Ωk
mk

. (15)

We shall refer to the Nakagami-m pdf with the above parame-
ters as Laplace approximation of the sum of i.n.i.d. Nakagami-
m RV’s. Clearly, the Laplace approximation coincides with the
Nakagami-m distribution in the special case N = 1.

IV. GAUSSIAN SERIES EXPANSION

The moments of the Nakagami-m distribution are well
known [1]:

E[Γnk ] = ρ
n/2
k

Γ(mk + 1
2 )

Γ(mk)
(16)

with ρk , Ωk/mk. The mean and variance are:

µk ,
√
ρk

Γ(mk + 1
2 )

Γ(mk)
, (17)

σ2
k , ρk

(
mk −

Γ(mk + 1
2 )2

Γ(mk)2

)
. (18)

11m×n denotes the m× n all-1 matrix.



Thus, the Gaussian approximation to Γk is N (µk, σ
2
k). The

CF of Γk is given by:

ΦΓk
(γ) =

∫ ∞
0

fΓk
(γ)e− jωγdγ (19)

= 1F1

(
mk;

1

2
;−ρkω

2

4

)
− jωµk1F1

(
mk +

1

2
;

3

2
;−ρkω

2

4

)
.

The CF of the Gaussian approximation is

Φ
(G)
Γk

(γ) = e− jωµk− 1
2ω

2σ2
k . (20)

Then, we can get the following series expansion:

ΦΓk
(γ)

Φ
(G)
Γk

(γ)
= 1 +

µk(4σ2
k − ρk)

12
( jω)3

+
−mkρ

2
k + 2(1 + 2mk)ρkσ

2
k − 6σ4

k

24
( jω)4

+ µk
−(3 + 8mk)ρ2

k + 8(5 + 4mk)ρkσ
2
k − 96σ4

k

480
( jω)5

+O(ω6). (21)

By multiplying these ratios, we obtain, for properly defined
coefficients ζn,

ΦΓ(γ) = e− jωµ− 1
2ω

2σ2
∞∑
n=0

ζn( jω)n. (22)

where µ and σ2 are defined as

µ =

N∑
k=1

√
Ωk
mk

Γ(mk + 1
2 )

Γ(mk)
, (23)

σ2 =

N∑
k=1

Ωk

(
1−

Γ(mk + 1
2 )2

mkΓ(mk)2

)
. (24)

As a result, we can invert the CF, recalling that the multi-
plication by jω corresponds to the derivation of the pdf with
respect to γ, and obtain the following result:

fΓ(γ) =
1√

2πσ2

∞∑
n=0

ζn
dn

dγn
e−(γ−µ)2/(2σ2)

=
1√

2πσ2

∞∑
n=0

ζnσ
−nHn

(
γ − µ
σ

)
e−(γ−µ)2/(2σ2).

(25)

The functions Hn(x) are the Hermite polynomials defined by

Hn(x) , ex
2/2 d

n

dxn
e−x

2/2 (26)

satisfying the recursive relationships

H0(x) = 1, Hn+1(x) = H ′n(x)− xHn(x), n = 0, 1, . . .
(27)

V. NUMERICAL RESULTS

We consider the following four different examples to vali-
date the results obtained in this section.

1) m1 = 1,m2 = 1.1,m3 = 1.7,Ω1 = Ω2 = Ω3 = 1.
2) mk = Ωk = 1, k = 1, . . . , 10.
3) mk = Ωk = 1, k = 1, . . . , 20.
4) mk = 1

2 ,Ωk = 1, k = 1, . . . , 10.
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Fig. 1. Plot of the pdf of Γ in Case 1: m1 = 1,m2 = 1.1,m3 = 1.7,Ω1 =
Ω2 = Ω3 = 1. The exact pdf (power series) and the Gaussian, Laplace,
Nakagami, and Gaussian series approximations are reported.
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Fig. 2. Same as Fig. 1 for Case 2: mk = Ωk = 1, k = 1, . . . , 10.

The first three ones have been considered in [11] and we use
them to assess the numerical correctness of the method. We
report the following approximations:
• The power series expansion developed in Section II.
• The Gaussian approximation N (µ, σ2) with µ and σ2

defined in (23) and (24).
• The Laplace approximation developed in Section III.
• The Nakagami approximation reported in [1, eqs. (82-

83)], applicable only in the case of constant mk.
• The Gaussian series approximation developed in Section

IV truncated to a maximum degree equal to 10.
Figs. 1 to 4 report numerical results for the three cases

considered. We can see (Figs. 1 to 3) that the power series
and Gaussian series methods provide numerical values in
agreement with those reported in [11]. The Gaussian approxi-
mation is very good in all cases, even though the Gaussian
series provides better results. On the contrary, the Laplace
approximation is barely acceptable in Case 1 but very coarse in
the other cases. The Nakagami approximation does not provide
acceptable results in the cases considered.
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Fig. 3. Same as Fig. 1 for Case 3: mk = Ωk = 1, k = 1, . . . , 20.
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Fig. 4. Same as Fig. 1 for Case 4: mk = 1
2
,Ωk = 1, k = 1, . . . , 10.

A. Critical comments on the power series method

The main drawback of the power series method is that it
requires the use of high-precision arithmetic, due to the large
dynamic range of the terms in the alternating series (6). This is
illustrated in Fig. 5 for Case 3 (mk = Ωk = 1, k = 1, . . . , 20).
The diagram shows that in order to obtain a pdf value as low
as 10−6 with a few significant digits, in consideration of the
large number of recursion steps required to calculate the β
coefficients, we have to calculate terms in (6) as low as 10−15.
If we consider γ = 25 (which is the approximate upper limit
of this pdf), Fig. 5 shows that the number of terms required is
≈ 1600 and the number of precision digits required is around
240. Both the number of terms and the number of precision
digits increase as γ increases. Therefore, this approach is more
convenient for lower values of γ and may become demanding
for large values. Nevertheless, the computational time on a
standard notebook is on the order of a few minutes (using
Mathematica). The complexity is lower in Case 1.
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Fig. 5. Plot of the absolute values of the terms in the alternating sum (6) for
Case 3 (mk = Ωk = 1, k = 1, . . . , 20) and γ = 21, 23, 25, 27.

1 function zet = calc_zeta(mv,Omegav,maxdeg)
2 N = numel(mv);
3 rov = Omegav./mv;
4 muv = sqrt(rov).*gamma(mv+0.5)./gamma(mv);
5 sgv = Omegav-muv.ˆ2;
6 syms x
7 Phi = 1;
8 for k=1:N
9 Phi = expand(series(...

10 Phi*(hypergeom(mv(k),1/2,rov(k)*xˆ2/4)...
11 -muv(k)*x...
12 *hypergeom(mv(k)+1/2,3/2,rov(k)*xˆ2/4))...
13 *exp(muv(k)*x-sgv(k)*xˆ2/2),x,...
14 'Order',maxdeg+1));
15 end
16 zet = double(coeffs(expand(Phi),x,'all'));
17 zet = fliplr(zet);

Fig. 6. Matlab code for the calculation of the coefficients ζn in (25) (based
on Symbolic Toolbox).

B. Critical comments on the Gaussian series method

There are no major drawbacks with the Gaussian series
method in all cases where the pdf is close to a Gaussian
distribution. This applies to both Cases 2 and 3, while it is
slightly less applicable to Case 1. The key problem here is
the computations of the coefficients ζn in (25). A possible
implementation of the algorithm is reported in Fig. 6 based
on Matlab with the Symbolic Toolbox.

VI. CONCLUSIONS

This letter presented two series expansions and two ap-
proximations to the Nakagami-m sum pdf. The Laplace ap-
proximation has been shown to be coarser than the Gaussian
approximation. The power series expansion has been shown
to be applicable when the pdf is considerably far from the
Gaussian but may be computationally demanding in some
cases. The Gaussian series expansion has been shown to be
applicable whenever the pdf is close to Gaussian and it is less
computationally demanding than the power series expansion.



APPENDIX A
TRUNCATION ERROR IN SERIES (6)

First of all, we can see that
N∏
k=1

(mk/Ωk)`k

`k!
≤ (ρmax)

`

[Γ(1 + `/N)]N
(28)

after defining

ρmax , max
1≤k≤N

(mk/Ωk). (29)

Applying Jensen’s inequality [14] to the convex function
ln Γ(1 + x), yields:

1

N

N∑
k=1

ln Γ(1 + `k) ≥ ln Γ

(
1 +

1

N

N∑
k=1

`k

)
= ln Γ

(
1 +

`

N

)
.

(30)

Hence, we obtain:
N∏
k=1

`k! ≥ [Γ(1 + `/N)]N . (31)

Inserting this result in the definition of β`[N ], we get the
following upper bound:

β`[N ]

Γ(2(m+ `))
≤

∑
`1+···+`N=`
`1≥0,...,`N≥0

∏N
k=1 Γ(2(mk + `k))

Γ(2(m+ `))

× (ρmax)
`

[Γ(1 + `/N)]N
. (32)

In order to upper bound the term
∏N

k=1 Γ(2(mk+`k))

Γ(2(m+`)) in the sum,
we note that, if m1 ≥ m2, `1 > 0, we have:

Γ(2(m1 + `1))Γ(2(m2 + `2))

Γ(2(m1 + `1 + `2))Γ(2m2)

=
(2m2 + 2`2 − 1) · · · (2m2)

(2m1 + 2`1 + 2`2 − 1) · · · (2m1 + 2`1)
< 1. (33)

By repeatedly applying the above inequality we get

N∏
k=1

Γ(2(mk + `k)) < Γ(2(mmax + `))

N∏
k=1,k 6=kmax

Γ(2mk)

< Γ(2(m+ `))

N∏
k=1,k 6=kmax

Γ(2mk), (34)

assuming that mmax , max1≤k≤N mk = mkmax .
2 Now, we

should count the number of terms present in the sum of the
upper bound (32). Let

σn(`) ,
∑

`1+···+`n=`
`1≥0,...,`n≥0

1. (35)

We can see that

σn(`) =
∑̀
p=0

σn−1(`− p) =
∑̀
p=0

σn−1(p). (36)

2kmax can be taken as any of the indexes k such that mk = mmax.

Since σ1(`) = ` + 1, the subsequent σn(`) can be calculated
exactly by the recursion (36) but, for our purposes, the
following approximation is sufficient:

σN (`) ≈ `N−1

(N − 1)!
. (37)

Thus, we obtain the following approximate upper bound:

β`[N ]

Γ(2(m+ `))
.

`N−1

(N − 1)!

N∏
k=1,k 6=kmax

Γ(2mk)
(ρmax)

`

[Γ(1 + `/N)]N
.

(38)

Finally, applying the asymptotic Stirling approximation
ln Γ(1 + x) = x lnx− x+O(lnx), we get

ln |α`| ≤ −` ln `+ ` ln(ρmaxNe) +O(ln `), (39)

which can be simplified as in (11).
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