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Abstract
In this work we analyze how quadrature rules of different precisions and piecewise poly-
nomial test functions of different degrees affect the convergence rate of Variational Physics
Informed Neural Networks (VPINN) with respect to mesh refinement, while solving elliptic
boundary-value problems. Using a Petrov-Galerkin framework relying on an inf-sup con-
dition, we derive an a priori error estimate in the energy norm between the exact solution
and a suitable high-order piecewise interpolant of a computed neural network. Numerical
experiments confirm the theoretical predictions and highlight the importance of the inf-sup
condition. Our results suggest, somehow counterintuitively, that for smooth solutions the best
strategy to achieve a high decay rate of the error consists in choosing test functions of the
lowest polynomial degree, while using quadrature formulas of suitably high precision.

Keywords Variational Physics Informed Neural Networks · Quadrature formulas · Inf-sup
condition · A priori error estimate · Convergence rates · Elliptic problems

Mathematics Subject Classification 35B45 · 35J20 · 35Q93 · 65K10 · 65N20 · 68T07

1 Introduction

Exploiting the recent advances in artificial intelligence and, in particular, in deep learning,
several innovative numerical techniques have been developed in the last few years to compute
numerical solutions of partial differential equations (PDEs). In such methods, the solution is
approximated by a neural network that is trained by taking advantage of the knowledge of
the underlying differential equation. One of the earliest models involving a neural network
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was described in [1]: it is based on the concept of Physics Informed Neural Networks (PINN)
and it inspired further works such as e.g. [2] or [3], until the recent paper [4] which presents
a very general framework for the solution of operator equations by deep neural networks.

In such papers, given an arbitrary PDE coupled with proper boundary conditions, the
training of the PINN aims at finding theweightsw of a neural network such that the associated
function uNN(x;w) minimizes some functional of the equation residual while satisfying as
much as possible the imposed boundary conditions. To do so, the neural network is trained
to minimize the residual only at a finite set of collocation points and additional terms are
added to the loss function in order to force the network to approximately satisfy the boundary
conditions. Thanks to the good approximation properties of neural networks, formally proved
e.g. in [5–10] under suitable assumptions, the PINN approach looks very promising because
it is able to efficiently and accurately compute approximate solutions of arbitrary PDEs
encoding their structures in the loss function.

Subsequently, the PINN paradigm has been further developed in [11] to obtain the so-
called Variational Physics Informed Neural Networks (VPINN). The main differences with
respect to the PINN are that the weak formulation of the PDE is exploited, the collocation
points are replaced by test functions, and quadrature points are used to compute the integrals
involved in the variational residuals. In such a method the solution is still approximated by a
neural network, but the test functions are represented by a finite set of known functions or by
a second neural network (see [12]); therefore, the technique can be seen as a Petrov-Galerkin
method. The method is more flexible than the standard PINN because the integration by
parts, involved in the weak formulation, decreases the required regularity of the approximate
solution. Furthermore, the fact that the dataset used in the training phase consists of quadrature
points significantly reduces the computational cost of the training phase. Indeed, quadrature
points are, in general, much fewer than collocation points.

Combining the VPINN with the Finite Element Method (FEM), the authors of [13] devel-
oped VarNet, a VPINN that exploits the test functions of the P1-FEM. Such a work has been
then extended in [14] to consider arbitrary high-order polynomials as test functions, as in the
hp version of the FEM. Although the authors of the cited works empirically observed that
both PINNs and VPINNs are able to efficiently approximate the desired solution, no proof
of a priori error estimates with convergence rates is provided for VPINNs. On the contrary,
rigorous a posteriori error analyses are already available (see, for instance, [15]). Recently
(see [16]) we derived a posteriori error estimates for the discretization setting considered in
this paper.

The purpose of this paper is to investigate how the choice of piecewise polynomial test
functions and quadrature formulas influence the accuracy of the resultingVPINN approxima-
tion of second-order elliptic problems. Onemight think that test functions of high polynomial
degree are needed to get a high order of accuracy; we prove that this is not the case, actually
we indicate that precisely the opposite is true: it is more convenient to keep the degree of
the test functions as low as possible, while using quadrature formulas of precision as high as
possible. Indeed, for sufficiently smooth solutions, the error decay rate is given by

q + 2 − ktest ,

where q is the precision of the quadrature formula and ktest is the degree of the test functions.
Using a Petrov–Galerkin framework, we derive an a priori error estimate in the energy

norm between the exact solution and a suitable piecewise polynomial interpolant of the
computed neural network; we assume that the architecture of the neural network is fixed
and sufficiently rich, and we explore the behaviour of the error versus the size of the mesh
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supporting the test functions. Our analysis relies upon the validity of an inf-sup condition
between the spaces of test functions and the space in which the neural network is interpolated.

Numerical experiments confirm the theoretical prediction. Interestingly, in our exper-
iments the error between the exact solution and the computed neural network decays
asymptoticallywith the same rate as predicted by our theory for the interpolant of the network;
however, this behaviour cannot be rigorously guaranteed, since in general the minimization
problem which defines the computed neural network is underdetermined, and the computed
neural network may be affected by spurious components. Indeed, we show that for a prob-
lem with zero data the minimization of the loss function may yield non-vanishing neural
networks. With the method proposed in this paper, we combine the efficiency of the VPINN
approach with the availability of a sound and certified convergence analysis.

The paper is organized as follows. In Sect. 2 we introduce the elliptic problem we are
focusing on, and we also present the way in which the Dirichlet boundary conditions are
exactly imposed,which is uncommon in PINNs andVPINNsbut can be generalized as in [17].
In Sect. 3 we focus on the numerical discretization; in particular, the involved neural network
architecture is described in Sect. 3.1, while the problem discretization and the corresponding
loss function are described in Sect. 3.2. Here we also introduce an interpolation operator
IH applied to the neural networks. Sect. 4 is the key theoretical section: through a series
of preliminary results, we formally derive the a priori error estimate, the main result being
Theorem 6. In Sect. 5 we specify the parameters of the neural network used for the numerical
tests and the training phase details. We also analyse the consequences of fulfilling the inf-sup
condition in connection with the VPINN efficiency. Various numerical tests are presented and
discussed in Sect. 6 for two-dimensional elliptic problems. Such tests empirically confirm
the validity of the a priori estimate in different scenarios. Furthermore, we compare the
accuracy of the proposed method with that of a standard PINN and the non-interpolated
VPINN. We also analyse the relationship between the neural network hyperparameters and
the VPINN accuracy, and we highlight, with numerical experiments and analytical examples,
the importance of the inf-sup condition. In Sect. 7, we show that our VPINN can be easily
adapted to solve a parametric nonlinear PDE, with accurate results for the whole range of
parameters. Finally, in Sect. 8, we draw some conclusions and highlight the future perspective
of the current work.

2 TheModel Boundary-value Problem

Let� ⊂ R
n be a bounded polygonal/polyhedral domain with boundary � = ∂�, partitioned

into � = �D ∪ �N with �D ∩ �N = ∅ and measn−1(�D) > 0.
Let us consider the model elliptic boundary-value problem

⎧
⎪⎨

⎪⎩

Lu := −∇ · (μ∇u) + β · ∇u + σu = f in �,

u = g on �D ,

μ∂u
∂n = ψ on �N ,

(2.1)

where μ, σ ∈ L∞(�), β ∈ (W1,∞(�))n satisfy μ ≥ μ0, σ − 1
2∇ · β ≥ 0 in � for some

constant μ0 > 0, whereas f ∈ L2(�), g = ū|�D for some ū ∈ H1(�), and ψ ∈ L2(�N ).
Define the spaces U = H1(�), V = H1

0,�D
(�) := {v ∈ U : v|�D = 0}, the bilinear form

a : U × V → R and the linear form F : V → R such that

a(w, v) =
∫

�

μ∇w · ∇v + β · ∇w v + σw v , F(v) =
∫

�

f v +
∫

�N

ψ v ; (2.2)
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denote by α ≥ μ0 the coercivity constant of the form a, and by ‖a‖, ‖F‖ the continuity
constants of the forms a and F . Problem (2.1) is formulated variationally as follows: Find
u ∈ ū + V such that

a(u, v) = F(v) ∀v ∈ V . (2.3)

We assume that we can represent u in the form

u = ū + �ũ , (2.4)

for some (known) smooth function � ∈ V and some ũ ∈ U having the same smoothness of
u. Let us introduce the affine mapping

B : U → ū + V such that Bw = ū + �w (2.5)

which enforces the given Dirichlet boundary condition. Then, Problem (2.3) can be equiva-
lently formulated as follows: Find ũ ∈ U such that

a(Bũ, v) = F(v) ∀v ∈ V . (2.6)

Remark 1 (Enforcement of the Dirichlet conditions) The approach we follow to enforce
Dirichlet boundary conditions will allow us to deal with a loss function which is built solely
by the residuals of the variational equations. Other approaches are obviously possible: for
instance, one could augment such loss function by a term penalizing the distance of the
numerical solution from the data on �D , or adopt a Nitsche’s type variational formulation
of the boundary-value problem [18]. Both strategies involve parameters which may need a
tuning, whereas in our approach the definition of the loss function is simple and natural,
allowing us to focus on the performances of the neural networks.

3 The VPINN-based Numerical Discretization

In this section, we first introduce the class of neural networks used in this paper, then we
describe the numerical discretization of the boundary-value problem (2.6), which uses neural
networks to represent the discrete solution and piecewise polynomial functions to enforce
the variational equations. An inf-sup stable Petrov-Galerkin formulation is introduced which
guarantees stability and convergence, as indicated in Sect. 4; this is the main difference
between the proposed method and other formulations, such as [11, 14].

3.1 Neural Networks

In this work we only use fully-connected feed-forward neural networks (named also multi-
layered perceptrons), therefore the following description is focused on such a class of
networks. Since we deal with a scalar equation, a neural network will be a function
w : R

n → R defined as follows: for any x ∈ R
n , the output w(x) is computed via the

chain of assignments

x0 = x,

x	 = ρ(A	x	−1 + b	), 	 = 1, ..., L − 1,

w(x) = AL xL−1 + bL .

(3.1)
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Here, A	 ∈ R
N	×N	−1 and b	 ∈ R

N	 , 	 = 1, ..., L , are matrices and vectors that store
the network weights (with N0 = n and NL = 1); furthermore, L is the number of layers,
whereas ρ is the (nonlinear) activation function which acts component-wise (i.e. ρ(y) =[
ρ(y1), ..., ρ(yny )

]
for any vector y ∈ R

ny ). It can be noted from Eq. (3.1), that if ρ ∈ Ck(R),
then w inherits the same regularity because it can be seen as a composition of functions
belonging to Ck(R). Popular choices include the ReLU (k = 0) and RePU (k > 0 finite)
functions, as well as the hyperbolic tangent (k = ∞) if one wants to exploit the maximum
of regularity in the solution of interest.

The neural network structure NN is identified by fixing the number of layers L , the
integers N	 and the activation function ρ. The entire set of weights that parametrize the
network can be logically organized into a single vector w ∈ R

N . Thus, the neural network
structure NN induces a mapping

FNN : RN → C∞(�̄) , w → FNN (w) = w , where w = w(x,w) . (3.2)

It is convenient to define the manifold

UNN ⊂ U , UNN = FNN (RN )

containing all functions that can be generated by the neural network structure NN .

3.2 TheVPINN Discretization

We aim at approximating the solution of Problem (2.1) by a generalized Petrov-Galerkin
strategy. To this end, let us introduce a conforming, shape-regular triangulation Th = {E}
of �̄ with meshsize h > 0 and, for a fixed integer ktest ≥ 1, let Vh ⊂ V be the linear
subspace formed by the functions which are piecewise polynomials of degree ktest over the
triangulation Th . Furthermore, let us introduce computable approximations of the forms a
and F by numerical quadratures. Precisely, for any E ∈ Th , let {(ξ E

ι , ωE
ι ) : ι ∈ I E } be the

nodes and weights of a quadrature formula of precision

q ≥ 2ktest (3.3)

on E . Assume that �N is the union of a collection ∂Th(�N ) of edges of elements of Th ; for
any such edge e, let {(ξ eι , ωe

ι ) : ι ∈ I e} be the nodes and weights of a quadrature formula
of precision q on e. Then, assuming that all the data μ, β, σ , f , ψ are continuous in each
element of the triangulation, we define the approximate forms

ah(w, v) =
∑

E∈Th

∑

ι∈I E
[μ∇w · ∇v + β · ∇w v + σwv](ξ E

ι ) ωE
ι , (3.4)

Fh(v) =
∑

E∈Th

∑

ι∈I E
[ f v](ξ E

ι ) ωE
ι +

∑

e∈∂Th(�N )

∑

ι∈I e
[ψv](ξ eι ) ωe

ι . (3.5)

With these ingredients at hand, we would like to approximate the solution of Problem
(2.6) by some uNN ∈ UNN satisfying

ah(Bu
NN , vh) = Fh(vh) ∀vh ∈ Vh . (3.6)

Such a problem might be ill-posed when, for computational efficiency, the dimension of the
test space Vh is chosen smaller than the dimension of the manifold UNN . In this situation,
we get an under-determined problem, with obvious difficulties in deriving stability estimates
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on some norms of the function BuNN . Actually, Problem (3.6) with zero data (i.e., zero f ,
g, ψ) could admit non-zero solutions (see Sect. 6.3).

To avoid these difficulties, we adopt the strategy of applying a projection (indeed, an
interpolation) to the function BuNN , mapping it into a finite dimensional space of dimension
comparable to that of Vh , andwe limit ourselveswith estimating some normof this projection.

To be precise, let us introduce a conforming, shape-regular partition TH = {G} of �̄,
which is equal to or coarser than Th (i.e., each element E ∈ Th is contained in an element
G ∈ TH ) but compatible with Th (i.e., its meshsize H > 0 satisfies H � h). Let the integer
kint ≥ 1 be defined by the condition

kint + ktest = q + 2 . (3.7)

LetUH ⊂ U be the linear subspace formed by the functionswhich are piecewise polynomials
of degree kint over the triangulationTH , and letUH ,0 = UH∩V be the subspace ofUH formed
by the functions vanishing on�D . Finally, letIH : C0(�̄) → UH be an interpolation operator,
satisfying the condition IH : C0(�̄) ∩ V → UH ,0 as well as the following approximation
properties: for all v ∈ Hk+1(�), 1 ≤ k ≤ kint,

|v − IHv|	,G � Hk+1−	|v|k+1,G , 0 ≤ 	 ≤ k + 1 , ∀G ∈ TH . (3.8)

In this framework, assuming the lifting ū to be continuous in �̄, we replace the target Eq.
(3.6) by the following ones:

ah(IH BuNN , vh) = Fh(vh) ∀vh ∈ Vh . (3.9)

In order to handle this problem with the neural network, let us introduce a basis in Vh , say
Vh = span{ϕi : i ∈ Ih}, and for any w smooth enough let us define the residuals

rh,i (w) = Fh(ϕi ) − ah(IH Bw, ϕi ) , i ∈ Ih , (3.10)

as well as the loss function

R2
h(w) =

∑

i∈Ih
r2h,i (w) γ −1

i , (3.11)

where γi > 0 are suitable weights. Then, we search for a global minimum of the loss function
in UNN , i.e., we consider the following discretization of Problem (2.6): Find uNN ∈ UNN

such that

uNN ∈ arg min
w∈UNN

R2
h(w) . (3.12)

Note that the solution uNN may not be unique; however, a suitable choice of the space UH

may lead to the control of the error u − IH BuNN in the H1-norm, as we will see in the
sequel.

Remark 2 (Discretization without interpolation) For the sake of comparison, we will also
consider the optimization problem in which no interpolation is applied to the neural network
functions. In other words, the target equations are those in (3.6), which induce the following
definition of loss function

R̂2
h(w) =

∑

i∈Ih
r̂2h,i (w) γ −1

i , with r̂h,i (w) = Fh(ϕi ) − ah(Bw, ϕi ) , (3.13)

and the following minimization problem: Find ûNN ∈ UNN such that

ûNN ∈ arg min
w∈UNN

R̂2
h(w) . (3.14)
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Note that in this problem the triangulation TH and the space UH play no role. Although
we will not provide a rigorous error analysis for such discretization, it will be interesting to
numerically compare the behaviour of the approaches (i.e., with or without interpolation).
This will be done in Sect. 6.

4 A Priori Error Estimates

Let uNN ∈ UNN be any solution of the minimization problem (3.12); let us set

uNN
H = IH BuNN ∈ UH . (4.1)

Recalling the definition (2.4) of the affine mapping B, it holds

uNN
H = ūH + uNN ,0

H , with ūH = IH ū and uNN
H ,0 = IH (�uNN ) ∈ UH ,0 ; (4.2)

note that ūH is a discrete lifting in UH of the Dirichlet data g.
We aim at estimating the error between u and uNN

H . To accomplish this task, we need
several definitions, assumptions, and technical results.

Definition 1 (norm-equivalence) Let us denote by 0 < ch ≤ Ch the constants in the norm
equivalence

ch‖vh‖1,� ≤ ‖v‖γ ≤ Ch‖vh‖1,� ∀vh ∈ Vh , (4.3)

where v = (vi )i∈Ih is such that vh = ∑
i∈Ih viϕi , and ‖v‖γ =

(∑
i∈Ih v2i γi

)1/2
.

Next, we introduce the consistency errors due to numerical quadratures

Ea
h (wH , vh) = a(wH , vh) − ah(wH , vh) ∀wH ∈ UH , ∀vh ∈ Vh , (4.4)

EF
h (vh) = F(vh) − Fh(vh) ∀vh ∈ Vh , (4.5)

and we provide a bound on these errors. To this end, let us assume that the quadrature rules
used in the elements in Th are obtained by affine transformations from a quadrature rule
{(ξ̂ι, ω̂ι) : ι ∈ Î } on a reference element Ê ⊂ R

n ; similarly, let us assume that the quadrature
rules used in the edges on ∂Th(�N ) are obtained by affine transformations from a quadrature
rule {(ξ̌ι, ω̌ι) : ι ∈ Ǐ } on a reference element ě ⊂ R

n−1.

Assumption 1 (Data smoothness) Let us assume the following smoothness of data:

μ, σ, f ∈ Wk,∞(�) , β ∈ (Wk,∞(�))n , ψ ∈ Wk,∞(�N ) , (4.6)

where k is an integer satisfying

1 ≤ k ≤ kint = q + 2 − ktest . (4.7)

Consequently, let us introduce the following notation

Nk(μ,β, σ ) = ‖μ‖Wk,∞(�) + ‖β‖(Wk,∞(�))n + ‖σ‖Wk,∞(�) , (4.8)

Nk( f , ψ) = ‖ f ‖Wk,∞(�) + ‖ψ‖Wk,∞(�N ) , (4.9)

‖wH‖k,TH =
⎛

⎝
∑

G∈TH

‖wH |G‖Hk (G)

⎞

⎠

1/2

∀wH ∈ UH . (4.10)
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Property 2 (approximation of the forms a and F) Under Assumption 1, it holds

|Ea
h (wH , vh)| � hkNk(μ,β, σ )‖wH‖k,TH ‖vh‖1,� ∀wH ∈ UH , ∀vh ∈ Vh , (4.11)

|EF
h (vh)| � hkNk( f , ψ)‖vh‖1,� ∀vh ∈ Vh , (4.12)

Proof Both estimates are classical in the theory of finite elements (see, e.g., [19]). As
far as (4.11) is concerned, the standard proof given for the case in which the polyno-
mial degree is the same for both arguments, i.e., k = ktest ≥ 1 and q = 2(k − 1),
can be easily adapted to the present situation k + ktest ≤ q + 2. In this way, one gets
|Ea

h (wH , vh)| � hkNk(μ,β, σ )‖wH‖k,Th‖vh‖1,�, and one concludes by observing that
‖wH‖k,Th = ‖wH‖k,TH since Th is a refinement of TH . ��

Finally, we pose a fundamental assumption.

Assumption 3 (inf-sup condition between UH ,0 and Vh) The bilinear form a satisfies an inf-
sup condition with respect to the spacesUH ,0 and Vh , namely there exists a constant α� > 0,
independent of the meshsizes h and H , such that

α�‖wH‖1,� ≤ sup
vh∈Vh

a(wH , vh)

‖vh‖1,� ∀wH ∈ UH ,0 . (4.13)

This assumption together with Property 2 yields the following result.

Proposition 4 (discrete inf-sup condition between UH ,0 and Vh) Under Assumptions 1 and
3, for all h ≤ h0 small enough the bilinear form ah satisfies an inf-sup condition with respect
to the spaces UH ,0 and Vh, namely there exists a constant α̃� > 0 such that

α̃�‖wH‖1,� ≤ sup
vh∈Vh

ah(wH , vh)

‖vh‖1,� ∀wH ∈ UH ,0 . (4.14)

Proof We have ah(wH , vh) = a(wH , vh)− Ea
h (wH , vh). Using the bound (4.11) with k = 1

and observing that ‖wH‖1,TH = ‖wH‖1,�, one can find h0 > 0 small enough such that, for
all h ≤ h0, |Ea

h (wH , vh)| ≤ 1
2α�‖wH‖1,�‖vh‖1,�, whence the result with α̃� = 1

2α� ��
We are ready to estimate the error ‖u − uNN

H ‖1,�. Recalling the decomposition (4.2), we
use the triangle inequality

‖u − uNN
H ‖1,� ≤ ‖u − uH‖1,� + ‖uH − uNN

H ‖1,� , (4.15)

where uH is a suitable element in the affine subspace ūH + UH ,0 ⊂ UH . Writing uH =
ūH + uH ,0 with uH ,0 ∈ UH ,0, one has uH − uNN

H = uH ,0 − uNN
H ,0 ∈ UH ,0; hence, we can

apply (4.14) to get

‖uH − uNN
H ‖1,� ≤ 1

α̃�

sup
vh∈Vh

ah(uH − uNN
H , vh)

‖vh‖1,� . (4.16)

Recalling the definitions (4.4) and (4.5), it holds

ah(uH , vh) = a(uH , vh) − Ea
h (uH , vh)

= a(u, vh) − a(u − uH , vh) − Ea
h (uH , vh)

= F(vh) − a(u − uH , vh) − Ea
h (uH , vh)

= Fh(vh) + EF
h (vh) − a(u − uH , vh) − Ea

h (uH , vh) .
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Thus, the numerator in (4.16) is given by

ah(uH − uNN
H , vh) = Fh(vh) − ah(u

NN
H , vh) − a(u − uH , vh) − Ea

h (uH , vh) + EF
h (vh) .

On the other hand, recalling (3.10) we have

Fh(vh) − ah(u
NN
H , vh) = Fh(vh) − ah(IH BuNN , vh) =

∑

i∈Ih
rh,i (u

NN ) vi , (4.17)

hence, by (3.11) and (4.3),

|Fh(vh) − ah(u
NN
H , vh)| ≤ Rh(u

NN )‖v‖γ ≤ Ch Rh(u
NN )‖vh‖1,� .

Using the bounds (4.11) and (4.12), we obtain the following inequality

‖u − uNN
H ‖1,� �

(

1 + 1

α̃�

)(
inf

uH∈ūH+UH ,0

(
‖u − uH‖1,� + hkNk(μ,β, σ )‖uH‖k,TH

)

+ Ch Rh(u
NN ) + hkNk( f , ψ)

)
. (4.18)

Fromnowon,we assume that u ∈ Hk+1(�). Then, assumption (3.8) yields the inequalities

‖u − IHu‖1,� � Hk |u|k+1,� � hk |u|k+1,� (4.19)

and

‖IHu‖k,TH ≤ ‖u‖k,� + ‖u − IHu‖k,TH � ‖u‖k,� + H |u|k+1,� � ‖u‖k+1,� .

(4.20)

Choosing uH = IHu ∈ ūH + UH ,0 in (4.18) and using these estimates, we arrive at the
following intermediate result, which can be viewed as a mixed a priori/a posteriori error
estimate.

Lemma 4.1 Under the previous assumptions, it holds

‖u − uNN
H ‖1,� � hk(|u|k+1,G + Nk(μ,β, σ )‖u‖k+1,� + Nk( f , ψ)) + Ch Rh(u

NN ) .

Our next task will be bounding the term Rh(uNN ). To this end, we use the minimality
condition (3.12) to get

Rh(u
NN ) ≤ Rh(w

NN ) ∀wNN ∈ UNN . (4.21)

On the other hand, since Rh(w
NN ) is a weighted 	2-norm in R

|Ih |, we can write

Rh(w
NN ) = sup

z∈R|Ih |

1

‖z‖γ

∑

i∈Ih
rh,i (w

NN )zi ,

where, similarly to (4.17),
∑

i∈Ih
rh,i (w

NN )zi = Fh(zh) − ah(IH BwNN , zh) with zh =
∑

i∈Ih
ziϕi ∈ Vh .

For convenience, in analogy with (4.1), let us set

wNN
H = IH BwNN ∈ UH . (4.22)

Thus, recalling (4.3), we obtain

Rh(w
NN ) ≤ 1

ch
sup
zh∈Vh

Fh(zh) − ah(wNN
H , zh)

‖zh‖1,� ∀wNN ∈ UNN . (4.23)
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The numerator can be manipulated as above, using

Fh(zh) = F(zh) − EF
h (zh) = a(u, zh) − EF

h (zh)

and

ah(w
NN
H , zh) = a(wNN

H , zh) − Ea
h (wNN

H , zh) ,

whence, using once more Property 2, we get

Rh(w
NN ) � 1

ch

(
‖u − wNN

H ‖1,� + hkNk(μ,β, σ )‖wNN
H ‖k,TH + hkNk( f , ψ)

)
.

(4.24)

In order to bound the terms containing wNN
H , we introduce the quantity

eNN = u − BwNN , (4.25)

which, recalling the definitions (2.4) and (2.5), can be written as

eNN = �(ũ − wNN ) , (4.26)

and we formulate a final assumption.

Assumption 5 (smoothness of the solution and the neural network manifold) The solution u
can be represented as in (2.4) with

ũ ∈ Hk+1(�) and � ∈ Wk+1,∞(�) (4.27)

for k satisfying (4.7). Furthermore, the manifold formed by the neural network functions
satisfies the smoothness condition

UNN ⊂ H2(�) . (4.28)

Note that (4.27) implies in particular u ∈ Hk+1(�) with the bound ‖u‖k+1,� �
‖ũ‖k+1,� ‖�‖k+1,∞,�; on the other hand, (4.28) implies eNN ∈ H2(�). (We refer to Remark
4 for another set of assumptions on the neural network.)

Recalling (4.22) and using the identity

u − wNN
H = (u − IHu) + IHeNN = (u − IHu) − eNN + (I − IH )eNN , (4.29)

we can write

‖u − wNN
H ‖1,� � ‖u − IHu‖1,� + ‖eNN ‖1,� + H |eNN |2,� (4.30)

and, using a standard inverse inequality in Pk(G) for any G ∈ TH ,

‖wNN
H ‖k,TH � ‖IHu‖k,TH + H1−k‖IHeNN ‖1,�

� ‖IHu‖k,TH + H1−k (‖eNN ‖1,� + H |eNN |2,�
)

.
(4.31)

Keeping into account (4.19) and (4.20), in order to conclude we need to identify a function
w̃NN ∈ UNN for which a bound of the type

|eNN |m,� � |ũ − w̃NN |m,� � Hk+1−m |ũ|k+1,� (4.32)

holds true for m = 1, 2. The existence of such a function is guaranteed by one of the
available results on the approximation of functions in Sobolev spaces by neural networks
(see [20, Theorem 5.1, Remark 5.2]; see also [9]), provided the number of layers L and the
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widths of the layers in the chosen NN satisfy suitable conditions depending on the target
accuracy (hence, in our case depending on Hk). Indeed, suppose one is interested in using
meshes with meshsize as small as Hmin in the domain� (here assumed to satisfy� ⊂ [0, 1]n
for the sake of simplicity), and let N ∈ N be such that

3n(1+δ)(2(m+1))3mmax{Rm, lnm(βNk+n+3)}C(n,m, k, ũ)

Nk+1−m
≤Hk+1−m

min |ũ|k+1,� , (4.33)

where δ, R, β and C are constants not depending on N defined in [20]. Then, a function
w̃NN exists which fulfils (4.32) and is represented as a neural network with the hyperbolic
tangent as activation function and two hidden layers with N1 and N2 neurons respectively,
satisfying

N1 ≤ 3

⌈
k + 1

2

⌉
∣
∣Pk,n+1

∣
∣+ n(N − 1), N2 ≤ 3

⌈
n + 2

2

⌉
∣
∣Pn+1,n+1

∣
∣ Nn, (4.34)

where

∣
∣Pa,b

∣
∣ =

(
a + b − 1

a

)

, ∀a, b ∈ N, b ≥ 2.

Substituting (4.32) into (4.30) and (4.31), and using inequalities (4.21) and (4.24), we
arrive at the following bound on the loss Rh(uNN ).

Lemma 4.2 Under the previous assumptions, it holds

Rh(u
NN ) � 1

ch

(
Hk |u|k+1,� + Hk |ũ|k+1,� + hkNk(μ,β, σ )‖ũ‖k+1,� + hkNk( f , ψ)

)
.

We remark that such a bound, when the involved neural network is comprised of at least
two hidden layers and is such that there exists N satisfying both (4.33) and (4.34), does not
depend on the network hyperparameters.

Concatenating Lemmas 4.1 and 4.2, and using once more H � h, we obtain the following
a priori error estimate for the solution of Problem (3.12).

Theorem 6 (a priori error estimate) Let uNN
H ∈ UH be defined by (4.1). Under Assumptions

1, 3 and 5, for h sufficiently small it holds

‖u − uNN
H ‖1,� �

(

1 + Ch

ch

)

hk
[
(1 + Nk(μ,β, σ ))‖ũ‖k+1,� + Nk( f , ψ)

]
. (4.35)

Remark 3 (on the equivalence constants ch,Ch) If a classical Lagrange basis is used in
(3.10), and the triangulation Th is quasi-uniform, then for constants weights γi = 1 one
has ch � h1−d/2 and Ch � h−d/2, whence Ch

ch
� h−1. On the other hand, if a hierarchical

basis is used instead, then ch � Ch � 1, hence, Ch
ch

� 1 in dimension d = 1, whereas

ch � | log h|−1, Ch � 1, hence, Ch
ch

� | log h| in dimension d = 2.

Thus, the presence of the ratio Ch
ch

in (4.35), which originates from the control of the
loss function, makes this estimate sub-optimal. However, our numerical experiments in Sect.
6.1 indicate that this adverse effect is not seen in practice. The reason may be related to
the decay of the loss function Rh(uNN ), which is significantly faster than the decay of the
approximation error when h is reduced, thereby compensating for the growth of ratio. See
Remark 5.
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Remark 4 (low-regularity NN ) When the condition UNN ⊂ H2(�) fails to be satisfied,
as for the ReLU activation function, we may provide a different set of assumptions which
still lead to an O(hk)-error estimate as in Theorem 6. Precisely, we may assume that ũ ∈
Wk+1,∞(�) and UNN ⊂ W1,∞(�). Then, referring to the first equality in (4.29), one has

‖u − wNN
H ‖1,� ≤ ‖(u − IHu)‖1,� + ‖IHeNN ‖1,�

� ‖(u − IHu)‖1,� + H−1‖IHeNN ‖0,� ,

with

‖IHeNN ‖20,� =
∑

G∈TH

‖IHeNN ‖20,G ≤
∑

G∈TH

‖IHeNN ‖2L∞(G)|G|

�
∑

G∈TH

‖eNN ‖2L∞(G)|G| � Hd‖eNN ‖2L∞(�) .

The conclusion easily follows if w̃NN is chosen to satisfy the error bound‖ũ−w̃NN ‖L∞(�) �
Hk+1|ũ|Wk+1,∞(�) , which is possible according to the results in [6, 7].

5 Implementation Issues

As specified in Sect. 3.1, we use a fully-connected feed-forward neural network architecture,
which is fixed and depends neither on the PDE nor on its discretization. For each simulation,
we initialize the neural network with a completely new set of weights, which is important to
show that our results are not initialization dependent. The activation function is the hyperbolic
tangent. It has been proven in [20] that such neural networks with two hidden layers enjoy
exponential converge properties with respect to the number of weights. Nevertheless, in order
to simplify the training and enrich the space in which we seek the numerical solution, we
consider five layers (namely, L = 5 with the notation of Sect. 3.1) with 50 neurons each
(N	 = 50, 	 = 1, ..., 5). We also highlight that it is always possible to approximate the
identity function with a neural network with a single layer with just one neuron. The best
approximation obtainable with a neural network with more than two layers is thus more
accurate than the one computable with a neural network with just two layers, because, in the
worst possible case, the L-layers neural network can be obtained by combining an (L − 2)-
layers identity neural network with a suitable 2-layers neural network. Numerical tests have
been performed to investigate the influence of the activation function on the model accuracy;
we observed that all the commonly used activation functions led to equivalent results, thus
we omit such a comparison from the present work. We remark that the hyperparameters
L = 5 and N	 = 50 have been chosen to obtain a neural network sufficiently large to satisfy
condition (4.32) on all grids used in our experiments. Numerical evidence that the neural
network best approximation error is negligible when compared with other sources of error is
presented in Sect. 6.2.

In order to compute the results shown in Sect. 6, we compared various state of the art
optimizers to find the most efficient way to minimize the loss function. We observe that
most of the momentum-based first-order methods have similar performances (the presented
results are computed with the ADAM optimizer [21]), but it is convenient to use a learning
rate scheduler in order to reduce the learning rate during the process. We tested both cyclical
learning rate schedulers and exponential learning rate schedulers [22], the differences were
very subtle andwe thus choose to adopt themost common exponential learning rate scheduler
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and decided not to report images about such a comparison. To further reduce the loss function
we also use the BFGS method and its limited-memory version: the L-BFGS method [23].

The Dirichlet boundary conditions are imposed via the mapping B defined in (2.5). The
construction of the function � is particularly simple when � is a convex polygon, since in
this case � can be defined as the product of the linear polynomials which vanish on each
Dirichlet edge; this is precisely how we define � in the numerical examples discussed in the
next session. In other geometries, one can build � either as described in [17], or by using a
level-set method, or even by training an auxiliary neural network to (approximately) vanish
on�D . Similarly, in order to obtain an analytical expression of the extension u of theDirichlet
data g, one can train another neural network to (approximately) match the values of g on �D

or use a data transfinite interpolation [24].

5.1 VPINN Efficiency and the Inf-sup Condition

In Sect. 3 we introduced a discretization method in which the loss function is built by
a piecewise polynomial interpolation of the neural network; on the other hand, we also
mentioned in Remark 2 the possibility of building the loss function directly from the (non-
interpolated) neural network.

From the theoretical point of view, only the former approach can be considered mathe-
matically reliable, since the error control is based on the validity of an inf-sup condition, as
detailed in Sect. 4. On the contrary, if the neural network is used without interpolation, one
usually gets an under-determined system, for which the error control may be problematic.
In fact, for instance, the discrete solution with zero data may not be identically zero, as doc-
umented in Sect. 6.3, which rules out uniqueness. Nonetheless, there is empirical evidence
(see, e.g., [25–28]) that non-interpolated neural networks do succeed in computing accurate
solutions even in complex scenarios. Actually, in the next section we will provide numerical
evidence that the two approaches are always (in the considered cases) comparable in terms of
rate of convergence and, when the solution is regular, smaller errors are obtained minimizing
the same loss function without interpolation.

From the computational point of view, the two approaches have comparable advantages
and disadvantages. Let us first consider non-interpolated VPINNs. The corresponding loss
functions can be more easily implemented thanks to the existing deep-learning frameworks,
which allow the direct computation of neural network derivatives via automatic differentiation
[29]. One only needs to generate a mesh and the corresponding test functions, associate a
quadrature rule with each element and assemble all the tensors required to efficiently compute
the loss function. The main difference with the interpolated neural network approach is that,
in the latter, the interpolation matrices have to be assembled too (see “Appendix A.1” for
a detailed description of the construction of the interpolation operators), while automatic
differentiation is not required. Depending on the problem at hand, thismay be an advantage or
not. Indeed, the interpolation matrices assemblymay be tricky but, using them, all derivatives
can be efficiently computed by matrix-vector multiplications that are much cheaper than
the entire automatic differentiation procedure, especially when higher order derivatives are
required. Therefore, for fast-converging optimization processes, a non-interpolated neural
network approach may be efficient and can be more easily implemented; otherwise, each
optimization step may be much more expensive than the analogous operation performed
with an interpolated neural network. Furthermore, we observed that the training phase is
faster when the neural network is interpolated because the procedure converges in fewer
steps. This is probably related to the fact that the solution is sought in a significantly smaller
space, that can be more easily explored during the training phase.
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6 Numerical Results

In this section we present several numerical results concerning the VPINN discretization of
Problem (2.1) in the square � = (0, 1)2. We will vary the coefficients of the operator, the
boundary conditions and the smoothness of the exact solution. For each test case, we vary
the degree ktest of the test functions, the order q of the quadrature rule and, correspondingly,
we choose the polynomial degree k of the interpolating functions as k = kint = q + 2− ktest,
according to (4.7). We only report results obtained with Gaussian rules, as Newton-Cotes
formulas of the same order give comparable errors (see [30] for a larger set of numerical
experiments about this and other comparisons).

The theoretical results in Sect. 4 suggest that it is convenient to maintain ktest as low
as possible; consequently, we only use piecewise linear (ktest = 1) or piecewise quadratic
(ktest = 2) test functions. Recalling condition (3.3), we thus choose q = 3 or q = 5 if
ktest = 1, and q = 5 if ktest = 2.

The triangulations we use are generic Delaunay triangular meshes. In order to satisfy
the discrete inf-sup condition, we choose TH and Th as nested meshes whose meshsizes
satisfy H = kinth. A pair (TH , Th) of used meshes is represented in Fig. 1, together with the
elemental refinement corresponding to kint = 4, kint = 5 and kint = 6.

6.1 Error Decays

Hereafter, we empirically confirm, with numerical experiments, the a priori error estimate
established in Sect. 4. We also compare the behavior of the proposed NN with that of other
NNs defined by different strategies. In the following, we denote the interpolated VPINN as

a

b

c

d

Fig. 1 One of the meshes used in Sect. 6.1 and elemental refinements chosen to obtain Th from TH
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IVPINN to distinguish it from the non-interpolated VPINN [14], simply denoted as VPINN,
and the standard PINN [1].

In the subsequent plots, we report by blue dots the error ‖u − uNN
H ‖1,�, where uNN

H is
the interpolated VPINN defined on the mesh TH as in (4.1), versus the size H of the mesh
TH . We also show a blue solid line and a blue dashed one: the former is the regression line
fitting the blue dots (possibly ignoring the first ones); its slope in the log-log plane yields
the empirical convergence rate. The latter is used as a reference, since its slope corresponds
to an error decay proportional to hkint , which is the expected convergence rate of the H1

error as indicated by Theorem 6, assuming that the ratio Ch
ch

may be neglected (see Remark
5). The dashed line represents the best convergence rate we can expect from the proposed
discretization scheme.

For comparison, we also report by green dots the error ‖u − ûNN ‖1,�, where ûNN is
the non-interpolated VPINN defined in Remark 2, and by red dots the error ‖u − ũNN ‖1,�,
where ũNN is the standard PINN proposed in [1], with the same architecture of the used
VPINNs and the loss function computed as described in [31]. To obtain a fair comparison,
the regularization coefficient and the ratio between the control points inside the domain
and the ones on the boundary are chosen as described in [31]. Since we are interested in
convergence rates with respect to mesh refinement, but the PINN does not require any mesh,
the corresponding errors are computed by training the network with the same numbers of
inputs used during the training of uNN

H ; to be precise, the PINN is trained using the same
number of collocation points as the number of interpolation nodes used by the interpolated
VPINN.

Furthermore, in order to better analyze the trade-off between the model accuracy and the
training efficiency and complexity, we plot the same errors versus the dataset size. Whenever
these dots, possibly after a pre-asymptotic phase, sit close to their regression line, we draw
it as well in green or red, respectively.

Convergence test #1: u ∈ C∞(�̄)

Consider problem (2.1) with �D = {(x, y) ∈ ∂� : x = 0 or x = 1} and �N = ∂�\�D .
Let us choose the following operator coefficients

μ(x, y) = 2 + sin(x + 2y), β(x, y) =
[√

x − y2 + 5√
y − x2 + 5

]

, σ (x, y) = e
x
2 − y

3 + 2 ,

and the data f , g, and ψ such that the exact solution is

u(x, y) = sin(3.2x(x − y)) cos(4.3y + x) + sin(4.6(x + 2y)) cos(2.6(y − 2x)).

The corresponding error decays with respect to the meshsize H are shown in Fig. 2.
In Fig. 2a, where the IVPINN (blue dots) and the VPINN (green dots) are trained with

q = 3 and ktest = 1, we observe that the points are distributed, possibly after an initial
preasymptotic phase, along straight lines with slopes very close to kint = 4. We highlight
that the PINN convergence is significantly noisier and that the corresponding H1 error is,
on average, about 7 times the IVPINN one. A similar phenomenon can be seen in Fig. 2b,
although the finite precision of the used Tensorflow software prevents convergence to display
at full for small values of H . In this test we use q = 5 and ktest = 1 and the regression lines
for the IVPINN and the VPINN have slopes close to kint = 6, while the PINN accuracy is
again much lower. Finally, the data in Fig. 2c are obtained with q = 5 and ktest = 2 and the
blue regression line slope is 5.05, almost coinciding with kint = 5.
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a b c

Fig. 2 Error decays versus H for Convergence test #1: u ∈ C∞(�̄)

a b c

Fig. 3 Error decays versus dataset size for Convergence test #1: u ∈ C∞(�̄)

Such results highlight that, although the VPINN implementation is more complex than
the PINN one, the former produces more accurate solutions than the latter, when the exact
solution is regular.

In Fig. 3, the same error decays are expressed in terms of the number of training points,
i.e., the number of neural network forward evaluations required to construct the loss function
in a single epoch. Such an alternative visualization highlights that the performances of the
IVPINN and the VPINN are very similar when trained with similar training sets. This is
due to the fact that, since we stabilize the VPINN by projecting it on a space of continuous
piecewise polynomials, we need fewer interpolation points (input data of the IVPINN) than
quadrature points (input data of the VPINN) to evaluate the loss function.
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Remark 5 (on the quotient Ch
ch
) Theorem 6 indicates that the best possible convergence rate,

when the solution is regular enough, is kint. However, as discussed in Remark 3, the quotient
Ch
ch

is of order O(h−1) when test functions are picked from the Lagrange basis associated
with a quasi-uniform triangulation and the weights γi are equal to 1. In this case, the term(
1 + Ch

ch

)
in (4.35) reduces the predicted convergence by exactly one order.

On the other hand, in Fig. 2, we have shown cases where the order of convergence is
optimal. Such a behavior is related to the fact that the loss Rh(uNN ) decays much faster
than expected, in the considered cases, namely at least as O(h8). Therefore, when h is small
enough, the termCh Rh(uNN ) in Lemma 4.1 can be neglected, and the predicted convergence
rate is not affected by the presence of the quotient Ch

ch
.

Convergence test #2: u ∈ H5/3−ε(�)

Let us now focus on a less smooth solution, whose regularity is commonly found in
domains with reentrant corners. The problem is characterized by �D = ∂�, μ = 1, β =
[2, 3]T , σ = 4, whereas the forcing term and boundary conditions are such that the exact
solution is, in polar coordinates,

u(r , θ) = r
2
3 sin

(
2

3

(
θ + π

2

))

.

Since u ∈ H5/3−ε(�) for any ε > 0, we expect a convergence rate close to 2/3; indeed,
kint ≥ 4 and the rate of convergence is always limited by the solution regularity as expected.
The error decays are shown in Fig. 4. Notice that the IVPINN is evenmore stable and accurate
than the VPINN trained on the same mesh (i.e., with more input data). The PINN behaves
better in this test case than in the previous one, but still the accuracy is worse than the one
provided by our IVPINN.

It is also interesting to analyze the behavior of the loss function and of the error during
training as documented in Fig. 5, where the first 3000 epochs are performed with the ADAM
optimizer, while the remaining ones with the BFGS optimizer. Such plots correspond to the
loss function and the H1 error associated with the dots marked by the black stars in Fig. 4a.

a b c

Fig. 4 Error decays versus H for Convergence test #2: u ∈ H5/3−ε(�)
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Fig. 5 Top row: loss function (left) and H1 error (right) evaluations as functions of the number of executed
epochs. The first 3000 epochs are performed with the ADAM optimizer, the subsequent ones with the BFGS
optimizer. Bottom row: H1 error as a function of the elapsed time

It can be noted that the IVPINN and the VPINN initially converge very fast with the ADAM
optimizer; eventually, after the initial phase in which both the loss and the error decrease,
the error reaches a constant value despite the loss function keeps diminishing. This implies
that there exist other sources of error that prevail when the loss function decays. On the other
hand, using a standard PINN, one observes that the convergence of the loss and the error
is much slower than for the VPINNs, and the second-order optimizer is needed to converge
to an accurate solution. The average epoch execution time is approximately 0.0599 seconds
for the PINN, 0.0587 seconds for the VPINN, and 0.0479 seconds for the IVPINN. Such a
gain is due to the fact that the model derivatives are computed via automatic differentiation
in the non-interpolated models, while the gradient of the IVPINN can be computed by a
simple matrix-vector multiplication. Note that the gain increases when higher derivatives are
involved in the PDE.

6.2 How theVPINN Dimension Affects Accuracy

We now focus on the dependence of the error on the neural network dimension. For the sake
of simplicity, we fix the problem discretization and vary only the number of layers and the
number of neurons in each layer, assuming that each layer contains exactly the same number
of neurons. The considered domain, parameters, forcing term and boundary conditions are
the ones described in Convergence test #1. The VPINN is trained with piecewise linear test
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a b

Fig. 6 H1 error varying the number of layers and the number of neurons in each layer of the neural network

functions (ktest = 1) and quadrature rules of order q = 3 on the finest mesh used to produce
Fig. 2a and on the mesh associated with the blue dot close to the black star in the same figure.

We can observe, in Fig. 6, that the error is very high for small networks, but then it rapidly
decreases while increasing the number of neurons in each layer, until a plateau is reached
depending on the chosen problem discretization. Essentially, on both meshes, 3 layers with
10 neurons each suffice to achieve the lowest possible discretization error for the given loss
function.

This analysis confirms that the error decays reported in Sect. 6.1 are all insensitive to the
neural network hyper-parameters, as they have been obtained by a large neural network (5
layers with 50 neurons each). Such results validate the assumption made in Sect. 4 about
the neural network, namely that its dimension – provided it is sufficiently large – does not
influence the predicted convergence rate.

6.3 On the Importance of the Inf-sup Condition

In this section we show that the inf-sup condition, assumed in Proposition 4 to derive the a
priori error estimate, is crucial in order to avoid spurious modes in the numerical solution.
To prove such a claim, let us consider the simplest one-dimensional Poisson’s problem with
zero forcing term and zero Dirichlet boundary conditions:

{
−u′′ = 0 in �,

u = 0 on �D ,
(6.1)

where � = (0, 1) and �D = {0, 1}. For the sake of simplicity, we use piecewise linear test
functions and quadrature rules of order q = 3. Note that since both UNN and UH contain
the exact solution u ≡ 0, it is always possible to obtain a numerical solution that is identical
to the exact one (up to numerical precision).

Let us denote by uδ any discrete solution defined in Sect. 3.2, namely, either a solution
uNN
H obtained by interpolated VPINNs, or a solution ûNN obtained by non-interpolated

VPINNs. These discrete solutions are represented in Fig. 7 in logarithmic scale to allow a
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Fig. 7 Numerical solutions of problem (6.1) computed with different meshes, solutions obtained with non-
interpolated neural networks (left) and with interpolated neural networks (right). Quadrature rule order q = 3.
Test functions order ktest = 1

direct comparison. In order to avoid numerical issues due to the logarithmic scale of the plot
when uδ gets close to 0, a truncation procedure is applied.

The functions uδ produced by non-interpolated networks are represented in the left plot
of Fig. 7. Each one is obtained by minimizing the loss function up to machine accuracy;
despite this, when the mesh is fairly coarse the discrete solution is significantly different
from the null solution. Indeed, the initial weights in the training process are non-zero, and
the minimization process is under-determined, thereby allowing the existence of non-zero
global minima. Refining the mesh, the approximation improves up to a maximum precision
imposed by the chosen network architecture and the Tensorflow deep learning framework.

Conversely, the plots in the subfigure on the right-hand side of Fig. 7, produced by inter-
polated networks, clearly indicate that the obtained discrete solutions are numerically zero,
irrespective of the meshsize. Note that the case h = 1/4 differs from the others since here the
interpolation mesh TH is formed by just one element. The corresponding function uNN

H is
thus differentiable everywhere and the used gradient-based optimizers are able to minimize
the loss function more effectively. We highlight that, since q = 3 and ktest = 1, we have to
choose H = 4h to satisfy the inf-sup condition.

To illustrate the mechanism that may lead to the onset of spurious modes, in “Appendix
A.2” we provide an analytical example of a neural network which significantly differs from
a PDE solution, yet it is a global minimizer of the corresponding loss function.

These results, although obtained in overly simple functional settings, show the potential
existence of uncontrolled components in the discrete solutions obtained by non-interpolated
neural networks. In more complex scenarios, the presence of spurious modes may be even
more pronounced. In practice, as observed in Fig. 2, when the PDE solution is smooth
enough non-interpolated solutions appear to be more accurate than the corresponding solu-
tions obtained by interpolated neural networks using the same test functions; however, a
rigorous analysis of NN-based discretization schemes should also cope with the presence
of spurious components, which we have avoided by resorting to an inf-sup condition. We
believe that these observations shed new light on the use of deep learning in numerical PDEs.
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7 Application to Nonlinear Parametric Problems

In the previous sections, we investigated the features of the proposed VPINN discretization
for the linear boundary-value problem (2.1). Hereafter, we provide an application where the
nonlinear nature of neural networks can be exploited at best. It is well known that solving
nonlinear PDEs by PINNs or VPINNs comes at little extra cost with respect to linear PDEs,
since nonlinearities just impact the computation of the loss function. Similarly, parametric
problems can be easily and efficiently handled by neural networks, evenwhen the dependence
of the solution upon the parameters is nonlinear. Indeed, it is enough to add as many inputs
as the number of parameters in the definition of the network, and train it on a proper subset
of the parameter space.

To illustrate the behavior of our VPINN in these situations, let us consider the following
nonlinear parametric equation:

{
−∇ · (μ∇u) + β · ∇u + σ e−pu2 = f in �,

u = g on ∂� ,
(7.1)

where μ, β, σ, f and g are suitably smooth functions, and p ∈ �p ⊂ R is an additional
parameter. Our goal is to train a neural network to compute the numerical solution for any
given value of p in a prescribed parametric domain �p .

We fix � = (0, 1)2, μ = 1, β = [2, 3]T , σ = 4 and choose f = f (·, p) and g = g(·, p)
such that the exact solution is

u(x, y; p) = cos
(
5
(
px + y

2

))

1 + p
+
(
x + y

2

)2
.

To approximate such a solution in the parametric domain�p = [0.5, 2], we consider a neural
network with three inputs (x, y, p) and we train it using the loss function:

R2
h(w) =

∑

p∈�#
p

∑

i∈Ih
r2h,i;p(w) γ −1

i , (7.2)

where �#
p = {p1, ..., pnp } ⊂ �p is a finite set of parameter values, and the residuals rh,i;p

are defined as in (3.10), considering the new equation. In this numerical test �#
p contains

n p = 13 equally spaced values 0.5 = p1 < p2 < ... < pnp = 2.
After the training phase, the neural network can be evaluated at new parameter values to

analyze its accuracy. The error diagram is presented in Fig. 8: the blue line is computed as the
H1 error between the exact solution u = u(·, p) and the corresponding numerical solution,
while the red dots represent the error associated with parameters in �#

p . Despite the small
number of parameter values used during training, the model provides accurate solutions for
the whole range of parameter values. Note that the error increases for larger values of p
because the solution is more and more oscillating as p increases.
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Fig. 8 H1 error for different values of the parameter p. The VPINNs are trained on n p = 13 parameters. The
red dots are associated with parameter values used in the training phase

8 Conclusions

Wehave investigatedVPINNmethods for elliptic boundary-value problems, inwhat concerns
the choice of test functions and quadrature rules. The aim was the derivation of rigorous a
priori error estimates for some projection of the neural network solution. The neural network
is trained using as test functions finite-element nodal Lagrange basis functions of degree ktest
on a mesh Th , where Gaussian quadrature rules of order q are applied in each element of
Th . For a fixed neural network architecture with tanh activation function, we studied how the
error in the energy norm depends upon the mesh parameter h, for different values of ktest
and q .

Error control was obtained for the finite-element interpolant of degree kint = q + 2− ktest
of the neural network on an auxiliary mesh TH ; such an interpolation enters also in the
definition of the residuals which are minimized through the loss function. A key ingredient
in the error control is the validity of an inf-sup condition between the spaces of test functions
and interpolating functions. Indeed, the neural network solutionmight be affected by spurious
modes due to the under-determined nature of the minimization problem, as we documented
for a problem with zero data; instead, the onset of such modes is prevented by the adopted
interpolation procedure.

Our analysis reveals that the convergence rate in the energy norm is at least of order
q + 1 − ktest for sufficiently smooth functions, and it increases to q + 2 − ktest when the
value of the loss function obtained by minimization is sufficiently small. The main message
stemming from the analysis is that it is convenient to choose test functions of the lowest
degree ktest = 1 in order to get the highest convergence rate for a fixed quadrature rule.
Furthermore, for smooth solutions the convergence rate may be arbitrarily increased by
increasing the precision of the quadrature rule, although the realization of this theoretical
statement is hampered in practice by the finite precision of machine arithmetics.

We also investigated the influence of the neural network hyperparameters on the overall
accuracy of the discretization, and we found that a small network with few layers and neurons
suffices to reach accuracies of practical interest. To stay on the safe side, we used a larger
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network in our experiments, thereby obtaining results that are essentially independent of the
network hyperparameters.

For the sake of comparison, we also implemented a standard VPINN without projection
upon piecewise polynomials, as well as a standard PINN trained with the same number of
inputs as those used in training our VPINN. Interestingly, we experimentally observed that
in general the error decay rate for the non-interpolated neural network solution replicates the
one theoretically predicted for the interpolated network. The PINN solutions appear to be
less accurate and noisier than the interpolated VPINN’s.

We have shown that interpolatedVPINNs are able to efficiently solve nonlinear parametric
problems without the need for additional nonlinear solvers or globalization methods, due to
their intrinsic nonlinear nature. The VPINN can be trained in an off-line phase on a subset
of the parameter domain and then efficiently evaluated on-line on any other parameter value.
This is a key difference between the proposed method and standard numerical techniques
such as FEM, even if the solution is sought in the same finite dimensional space. Indeed, the
latter would require some iterative technique to handle nonlinearities, as well as some form
of interpolation/extrapolation to get the solution for the whole range of parameters. All this
is provided for free by the NN machinery.

Possible extensions of this work are related to the investigation of more advanced neural
networks architectures to improve the method accuracy and efficiency [32, 33] or to more
complex problems. Indeed, neural networks are known to be able to manage very high-
dimensional problems, overcoming the so-called curse of dimensionality, thereforewe expect
them to be able to efficiently solve parametric PDEs with multiple parameters [33] or high-
dimensional PDEs [4, 34]. Other possible applications are related, for instance, to inverse
problems [35] or integration between PDEs and data [36].
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Appendix

A.1 Construction of the Interpolation Operator

In this section we provide details on the practical construction of the operator IH : C0(�̄) →
UH introduced in Sect. 3.2.

Since UH is the linear subspace of U containing all the piecewise polynomial of degree
kint defined over TH , there exists a Lagrange basis {ϕ̂i }nIi=1 such that UH = span{ϕ̂i : i =
1, ..., nI }, which is associated with a corresponding set of points {xi }nIi=1 ⊂ �. The basis
functions satisfy the relations ϕ̂i (x j ) = δi, j ,∀i, j = 1, ..., nI . Therefore, the operator IH
maps the generic function v ∈ C0(�̄) to the function IHv = ∑nI

i=1 vi ϕ̂i ∈ UH , uniquely
identified by the vector v = {vi }nIi=1, where vi = v(xi ).

In order to evaluate the function IH BuNN at the required quadrature points {xqj , j =
1, ..., nq} during the loss function computation or the final evaluation, one just needs to
compute the quantities

IH BuNN (xqj ) =
nI∑

i=1

(
BuNN ) (xi )ϕ̂i (x

q
j ).

In practice, it is more convenient to introduce the sparse matrix M ∈ R
nq×nI such that

Mi, j = ϕ̂ j (x
q
i ). This allows us to evaluate the interpolated function at each quadrature point

with a matrix-vector multiplication as follows:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

IH BuNN (
xq1
)

IH BuNN (
xq2
)

...

IH BuNN (
xqnq
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= M

⎡

⎢
⎢
⎢
⎢
⎣

(
BuNN ) (x1)
(
BuNN ) (x2)

...
(
BuNN ) (xnI )

⎤

⎥
⎥
⎥
⎥
⎦

. (A.1.1)

In the same way, the derivatives of IH BuNN can be computed, at the same points, as

∂ |α|IH BuNN

∂xα
(xqj ) =

nI∑

i=1

(
BuNN ) (xi )

∂ |α|ϕ̂i (xqj )
∂xα

, (A.1.2)

where α = (α1, ..., αn) ∈ Z
n+ and |α| = ∑n

i=1 αi . Defining the matrix Mα ∈ R
nq×nI

such that Mα
i, j = ∂ |α|ϕ̂ j (x

q
i )

∂xα , it is possible to compute all the required derivatives simply by
replacing M by Mα on the right hand side of (A.1.1). In this way, the VPINN derivatives
can be computed without relying on automatic differentiation, further improving the method
efficiency during training.

A.2 An Example of ‘Spurious’ Neural Network

Consider again the boundary-value problem (6.1), which admits the null solution. We are
interested in solving this problem by a plain PINN (VPINN) solver. To train the network, we
choose a set of nS control (quadrature) points,

S = {xi : i = 1, ..., nS}
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Fig. 9 Graphical representation of a function uNN
4 defined in (B.2.1)

satisfying 0 ≤ x1 < x2 < ... < xnS−1 < xnS ≤ 1. Using the architecture defined in (3.1),
it is possible to construct a ReLU neural network w with just a single hidden layer and 3
neurons with the following weights:

A j
1 =

⎡

⎣
1/h j

1/h j

1/h j

⎤

⎦ , b j
1 =

⎡

⎣
(−x j + h j )/h j

−x j/h j

(−x j − h j )/h j

⎤

⎦ , A j
2 =

[
1
h j − 2

h j
1
h j

]
, b j

2 = 0,

where, for any fixed index j ∈ {1, ..., nS − 1}, we denote by x j = x j+x j+1
2 the mean

of two consecutive nodes, and by h j the difference between x j and x j + ε j , for some
ε j ∈ (0, x j − x j ). The function represented by this set of weights is:

w j (x) = 1

h j
max

(

0,
x

h j
+ −x j + h j

h j

)

− 2

h j
max

(

0,
x

h j
+ −x j

h j

)

+

+ 1

h j
max

(

0,
x

h j
+ −x j − h j

h j

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− x j − h j

h2j
+ x

h2j
if x ∈ (x j − h j , x j ] ,

x j + h j

h2j
− x

h2j
if x ∈ (x j , x j + h j ) ,

0 otherwise.

(B.2.1)

An example of such a function is shown in Fig. 9.
It is easily seen that w j (xi ) = w′

j (xi ) = w′′
j (xi ) = 0 for any i = 1, ..., nS , therefore

the PINN (VPINN) loss function is exactly equal to 0. However, this does not ensure the
accuracy of the approximation, in fact ‖w j‖L1(�) = ‖w j − u‖L1(�) = 1.

Note that it is possible to define larger networks with analogous properties. Moreover,
the same phenomenon can be observed with any sigmoid activation function, exploiting the
fact that the accuracy in the evaluation of both the activation function and the loss function
is bounded by machine precision. We also highlight that the phenomenon can be partially
alleviated by introducing a regularization term in the loss function; however, it adds noise to
the optimization process, possibly resulting in losses of accuracy when the PDE solution is
characterized by large gradients.
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This proves that it is not possible to guarantee the inf-sup stability for standard PINNs or
VPINNs, and that spurious modes cannot be controlled simply minimizing the loss function.
On the contrary, the interpolation operator proposed in this paper acts as a VPINN stabilizer,
preventing the onset of spurious components in the solution.

References

1. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations. J.
Comput. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

2. Tartakovsky, A.M.,Marrero, C.O., Perdikaris, P., Tartakovsky, G.D., Barajas-Solano, D.: Learning Param-
eters and Constitutive Relationships with Physics Informed Deep Neural Networks. arXiv:1808.03398
(2018)

3. Yang, Y., Perdikaris, P.: Adversarial uncertainty quantification in physics-informed neural networks. J.
Comput. Phys. 394, 136–152 (2019)

4. Lanthaler, S., Mishra, S., Karniadakis, G.E.: Error estimates for DeepONets: a deep learning framework
in infinite dimensions. Trans. Math. Appl. 6(1), tnac001 (2022). https://doi.org/10.1093/imatrm/tnac001

5. Elbrächter, D., Perekrestenko, D., Grohs, P., Bölcskei, H.: Deep neural network approximation theory.
IEEE Trans. Inf. Theory 67(5), 2581–2623 (2021)

6. Gühring, I., Kutyniok, G., Petersen, P.: Error bounds for approximations with deep ReLU neural networks
in Ws,p norms. Anal. Appl. 18(05), 803–859 (2020)

7. Opschoor, J.A., Petersen, P.C., Schwab, C.: Deep ReLU networks and high-order finite element methods.
Anal. Appl. 18(05), 715–770 (2020)

8. Kutyniok, G., Petersen, P., Raslan, M., Schneider, R.: A theoretical analysis of deep neural networks and
parametric PDEs. Constr. Approx., 1–53 (2021)

9. Opschoor, J.A., Schwab, C., Zech, J.: Exponential ReLU DNN expression of holomorphic maps in high
dimension. Constr. Approx., 1–46 (2021)

10. Gonon, L., Schwab, C.: Deep ReLU Neural Networks Overcome the Curse of Dimensionality for Partial
Integrodifferential Equations. arXiv:2102.11707 (2021)

11. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: VPINNs: Variational Physics-Informed Neural Networks
For Solving Partial Differential Equations. arXiv:1912.00873 (2019)

12. Zang, Y., Bao, G., Ye, X., Zhou, H.: Weak adversarial networks for high-dimensional partial differential
equations. J. Comput. Phys. 411, 109409 (2020)

13. Khodayi-Mehr,R., Zavlanos,M.:VarNet:Variational neural networks for the solutionof partial differential
equations. In: Learning for Dynamics and Control, pp. 298–307, PMLR (2020)

14. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-VPINNs: Variational physics-informed neural networks
with domain decomposition. Comput. Methods Appl. Mech. Eng. 374, 113547 (2021)

15. Mishra, S., Molinaro, R.: Estimates on the generalization error of physics-informed neural networks for
approximating a class of inverse problems for PDEs. IMA J. Numer. Anal. (2021). https://doi.org/10.
1093/imanum/drab032

16. Berrone, S., Canuto, C., Pintore, M.: Solving Pdes by Variational Physics-informed Neural Networks: an
a Posteriori Error Analysis. arXiv:2205.00786 (2022)

17. Sukumar, N., Srivastava, A.: Exact imposition of boundary conditions with distance functions in physics-
informed deep neural networks. Comput. Methods Appl. Mech. Eng. 389, 114333–50 (2022). https://doi.
org/10.1016/j.cma.2021.114333

18. Nitsche, J.A.: Uber ein Variationsprinzip zur Losung Dirichlet-Problemen bei Verwendung von Teilrau-
men, die keinen Randbedingungen unteworfen sind. Abh. Math. Sem. Univ., Hamburg 36, 9–15 (1971)

19. Ciarlet, Ph.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol.
40. Society for Industrial and AppliedMathematics (SIAM), Philadephia (2002). https://doi.org/10.1137/
1.9780898719208

20. De Ryck, T., Lanthaler, S., Mishra, S.: On the approximation of functions by tanh neural networks. Neural
Netw. (2021). https://doi.org/10.1016/j.neunet.2021.08.015

21. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980, (2014)
22. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), pp. 464–472, IEEE (2017)
23. Wright, S., Nocedal, J., et al.: Numerical optimization. Springer Science 35(67-68), 7 (1999)

123

https://doi.org/10.1016/j.jcp.2018.10.045
http://arxiv.org/abs/1808.03398
https://doi.org/10.1093/imatrm/tnac001
http://arxiv.org/abs/2102.11707
http://arxiv.org/abs/1912.00873
https://doi.org/10.1093/imanum/drab032
https://doi.org/10.1093/imanum/drab032
http://arxiv.org/abs/2205.00786
https://doi.org/10.1016/j.cma.2021.114333
https://doi.org/10.1016/j.cma.2021.114333
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1016/j.neunet.2021.08.015
http://arxiv.org/abs/1412.6980


Journal of Scientific Computing (2022) 92 :100 Page 27 of 27 100

24. Rvachev, V.L., Sheiko, T.I., Shapiro, V., Tsukanov, I.: Transfinite interpolation over implicitly defined sets.
Comput. Aided Geom. Design 18(3), 195–220 (2001). https://doi.org/10.1016/S0167-8396(01)00015-2

25. Zhang, E., Yin, M., Karniadakis, G.E.: Physics-informed neural networks for nonhomogeneous material
identification in elasticity imaging. arXiv:2009.04525 (2020)

26. Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D.E., Kuhl, E.: Physics-informed neural networks
for cardiac activation mapping. Front. Phys. 8, 42 (2020)

27. Ji, W., Qiu, W., Shi, Z., Pan, S., Deng, S.: Stiff-pinn: Physics-informed neural network for stiff chemical
kinetics. J. Phys. Chem. A 125(36), 8098–8106 (2021). https://doi.org/10.1021/acs.jpca.1c05102

28. Wight, C.L., Zhao, J.: Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics
informed neural networks. Commun. Comput. Phys. 29(3), 930–954 (2021)

29. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learn-
ing: a survey. J. Mach. Learn. Res. 18, 1–43 (2018)

30. Berrone, S., Canuto, C., Pintore, M.: Variational Physics InformedNeural Networks: The Role of Quadra-
tures and Test Functions. arXiv:2109.02095v1 (2021)

31. Mishra, S., Molinaro, R.: Estimates on the generalization error of physics-informed neural networks for
approximating PDEs. IMA J. Numer. Anal. (2022). https://doi.org/10.1093/imanum/drab093

32. Rodriguez-Torrado, R., Ruiz, P., Cueto-Felgueroso, L., Green,M.C., Friesen, T.,Matringe, S., Togelius, J.:
Physics-informed attention-based neural network for hyperbolic partial differential equations: application
to the buckley-leverett problem. Sci. Rep. 12(1), 1–12 (2022)

33. Gao, H., Sun, L., Wang, J.-X.: Phygeonet: physics-informed geometry-adaptive convolutional neural
networks for solving parameterized steady-state pdes on irregular domain. J. Comput. Phys. 428, 110079
(2021)

34. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep
learning. Proc. Nat. Acad. Sci. 115(34), 8505–8510 (2018)

35. Chen, Y., Lu, L., Karniadakis, G.E., Negro, L.D.: Physics-informed neural networks for inverse problems
in nano-optics and metamaterials. Opt. Express 28(8), 11618–11633 (2020). https://doi.org/10.1364/OE.
384875

36. Chen, Z., Liu, Y., Sun, H.: Physics-informed learning of governing equations from scarce data. Nat.
Commun. 12(1), 1–13 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/S0167-8396(01)00015-2
http://arxiv.org/abs/2009.04525
https://doi.org/10.1021/acs.jpca.1c05102
http://arxiv.org/abs/2109.02095v1
https://doi.org/10.1093/imanum/drab093
https://doi.org/10.1364/OE.384875
https://doi.org/10.1364/OE.384875

	Variational Physics Informed Neural Networks: the Role  of Quadratures and Test Functions
	Abstract
	1 Introduction
	2 The Model Boundary-value Problem
	3 The VPINN-based Numerical Discretization
	3.1 Neural Networks
	3.2 The VPINN Discretization

	4 A Priori Error Estimates
	5 Implementation Issues
	5.1 VPINN Efficiency and the Inf-sup Condition

	6 Numerical Results
	6.1 Error Decays
	6.2 How the VPINN Dimension Affects Accuracy
	6.3 On the Importance of the Inf-sup Condition

	7 Application to Nonlinear Parametric Problems
	8 Conclusions
	Appendix
	A.1 Construction of the Interpolation Operator
	A.2 An Example of `Spurious' Neural Network
	References




