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Abstract: Arm swinging is a typical feature of human walking: Continuous and rhythmic movement
of the upper limbs is important to ensure postural stability and walking efficiency. However, several
factors can interfere with arm swings, making walking more risky and unstable: These include
aging, neurological diseases, hemiplegia, and other comorbidities that affect motor control and
coordination. Objective assessment of arm swings during walking could play a role in preventing
adverse consequences, allowing appropriate treatments and rehabilitation protocols to be activated for
recovery and improvement. This paper presents a system for gait analysis based on Microsoft Azure
Kinect DK sensor and its body-tracking algorithm: It allows noninvasive full-body tracking, thus
enabling simultaneous analysis of different aspects of walking, including arm swing characteristics.
Sixteen subjects with Parkinson’s disease and 13 healthy controls were recruited with the aim of
evaluating differences in arm swing features and correlating them with traditional gait parameters.
Preliminary results show significant differences between the two groups and a strong correlation
between the parameters. The study thus highlights the ability of the proposed system to quantify
arm swing features, thus offering a simple tool to provide a more comprehensive gait assessment.

Keywords: arm swing; gait analysis; Azure Kinect; Parkinson’s disease; spatiotemporal parameters;
center of mass sway; asymmetry; movement analysis

1. Introduction

The rhythmic and symmetrical swinging of the arms is one of the primary pieces of
evidence of healthy walking. It is so important that several studies have focused on why
and how this pendulum-like movement occurs and its effects on walking [1]. The reason
and origin of this oscillation are not yet entirely clarified [2]. For a long time, arm swing
during walking was considered a merely passive phenomenon. Only later, a more in-depth
analysis of the shoulder joints also suggested active muscle involvement, a hypothesis that
was confirmed by studies using electromyography [3]. However, the debate on whether it
is a purely passive, totally active, or only partially controlled phenomenon is still open [4,5].
Consequently, the analysis of arm oscillations during walking is a topic of great interest,
especially in pathological conditions that may alter normal motor behavior [2].

According to some studies, arm swinging contributes to stability and optimization
of energy expenditure during walking. The study by Ortega et al. [6] showed that arm
swing helps balance the angular momentum of the body during walking, thus reducing
the inherent lateral sway of the body’s center of mass and providing greater stability,
whereas [7] investigated the effects of arm swing on local trunk stability during gait. In
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addition, a good arm swing contributes to better recovery after an external perturbation
during walking, as demonstrated by [8]. Finally, a good arm swing minimizes energy
consumption during walking, as demonstrated in [9]: In this study, the reduced arm swing
was correlated with increased oxygen consumption and heart rate. All these findings are
extremely relevant in diseases characterized by upper limb dysfunction since they have a
direct impact on walking efficiency, stability, and fatigability of walking over long distances.
Recently, increasing attention is being paid to arm movement during gait rehabilitation,
especially in some neurological diseases such as Parkinson’s disease (PD), to improve gait
patterns [10,11]. Several studies have shown that impaired arm movements during gait
are common in PD [12,13]: Asymmetry, reduced amplitude and speed, altered rhythm
and coordination, and a low number of arm swings are associated with clinical severity
scores [14] and increased risk of fall [15], and are also a possible prodromal marker of
the pathological condition since differences in arm swing have been detected between
parkinsonian subjects and healthy controls [16,17]. Given the importance and implications
of this aspect in walking patterns, interest in evaluating arm swing characteristics and
effects has grown in recent years, moving from a primarily qualitative to a more quantitative
analysis.

An in-depth analysis of the consequences of constrained arm swinging on healthy
young adults was conducted in [18]. The main findings suggest that restriction of the arm
swing, in one arm or both, worsens walking abilities in this population, as evidenced by a
reduction in some relevant spatiotemporal parameters. A similar study was conducted in
children with cerebral palsy [19], showing a reduction in walking speed associated with
restricted arm movements under preferred and high-speed conditions. In [20], the effect
of arm swing variation in unilateral trans-humeral amputees was evaluated, whereas [21]
investigated the effects of restricted arm swing on the vertical displacement of the body’s
center of mass as associated with excessive energy expenditure. In [22], the impact of age
and gender on arm swing speed was analyzed, whereas [23] focused on the effects of arm
swing on balance improvement in post-stroke subjects.

Regarding PD, the analysis of arm swing during walking mainly focuses on asymmetry
and reduced amplitude with different purposes. As mentioned above, ref. [17] aimed to
check whether changes in arm swing are related to genetic mutations as a prodromal marker
of PD. Instead, ref. [16] focused on the analysis of arm swing alterations in early PD and
its utility for differential diagnosis, ref. [24] investigated the improvements in arm swing
due to dopaminergic medication and the changes associated with task complexity, and [25]
investigated the relationship between arm swing asymmetry and gait parameters. Ref. [26]
studied the effects of dopaminergic therapies on arm swing asymmetry and amplitude,
ref. [27] used arm swing as an index of gait worsening under dual-task conditions, ref. [12]
explored whether arm swing stimuli could improve walking patterns, and [11] had the
same goal but using weights on arms.

Most of these studies used traditional instrumented gait-analysis systems (e.g., opto-
electronic systems), which are the gold standard for motion capture in clinical settings due
to their precision and accuracy [8,11,19,21,25,27,28].

On the other hand, several recent studies aimed to quantitatively measure arm swing
features through cost-effective and minimally invasive devices that can be used in unsu-
pervised environments or where traditional motion-capture systems are not applicable.
Among them, refs. [29–31] used wearable sensors to compare arm swing features of PD
subjects and healthy controls, ref. [32] used a smartphone to quantify arm swing and
generate musical feedback to improve it, and [33] used ultrasound emitters to study the
effects of age and mental load on arm swing.

Other approaches use contactless solutions to analyze gait patterns: They rely pri-
marily on optical sensors and video analysis techniques to estimate walking features as
traditional gait analysis. In particular, RGB-Depth sensors such as Microsoft Kinect® (Mi-
crosoft Corporation, Redmond, WA, USA) have proven to be an alternative to wearable
sensors in low-cost motion capture and analysis for clinical and rehabilitation purposes.
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These optical sensors have been used extensively for motion analysis [34–37] and rehabilita-
tion goals [38–40] due to the availability of body-tracking algorithms capable of capturing
body movements comprehensively, noninvasively, and in real time, generating a three-
dimensional skeletal model from which to derive functional parameters for specific motor
tasks, including gait analysis [41–46]. Recent developments in computer vision techniques
and progress in computational resources (including processors and graphic cards) have
led to new body-tracking methodologies based on neural networks to improve accuracy in
human motion capture and pose estimation. This novel approach was used, for example,
in [47–49] for gait analysis and fall detection, with the limitation of being a 2D approach
that prevents 3D measurements. However, the same methodology has been integrated into
the body-tracking algorithm of the third generation of Kinect sensors (i.e., Microsoft Azure
Kinect DK), enabling 3D motion capture due to distance (i.e., depth) estimation provided
by the optical sensor. Several studies have verified and validated the performance of the
new device compared to its predecessors [50], demonstrating its higher accuracy in terms
of on-board sensor and body tracking [51,52] and its suitability for motion analysis [53–56]
even compared to gold reference systems.

However, only a few studies have analyzed arm swing during gait using optical
approaches [57–60]. However, to our knowledge, none have exploited the potential of the
new Azure Kinect and its improved 3D body-tracking algorithm in this context, which
is particularly important, for the reasons mentioned above, for the early detection of any
alterations that could affect walking safety.

To fill this gap, in this study, we propose integrating arm swing into gait analysis
for a more comprehensive evaluation of walking patterns, using a motion-capture sys-
tem based on the new Azure Kinect, as in [56]. Indeed, the potential for body tracking
provided by the optical sensor makes it possible to capture the movement of all body
segments simultaneously and to evaluate different aspects of gait accordingly, unlike, for
example, wearable sensors limited to the segments on which they are placed. Using the
same approach as in other studies [41,46,55], the system is able to estimate a subset of
spatiotemporal parameters, as in traditional instrumented gait analysis, and parameters
related to center-of-mass (COM) sway during gait that explains the main features of walk-
ing patterns. Possible parameters related to arm swing can contribute to the complete and
comprehensive characterization of walking. For this purpose, the proposed system and
methodology were applied to groups of healthy subjects and subjects with PD.

The main objectives of this study include verifying the system’s ability to measure
arm swing-related parameters during walking and detecting differences between the two
groups of subjects, as well as for spatiotemporal and COM-related parameters; defining
objective indicators of the asymmetry and synchrony of arm swing movements that could
easily detect transition to pathological gait over time; and verifying the correlation between
arm swing parameters and others that characterize walking pattern (i.e., spatiotemporal
and COM-related parameters). In this phase, the present study does not aim to assess the
correlation between parameter changes and disease severity.

Preliminary results suggest that the system allows for comprehensive and quantitative
assessment of walking strategies and characteristics.

2. Materials and Methods
2.1. Kinect-Based Motion-Capture System

The motion-capture system used in this study includes three elements: a processing
unit (which can be a mini-PC or a laptop), a single RGB-Depth camera (i.e., the Microsoft
Azure Kinect DK [61]), and a monitor (or TV screen) for displaying the system’s graphical
user interface (GUI) and providing visual feedback of body movements for interaction
with the system. The optical device provides synchronized color, depth, and infrared video
streams with a maximum frame rate of 30 fps (frames per second). Other parameters are
configurable during device initialization: For this study, we set a 1080p resolution for color
stream and narrow field of view (NFW) for depth stream to ensure accurate body tracking
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at a distance compatible with the needs of gait analysis. Two native software development
kits (SDKs) provide access to the device and body-tracking capabilities. Specifically, the
body-tracking algorithm uses a deep-learning approach based on neural networks to
reconstruct a 3D skeletal model (32 virtual joints) that maps human body movements in
real time [62]. This approach is expensive in terms of computational resources, so the
processing unit was chosen with hardware features that meet the requirements for real-time
body-tracking operations. Specifically, the following hardware was used for this study:
mini-pc ZOTAC© (Zotac, Fo Tan, New Territories, Hong Kong, China) ZBOX EN52060-
V model, 9th generation Intel® CoreTM processor (2.4 GHz quad-core), 16 GB of RAM,
NVIDIA GeForce RTX 2060 6GB GDDR6. The mini-PC is equipped with an HDMI port to
connect an external monitor and some USB3 ports for connecting the Azure Kinect sensor.
The system has Windows 10 as its operating system.

In addition, custom software in C#, developed in Unity® (Unity Technologies, San
Francisco, CA, USA), runs on the system, both to manage the acquisition procedure (i.e., the
process of collecting and saving data on the skeletal model) and to implement the human–
machine interaction and related GUI. The system saves information about each joint in
the skeletal model (including positions, rotations, and confidence) in JSON format files for
the next step, which analyzes 3D trajectories to estimate gait features. The user interface,
suitable even for people with low technological skills, makes the system easy and intuitive
to use: Each GUI includes a few interactive buttons (to manage data acquisition and saving
procedures) and audio and text messages that guide the patient while performing the gait
task. The layout of the GUI (including object location, font size, and colors) and the size of
the monitor (at least 26 inches) make the system suitable in case of sight problems typical
of the elderly population. The proposed system and an example of the GUI are shown in
Figures 1a and 1b, respectively.
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2.2. Recruitment Procedure and Experimental Protocol

For this preliminary study, approved by the internal ethical committee of Istituto
Auxologico Italiano, we recruited 16 subjects with PD among patients in the Division
of Neurology and Neurorehabilitation at San Giuseppe Hospital, Istituto Auxologico
Italiano, Piancavallo (Verbania), Italy. The recruitment procedure established inclusion
and exclusion criteria. General inclusion criteria included the ability to walk 10 meters
without aids (the use of canes or other supportive tools, typical in more impaired subjects,
was avoided because it interferes with the assessment of arm swing) and to understand
the instructions provided by the system and supervisor during the experimental session.
Specific inclusion criteria for PD subjects are related to tremor severity (≤1, according to
the Unified Parkinson’s Disease Rating Scale [63]) and the Hohen and Yahr (H&Y) score in
the range of 1–3. These constraints were also set to identify potential subjects with PD who
could benefit from remote monitoring in the home environment. General exclusion criteria
included previous neurosurgical interventions, neurological and musculoskeletal disorders
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due to other diseases, cognitive disorders assessed by Mini-Mental State Examination
(MMSE < 27/30), and cervical–dorsal or shoulder–upper limb comorbidities that could
affect the outcome of the analysis. In contrast, no criteria related to age, sex, therapy, or
side dominance were included in the recruitment procedure.

For the study objectives, we also recruited 13 healthy control subjects among the
caregivers and relatives of the subjects with PD. The same general inclusion and exclusion
criteria were applied to the healthy subjects, except, of course, the specific inclusion criteria
for subjects with PD.

All selected participants signed the informed consent form after a detailed explanation
of the experimental procedure and before the start of the data acquisition campaign, which
was conducted in accordance with the Institute’s ethical standards, the Declaration of
Helsinki, and its amendments.

The experimental setup was the same as in our previous studies [41,46] to ensure the
accuracy of the body-tracking algorithm within a virtually defined gait analysis path (GAP)
on a traditional 10-meter walkway. The experimental campaign took place in a hospital
setting, under the supervision of clinical and technical staff who managed data acquisition
using the proposed system according to the experimental protocol: Both groups performed
the test session under the same conditions.

According to the experimental protocol, the test session consisted of two phases. In
the first, each subject was instructed by the supervisor to perform three walking trials along
the 10-meter walkway to become familiar with and understand the acquisition procedure.
No data were collected at this stage. In contrast, data were collected during the second
phase, in which the subject was asked to maintain an upright posture for a few seconds
before walking, at a normal pace, toward the optical device (i.e., Azure Kinect) placed at the
end of the walkway: The subject, in this way, entered the GAP at maximum walking ability.
Each participant performed three repetitions of walking at this stage, with a 1-minute break
between each. At the end of each walking test, the system saved data in JSON format files
for further processing and analysis.

2.3. Data Analysis

Data analysis relies on offline processing of 3D joint trajectories acquired during gait
tests and saved in JSON files, and the analysis procedure includes two stages. The first
stage involves preprocessing the collected data using resampling and filtering techniques.
Since the variable framerate (about 30 fps) of the optical sensor introduces jitter into the
timestamp of the data, 50 Hz resampling (cubic interpolation) is used to obtain a uniform
time baseline: Up-sampling of the data was preferred to increase the density of the samples
and better refine the 3D trajectories. Then, a low-pass filter (8 Hz) was applied to the
resampled data to remove high-frequency noise: The cutoff threshold allows movements
to be captured during gait in healthy and pathological subjects [64,65]. The second stage
consists of custom MATLAB scripts that work on preprocessed trajectories and analyze the
three main aspects of gait: spatiotemporal, body sway, and arm swing features.

Regarding spatiotemporal and body sway features, the analysis procedure was the
same as described in [41,46]. Precisely, a subset of traditional spatiotemporal parameters
was estimated through the step segmentation algorithm that works on the 3D trajectories
of the left (ANKL) and right (ANKR) ankle joints of the skeletal model to analyze the gait
performance within the GAP. The analysis of the body sway relies on the 3D trajectories
of the left (HIPL) and right (HIPR) hip joints of the skeletal model from which to calculate
the 3D segment midpoint (COMHIP) and evaluate body sway along the mediolateral and
vertical directions during walking.

Arm swing analysis consists of linear and angular measurements of arm movements
within the GAP zone and aims primarily to quantify arm swing amplitude (or magnitude).
Linear measures are calculated by separately considering the x, y, and z components of the
left wrist (WRISTL) and right wrist (WRISTR) joints of the skeletal model: This information
is used to estimate the displacement of the wrists relative to the pelvis (PELVIS) joint of the
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skeletal model along the mediolateral, anteroposterior, and up–down directions [16,27,59].
Angular measures are calculated by considering the left arm (SHOULDERL–WRISTL) and
right arm (SHOULDERR–WRISTR) segments of the skeletal model: This information is
used to estimate the relative angle between the arm segments and the vertical segment of
the same side, which are the (SHOULDERL–HIPL) and (SHOULDERR–HIPR) segments,
respectively [11,17]. Linear and angular measures are also estimated separately for the
anterior (i.e., forward) and posterior (i.e., backward) phases of the full swing motion in
order to provide a more in-depth analysis [11,24,59].

Another relevant feature of arm swing is asymmetry. Several methods are commonly
used to quantify asymmetry in the arm swing, but one of the most applied is the symmetry
angle (SA) proposed in [66]: This index expresses the relationship between the discrete
measurements relative to the left and right sides of the body. Zero values indicate perfect
symmetry; increasing values indicate increasing asymmetry. In this study, we used an
absolute measure of symmetry angle as in [11,16,17,26,59] and defined as in Equation (1):

ASA = abs ((45◦ − arctan (PMORE/PLESS))/90◦) × 100 (%), (1)

where PMORE and PLESS are the parameter values associated with major and minor arm
swing, respectively. As mentioned above, both linear and angular measurements of arm
swing amplitude are estimated and, therefore, the ASA index was calculated for some
representative parameters.

Finally, we included another potentially relevant feature: the synchrony index (SI)
between the trajectories of the left and right arms (arm–arm) and between the trajectories
of the arm and opposite leg (arm–leg) during walking, which could provide further infor-
mation about the walking pattern. In fact, we expected there to be a relationship between
the arm–arm and arm–leg movements, and that the lack of such synchrony may indicate a
gait disturbance. For this assessment, we used a simple Pearson correlation between the
arm segment (SHOULDER–WRIST) and the opposite leg segment (HIP–ANKLE): Higher
correlation coefficients indicate greater synchrony between limb movements and, probably,
a better and more efficient walking pattern.

We calculated the same synchrony index between left and right arm trajectories,
specifically considering only the z-component (i.e., anteroposterior direction), which is
the most significant during walking. We also expected there to be a relationship between
the movements of the two arms (in particular, a negative relationship, since they move in
opposition): Higher correlation coefficients (as absolute values) should indicate greater
synchrony between arm movements and, probably, a better and more efficient walking
pattern. If this proves to be true, SI could become an indicator for detecting the transition
from healthy to impaired gait.

The next section describes the estimated parameters for gait characterization according
to the three aspects that have been mentioned: arm swing, spatiotemporal features, and
sway of the body center of mass.

2.4. Characterization of Gait through Objective Parameters

From the 3D joint trajectories and body segments collected during the walking trials,
the analysis procedure estimated specific parameters related to arm swing, center-of-mass
sway, and walking pattern (i.e., spatiotemporal parameters). The following tables identify
the estimated parameters for each aspect: They were computed for each walking trial of the
experimental campaign. Table 1 shows the arm swing linear and angular measurements.

The SWAY_ANT parameters were estimated from the WRISTL and WRISTR trajecto-
ries and represent the maximum anterior sway relative to the PELVIS joint. Similarly, the
SWAY_POS parameters represent the maximum backward sway relative to the PELVIS
joint. These parameters were estimated separately along the three directions of motion
(anteroposterior, mediolateral, and up–down). The SWAY_RANGE parameters represent
the maximum amplitude of full-arm swing, i.e., the peak-to-peak distance between max-
imum anterior and maximum posterior swing. The PATHTOT parameter is the total 3D
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distance traveled by the wrist within the GAP zone, whereas the SWAY_AREA is the area
determined by the convex hull enclosing the wrist motion along the AP and ML directions.
Considering that the motion along the AP direction probably is the most representative
of the arm swing, only the maximum velocity along the AP direction was considered
(SPEED_AP). The ANGLE_ANT parameters were estimated, for the left and right arms,
from the SHOULDER–WRIST and SHOULDER–HIP segments and represent the maximum
anterior angle between them. Similarly, the ANGLE_POS parameters represent the maxi-
mum posterior angle between the two segments. The ANGLE_RANGE parameters are the
maximum angle range, i.e., the peak-to-peak distance between the maximum anterior angle
and the maximum posterior angle. The ASA parameters were calculated from Equation
(1) for the maximum anterior angle (ASAANGLE), the path traveled (ASAPATH), and the
maximum anterior sway along the AP direction (ASAAP-RANGE): The ASA values were
obtained by substituting the generic PMORE and PLESS elements of the equation with the
largest and the smallest values of the considered parameter, respectively. Instead, Table 2
shows the subset of parameters relative to gait analysis, as in [41,46].

Table 1. Parameters related to arm swing.

Parameter Meaning Unit

SWAY_ANTAP,UD,ML Anterior max arm sway 1,2 mm
SWAY_POSAP,UD,ML Posterior max arm sway 1,2 mm

SWAY_RANGEAP,UD,ML Range of arm sway 1,2 mm
PATHTOT Total distance travelled inside GAP 2 mm

SWAY_AREA Area of arm movement (AP-ML) 2 mm2

SPEEDAP Maximum speed on AP 2 mm/s
ANGLE_ANT Max anterior angle 2 deg
ANGLE_POS Max posterior angle 2 deg

ANGLE_RANGE Range of arm angle 2 deg
ASAANGLE Asymmetry of ANGLE_ANT %
ASAPATH Asymmetry of PATHTOT %

ASAAP-RANGE Asymmetry of SWAY_RANGEAP %
SIARM-LEG Synchrony index of arm and opposite leg 2 -

SIARMS Synchrony index of arms -
1 On anteroposterior (AP), mediolateral (ML), and up–down (UD) directions. 2 Computed separately for left and
right arm.

Table 2. Spatiotemporal and COMHIP parameters related to gait analysis.

Parameter Meaning Unit

STEPLEN Step length 1 m
STEPWIDTH Step width 1 m

STEPVEL Step velocity 1 m/s
STEPTIME Duration of step 1 s

STRIDELEN Length of gait cycle 1 m
DOUBLESUPP Duration of double support 1 s
STANCEDUR Duration of stance phase 1 % of gait cycle

GAITVEL Gait velocity m/s
CADENCE Gait cadence steps/min
STEPNUM Number of steps #

STRIDENUM Number of strides #
MLSWAY Mediolateral sway of COMHIP mm
VSWAY Vertical sway of COMHIP mm

1 Computed separately for left and right legs.

As in traditional gait analysis, some parameters were estimated separately for the left
and right sides of the body; other parameters, however, were calculated as representative
of the entire gait. All the spatiotemporal parameters were estimated from the ANKLEL and
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ANKLER trajectories within the GAP zone through the step segmentation algorithm using
the z-component of the 3D joint positions exclusively: the z-component reflects the motion
in the anteroposterior direction toward the optical device.

The STEPLEN, STEPWIDTH, STEPVEL, and STEPTIME parameters were averaged over
the number of left and right steps, respectively, detected within the GAP zone. The same
applies to the gait cycle parameters (i.e., STRIDELEN, DOUBLESUPP, STANCEDUR), which
were averaged over the number of full left and right strides detected within the GAP zone.
STEPNUM and STRIDENUM are the total numbers of steps and complete gait cycles (i.e.,
the sum of left and right sides) detected within the GAP zone. GAITVEL is a more general
parameter that characterizes gait and represents overall speed calculated as the ratio of the
length of the GAP zone to the time taken to travel through it (i.e., from the time the body
enters the GAP to the time it leaves the GAP). CADENCE is also an overall gait parameter
and represents an estimation of the number of steps in a minute.

The MLSWAY and VSWAY parameters were estimated from the trajectory of COMHIP
within the GAP zone and represent the maximum absolute lateral and vertical oscillations
from the straight walking to the optical sensor.

2.5. Statistical Analysis

The arm swing, center of mass, and spatiotemporal parameters were estimated for
two of the three walking tests collected on all participants.

Due to the small size of the collected dataset, the Shapiro–Wilk test was used to check
the distribution normality of each estimated parameter. Thus, the statistical analysis in-
cluded parametric or non-parametric tests depending on the individual case. Since the
Shapiro–Wilk normality test showed a non-normal distribution for all parameters, we
continued the statistical analysis using mainly nonparametric tests. Notably, all the pa-
rameters in Table 1 deviated significantly from the normality hypothesis: many of them
with p < 0.001, some with p < 0.01 (i.e., SWAY_ANTUD, SWAY_RANGEML, SPEEDAP, AN-
GLE_POS), and others with p < 0.05 (i.e., SWAY_ANTAP, SWAY_POSAP, SWAY_RANGEAP,
ANGLE_ANT, ANGLE_RANGE). Regarding Table 2, almost all parameters deviated sig-
nificantly from the normal distribution hypothesis with p < 0.001, except for STEPLEN,
STEPVEL, STRIDELEN, GAITVEL, and VSWAY, which showed p < 0.01.

Next, the estimated parameters for the two groups were compared through the non-
parametric Mann–Whitney U test for independent samples to detect a statistical difference
between them: The median values with related first and third quartiles were calculated
for each parameter. However, considering that the two groups were borderline to be
considered large samples, we also used the Student’s t-test (parametric) to support the
statistical significance analysis of the parameters.

Spearman’s rank correlation (also a nonparametric test) was used to study the correla-
tion existing between the three categories of parameters (arm swing, spatiotemporal, and
center of mass). The analysis was performed separately for the control group and the PD
group to see whether there were similarities or differences in the relationship between the
parameter categories for the two groups. However, considering that the two groups were
borderline to be considered large samples, we also used the Pearson’ correlation coefficient
(parametric) to support the analysis of correlation between parameter pairs.

Statistical tests were performed using Jamovi (version 2.2.5), an open-source modular
platform for statistical computing [67]: A 95% significance level (p < 0.05) was considered,
where applicable, for the statistical tests.

3. Results
3.1. Participants Features and Data Collection

The PD subjects recruited for the study had the following demographic and clinical
characteristics: 68.9 ± 7.1 years (average age), 8.9 ± 7.6 years (average disease years),
34.0 ± 6.5 pts (average UPDRS score), 2.1 ± 0.9 pts (average H&Y score), 164.5 ± 7.4 cm
(average height), 77.2 ± 14.1 kg (average weight), and 5 females and 11 males (gender).
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The healthy controls recruited for this study had the following demographic characteristics:
56.3 ± 8.7 years (average age), 167.8 ± 7.4 cm (average height), 66.2 ± 10.9 kg (average
weight), and 5 females and 8 males (gender). Although the two groups were not strictly
homogeneous, this fact did not affect the objectives of the study.

Almost all the participants were able to perform all three walking trials as required by
the experimental protocol. No trial was discarded due to technical or environmental issues
during the acquisition phase.

3.2. Statistical Analysis on Estimated Parameters

The statistical analysis relied on two of the three walking trials performed by each
subject. In fact, because the first trial of some subjects with PD did not fully comply with
the protocol directives (e.g., subjects did not walk at their normal pace, or partially turned
toward the supervisor for clarifications, or halted too early), we decided to include in the
statistical analysis only the last two trials of each subject that, in contrast, were performed
correctly. Therefore, the dataset available for the statistical analysis includes 32 walking
trials for the PD group and 26 walking trials for the healthy controls. This means that for
the parameters estimated separately (i.e., for the left and right sides of the body), 64 and
52 samples, respectively, were available for statistical analysis, whereas for the parameters
estimated over the entire gait, 32 and 26 samples, respectively, were available.

As mentioned above, the Mann–Whitney U test for independent samples was used to
test the statistical differences between the two groups and the discriminative power of each
parameter. Results of Student’s t-test were also reported to support nonparametric analysis.
Table 3 shows the results for the arm swing parameters and Table 4 for the spatiotemporal
and center-of-mass parameters: The tables report the median and quartiles (first and third)
for each group, along with the rank-sum test statistic, p-value, and significance level.

The results suggest that only some of the estimated arm swing parameters signifi-
cantly differed between the two groups of subjects. The interquartile ranges indicated a
partial overlap for parameters showing a statistically significant difference between the
two groups. In contrast, parameters that were not statistically significant showed almost
complete overlap between HC and PD groups. The Student’s t-test was in agreement
with the nonparametric test except for the SWAY_AREA and SWAY_RANGEUD parame-
ters, whose significance level was slightly lower. The main significant parameters were
those related to anterior arm motion, as linear (SWAY_ANT) and angular (ANGLE_ANT)
measures. In contrast, the parameters related to backward arm motion (SWAY_POS and
ANGLE_POS) did not appear to be relevant. As expected, the anteroposterior (and its
SPEEDAP velocity) and up–down directions better characterized the arm swing motion,
whereas the mediolateral component was similar in the two groups. The amplitude param-
eters (SWAY_RANGE and ANGLE_RANGE) also denoted a significant difference between
the two groups, except for the amplitude in the mediolateral direction. The SWAY_AREA
parameter, which simultaneously takes into account the anteroposterior and mediolateral
directions, was also significant, although to a lesser degree. This result probably depends
on the inclusion of mediolateral direction leading to more similar area values. This behavior
was also reflected on the PATHTOT parameter, which was instead calculated by considering
all three directions. In any case, all the parameters detected a significant difference between
the two groups for the defined significance level (p < 0.05).

The interquartile ranges in Table 4 indicate a partial overlap for parameters showing
a statistically significant difference between the two groups. In contrast, parameters that
were not statistically significant showed almost complete overlap between HC and PD
groups. The Student’s t-test was in agreement with the nonparametric test except for the
STEPWIDTH, which was not significant, and for CADENCE and DOUBLESUPP parameters,
whose significance level was slightly higher. The results in Table 4 also suggest that all
the estimated spatiotemporal parameters showed a significant difference between the two
groups of subjects, except for CADENCE. The parameters related to the center of mass
(COMHIP) also did not significantly differ between the two groups. This result may be
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because lateral and vertical sways during walking are not necessarily present in PD subjects
(body sway is a feature that mainly occurs in more advanced stages of the disease). These
parameters were included because previous studies have shown that lateral sway may
highlight gait abnormalities in pathological subjects [41,46]. An in-depth analysis of body
sway over all participants revealed a difference in mean, standard deviation, minimum,
and maximum values for the lateral sway for the two groups. In fact, for MLSWAY, it was
obtained (mean: 56.72 ± 13.52 mm; min: 37.67 mm; max: 96.10 mm) for the HC group
versus (mean: 63.15 ± 26.97 mm; min: 29.44 mm; max: 164.44 mm) for the PD group. The
standard deviation showed greater variability in the lateral body sway (MLSWAY) for the
PD group, which included subjects with very pronounced lateral body sway (as evidenced
by the maximum value). It follows that body sway analysis is also important for identifying
gait abnormalities.

Table 3. Median and quartiles (first and third) relative to arm swing parameters for PD and HC
groups, with test statistic, p-value, and significance level.

Median
(1st and 3rd Quartiles) Mann–Whitney t-Test

Parameter (unit) PD Group HC Group Statistic p-Value Statistic p-Value

SWAY_ANTAP (mm) 135.22
(75.88, 187.41)

199.49
(160.25, 223.13) 599 <0.001 *** 5.25 <0.001 ***

SWAY_ANTUD (mm) 30.70
(13.85, 43.26)

50.26
(41.40, 57.81) 515 <0.001 *** 5.74 <0.001 ***

SWAY_ANTML (mm) 19.35
(11.39, 32.45)

33.37
(7.81, 48.16) 1130 0.212 1.39 0.170

SWAY_POSAP (mm) −41.98
(−110.36, −5.15)

−78.16
(−102.70, −32.25) 1119 0.187 −1.04 0.300

SWAY_POSUD (mm) −19.82
(−40.20, −5.24)

−27.08
(−40.60, −8.83) 1246 0.629 0.88 0.380

SWAY_POSML (mm) −25.53
(−52.57, −12.93)

−29.41
(−56.03, −15.56) 1261 0.700 −0.29 0.770

SWAY_RANGEAP (mm) 162.79
(101.58, 247.12)

278.65
(211.52, 317.21) 714 <0.001 *** 4.14 <0.001 ***

SWAY_RANGEUD (mm) 50.25
(36.07, 64.77)

73.41
(59.63, 89.13) 736 <0.001 *** 2.07 0.004 **

SWAY_RANGEML (mm) 54.77
(41.02, 73.05)

63.57
(44.87, 80.51) 1077 0.111 1.77 0.080

PATHTOT (mm) 930.32
(602.01, 1404.38)

1237.39
(912.23, 1428.66) 1001 0.036 * 1.41 0.160

SWAY_AREA (mm2)
5735.16

(2454.36, 8464.25)
8791.01

(6812.10, 10,292.27) 840 0.002 ** 230 0.020 *

SPEEDAP (mm/s) 365.01
(231.26, 646.22)

850.81
(533.84, 952.50) 623 <0.001 *** 2.98 <0.001 ***

ANGLE_ANT (deg) 19.29
(8.92, 24.09)

26.39
(21.89, 29.13) 651 <0.001 *** 4.93 <0.001 ***

ANGLE_POS (deg) −10.33
(−15.40, −6.93)

−10.91
(−13.66, −8.17) 1303 0.911 0.13 0.900

ANGLE_RANGE (deg) 27.33
(15.09, 38.34)

38.24
(31.03, 42.22) 787 <0.001 *** 3.68 <0.001 ***

***: p-value < 0.001; **: p-value < 0.01; *: p-value < 0.05.

3.3. Asymmetry and Synchrony Indices

The same statistical analysis was performed on asymmetry coefficients and synchrony
indices. Table 5 reports the obtained results.
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Table 4. Median and quartiles (first and third) relative to spatiotemporal and COM parameters for
PD and HC groups, with test statistic, p-value, and significance level.

Median
(1st and 3rd Quartiles) Mann–Whitney t-Test

Parameter (unit) PD Group HC Group Statistic p-Value Statistic p-Value

STEPLEN (m) 0.57
(0.53, 0.63)

0.64
(0.60, 0.70) 622 <0.001 *** 4.35 <0.001 ***

STEPWIDTH (m) 0.14
(0.12, 0.18)

0.12
(0.08, 0.18) 995 0.032 ** −0.333 0.074

STEPVEL (m/s) 0.97
(0.85, 1.11)

1.18
(1.07, 1.27) 609 <0.001 *** 4.27 <0.001 ***

STEPTIME (s) 0.58
(0.53, 0.62)

0.55
(0.53, 0.57) 946 0.014 ** −2.63 0.010 **

STRIDELEN (m) 1.10
(1.03, 1.25)

1.24
(1.19, 1.37) 644 <0.001 *** 4.36 <0.001 ***

DOUBLESUPP (s) 0.27
(0.17, 0.37)

0.20
(0.13, 0.24) 840 0.002 ** −3.46 <0.001 ***

STANCEDUR (%) 62.59
(59.67, 65.57)

59.34
(56.48, 61.42) 787 <0.001 *** −3.83 <0.001 ***

GAITVEL (m/s) 0.90
(0.81, 1.02)

1.07
(0.99, 1.17) 620 <0.001 *** 4.60 <0.001 ***

CADENCE
(steps/min)

109.29
(99.17, 119.00)

111.63
(108.11, 115.38) 1110 0.168 2.49 0.014 *

STEPNUM (#) 2.00
(2.00, 3.00)

2.00
(1.00, 2.00) 870 <0.001 *** −3.69 <0.001 ***

STRIDENUM (#) 2.00
(1.00, 2.00)

1.00
(1.00, 1.25) 825 <0.001 *** −3.96 <0.001 ***

MLSWAY (mm) 57.84
(47.73, 73.16)

54.27
(47.19, 60.86) 286 0.424 −1.06 0.292

VSWAY (mm) 40.62
(29.82, 45.95)

36.33
(32.66, 44.46) 305 0.653 −0.461 0.647

***: p-value < 0.001; **: p-value < 0.01; *: p-value < 0.05.

Table 5. Median and quartiles (first and third) relative to asymmetry and synchrony indices for PD
and HC groups, with test statistic, p-value, and significance level.

Median
(1st and 3rd Quartiles) Mann–Whitney t-Test

Index (unit) PD Group HC Group Statistic p-Value Statistic p-Value

ASAANGLE (%) 10.48
(3.94, 21.24)

4.47
(2.93, 6.88) 806 <0.001 *** 4.11 <0.001 ***

ASAPATH (%) 11.17
(3.88, 16.79)

5.95
(4.21, 11.10) 984 0.027 * 2.47 0.015 *

ASAAP-RANGE (%) 14.31
(5.91, 18.65)

5.93
(3.93, 8.78) 796 <0.001 *** 4.04 <0.001 ***

SIARM-LEG (-) 0.79
(0.60, 0.90)

0.89
(0.80, 0.93) 972 0.022 * 2.86 0.005 **

SIARMS (-) −0.77
(−0.87, −0.40)

−0.93
(−0.94, −0.82) 574 <0.001 *** −5.07 <0.001 ***

***: p-value < 0.001; **: p-value < 0.01; *: p-value < 0.05.

The results confirm that the asymmetry was more pronounced in the PD group, with
a statistically significant difference for all three parameters. In this case, the interquartile
range also indicated only partial overlap for parameters showing a statistically significant
difference between the two groups. In contrast, parameters that were not statistically
significant showed almost complete overlap between the HC and PD groups. The Student’s
t-test was in agreement with the nonparametric test except for the SIARM-LEG parameter,
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whose significance level was slightly higher. The ASAPATH index was the least significant,
but this result agreed with the lower significance of the PATHTOT parameter. The same is
true for the ASAANGLE and ASAAP-RANGE indices associated with ANGLE_RANGE and
SWAY_RANGEAP parameters, which showed higher significance. It is important to note a
similarity between the magnitudes of the three asymmetry parameters in both the PD and
HC groups, meaning that the same level of asymmetry was consistently detected across
both linear and angular measures.

Both synchrony indices, measured through Pearson’s correlation coefficient, showed
high values, which means that there was, on average, a strong correlation between arm
swing and opposite leg movements (SIARM-LEG) and opposition movements of the two
arms (SIARMS). The SIARM-LEG index takes positive values, as the movement of the opposite
arm and leg occurs in the same direction. In contrast, the SIARMS takes negative values, as
the trajectories of the arms are in opposition. In any case, absolute coefficients greater than
0.7 indicate a strong correlation between the trajectories and, consequently, high synchrony
(i.e., coordination) of movements during walking. Statistical analysis of SIARMS indicated
a significant difference between the PD and HC groups: Interestingly, the quartile values
showed more significant variability for the PD group than the HC group. In contrast, the
SIARM-LEG seemed less significant: In this case, the parameter range was wider, especially
on the left side (corresponding to the lowest correlation values), as suggested by the first
quartile.

The presented results suggest that these indices (high values for ASA and low values
for SI) could be effectively used to quantify specific gait abnormalities associated with
asymmetrical walking patterns and limited coordination.

3.4. Arm Swing in PD and Healthy Control Groups

In this section, we present some examples of arm swing and gait patterns referring to
both healthy and pathological subjects. The intent is to show the ability of the proposed
system to detect all aspects of gait performance qualitatively. The graphical representation
allows for a quick and intuitive qualitative overview of any gait problems that can then
be measured objectively through quantitative parameters. In particular, Figure 2 shows
examples referring to subjects in the PD group, whereas Figure 3 shows examples referring
to subjects in the HC group. For each group, two significant subjects were considered:
a PD subject with normal gait (Subject #10), a PD subject with altered gait (Subject #6),
an HC subject without gait problems (Subject #5), and an HC subject with asymmetry in
arm swing (Subject #3). These figures also aim to show that gait abnormalities were not
necessarily present in all recruited PD subjects and that, on the contrary, some healthy
subjects may have had some slight abnormalities. In both cases, a quantitative assessment
could allow for early correction of the problem and improve the overall quality of gait.

As shown in Figure 2 for the PD group, subject #10 showed symmetry in arm swing
(Figure 2a) and a fast and stable gait characterized by long steps (Figure 2b). In contrast,
subject #6 showed significant asymmetry in the arm swing, with the right arm having
almost no movement (Figure 2c) and a gait characterized by short strides and lateral
oscillations of the center of mass (Figure 2d).

Regarding the healthy control group, subject #5 showed symmetry in arm swing
(Figure 3a) and a fast and stable gait characterized by long steps (Figure 3b). In contrast,
subject #3 showed slight asymmetry in arm swing (Figure 3c) and a gait characterized by
shorter steps and slight lateral center-of-mass sways (Figure 3d).

The qualitative assessment obtained from the graphs is supported quantitatively by
the previously described parameters. Tables 6 and 7 show the values of the most significant
parameters (according to statistical analysis), estimated for the four subjects.
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to pelvis joint (black cross); (b) subject #10: gait patterns with detected steps and center-of-mass
trajectory within the GAP zone; (c) subject #6: arm swing on AP and ML directions for left arm (red
line) and right arm (blue line) relative to pelvis joint (black cross); (d) subject #6: gait patterns with
detected steps and center-of-mass trajectory within the GAP zone.
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Figure 3. Example of arm swing trajectories (in meters) and gait patterns for HC subjects. (a) Subject
#5: arm swing in AP and ML directions for left arm (red line) and right arm (blue line) relative to
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Table 6. A subset of the most representative parameters for the left and right sides related to the
performance shown in Figure 2 (PD group).

Subject #6
(PD Group)

Subject #10
(PD Group)

Parameter (unit) Left Right Left Right

SWAY_ANTAP (mm) 41.47 61.63 267.42 249.94
SWAY_ANTUD (mm) −40.16 46.85 27.00 22.70

SWAY_RANGEAP (mm) 295.89 123.95 411.13 395.67
SWAY_RANGEUD

(mm) 60.69 84.90 168.41 199.74

PATHTOT (mm) 2522.04 1408.56 1551.77 1575.54
SWAY_AREA (mm2) 14,778.15 7287.46 14,328.10 9061.74

SPEEDAP (mm/s) 780.29 309.44 1086.99 900.00
ANGLE_ANT (deg) 5.51 9.12 38.13 34.77

ANGLE_RANGE (deg) 40.34 18.06 55.21 52.68
ASAANGLE (%) 23.24 1.52
ASAPATH (%) 17.61 0.51

ASAAP-RANGE (%) 24.78 1.25
SIARM-LEG (-) 0.90 0.86 0.90 0.87

SIARMS (-) −0.77 −0.91

Parameter (unit) Left Right Left Right

STEPLEN (m) 0.28 0.25 0.82 0.83
STEPWIDTH (m) 0.31 0.28 0.16 0.08
STEPVEL (m/s) 0.45 0.41 1.54 1.59

STEPTIME (s) 0.62 0.62 0.53 0.52
STRIDELEN (m) 0.49 0.51 1.67 1.57

DOUBLESUPP (s) 0.86 0.86 0.13 0.13
STANCEDUR (%) 80.34 75.34 59.11 57.89
GAITVEL (m/s) 0.39 1.47

CADENCE (steps/min) 99.17 126.32
STEPNUM (#) 4 4 1 2

STRIDENUM (#) 4 3 1 1
MLSWAY (mm) 115.24 55.44
VSWAY (mm) 28.41 66.55

As previously described, the subjects selected for this comparison represent borderline
and significant cases for both groups. In any case, the objective measures confirmed the
initial indications provided by the graphic representations. In particular, the estimated
parameters for PD subjects agreed with the assigned H&Y score, with 1 for subject #10 and
3 for subject #6.

Some relevant insights emerged from the comparison. Subject #6 (PD group) showed
alterations in all gait characteristics (arm swing, lateral sway, spatiotemporal parame-
ters). Regarding arm swing, all ASA parameters showed rather great values, whereas the
SIARMS had the lowest value compared to the other cases (this is consistent with restricted
movement of the right arm). This evidence could thus confirm the use of the SIARMS as
an indicator of alterations in arm movement synchrony. Subject #10 (PD group) showed
comparable performance to subject #5 (HC group) for all gait characteristics, including the
SIARMS: This subject appeared to have a motor pattern similar to healthy subjects (this is
consistent with his early stage of the disease). In contrast, subject #3 (HC group) showed
arm swing asymmetry in terms of amplitude but not asynchrony, considering that the
SIARMS index showed a very high value.

3.5. Correlation between Type of Parameters

The last analysis aimed to test the relationships between the estimated parameters of
the three categories: arm swing, spatiotemporal, and center of mass. Spearman’s correlation
coefficient was used to measure the existing correlation. Positive values indicate a direct
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relationship (i.e., the parameter pair moves in the same direction); negative values indicate
an inverse relationship (i.e., the parameter pair moves in the opposite direction). Larger val-
ues indicate strong correlations; smaller values indicate weak correlations. Figure 4 shows
the Spearman’s correlation values for the HC and PD groups. The background color of
the boxes indicates the significance level (p-value) of the Spearman’s correlation coefficient
(red: p < 0.001; orange: p < 0.01; yellow: p < 0.05). White boxes refer to parameter pairs
without significant correlation. The same analysis performed using Pearson’s correlation
coefficient confirms the behavior shown in Figure 4: The differences in terms of correlation
were in fact negligible and did not change the corresponding level of significance.

Table 7. A subset of the most representative parameters for the left and right sides related to the
performance shown in Figure 3 (HC group).

Subject #3
(HC Group)

Subject #5
(HC Group)

Parameter (unit) Left Right Left Right

SWAY_ANTAP (mm) 150.43 137.53 195.53 225.63
SWAY_ANTUD (mm) 37.39 37.40 53.14 63.74

SWAY_RANGEAP (mm) 279.31 136.28 333.67 327.56
SWAY_RANGEUD

(mm) 61.11 45.45 62.55 59.31

PATHTOT (mm) 1330.83 618.68 1455.22 1465.84
SWAY_AREA (mm2) 8264.99 3076.61 7416.28 13,192.44

SPEEDAP (mm/s) 829.42 466.92 927.41 951.26
ANGLE_ANT (deg) 23.15 17.38 27.09 26.80

ANGLE_RANGE (deg) 39.48 20.47 43.50 46.18
ASAANGLE (%) 19.59 1.92
ASAPATH (%) 22.33 0.26

ASAAP-RANGE (%) 21.14 0.61
SIARM-LEG (-) 0.89 0.92 0.94 0.86

SIARMS (-) −0.94 −0.91

Parameter (unit) Left Right Left Right

STEPLEN (m) 0.59 0.64 0.73 0.75
STEPWIDTH (m) 0.20 0.07 0.24 0.10
STEPVEL (m/s) 1.04 1.16 1.28 1.27

STEPTIME (s) 0.57 0.55 0.57 0.59
STRIDELEN (m) 1.19 1.21 1.42 1.48

DOUBLESUPP (s) 0.27 0.25 0.17 0.21
STANCEDUR (%) 61.46 63.21 56.03 58.04
GAITVEL (m/s) 0.93 1.15

CADENCE (steps/min) 110.09 107.14
STEPNUM (#) 2 2 2 1

STRIDENUM (#) 2 1 1 1
MLSWAY (mm) 75.58 54.48
VSWAY (mm) 32.49 73.66

The analysis was performed separately on the two groups to reveal any differences
in correlation between different walking aspects. The distribution of the colored boxes
(parameter pairs with significant correlations) shows differences between the two groups
at first glance.

For the HC group, there seemed to be an overall more significant correlation than for
the PD group between arm swing and spatiotemporal parameters. This is evident both
by looking at the distribution of yellow boxes (there are many more for the HC group)
and by looking at the magnitude and significance of the relationship (in general, larger
and more significant coefficients). This result seems to support the hypothesis of the
importance of arm movement for effective and healthy walking. For the HC group, it seems
that the arm swing parameters most correlated with spatiotemporal parameters were the
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linear parameters related to anteroposterior motion (SWAY_ANTAP, SWAY_RANGEAP,
SPEEDAP), whereas for the PD group, angular parameters seemed to be more significant
(ANGLE_ANT, ANGLE_RANGE).
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Regarding the asymmetry indices, none seemed to correlate with the spatiotemporal
parameters for the HC group. This may be because arm swing asymmetry was a sporadic
condition in healthy subjects. In contrast, for the PD group, the ASAANGLE parameter
showed a significant correlation with all spatiotemporal parameters except STEPWIDTH.

Regarding the synchrony indices, practically the opposite happened. The indices
for the HC group (SIARMS and SIARM-LEG) showed a good correlation with almost all
spatiotemporal parameters (especially the most significant ones). In contrast, neither index
showed an equally good correlation for the PD group. This result suggests that good
synchronism, both in arms and opposite arm–leg movement, could provide an indication
of a gait without particular alterations.

Finally, for both groups, none of the arm swing parameters seemed to significantly
correlate with the parameters related to center-of-mass sways (MLSWAY and VSWAY) for
both groups. This result would seem to suggest that the anomalies associated with center-
of-mass sway represent a separate category, unrelated to the other types of gait anomalies.

4. Discussion

Arm swing is a typical feature of the human gait. Numerous studies have proven that
it ensures effective and stable walking, and responsiveness in recovering balance following
external perturbations. Reduced arm swing can therefore impact the overall quality of
walking. Several factors can affect this movement, which can therefore be considered
a walking disorder. In addition to accidents and injuries that can temporarily prevent
good arm swings during walking, other chronic conditions can permanently alter arm
swings—for example, diseases characterized by symptoms that impair movement, such as
Parkinson’s disease (PD). Recently, the importance of effective arm swing in PD has been
recognized, and treatment of its alterations has become part of several gait rehabilitation
protocols with the aim of improving gait patterns [10,11]. Typical alterations of arm swing in
PD include asymmetry, reduced amplitude and speed, and asynchrony of movement, which
occur mainly and more frequently with progression and increasing disease severity [14].

In the last few years, there has been a shift from qualitative to quantitative assessment
of arm swing and its characteristics, considering the importance of this gait aspect. In
some cases, assessment of arm swing has been included in traditional gait analysis using
optoelectronic systems, the gold standard for motion analysis, but the complexity and
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the need to place markers on the body limit assessment with these systems in clinical
settings. Instead, it would be helpful to have inexpensive and minimally invasive assess-
ment systems suitable for unsupervised settings. These systems could allow for frequent
monitoring of gait as a whole and early detection of changes in arm swing movements
so that specific rehabilitation protocols could be promptly activated and the risk of more
severe consequences (e.g., falls) reduced, especially in frail and pathological individuals.

Along this line of research, this study presents a noninvasive motion-capture system
based on the new Azure Kinect [56] to obtain a quantitative and combined assessment of
different aspects of gait, including traditional spatiotemporal parameters, center-of-mass
sways, and arm swings. We consider that these three aspects, taken individually or together,
could provide relevant insights into the overall quality and gait evolutions in parkinsonian
people compared to “healthy” gait, with the advantage of having an easy and portable tool
to measure them.

The main objectives of the study are summarized here. The first objective was to
test the ability of the system to measure gait features and detect statistically significant
differences between parkinsonian and healthy gait patterns in arm swing, spatiotemporal,
and center-of-mass parameters. The second objective was to define indices to quantify
asymmetry and synchrony related to arm swing that can be monitored over time to de-
tect the onset of gait disturbances, perhaps before spatiotemporal and stability features.
The last objective was to verify the relationship between parameters related to the three
aspects of gait analysis in healthy and parkinsonian subjects. This analysis could help detect
the onset of walking abnormalities, revealing the transition from normal to pathological
gait. In the future, the present study will be extended to investigate the correlation between
parameter changes and PD severity.

Regarding the first objective, the results demonstrate the system’s ability to qualita-
tively detect differences in different aspects of walking (Figures 2 and 3), which are also
reflected in objective measures through specific parameters (Tables 6 and 7). The param-
eters related to arm swing were defined based on the primary studies in the literature
focused on arm swing, both in terms of the range of motion [11,16,17,24,27,59] and asym-
metry [11,16,17,26,59]. In addition, we considered a subset of traditional spatiotemporal
parameters and measures related to center-of-mass sway, as in our previous studies [41,46],
that proved relevant in pathological conditions. Finally, we defined some indices of syn-
chrony that aimed to quantify the coordination and synchronism of the movement of
opposite arms and legs.

Regarding arm swing, the statistical analysis indicates that only a few parameters
significantly differed between the two groups. In particular, the most significant were
associated with the anterior phase of the arm swing rather than the posterior one. Regard-
ing asymmetry, statistical analysis suggests the lower significance of ASAPATH (p < 0.05)
compared to ASAANGLE and ASAAP-RANGE (p < 0.001). This is consistent with the lower
significance of the PATHTOT parameter (p < 0.05). About synchrony, both indices detected
statistically significant differences, but particularly SIARMS (p < 0.001), which quantifies
synchronism (i.e., coordination) between opposite arm movements. Difficulty in arm
movement coordination could therefore be indicative of the onset of a subsequent gait
disorder. All spatiotemporal parameters showed a significant difference between the two
groups, except cadence, whose mean value for the PD group (104.99 steps/min) is still
comparable to other studies focusing on gait analysis [68,69]. In contrast, center-of-mass
parameters did not indicate a statistical difference between the two groups. However,
the analysis of the mean and standard deviation, and minimum and maximum values,
revealed more significant variability in the PD group and the presence of subjects with high
lateral sway; this suggests that, although not relevant for discriminating between the two
groups, analysis of center-of-mass motion is essential for a complete gait assessment.

Compared with other studies, our results agree with those of [16], where higher asym-
metry and lower gait velocity were measured for PD subjects. In addition, no significant
difference was found between “more” and “less” arm swing parameters of the PD and
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HC groups. This is in line with our PATHTOT parameter (which has lower significance)
but not with the sway range in specific directions (AP and UD), which, on the contrary,
showed a statistical difference between the two groups (p < 0.001). This result could be
due to the different composition of the PD group and the inclusion of subjects with greater
severity. Our results regarding arm swing amplitude and asymmetry are also consistent
with those reported in [59], which showed a significant reduction in arm swing amplitude
and speed, and a significant increase in ASA for the PD group compared to healthy controls.
The mean values of the angular measures of the arm swing were much higher than in [11],
both considering the single phases (anterior and posterior) and the whole angular range.
This is probably due to the different composition of our PD group, which also included less
severe subjects compared with [11], where the H&Y score was between 2 and3 (our study
also involved subjects with H&Y < 2). The same is true for spatiotemporal parameters
that showed higher values and range than in [11]. Compared with [25], who reported
results on arm swing and spatiotemporal parameters, our results are aligned with the
significance of arm swing amplitude and angular asymmetry but not with the significance
of spatiotemporal parameters, which were statistically significant in our study. Again,
this is probably due to the inclusion of more severe subjects in our PD group compared
with [25], where the mean H&Y score was 2.05 ± 0.29 (in our study, the mean H&Y score
was 2.10 ± 0.9, which confirmed the inclusion of more severe subjects). This may have
increased the differences with the healthy group.

Compared with [14,26], our results on asymmetry are also consistent: In both studies,
the PD group showed reduced arm swing and higher asymmetry than healthy controls,
although the formula for calculating ASA was slightly different. Furthermore, the results
on amplitude and asymmetry are comparable with those reported in [17], although the
study’s objectives were different. Regarding spatiotemporal parameters, the measures
for the PD group are in line with those of [10]. Unfortunately, this study does not report
measures on arm swing, only the effects on spatiotemporal parameters of increasing the
amplitude and frequency of arm swing movements. Comparison between the PD and
HC groups in [24] shows a statistically significant difference in arm swing parameters,
although the different parameters were estimated using an inertial sensor. No study has
reported analysis of body sway during walking, although it seems to be an essential gait
characteristic to distinguish between post-stroke and PD subjects, as shown in [46].

Referring to the second objective of the study, and specifically the definition of the
synchrony indices, it appeared that SIARM-LEG and SIARMS were statistically significant in
distinguishing the two groups. However, more significant seemed to be the synchrony of
arm movements (SIARMS). The alteration of opposite arm movements (i.e., when one moves
forward, the other moves backward), quantified by the synchrony index, could indicate
the transition from a healthy to a pathological gait. Therefore, monitoring could be helpful
for the early identification of a later and more visible disorder manifesting in other aspects
of walking.

Regarding the third objective of the study, namely, the correlation between arm swing
and spatiotemporal parameters, we found only one study that performed this analysis using
the Pearson’s correlation coefficient instead of the nonparametric Spearman’s correlation
coefficient, as in our study. Specifically, [11] reported a relationship between arm swing
amplitude (as an angular measure) and gait speed and stride length. We confirmed the
significant correlation of the angular measures with the speed parameters defined in our
study (i.e., STEPVEL and GAITVEL), but we did not obtain a significant correlation with
stride length. In contrast, our results suggest that other arm swing parameters strongly
correlated with additional spatiotemporal parameters, as shown in Figure 4. This analysis
could support the identification of subcategories of gait abnormalities affecting one or
more aspects of gait, thus defining different levels of impairment during walking. This
evidence is also suggested by the differences in correlation with healthy controls, as shown
in Figure 4. Moreover, based on this analysis, it appears that sways of center of mass
refer to a specific gait abnormality, uncorrelated with both spatiotemporal and arm swing
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features. In addition, this analysis could provide new insights into more comprehensive
gait assessment, as well as play a preventive role in the risks of “unhealthy” gait, and
facilitate the design of specific rehabilitation protocols and remote follow-up of patients.

Overall, preliminary results suggest that the system enables comprehensive and quan-
titative assessment of walking strategies and characteristics. In addition, some technical
features of the system, including its portability, small size, and ease of use, make it suitable
for more frequent gait assessments even in unsupervised or poorly supervised settings
(such as the home or outpatient clinics). This solution could also facilitate the follow-up on
many patients and limit the use of gold-standard systems to only high-risk cases requiring
traditional, in-depth gait analysis. Moreover, this solution could support clinicians in
monitoring the progression of gait disorders in neurodegenerative diseases (such as PD)
and promptly intervene if abnormalities are detected, triggering appropriate treatments,
including arm swing enhancement in gait rehabilitation programs, which promote the
recovery of safe gait [10,11].

In conclusion, the preliminary results of this study encourage us to continue the
analysis of arm swing and correlation with other gait characteristics, but further work
remains to overcome some limitations of this study. Indeed, the first step will be to increase
the number of subjects involved and analyzed by increasing the reference sample size.
This improvement will allow to confirm and consolidate the results obtained in a larger
cohort. It will also be interesting to deepen the analysis on groups of PD subjects with
different levels of severity, to investigate how the data change in the different classes,
whether some of the parameters and indices may already be significant in the early stages
of the pathology, and how they vary as a function of pharmacological and rehabilitation
treatments, as shown by several studies [16,59]. Similarly, applying the same methodologi-
cal approach to other pathologies and conditions characterized by impaired walking and
movement (for example, in post-stroke subjects) will also be challenging.

In future developments of the study, it is planned to apply machine learning ap-
proaches and supervised classifiers according to the three aspects of gait analyzed so
far, either by considering them separately or as a whole. From this improvement, it will
probably be possible to define a new gait disorder index that considers all three aspects
of walking and allows prompt recognition of altered gait with high risk of falls or specific
treatments to be activated to recover a safe and effective gait.

5. Conclusions

Based on the results presented in this paper, the proposed motion-capture system
based on Azure Kinect is capable of quantifying, through objective parameters, arm
swing motion during walking in PD subjects, detecting significant differences from control
subjects, and obtaining results comparable with other studies in the literature, some of
which use a different methodological and technological approach for a different purpose.
This ability, together with the already established ability to measure spatiotemporal and
center-of-mass parameters, makes the proposed system capable of providing an overall
gait assessment concerning its three aspects. This approach is a novelty since studies in
the literature generally focus on a single aspect of walking. In fact, to our knowledge,
this study is the first in the literature that jointly analyzes aspects related to arm swing,
spatiotemporal measurements, and stability during gait using a vision system implemented
with the new Azure Kinect.

Finally, the system’s features, including noninvasiveness, ease of use, and portability,
make it a suitable tool for monitoring gait alterations on a broader number of subjects and in
contexts where traditional gait-analysis systems are not applicable (e.g., home monitoring
or in unsupervised environments) or where the accuracy of a gold reference system is
not necessary (e.g., for rehabilitation purposes). For these reasons and from the clinical
perspective, this approach is particularly promising, as it may pave the way for new patient
and disease follow-up strategies using innovative technologies and solutions to support
traditional clinical methods.
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