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ABSTRACT

Biocompatible gold nanoparticles (AuNPs) are particularly interesting for photo-thermal therapy (PTT) of
cancer treatment because of their ability to convert light into heating efficiently. Nevertheless, the
random accumulation of AuNPs in tissues, mainly determined by their retention time in the bloodstream,
is one of the main limiting factors for their use in PTT applications. For this reason, efficient targeting and
monitoring of AuNPs in the selected tissues is of paramount importance. This manuscript reports on a
new generation of **™Tc-labeled AuNPs coated with keratin (Ker-AuNPs) and their spatial localization
investigated by nuclear imaging techniques on an animal-free model. The effective radiolabeling of Ker-
AuNPs with ™Tc is achieved using the chelating agent diethylenetriaminepentaacetic acid (DTPA),
resulting in the ®°™Tc-DTPA-Ker-AuNPs nanoconjugate. The °°™Tc-DTPA-Ker-AuNPs display a radio-
chemical purity of 90.7% and excellent photo-thermal properties. In addition, the biocompatibility of the
99mT_DTPA-Ker-AuNPs with healthy human embryonic kidney (HEK293T) cells is shown. A Lab-On-a-
Chip (LoC) approach is used to localize and study the stability of **™Tc-DTPA-Ker-AuNPs under dy-
namic conditions. To this end, the nanoconjugates are injected into a polydimethylsiloxane microfluidic
chip mimicking the renal filtering unit, the nephron, and monitored via radio-imaging and thermo-
optical experiments. These detailed studies establish that DTPA-assisted ?°™Tc-labeled Ker-AuNPs are
excellent candidates as biocompatible and non-invasive radiolabeled nanotherapeutic for PTT-based

applications.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

applications such as diagnostics, therapy, prevention, hygiene, and
drug delivery [7—12]. The optical properties of AuNPs are deter-

The use of gold nanoparticles (AuNPs) for innovative biomedical mined by their local surface plasmon resonance (LSPR) [13,14],
applications has been extensively studied in recent decades [1—6]. which is associated with the collective excitation of conduction
It has been reported that AuNPs can be used in several medical electrons (localised on the AuNPs surface), resulting in intense
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absorption plasmon bands (plasmons). Plasmons can be located in
a broad region of the electromagnetic spectrum (from the visible to
the near-infrared (NIR) region), depending on the AuNP size, shape,
and surrounding refractive index [15,16].

The possibility of combining AuNPs with biomaterials such as
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biomolecules, polymers, and proteins has been intensively
explored [17—20]. This powerful combination enables the realiza-
tion of functionalized AuNPs with improved biocompatibility, bio-
distribution, and stability.

Arabic gum, serum albumin, and keratin are the most common
proteins used because they are primarily available, versatile, non-
toxic, stable, and biodegradable [21—23]. These proteins exhibit
structural domains and functional groups that facilitate the binding
with AuNPs, leading to several advantages to pristine AuNPs,
including significant internalisation by the organism, longer cir-
culation times, lower toxicity, and selective bio-accumulation
[24,25]. Moreover, AuNPs are excellent thermo-optical trans-
ducers. Consequently, much work is focused on investigating bio-
conjugated AuNPs for photo-thermal therapy (PTT) applications
[21,26—28]. PTT is a minimally invasive cancer treatment that can
kill tumor cells, mainly through necroptosis and apoptosis mech-
anisms that occur when the induced temperature is about
43—46 °C [29—31]. Different nanomaterials with excellent photo-
thermal properties and high biocompatibility have been used for
PTT applications, such as oxide semiconductors [32], semimetals
[33], metal-organic [34], and nanofibers [35—37]. Among these
nanomaterials, CuS-based NPs are gaining increasing interest as an
alternative option to AuNPs [38—41] or combined with plasmonic
NPs, which are required to enhance their light-to-heat conversion
efficiency [42,43]. However, there are many advantages to using
AuNPs due to their easy synthesis and functionalization, low
toxicity, stability, and tunable LSPR [44]. Moreover, specific anti-
bodies and proteins can be integrated on the AuNPs' surface, tar-
geting particular cancer sites and actively maximizing cellular
uptake [45]. Furthermore, we have already demonstrated [21] that
the synthesis of keratin-coated AuNPs (Ker-AuNPs) is easy and fast
compared to materials with similar photo-thermal conversion
performances, such as oxide semiconductors [32] and metal-
organic frameworks [34]. It involves a sustainable approach by
using a reduced number of components, all non-toxic and non-
hazardous.

However, despite the promising in vitro results of suitably bio-
conjugated and targeted AuNPs for PTT applications, in vivo in-
vestigations are still limited by the techniques currently available
for localization and detection of AuNPs in the human body.

Indeed, the main techniques are photoacoustic microscopy
[46,47], photothermal imaging [48,49], computed tomography
[50—52], NIR fluorescence [53,54], and NIR spectroscopy [55,56].
These techniques, although non-invasive, are not able simulta-
neously to map large regions (in the order of square centimeter)
with micrometer resolution. Since many applications in nano-
medicine depend on a controllable and efficient delivery of AuNPs
to the targeted tissues, a reliable and systematic technique to
localize AuNPs requires future developments and optimization.

Combining nuclear medicine imaging techniques with AuNP-
based therapeutic approaches offers unique opportunities to ach-
ieve this goal. In this framework, radiolabelled AuNPs provide
multifold advantages to other photothermal agents. Indeed, Au is a
high-Z element; therefore, AuNPs are valuable radio-sensitizers
[57,58] Their plasmonic properties open further benefits,
including photoacoustic imaging and surface-enhanced Raman
scattering (SERS) [58]. A suitable functionalization of AuNPs is
pivotal for merging diagnostic and therapeutic capabilities into a
single agent, resulting in the so-called theranostic approach. This
possibility would require the design of radiolabeled nano-
conjugates that possess: a suitable NP geometry, the desired tar-
geting biomolecule, and an optimal imaging or therapeutic radio-
nuclide [59—-63].

The coordination chemistry approach is widely used to directly
bind radioisotopes to the metal NPs surface [64,65]. It is based on
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the strong linkage between a chelator agent, such as diethylene-
triamine pentaacetic acid (EDTA), and diethylenetriaminepenta-
acetic acid (DTPA) [66,67], thus coordinating the radioisotope and
the NP's surface. This powerful combination assures the chemical
and temporal stability of the radiolabeling process [70].

Technetium®™diethylenetnaminepentaacetic  acid  (°*™Tc-
DTPA) is the most commonly used radiopharmaceutical for dy-
namic renal imaging and the least expensive [68,69]. Accordingly,
99MTe_DTPA conjugated to the NP surface quickly reveals the AuNPs
accumulation in tissues using radio-imaging techniques, such as
single-photon emission computerized tomography (SPECT)
[70—-75].

Proof-of-principle experiments to guide future in vivo experi-
mental studies to test radiolabeled NPs stability and localization
can be performed utilizing lab-on-a-chip (LOC) technology [76,77].
It relies on biomimetic microfluidic devices that mimic several or-
gans, including lungs, liver, and kidneys. LOC technology is valuable
tool propaedeutic to in vivo experiments, allowing a solid investi-
gation of several medical applications without sacrificing animals
[78—82].

One of the most effective approaches to fabricating microfluidic
devices is binding micro-channels, molded in a polymer bonded, to
a flat surface (such as a glass slide). Polydimethylsiloxane (PDMS) is
an optical transparent elastomer primarily used to realize micro-
fluidic chips [80,82]. Moreover, PDMS is biocompatible (similar to
silicone gel used in breast implants), deformable, and inexpensive.
It has been shown that PDMS can mimic the human kidney tissue in
terms of density, flexibility, dielectric constant, and conductivity
[82]. These properties demonstrate its excellent suitability as a
material to realize a kidney phantom to be used as a LOC for
biomedical applications.

This work reports and discusses preparing a new generation of
Ker-AuNPs, radiolabeled with the **™Tc. The radiolabeling of Ker-
AuNPs has been accomplished by exploiting the chemical affinity
between the keratin and the DTPA molecules chelating the **™Tc.
Keratin provides augmented biocompatibility of the nanoconjugate
and facilitates the binding between the **™Tc-DTPA complex and
the AuNP.

A LOC microfluidic-based circuit mimicking the nephron has
been designed, fabricated, and used to gain insights into the spatial
localization of the 2°™Tc-DTPA-Ker-AuNP by the nuclear imaging
technique.”®™Tc-DTPA-Ker-AuNPs have been investigated through
instant thin-layer chromatography (ITLC), UV—Vis spectroscopy,
and a high-resolution thermo-optical setup, revealing a successful
conjugation between °™Tc and Ker-AuNPs along with excellent
photo-thermal properties.

The excellent biocompatibility of **™Tc-DTPA-Ker-AuNPs with
healthy human embryonic kidney (HEK) 293 cell line has been
demonstrated by monitoring cell proliferation and ultrastructure
by transmission electron microscopy (TEM) analysis.

The passive flow of *™Tc-DTPA-Ker-AuNPs and their temporal-
spatial stability inside the nephron-like microfluidic circuit have
been studied via spectroscopy, thermo-optical, and SPECT imaging
analysis, confirming the extraordinary capability of %°™Tc-DTPA-
Ker-AuNPs to be used for PTT-based applications.

2. Materials and method
2.1. Keratin extraction

The protocol used for keratin extraction and AuNPs bio-
conjugation was described in Ref. [83]. Here, shortly, we recall that
a water solution of keratin was obtained from wool fibers [84].
Wool fibers were first cleaned and rinsed, then dried overnight at
room temperature. Keratin was extracted from wool fibers with a
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water solution containing 7 M urea, 0.05 M sodium dodecyl sulfate
(SDS), and 1.1 M2-mercaptoethanol. The extraction was performed
with 10 g of wool in 180 ml of solution at 60 °C for 5 h. Afterward,
the solution was filtered. The resulting solution was centrifuged to
remove undissolved fiber residues.

2.2. Synthesis of Ker-AuNPs

AuNPs were synthesized through the Turkevich method [85],
using sodium citrate as a reducing agent. The naked AuNPs ob-
tained have a spherical shape with an average diameter of about
30 nm, as confirmed by DLS measurements [21]. A 1.5 mM of Ker-
AuNPs and AuNPs solutions were mixed with the keratin solution
to have a 1:100 wt ratio between Au and keratin. An amount of
keratin three orders of magnitude higher than what was expected
to be conjugated was used. This excess of keratin ensured that all
the AuNPs binding sites were saturated.

The obtained Ker-AuNPs solution was gently stirred overnight,
centrifuged twice at 14,300 rpm to remove free keratin, and finally
resuspended in MilliQ water. Using Fourier Transformed Infrared
Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS)
analysis, keratin proteins’ presence surrounding AuNPs was already
demonstrated [21].

2.3. DTPA-assisted radiolabeling of Ker-AuNPs with °™Tc

For the radiolabeling of Ker-AuNPs, a chelator-mediated indirect
approach was employed. Two agents were used to facilitate the link
between the %*™Tc and the Ker-AuNPs: a chelator and a reductant.
The chelator, which can link to the AuNP surface and the protein
surrounding it, facilitates the conjugation of the radioisotope to the
Ker-AuNPs surface. At the same time, the reductant lowers the
oxidation number of the radioisotope, increasing its chemical ac-
tivity. Stannous chloride (SnCI2) was used as a reducing agent, and
diethylenetriaminepentaacetate (DTPA) was employed as a
chelator. The pertechnetate ion (**™Tc 0y), used as a source of
radioisotope, was freshly eluted from Drytec™ Technetium->°™
Generator (GE Health-care, Amersham, UK). SnCl2 and DTPA were
taken from the TechneScan DTPA kit for radiopharmaceutical
preparation (Mallinckrodt Medical B-V., Netherlands).

As a first step, 20.8 mg of DTPA was reconstituted in 4 ml of
saline solution (0.9% NaCl), and 300 pL of this solution was added to
600 pL of Ker-AuNPs water solution 1.5 mM. The DTPA-Ker-AuNPs
solution was kept at 37 °C for 15 min. The heating of the solution
induced the weakening of the bonds between the keratin amino
acids, making the DTPA incorporation easier. As a second step,
0.45 mg of SnCI2 was reconstituted in a 4 ml saline solution. Freshly
eluted sodium pertechnetate (20 pL, 74 Mbqg/ml) was reduced by
stannous chloride. As a final step, 300 pL of this solution was
immediately added to the solution of DTPA-Ker-AuNPs. The final
99mTe_DTPA-Ker-AuNPs mixture was incubated at room tempera-
ture for 15 min after gentle stirring.

2.4. Radiochemical purity (RCP) evaluation via Instant Thin Layer
Chromatography (ITLC) and phosphor-based imaging

Instant Thin Layer Chromatography (ITLC) tests were performed
to separate the amounts of **™Tc radioactive impurities from the
99mTc_DTPA complex and evaluate the radiochemical purity of
99mTc_DTPA-Ker-AuNPs solution.

ITLC is a separation method of different compounds in a
mixture, commonly used to determine the radiochemical purity in
nuclear medicine [86]. The migration properties of free pertech-
netate and colloidal **™Tc are influenced by mobile and stationary
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phases.

A drop of 9¥™Tc-DTPA-Ker-AuNPs solution (~ 5 u 1) was depos-
ited at the previously marked starting point of three different ITLC
plates. The ITLC chambers (Falcon tubes) were filled with the sol-
vent up to 2 cm from their bottom, and the prepared ITLC plates
were vertically placed inside each tube, with the deposition spot
kept towards the bottom. The chambers were then kept closed.
5—10 min were sufficient for the plates to complete their devel-
opment, reaching the solvent front. Each plate was immersed in a
different mobile phase.

When the development was completed, the amount of radio-
active compounds present on the plates was measured with a
phosphor imaging instrument (Cyclone Plus, PerkinElmer Ana-
lytics). The plates were placed in close contact with a phosphor
screen for 20 s so that the radioactivity of the plates could be
captured and stored by the screen. The latter was then inserted into
a rotating system, and it was scanned point by point using a red
laser beam. The signal was transmitted to a high-efficiency PMT
and, thanks to a digital processing system, high-resolution (up to
600 dpi) digitized images with quantitative information were
obtained.

2.5. Thermo-optical setup

Light-triggered photothermal experiments were performed
using the thermo-optical setup illustrated in Fig. 1. ACW green laser
(gem532, Laser Quantum), emitting at 532 nm, corresponding to
the plasmonic absorption band of the Ker-AuNPs, illuminated the
sample in the direction perpendicular to the air/sample interface.

A high-resolution thermal camera was used to map and quantify
the temperature profile of the sample's area under laser illumina-
tion. The dynamic IR thermographic analysis was carried out using
a FLIR (A655sc) thermal-camera (FLIR System, Wilsonville, OR, USA)
that produces thermal images of 640x480 pixels with an accuracy
of +2 °C. The thermal camera was equipped with a close-up IR lens
characterized by a magnifying factor of 2.9x, a spatial resolution
(IFOV) of 50 um, and a reduced working distance of 15 cm. A square
region of interest (ROI), corresponding to the illuminated area, was
selected on thermographic images to measure the maximum and
mean temperature values reached in the sample volume. Data
collection and analysis were based on carefully evaluating repre-
sentative IR image sequences acquired during the laser irradiation.

2.6. MTc- DTPA-Ker-AuNPs characterization

2.6.1. Dynamic light scattering and {-potential
The hydrodynamic size and {-potential of °™Tc- DTPA-Ker-
AuNPs were characterized through dynamic light scattering (DLS)

CW Laser
532 nm
7
7
o
. 7z
S
P — o
/\/\/%-:__,,—-"'———
- IR Camera

L PC
Sample

Fig. 1. Schematic representation of the thermo-optical setup used for samples' char-
acterization. A CW laser operating at 532 nm illuminates the sample in the direction
perpendicular to the air/sample interface. A high-resolution thermal camera is used to
map and quantify the temperature profile of the sample's area under laser
illumination.
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experiments using a Zeta Sizer NanoZS instrument (Malvern Pan-
analytical, Malvern, UK). The {-potential was measured
between —150 mV and +150 mV.

2.6.2. UV—Vis spectroscopy
Absorption spectra were acquired using a UV—Vis spectropho-
tometer (Lambda 365 from PerkinElmer).

2.6.3. Transmission electron microscopy imaging

TEM images were recorded using a JEOL JEM-1011 apparatus
operating at 100 kV. Samples were drop-casted on a Cu grid coated
with an ultrathin carbon film previously plasma cleaned. The
excess solution was wicked off from the grid's side and was left to
dry for at least 24 h before imaging.

2.7. Cell culture

Human Embryonic Kidney 293 T (HEK293T) cells were pur-
chased from American Type Culture Collection (ATCC, CRL-1573,
Manassas, VA). The cells were grown following the protocol
described in Ref. [87]. Briefly, cells were maintained in Dulbecco's
Modified Eagle Medium (DMEM) supplemented with 1% nones-
sential amino acids, 1% L-glutamine, 100 IU/ml penicillin, 100 IU/ml
streptomycin, and 10% Fetal Bovine Serum (FBS, Sigma-Aldrich, St.
Louis, MO) at 37 °C in a 5% CO2-humidified atmosphere. The cells
were subcultured only when confluence reached 80%, and the
medium was replaced twice a week.

2.8. Cell proliferation assay (MTS)

With some modifications, cell proliferation was evaluated as
described in Ref. [88]. 2x10* HEK293T cells were seeded into 96-
well plates and maintained overnight. Then, cells were exposed
to various concentrations of 2°™Tc-DTPA-Ker-AuNPs (0—100 pM)
for 24, 48, and 72 h. HEK293T cell proliferation was quantified by
MTS—formazan reduction (Promega, Madison, WI) by evaluating
the absorbance at 492 nm. Results were indicated as “percentage of
proliferation vs. Control.” Three independent experiments were
performed in quintuplicate.

2.9. Transmission electron microscopy for ultrastructural cells
analysis

HEK293T cells incubated with 100 uM %*™Tc-DTPA-Ker-AuNPs
and Ker-AuNPs for 24 h were detached and transferred to the
Eppendorf tubes for TEM processing. After centrifugation, the cell
pellet was fixed with 2.5% glutaraldehyde (SIC, Rome, Italy) in 0.1 M
PBS for two days at 4 °C and then rinsed with PBS. Afterward,
samples were post-fixed using 2% osmium tetroxide (Agar Scien-
tific, Stansted, UK) for 2 h and rinsed again in PBS [89]. The speci-
mens were dehydrated by exchange with ethanol, immersed in
propylene oxide (BDH Italia, Milan, Italy) for solvent substitution,
and embedded in epoxy resin Embed-812 (SIC, Rome, Italy). Ul-
trathin (80—90 nm) sections were obtained using an ultramicro-
tome (Leica EM UC6, Vienna, Austria). For the TEM observation, the
ultrathin sections were collected on 100-mesh copper grids
(Assing, Rome, Italy) stained with a mix of lanthanides solution
(Uranyless, Electron Microscopy Sciences) and lead citrate [90].
Imaging was performed using a transmission electron microscope
(Carl Zeiss EM10, Thornwood, NY) with an accelerating voltage of
60 kV and a DEBEN XR80 AMT CCD camera.

2.10. Microfluidic chips fabrication

PDMS replica molding fabricated microfluidic samples and then
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bonded on a glass slide by O2 plasma bonding. The mold was ob-
tained by 3D printing with photocurable materials [91]. In detail,
the negative of the geometry of interest was converted into *.STL
(Standard Triangulation Language) format and then imported into
the 3D printer software. The 3D printer is the Objet30 from Stra-
tasys, and the materials employed are VeroWhite resin and Sup705.
The first one is the structural polymer, which shapes the virtual
geometry. The accuracy of the printing process was enhanced by
the selective deposition of a support material, the Sup705, which
helps grow the structure and prevents damage during printing.
After the 3D printing process, the mold was cleaned carefully and
rinsed with a water jet to remove the support material. The
analyzed microfluidic chips have 300 pm width and 70 um height
channels. The channels distance varies from 3 to 7 mm.

2.11. SPECT imaging

SPECT imaging measurements were performed using a free-
geometry dual-detector gamma camera (Millennium, GE Health-
care, USA), equipped with Nal(Tl) scintillation crystal
(thickness = 9.5 mm), 59 circular PMTs (76 mm and 38 mm), NEMA
UFOV 40 x 60 cm, energy range: 40—511 keV.

SPECT imaging of the microfluidic devices was performed with
low energy, high resolution (LEHR) collimators, using a 512 x 512
spatial resolution, 1.5 zooms, with a total acquisition time of 10 min.
The single-pixel size is 1.2 x 0.8 mm.

2.12. Images intensity quantification

Microfluidic chip resolution studies were carried out by
analyzing the SPECT images of the microfluidic devices filled with a
99mTe solution using the Image] software.

The software allows obtaining two-dimensional intensity pro-
files along a selected line across the image. The x-axis represents
distance along the line, and the y-axis is the pixel intensity. A line
crossing the chip along its short side was used in the actual case.

3. Results and discussion
3.1. Radiochemical purity (RCP) evaluation

A schematic representation of the protocol utilized to prepare
99mT-_DTPA-Ker-AuNPs, as described in Section 2.3, is reported in
Fig. 2.

The complexation of radionuclide and the AuNPs is essential for
developing innovative radiotracers. The choice of keratin as a
capping agent for AuNPs is fundamental for the augmented
biocompatibility of the nanoconjugate and the facilitation of the
binding between the **™Tc-DTPA complex and the AuNP. As already
reported in the literature, among the limitations of **™Tc-DTPA use
is that this radiopharmaceutical can bind to many proteins, such as
plasma proteins in human blood [92—95]. This binding has signif-
icant implications for the kinetics of these substances [94]. In our
case, the keratin capping the AuNPs may directly bind to the **™Tc-
DTPA so that, in the light of in vivo experiments, the binding site/s of
99mTc_DTPA turns out to be occupied, thus overcoming plasma
proteins binding.

Efforts were made to prepare the °™Tc-labeled Ker-AuNPs with
maximum possible radiochemical purity. The radiolabeling exper-
iments were carried out by varying reaction parameters, such as
chelant concentration, reaction time, and incubation temperature.

The radiochemical purity of freshly prepared *°™Tc-DTPA-Ker-
AuNPs was investigated by ITLC, which allowed assessing the
occurrence of effective radiolabeling.

In general, the preparation of the radiopharmaceutical %*™Tc-
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Fig. 2. Schematic of the radiolabeling process to prepare *™Tc-DTPA-Ker-AuNPs. Spherical AuNPs of approximately 30 nm diameter are coated with keratin using self-assembly
techniques. For the radiolabeling process of Ker-AuNPs, a chelator-mediated indirect approach is employed. The chelator (DTPA) links to the Ker-AuNP, facilitating the complexation
of the radioisotope (**™Tc) and the NP. ®™Tc was previously reduced to increase its chemical activity.

DTPA may generate radiochemical impurities when the radio-
labeling reaction occurs with less than 100% efficiency.

In this case, two different impurities were formed: (i) free *°*™Tc
0y, i.e., unreduced 9°™Tc Oy (ii) colloidal %°™Tc species, i.e., tech-
netium oxidised due to undesired contact with air.

Accordingly, when a saline solution (0.9% NaCl) is used as an
eluting solvent in an ITLC characterization, free %°™Tc O and 9™Tc-
DTPA complexes migrate up to the end of the ITLC plate. In contrast,
99mMTe colloids remain at the deposition point (indicated as a start).
In contrast, when using an organic solvent as an eluent (methyl
ethyl ketone, or MEK, in our experiment), free >°™Tc 0, migrates up
to the end of the plate (indicated as a front), while the °™Tc-DTPA
complex and the ®®™Tc colloids remain at the starting point [86,96].
Finally, using Methanol: Water (80:20) as an eluting solvent, the
opposite migration to MEK is obtained. More details can be found in
the Supplementary Information.

To characterize **™Tc-DTPA-Ker-AuNPs by ITLC, a drop of the
99mTe_DTPA-Ker-AuNPs solution (~ 5 u 1) was deposited at the
previously marked starting point of three different ITLC plates
(about 2 cm above the one end of the plates). Afterward, the ITLC
plates were immersed in the three mobile phases: the saline so-
lution, the MEK, and a Methanol: Water (80:20) mixture. When the
development was completed, the amount of radioactive com-
pounds present at the start and at the front of the plates was
measured via phosphor-based radio imaging techniques. The
resulting radiochromatograms are reported in Fig. 3.

Fig. 3a reports the amount of radioactivity expressed in the
Density Light Unit (DLU) as a function of the distance and the ITLC
plates for each eluent. Each radiochromatogram shows an intense
radiochromatographic peak at about 2 cm (corresponding to the
starting point) and a broad peak with low intensity at the front of
the plate for all the used eluents.

Fig. 3b illustrates the radio images of the three corresponding
ITLC plates. Here, a dark, intense spot is present at the starting point

of the three ITLC plates, while a very light stain is visible at the front
of the plates.

The radiochromatographic peaks in Fig. 3a and the dark spots in
Fig. 3b indicate the presence of strong radioactivity at the starting
point of the ITCL plates, where the *°™Tc-DTPA-Ker-AuNPs were
deposited. At the same time, only a low percentage of radioactive
species migrate to the front. Accordingly, it is possible to propose
that Ker-AuNPs do not migrate from the starting point of the ITLC
plate due to their higher weight if compared with one of the
radiochemical impurities. Therefore, the detection of strong
radioactivity at the origin of the plate and the resulting negligible
amount of radioactive compounds at the front provide a qualitative
indication that most radioactive species (i.e., the °°™Tc-DTPA
complexes) are linked to the Ker-AuNPs, resulting in a **™Tc-DTPA-
Ker-AuNPs nanoconjugate.

Moreover, it was possible to quantify the radioactivity purity of
the %°™Tc-DTPA-Ker-AuNPs nanoconjugate by comparing these
results with the data obtained from the radiochromatography
analysis of free ®™Tc 07 , %¥™Tc colloids, and %°™Tc-DTPA com-
plexes in the absence of Ker-AuNPs (for more details, see the Sup-
plementary Information). As a result, the radiochemical purity of the
99mTe_DTPA-Ker-AuNPs corresponds to the 90.7% of “°™Tc radio-
activity. Such a value approaches the 95% radiochemical purity
required for radiopharmaceuticals developed for diagnostic pur-
poses [88]. This result confirms and highlights the successful >*™Tc-
labeling of Ker-AuNPs.

3.2. Thermo-optical characterization of the ITLC plates

To confirm that the °°™Tc-DTPA-Ker-AuNPs remain at the
deposition site of the ITLC plates, thermo-optical experiments were
performed. The experiments aim at identifying the regions of the
ITLC strip where Ker-AuNPs are deposited by measuring the heat
generated when AuNPs are irradiated with a suitable laser source.
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Fig. 3. Phosphor-based radio imaging of the ®*™Tc-labeled Ker-AuNPs on ITLC plates. a) Total radiochromatogram profiles of the *™Tc-labeled Ker-AuNPs obtained with Methanol/
Water, MEK, and saline solution as mobile phases. b) Radiochromatograms of **™Tc-DTPA-Ker-AuNPs solution, obtained after optimized radiolabeling procedure, in methanol/water,

MEK, and saline solution as mobile phases.
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The ITLC plates were illuminated with a CW green laser emitting at
532 nm and a power density of 3.54 W/cm?2 in different spots for
2 min. The plate was moved from O to 10 cm, with steps of 1 cm. A
high-resolution thermographic camera was used to monitor the
light-induced temperature changes while scanning the ITLC plates
with the laser beam. For simplicity, as similar results were achieved
for all three plates, we show in Fig. 4 the thermo-optical charac-
terization of the ITLC plate developed in saline solution. Fig. 4a
displays the temperature change measurements as a function of the
position of the laser spot on the ITLC plate. Fig. 4b is a photo of the
paper strip, where 0 cm indicates the %*™Tc-DTPA-Ker-AuNPs
deposition site and 10 cm is the front. A maximum temperature of
58.5 °C is reached (with a photo-thermal efficiency of about 65%
[97]) at the deposition site (O cm). The temperature profile drasti-
cally drops to room temperature (~26 °C) when moving the plate
1 cm away. No significant increase in temperature is observed from
1 to 10 cm. Fig. 5¢c—f report the thermal images of the strips illu-
minated in different spots, which confirm that when in the pres-
ence of 99™Tc-DTPA-Ker-AuNPs, a significant temperature increase
was observed. In contrast, the temperature drops to room tem-
perature when moving away from the deposition site. These results
confirm that the %°™Tc-DTPA-Ker-AuNPs remain at the starting
point of the ITLC plate. As a matter of fact, by combining the
thermo-optical analysis and the radiochromatograms (see Section
3.1) of the ITLC plates, it is possible to assess that the *™Tc-DTPA
complex is attached to the Ker-AuNPs and that the °™Tc-DTPA-Ker-
AuNPs nanoconjugates do not migrate from the deposition site,
confirming the results reported in Figs. 3 and 4.

3.3. 99MTc-DTPA-Ker-AuNPs characterization

Further optical, spectroscopic, and morphological studies were
performed to demonstrate the modification of the Ker-AuNPs sur-
face associated with the ®®™Tc-labeling. Fig. 5a shows the UV—Vis
absorption spectra of Ker-AuNPs dispersed in water (orange
curve) and the ?*™Tc-DTPA-Ker-AuNPs solution (cyan curve). The
redshift of the LSPR frequency of approximately 20 nm indicates a
variation of the local refractive index surrounding the Ker-AuNPs,
which occurred after the radiolabelling step, and an increase in
the average radius. Moreover, a broadening of the LSPR peak
(FWHM = 65 nm for the orange curve, FWHM = 100 nm for the
cyan curve) is noticeable and can be ascribed to an increase of the
99mTe_DTPA-Ker-AuNPs radius. Indeed, the hydrodynamic diameter
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of #™Tc-DTPA-Ker-AuNPs measured by DLS (Fig. 5b) shows that the
average size of the ™Tc-DTPA-Ker-AuNPs conjugates is approx-
imatively 40 nm, thus indicating an increase of the hydrodynamic
radius of 33% compared to the as-prepared Ker-AuNPs [21]. To
verify that the shift and the broadening of the LSPR band are also
attributed to the rise in the ?°™Tc-DTPA-Ker-AuNPs radius, we
performed control experiments that can be found in the Supple-
mentary Information (Fig. S2).

The successful conjugation between the °™Tc-DTPA complex
and the Ker-AuNPs surface influences the {-potential of the Ker-
AuNPs. Indeed, Fig. 5¢ shows that Ker-AuNPs dispersed in water
exhibit a {-potential of —32.6 + 1.1 mV (orange curve), whereas
99mTe_DTPA-Ker-AuNPs show a {-potential of —34.5 + 1.3 mV (cyan
curve). The result confirms the change of the chemical environment
surrounding the Ker-AuNPs due to the linking with the °™Tc-DTPA
complex while preserving the keratin coating on the AuNPs. This
change can probably be associated with the negatively charged
carboxylic groups of the *™Tc-DTPA complex exposed outwards,
giving a more negative value of {-potential. TEM characterization
performed on the 2°™Tc-DTPA-Ker-AuNPs solution is shown in
Fig. 5d. ?™Tc-DTPA-Ker-AuNPs still exhibit a spherical geometry,
with an average diameter of about 30 nm and moderate size dis-
tribution. Moreover, a halo around the **™Tc-DTPA-Ker-AuNPs, a
usual indication of the keratin proteins [21], confirms the successful
99MTe_functionalization.

Notably, the nano-conjugates average diameter measured from
the TEM images is lower than the value obtained from DLS mea-
surements. This difference can be explained by considering that the
DLS technique provides a hydrodynamic diameter value that con-
siders how NPs diffuse in the fluid and how the NPs scatter laser
light. Incorporating the ®®™Tc-DTPA complex increases the local
refractive index, resulting in an apparent increase in diameter.

It is worth saying that after the ™ Tc-DTPA-Ker-AuNPs solution
was left to dry on a copper grid, the TEM analysis was performed
(Fig. 5d). The solvent evaporation brings the AuNPs closer to each
other, forming possible aggregates. Differently, >°™Tc-DTPA-Ker-
AuNPs in solution, as clearly demonstrated in the DLS measure-
ments (see Fig. 5b), do not show aggregates.

3.4. Biocompatibility study of *™Tc-DTPA-Ker-AuNPs

The MTS assay shown in Fig. 6 evaluates the proliferation of
HEK293T cells exposed to increasing concentrations of *™Tc-DTPA-
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Fig. 4. Thermo-optical analysis of the ITLC plate. a) Spatial-temperature profile measurements. The inset b) shows a photo of the strip, where 0 cm indicates the deposition site and
10 cm the front. A temperature of 58.5 °C is reached at the origin, where the ®™Tc-DTPA-Ker-AuNPs are deposited. A rapid decrease in temperature is observed when moving away
from the deposition site. c), d), e), and f) show the thermographic images of the ITCL strip at 0, 1, 5, and 10 cm distances, respectively.
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Fig. 6. MTS assay study to check the effects of *™Tc-DTPA-Ker-AuNPs on the prolif-
eration of HEK293T cells. The results show the proliferation (expressed as percentage
vs. control) of HEK293T cells incubated with increasing concentrations (0—100 uM) for
24 h (black curve), 48 h (red curve), and 72 h (blue curve). Results are presented as the
mean + SD of three independent experiments performed in quintuplicate. The sta-
tistical analysis (***:p < 0.001) was performed through the statistical test “1-way
ANOVA” using the software graph-pad prism v.7.

Ker-AuNPs (0—100 pM) for different incubation times (0—72 h). The
administration of °*™Tc-DTPA-Ker-AuNPs for 24 h does not produce
any crucial effects on inhibiting the proliferation of HEK293T cells
for the concentration range tested. On the contrary, ™ Tc-DTPA-
Ker-AuNPs affect the HEK293T cell proliferation when incubated for
more than 24 h. More precisely, 100 pM 2°™Tc-DTPA-Ker-AuNPs
incubated for 48, and 72 h reduce HEK293T cell proliferation by
about 75 and 85%, respectively. This observation can be explained
by considering that prolonged incubation times (more than 24 h)

might cause cell morphological change, leading to inhibition of
proliferation [98]. In light of this evidence, we can assess that a
concentration of 100 uM of %°™Tc-DTPA-Ker-AuNPs can be safely
employed for photo-thermal treatment without associated side
effects if the treatment plane time is well below 24 h.

It is worth pointing out that recent studies have reported that
AuNPs conjugated with biocompatible polymers and administrated
in a mouse model using intravenous were undetectable in blood
24 h post-administration [99]. Indeed, the biological half-life of
AuNPs — based nanoformulations is 10—12 h, and we can safely
assume that in 24 h, all the **™Tc-DTPA-Ker-AuNPs are completely
eliminated by the total body clearance. In addition, it is worth
remembering that **™Tc-DTPA has a relatively short physical half-
life of 6 h, and its excretion after administration happens during
the first twenty-four [100]. For this reason, understanding the
mechanism of toxicity caused for prolonged exposure times
(>24 h), although very interesting, is out of the scope of this work.

PTT experiments (Supplementary Information, Fig. S4 and Fig. S5)
performed with the healthy human embryonic kidney (HEK293T)
and the human cell line (U87-MG) derived from glioblastoma,
shows a considerable difference in terms of viability reduction. This
difference can be explained by considering that cancer cells show
more potent thermal cytotoxicity than normal cells. Therefore, we
can assess that the photo-thermal properties of *™Tc-DTPA-Ker-
AuNPs affect the cancer cells without being harmful to healthy cells.

3.5. Ultrastructural TEM analysis

Fig. 7 shows the ultrastructural morphology of HEK293T cells
incubated with 100 pM %°™Tc-DTPA-Ker-AuNPs for 24 h. The cells
tend to move close to each other and have relatively smooth con-
tours with a moderate number of microvilli. Granular cytoplasm
containing a large nucleus with a visible nucleolus, cisternae of
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Fig. 7. Ultrastructural morphology of Human Embryonic Kidney 293 T cells incubated with % ™Tc-DTPA-Ker-AuNPs for 24 h. a) shows that the %™Tc-DTPA-Ker-AuNPs do not
penetrate the plasma membrane (red line) of the 293 T cells nor the nucleus (blue line). b) High magnification of the accumulation area of the *™Tc-DTPA-Ker-AuNPs in the
proximity of the plasmatic membrane. The *°™Tc-DTPA-Ker-AuNPs appear to be reasonably monodispersed.

endoplasmic reticulum, and mitochondria are observed (Fig. 7a).
Moreover, the TEM analysis of HEK293T cells shows an abundance
of mitochondria, where their number, size, and morphology are not
altered. Cytoplasmic organelles appear preserved as well. The
99mTe_DTPA-Ker-AuNPs were not identified inside the cells but
densely packed close to the plasma membrane (Fig. 7b), and there
were no signs of endocytosis or phagocytosis. From TEM images, we
can observe how the cytoplasm and nucleus appear free from
AuNPs contamination that remain close to the cells but are not
internalized. Despite the 9*™Tc-DTPA-Ker-AuNPs treatment, the
HEK293T cells showed normal morphology with a preserved ul-
trastructural arrangement.

Thus, although there is a physical interaction between HEK293T
cells and *™Tc-DTPA-Ker-AuNPs, neither morphological changes,
evidence of inflammation, apoptosis, nor necrosis are observed in
the cells treated. Therefore, our results indicate that treatments
using 9™Tc-DTPA-Ker-AuNPs do not increase cytotoxicity and
genotoxicity.

3.6. Towards a dynamic system: lab-on-a-chip approach

The successful radiolabeling of the Ker-AuNPs represents a
remarkable result. However, it is mandatory for in vivo-oriented
applications to check the dynamic stability of *°™Tc-DTPA-Ker-
AuNPs to mimic as much stability as possible when they flow
through the bloodstream. Indeed, since the NP itself is not radio-
labeled, potential detachment of the *™Tc-DTPA complex from the
NP could cause erroneous interpretation of imaging and photo-
thermal experiments.

A Lab-on-a-Chip (LoC) approach is proposed to test the spatial-
temporal stability of *™Tc-DTPA-Ker-AuNPs in an in vivo-like sys-
tem without sacrificing animals. Our LoC is based on a simple
microfluidic device that consists of a micro-channels net molded in
PDMS and bonded to a glass substrate. The micro-channels are
connected to two chambers, namely the inlet and the outlet. The
inlet injects liquids into the chip, while the outlet allows them to be
removed by suction. This way, a “quasi-dynamic” system is ob-
tained to simulate the flow of **™Tc-DTPA-Ker-AuNPs into micro-
channels that resemble human capillaries.

3.7. Resolution studies

The employment of a radio-imaging technique (gamma camera
imaging) allows for resolving the microfluidic channels containing

99mTe_DTPA-Ker-AuNPs. However, it is mandatory to perform pre-
liminary resolution studies to estimate the minimum spatial dis-
tance between microfluidic channels. The width of the microfluidic
channels and length are the two parameters that need to be care-
fully chosen to resolve the micro-structure with the gamma camera
imaging system.

Fig. 8a shows the drawing of a two-channel geometry system
selected to perform resolution studies. The microfluidic chip con-
sists of an inlet, one channel that splits into two arms and recon-
nects again, and an outlet. The width of each channel is 300 um, and
the height is 70 um. Three different chips were fabricated, each
with an increasing distance between the two arms (3, 5, and 7 mm).

The microfluidic chips were infiltrated with a solution of *°*™Tc-
DTPA-Ker-AuNPs. Subsequently, gamma camera images were ac-
quired for the 3 mm (Fig. 8b, right panel), the 5 mm (Fig. 8c, right
panel), and the 7 mm (Fig. 8d, right panel) spacing. It is possible to
observe that a homogeneous distribution of radioactivity is ach-
ieved in all three cases. Still, when the capillaries are as close as
3 mm, it is impossible to resolve the chip's structure with micro-
metric precision.

The plots in Fig. 8 b-d (left panels) show the pixels' intensity
values as a function of distance, measured along the dashed white
line crossing the chips as shown in the right panels of Fig. 8 b-d. It is
possible to observe how the microfluidic channels are not resolved
for the 3 mm distancing. In contrast, the channels are well resolved
when the distance between them is 5 or 7 mm, with the best result
obtained for the latter case.

3.8. Nephron-like microfluidic chip

After optimizing the Ker-AuNPs radiolabeling process and the
SPECT imaging parameters for microchannels visualization, a more
complex PDMS microfluidic device that mimics a human organ's
functionality was implemented. Our choice fell on the kidney's
microscopic structural and functional unit, the nephron. The
nephron comprises the glomerulus, a dense network of capillaries,
and a tubular system [101]. The glomerulus filters the blood flowing
from the renal artery. The tubule returns needed substances to the
blood in the renal vein through the capillaries system and removes
wastes via urine.

AuNPs are likely to be rapidly excreted via the kidneys. However,
this effect is mainly size-dependent, as smaller AuNPs (<8 nm) are
capable of passing through the renal filtration system. In contrast,
larger AuNPs (>10 nm) are more likely to remain in the
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Fig. 8. Resolution study of the microfluidic chip prototype using a gamma camera. a) 3D drawing of the microfluidic prototypes where the width of each channel is 300 um and the
height is 70 pm. The distance between capillaries varies from 3 to 7 mm, b), c), and d). Gamma camera images (b, c, d, right) and corresponding intensity profiles (b, c, d, left,
obtained along the white dotted lines drawn on the related gamma camera image) of the chip filled with a solution of %™Tc-DTPA-Ker-AuNPs.

bloodstream and thus accumulate in the liver and kidney [102,103],
as shown in Fig. 9.

On the other hand, after intravenous injection, *™Tc-DTPA, the
most commonly used radiopharmaceutical for dynamic renal im-
aging, rapidly diffuses through the extracellular fluid, with peak
renal activity reached within 3 min. The complex undergoes blood
clearance by glomerular filtration, remains stable in vivo, and is
excreted unchanged into the urine [96]. The described behaviour
indicates a former accumulation of **™Tc-DTPA inside the kidney
and, in particular, inside the glomerulus, allowing the analysis of
kidneys’ function and health, as well as the study of the NPs-kidney
interaction through SPECT imaging. Moreover, thanks to the light-
to-heat conversion ability of AuNPs, *°™Tc-DTPA-Ker-AuNPs can
be investigated for the diagnosis of renal disease and the treatment
of kidney cancer. Once the complex is accumulated into the renal

Nephron

cancer tissue, it can be localized thanks to scintigraphy and can be
irradiated by a suitable laser source for efficient heat-mediated
destruction of the cancer cells.

For these reasons, a nephron-like microfluidic chip was fabri-
cated following the schematic representation shown in Fig. 10a.
Fig. 10b illustrates the drawing of the microfluidic chip used in this
work. The inlet and the outlet mimic the renal artery and the renal
vein. The fluid enters the chip from the inlet, arrives at the
glomerulus via the capillaries system, and is finally ejected via the
tubule from the outlet. The geometrical parameters of the nephron-
like microfluidic channels were properly selected by considering
the resolution studies discussed in Section 3.7. The total area of the
device is 57 mm x 37 mm x 3 mm. The width of the channels is
300 pm, and the distance between them is 7 mm.

Glomerulus with
99mTc-DTPA-Ker-AuNPs

Fig. 9. Schematic reporting the accumulation of *°™Tc-DTPA-Ker-AuNPs into the kidney.
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Fig. 10. Nephron-inspired microfluidic chip. a) Schematic representation of a nephron
(readapted from National Institute of Diabetes and Digestive and Kidney Diseases,
National Institutes of Health). b) Nephron-like PDMS microfluidic chip used in the
experiments.

3.9. SPECT imaging of the nephron-like microfluidic chip
The nephron-like microfluidic chip was infiltrated with a >°™Tc-
DTPA-Ker-AuNPs solution. The solution was injected into the inlet
with a syringe (first step). To simulate the flow of the **™Tc-DTPA-
Ker-AuNPs into the chip, the solution was removed from the outlet
by withdrawing the entire content of the chip into a syringe. Suc-
cessively, the chip was filled for a second time with the same %°™Tc-
DTPA-Ker-AuNPs solution (second step). A different chip was filled
with a %™Tc-DTPA solution (third step) as a control experiment.
Gamma camera images of the filled chips were acquired at each
stage. Fig. 11 shows the results of the SPECT inspection of the chip.
At first glance, the microfluidic device's structure appeared pink-

Fig. 11. SPECT imaging experiments of the nephron-like microfluidic chip. a) Sche-
matic of the nephron-like microfluidic chip filled with the %*™Tc-DTPA-Ker-AuNPs
solution. b) Gamma camera image of the nephron-like microfluidic chip after a first
filling with the °™Tc-DTPA-Ker-AuNPs solution. ¢) Gamma camera image was taken
after the chip was emptied and filled a second time with the **™Tc-DTPA-Ker-AuNPs
solution. d) Gamma camera image of the chip filled with a®®™Tc-DTPA solution only.
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colored, as shown in the schematic representation in Fig. 11a,
confirming a homogeneous distribution of **™Tc-DTPA-Ker-AuNPs
inside the channels. Fig. 11b illustrates the gamma camera image
taken after the first filling process. It can be observed how the
radioactivity distribution is relatively homogeneous inside the
capillaries and the tubule of the nephron-like microfluidic chip.
However, it is evident that the inlet and the outlet, which are the
areas with the highest volumes, present the highest radioactivity
concentration. Due to its intermediate volume value, the glomer-
ulus shows a radioactivity distribution between the inlet/outlet and
the capillaries cases. Fig. 11c depicts the gamma camera image
taken after the second filling step. Also, in this case, a homogeneous
distribution of **™Tc-DTPA-Ker-AuNPs is obtained for the capil-
laries system while the inlet, the glomerulus, and the outlet show
higher radioactivity. Fig. 11d shows the gamma camera image of the
sample filled with a ®*™Tc-DTPA solution. The radioactivity distri-
bution is similar to the previous cases, despite a few areas that do
not show any radioactivity due to the formation of air bubbles into
the channel. Given the similarities between **™Tc-DTPA-Ker-AuNPs
and %°™Tc-DTPA, we can conclude that %*™Tc-DTPA-Ker-AuNPs
have the same radio-imaging ability as **™Tc-DTPA while giving the
photothermal properties derived from AuNPs.

To check the stability of 2°™Tc-DTPA-Ker-AuNPs in a different
fluid that mimics a more physiological environment, we have ac-
quired the absorption spectrum of %°™Tc-DTPA-Ker-AuNPs redis-
persed in a phosphate-buffered saline (PBS) solution. It turns out
that (see the Supplementary Information, Fig. S5), as it has already
demonstrated for Ker-AuNPs [21], the spectral features are
retained, thus confirming no sign of aggregation.

3.10. Thermo-optical characterization of the nephron-like
microfluidic chip

Once the uniform radioactivity distribution confirmed the
presence of radiolabeled Ker-AuNPs in the nephron-like micro-
fluidic chip, photothermal experiments were performed to verify
the homogeneous distribution of 9°™Tc-DTPA-Ker-AuNPs. This
cross-check experiment is devoted to overlapping the uniform
radioactivity distribution (confirming the uniform spatial distri-
bution of **™Tc-DTPA-Ker-AuNPs) and the homogeneous photo-
thermal response (that ensures the uniform spatial distribution of
Ker-AuNPs). The sample was irradiated for 2 min in different chip
areas, i.e., the inlet, the glomerulus, and the capillary. The thermo-
optical setup used for this experiment is reported in Fig. 1. The
temperature variations AT as a function of time for each area is
reported in Fig. 12a. No temperature variations were observed in
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Fig. 12. Thermo-optical analysis of the nephron-like microfluidic chip filled with
99MTc_DTPA-Ker-AuNPs solution. a) Temperature increment as a function of time
measured in different areas of the chip, namely inlet (green curve), glomerulus (blue
curve), and capillary (red curve). b), ), and d) show the thermographic images of the
three analyzed areas at their maximum temperature.
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the first 30 s before illumination started (Laser on). After that, a
gradual temperature rise is observed for all three areas; as soon as
the laser is switched off (Laser off), each region starts to cool down
to the initial temperature. The inlet (green curve) has proven to be
the region with the highest temperature increase of about
ATpax = 24.5 °C. This result is due to the elevated concentration of
99mTc_DTPA-Ker-AuNPs in the inlet's volume. In fact, for conve-
nience, both the inlet and the outlet are slightly deeper than the
rest of the circuit, making them more significant accumulation
areas for the Ker-AuNPs. The glomerulus (blue curve) and the
capillary (red curve) show a lower temperature increase, i.e., 8 and
9 °C, respectively. These results are confirmed by the corresponding
thermographic images reported in Fig. 12 b-d.

As expected, the smaller amount of °™Tc-DTPA-Ker-AuNPs so-
lution in the glomerulus and the capillary leads to lower temper-
ature variations AT compared to the inlet case. Nevertheless, in the
perspective of in vivo experiments, a temperature increase of
8—9 °C makes it possible to reach a temperature of about 44—45 °C
suitable to destroy cancer cells by regional mild hyperthermia [44].
Moreover, the excellent photo-thermal properties of *°™Tc-DTPA-
Ker-AuNPs indicate that they are not aggregate. Indeed, AuNPs
aggregation produces negligible photo-thermal heating since all
the light gets scattered, thus minimizing the photo-thermal con-
version associated with the absorption component [104].

4. Conclusions

We have successfully reported the realization and character-
ization of novel radiolabeled bio-mimetic AuNPs for PTT-based
applications. *°™Tc-DTPA complex, commonly used as a radio-
pharmaceutical in nuclear medicine, has been employed to radio-
label Ker-AuNPs. The metal chelator (DTPA) facilitates the adhesion
of the ®*™Tc to the Ker-AuNPs without modifying their biocom-
patibility, which has been demonstrated by studying their inter-
action with healthy human cells HEK293T. Ultrastructural TEM
analysis allowed us to understand HEK293T morphology, their
interaction with **™Tc-DTPA-Ker-AuNPs, and their uptake mecha-
nisms. A nephron-like PDMS microfluidic device mimics the
structure, and the composition of the kidney's filtering unit (the
nephron) has been used to study the dynamic stability of *™Tc-
DTPA-Ker-AuNPs. The thermo-optical characterization of the %°™Tc-
DTPA-Ker-AuNPs inside the microfluidic device confirmed that,
when illuminated by a resonant laser beam (A = 532 nm), the
AuNPs can still heat up. As such, a temperature increase of 8—9 °C,
measured in the glomerulus and capillary, makes it possible to
reach a temperature of about 45—46 °C suitable to affect cancer cell
viability. Moreover, the presence of the radiolabel linked to the Ker-
AuNPs allowed imaging of the spatial distribution of the %°™Tc-
DTPA-Ker-AuNPs inside the microfluidic chips using SPECT
technique.

The 99™Tc-DTPA-Ker-AuNPs appear to be a promising thera-
nostic agent acting as multivalent nanoplatforms for imaging and
precision nanomedicine applications. In the light of PTT-based
applications, future studies are oriented to realize exotic AuNPs
(e.g., rods, pyramids, shells, etc.) with higher photo-thermal effi-
ciency and LSPR band in the NIR range (first or second biological
windows), where the penetration depth in the tissue is much
higher. However, we would like to point out that our work is based
on proof-of-concept experiments to demonstrate how a new gen-
eration of radiolabeled bio-coated AuNPs can be used as a nano-
agent for radio-imaging PTT-applications.

Moreover, it is possible to conjugate %°™Tc-DTPA-Ker-AuNPs
with monoclonal antibodies, capable of targeting specific tumor
cells and preventing their proliferation. Combining the results ob-
tained in this study and the potential future improvements, a
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sophisticated model of PTT against primary tumors can be ach-
ieved. This opportunity will produce a selective accumulation of
AuNPs to a specific tumor area, enabling active tracking, localizing,
and PTT-assisted therapy.

Finally, although our LOC can act as a nephron phantom, we
believe that the combination of LOC and human cells, also known as
the organ-on-a-chip (OOAC) approach, may be implemented in our
future work because it can simulate more precisely the structural
and functional characteristics of human tissues. In addition, future
experiments will be devoted to including cancer and healthy cells
in the same matrix (e.g., via 3D bioprinting) and studying the effect
of the temperature increase associated with °°™Tc-DTPA-Ker-
AuNPs in a more complex environment. Our finding represents an
extraordinary step forward in realizing new drug-free cancer
treatments based on the PTT technique.
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