
21 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Non-Euclidean Contractivity of Recurrent Neural Networks / Davydov, Alexander; Proskurnikov, Anton V.; Bullo,
Francesco. - ELETTRONICO. - (2022), pp. 1527-1534. (Intervento presentato al  convegno 2022 American Control
Conference (ACC) tenutosi a Atlanta, GA, USA nel 08-10 June 2022) [10.23919/ACC53348.2022.9867357].

Original

Non-Euclidean Contractivity of Recurrent Neural Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/ACC53348.2022.9867357

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970907 since: 2022-09-05T21:28:17Z

IEEE



Non-Euclidean Contractivity of Recurrent Neural Networks

Alexander Davydov, Anton V. Proskurnikov, and Francesco Bullo

Abstract— Critical questions in dynamical neuroscience and
machine learning are related to the study of recurrent neural
networks and their stability, robustness, and computational
efficiency. These properties can be simultaneously established
via a contraction analysis.

This paper develops a comprehensive contraction theory
for recurrent neural networks. First, for non-Euclidean `1/`∞
logarithmic norms, we establish quasiconvexity with respect
to positive diagonal weights and closed-form worst-case ex-
pressions over certain matrix polytopes. Second, for locally
Lipschitz maps (e.g., arising as activation functions), we show
that their one-sided Lipschitz constant equals the essential
supremum of the logarithmic norm of their Jacobian. Third
and final, we apply these general results to classes of recurrent
neural circuits, including Hopfield, firing rate, Persidskii, Lur’e
and other models. For each model, we compute the optimal
contraction rate and corresponding weighted non-Euclidean
norm via a linear program or, in some special cases, via a
Hurwitz condition on the Metzler majorant of the synaptic
matrix. Our non-Euclidean analysis establishes also absolute,
connective, and total contraction properties.

I. INTRODUCTION

Motivation from dynamical neuroscience and machine
learning. Tremendous progress made in neuroscience re-
search has produced new understanding of biological neural
processes. Similarly, machine learning has become a key
technology in modern society, with remarkable progress in
numerous computational tasks. Much ongoing research fo-
cuses on artificial learning systems inspired by neuroscience
that (i) generalize better, (ii) learn from fewer examples, and
(iii) are increasingly energy-efficient. We argue that further
progress in these disciplines hinges upon modeling, analysis
and computational challenges, some of which we highlight
via the indicator (C) in what follows.

In dynamical neuroscience, several recurrent neural net-
work (RNN) models are widely studied, including membrane
potential models such as the Hopfield neural network [16]
and firing-rate models [26]. Clearly, such models are simpli-
fications of complex neural dynamics. For example, if f(x)
is an RNN model of a neural circuit, the true dynamics is
better estimated by

ẋ(t) = f(x(t)) + g(x(t), x(t− τ)), (1)
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where g captures model uncertainty and time-delays. In other
words, (C1): to account for uncertainty in the system, the
nominal dynamics f(x) must exhibit robust stability with
respect to unmodeled dynamics and delay.

Central pattern generators (CPGs) are biological neural
circuits that generate periodic signals and are the source of
rhythmic motor behaviors such as walking, swimming, and
breathing. To properly model CPGs in RNNs, a computa-
tional neuroscientist would need to ensure that, (C2): if an
RNN is interconnected with a CPG, then entrainment takes
place and the trajectories of the RNN converge to a unique
stable limit cycle.

Machine learning scientists have widely adopted discrete-
time RNNs for pattern recognition and analysis of sequential
data and much recent interest [4], [19], [32], [18] has focused
on the closely-related class of implicit neural networks. In
particular, training implicit networks corresponds to solving
fixed-point problems of the form

x = Φ(Ax+Bu+ b), (2)

where x is the neural state variable, Φ is an activation
function, A and B are synaptic weights, u is the input
stimulus, and b is a bias term. Note that (i) the fixed point
in equation (2) is the equilibrium point of a corresponding
RNN differential equation, (ii) the training problem requires
the efficient computation of gradients of a given loss function
with respect to model parameters; in turn, this computation
can be cast again as a fixed-point problem. In other words,
in the design of RNNs and implicit neural networks, it is
essential to pick model weights in such a way that (C3):
fixed-point equations have unique solutions for all possible
inputs and activation functions, and (C4): fixed-points and
corresponding gradients can be computed efficiently.

Finally, an additional challenge facing machine learning
scientists is robustness to adversarial perturbations. Indeed,
it is well-known [39] that artificial deep neural networks are
sensitive to adversarial perturbations: small input changes
may lead to large output changes and loss in pattern recog-
nition accuracy. One proposed remedy is to characterize
the Lipschitz constants of these networks and use them
as regularizers in the training process. This remedy leads
to certifiable robustness bounds with respect to adversarial
perturbations [33], [12]. In short, (C5): the input/output
Lipschitz constants of RNNs need to be tightly estimated,
e.g., in the context of the fixed-point equation (2).

A contraction theory for neural networks. Motivated by
the challenges arising in neuroscience and machine learning,
this paper aims to perform a robust stability analysis of
continuous-time RNNs and develop optimization methods



for discrete-time RNN models. Serendipitously, both these
objectives can be simultaneously achieved through a con-
traction analysis for the RNN dynamics.

For concreteness’ sake, we briefly review how the afore-
mentioned challenges (C1-C5) are addressed by a con-
traction analysis. Infinitesimally contracting dynamics enjoy
highly ordered transient and asymptotic behaviors: (C1)
initial conditions are forgotten and the distance between
trajectories is monotonically vanishing [24], (C3) time-
invariant systems admit a unique globally exponentially
stable equilibrium with two natural Lyapunov functions (dis-
tance from the equilibrium and norm of the vector field) [24],
(C2) periodic systems admit a unique globally exponentially
stable periodic solution or, for systems with periodic inputs,
each solution entrains to the periodic input [34], (C1) and
(C5) contracting vector fields enjoy highly robust behavior,
e.g., see [40], [9], including (a) input-to-state stability, (b)
finite input-state gain, (c) contraction margin with respect to
unmodeled dynamics, and (d) input-to-state stability under
delayed dynamics. Hence, the contraction rate is a natural
measure/indicator of robust stability. Paraphrasing [30], con-
tracting systems are in many ways similar to stable linear
systems (but without superposition principle).

With regards to (C4), our recent work [7], [18] shows
how to design efficient fixed-point computation schemes
for contracting systems (with respect to arbitrary and non-
Euclidean `1/`∞ norms) in the style of monotone operator
theory [35]. Specifically, for contracting dynamics with re-
spect to a diagonally-weighted `1/`∞ norm, optimal step-
sizes and convergence factors are given in [18, Theorem 2].
These results are directly applicable to the computation of
fixed-points in implicit neural networks, as in equation (2).
These step-sizes, however, depend on the contraction rate.
Therefore, optimizing the contraction rate of the dynamics
directly improves the convergence factor of the correspond-
ing discrete algorithm.

Literature review. The dynamical properties of RNN
models have been studied for a few decades. Shortly after
Hopfield’s original work [16], control-theoretic ideas were
proposed by is [25]. Later, [20], [13], [14] obtained various
version of the following result: Lyapunov diagonal stability
of the synaptic matrix is sufficient, and in some cases neces-
sary, for the existence, uniqueness, and global asymptotic
stability of the equilibrium. Notably, [11] is the earliest
reference on the application of logarithmic norms to Hopfield
neural networks and provides results on `p logarithmic
norms of the Jacobian for networks with smooth activation
functions. [3] proposes a quasi-dominance condition on the
synaptic matrix (in lieu of Lyapunov diagonal stability). [31]
proposes the notion of the nonlinear measure of a map
to study global asymptotic stability; this notion is closely
related to the `1 one-sided Lipschitz constant of the map. A
comprehensive survey on continuous-time RNNs is [42].

Recently, the non-Euclidean contraction of monotone
Hopfield neural networks is studied in [17]; see also
[8] for the interplay between Metzler matrices and non-
Euclidean logarithmic norms. Also recently, [28] studies

linear-threshold rate neural dynamics, where activation func-
tions are piecewise-affine; it is shown that the dynamics have
a unique equilibrium if and only if the synaptic matrix is a
P-matrix. Since checking this condition is NP-hard, more
conservative convex conditions are provided as well. The
importance of non-Euclidean log norms in contraction theory
is highlighted for example in [34], [2].

Finally, contractivity of RNNs with respect to the `2 norm
has been studied, e.g., see the early reference [11], the related
discussion in [32], and the recent work [22].

Contributions. This paper contributes fundamental
control-theoretic understanding to the study of artificial
neural networks in machine learning and neuronal circuits
in neuroscience, thereby building a hopefully useful bridge
among these three disciplines.

Specifically, the paper develops a comprehensive contrac-
tion theory for RNN models through the following con-
tributions. First, we obtain novel logarithmic norm results
including (i) the quasiconvexity of the `1 and `∞ logarith-
mic norms with respect to diagonal weights and provide
novel optimization techniques to compute optimal weights
which yield larger contraction rates, (ii) logarithmic norm
properties of principal submatrices of a matrix with respect
to monotonic norms, and (iii) explicit formulas for the `1
and `∞ logarithmic norms under multiplicatively-weighted
uncertainty, resulting in a maximization of the logarithmic
norm over a matrix polytope. The formulas in (iii) generalize
previous results [11, Theorem 3.8], [15, Lemma 3] and [18,
Lemma 8].

Motivated by our non-Euclidean logarithmic norm results,
we define M -Hurwitz matrices, i.e., matrices whose Metzler
majorant is Hurwitz. We compare M -Hurwitz matrices with
other classes of matrices including quasidominant, totally
Hurwitz, and Lyapunov diagonally stable matrices.

Second, we provide a nonsmooth extension to contraction
theory. We show that, for locally Lipschitz vector fields,
the one-sided Lipschitz constant is equal to the essential
supremum of the logarithmic norm of the Jacobian. This
equality allows us to use our novel logarithmic norm results
and apply them to RNNs that have nonsmooth activation
functions such as ReLU.

Third and finally, we consider multiple models of recurrent
neural circuits and nonlinear dynamical models, including
Hopfield, firing rate, Persidskii, Lur’e, and others. We con-
sider activation functions that are weakly increasing and
Lipschitz (thus more general than the class of piecewise-
affine activation functions). For each model, we propose a
linear program to characterize the optimal contraction rate
and corresponding weighted non-Euclidean `1 or `∞ norm.
In some special cases, we show that the linear program
reduces to checking an M -Hurwitz condition on the synaptic
matrix. Our results simplify the computation of a common
Lyapunov function over a polytope with 2n vertices to a
simple condition involving just 2 of its vertices or, in some
cases, all the way to a closed form expression.

For each model, we demonstrate that the dynamics enjoy
strong, absolute and total contractivity properties. In the spirit



of absolute and connective stability, absolute contractivity
means that the dynamics are contracting independently of
the choice of activation function and connective stability
means that the dynamics remain contracting whenever edges
between neurons are removed. Total contractivity means
that if the synaptic matrix is M -Hurwitz and is replaced
by any principal submatrix, the principle submatrix is also
M -Hurwitz. The process of replacing the nominal RNN
with a subsystem RNN is referred to as “pruning” both in
neuroscience and in machine learning.

Paper organization. Section II reviews known prelimi-
nary concepts. Section III provides novel logarithmic norms
results. Section IV studies nonsmooth contraction theory.
Section V establishes conditions for the contractivity of
classes of neural dynamics. In the interest of brevity, we
refer to the technical report https://arxiv.org/abs/
2110.08298 for all omitted proofs.

II. REVIEW OF RELEVANT MATRIX ANALYSIS

For two matrices (or vectors) A,B, we let A ◦ B be
entrywise multiplication. Vector inequalities of the form x ≤
y are entrywise. For a vector η ∈ Rn, we define [η] ∈ Rn×n
to be the diagonal matrix with diagonal entries equal to η.
We let 1n, 0n ∈ Rn be the all-ones and all-zeros vectors,
respectively. We say a norm ‖ · ‖ on Rn is monotonic if for
all x, y ∈ Rn, |x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖, where the absolute
value is applied entrywise. A matrix M ∈ Rn×n is Metzler
if Mij ≥ 0 for all i 6= j. For a matrix A ∈ Rn×n, its
spectral abscissa is α(A) = max{<(λ) | λ ∈ spec(A)}
and its Metzler majorant dAeMzr ∈ Rn×n is defined by

(dAeMzr)ij =

{
aii, if i = j

|aij |, if i 6= j
.

A. Log norms

Let ‖ · ‖ be a norm on Rn and its corresponding induced
norm on Rn×n. The logarithmic norm (also called log norm
or matrix measure) of a matrix A ∈ Rn×n is

µ(A) := lim
h→0+

‖In + hA‖ − 1

h
. (3)

We refer to [10] for a list of properties of log norms, which
include subadditivity, convexity, and α(A) ≤ µ(A). For an `p
norm, p ∈ [1,∞] and for invertible R ∈ Rn×n, we define the
R-weighted `p norm by ‖x‖p,R = ‖Rx‖p. It is known that
the corresponding log norm is then µp,R(A) = µp(RAR

−1).
For diagonally weighted `1, `∞, and `2 norms,

µ1,[η](A) = max
i∈{1,...,n}

aii +
∑n

j=1,j 6=i

ηj
ηi
|aji|

= min{b ∈ R | dAe>Mzrη ≤ bη},
µ∞,[η]−1(A) = max

i∈{1,...,n}
aii +

∑n

j=1,j 6=i

ηj
ηi
|aij |

= min{b ∈ R | dAeMzrη ≤ bη},
µ2,[η]1/2(A) = min{b ∈ R | [η]A+A>[η] � 2b[η]}.

The following result is due to [38] and [29, Lemma 3].

Lemma 1 (Optimal diagonally-weighted log norms for
Metzler matrices). Given a Metzler matrix M ∈ Rn×n,
p ∈ [1,∞], and δ > 0, define ηM,p,δ ∈ Rn>0 by

ηM,p,δ =

(
w

1/p
1

v
1/q
1

, . . . ,
w

1/p
n

v
1/q
n

)
, (4)

where q ∈ [1,∞] is defined by 1/p + 1/q = 1 (with the
convention 1/∞ = 0) and where v and w ∈ Rn>0 are
the right and left dominant eigenvectors of the irreducible
Metzler matrix M + δ1n1

>
n (whose existence is guaranteed

by the Perron-Frobenius Theorem). Then for each ε > 0 there
exists δ > 0 such that

(i) α(M) ≤ µp,[ηM,p,δ](M) ≤ α(M) + ε,
(ii) if M is irreducible, then α(M) = µp,[ηM,p,0](M).

Lemma 1 also ensures that for Metzler matrices M ∈
Rn×n, infη∈Rn>0

µp,[η](M) = α(M) for every p ∈ [1,∞].

B. Classes of matrices

We say a matrix A ∈ Rn×n is
(i) Hurwitz stable, denoted by A ∈ H, if α(A) < 0,

(ii) totally Hurwitz, denoted by A ∈ T H, if all principal
submatrices of A are Hurwitz stable,

(iii) Lyapunov diagonally stable (LDS), denoted by A ∈
LDS, if there exists a η ∈ Rn>0 such that µ2,[η]1/2(A) <
0, and

(iv) M-Hurwitz stable, denoted by A ∈ MH, if
α(dAeMzr) < 0.

A matrix A ∈ Rn×n is quasidominant [27] if there exists
a vector η ∈ Rn>0 such that

ηiaii >
∑n

j=1,j 6=i
ηj |aij |, for all i ∈ {1, . . . , n}.

This is equivalent to d−AeMzrη < 0n, which, in turn, is
equivalent (see, for example, [6, Theorem 15.17]) to the
inequality α(d−AeMzr) < 0, i.e., −A ∈MH.

The following results are essentially known in the litera-
ture, but not collected in a unified manner.

Lemma 2 (Inclusions for classes of matrices). (A ∈ MH)
implies (A ∈ LDS), (A ∈ LDS) implies (A ∈ T H), and
(A ∈ T H) implies (A ∈ H).
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We show that the counter-implications in Lemma 2 do not
hold.

Example 3. (i) (A ∈ LDS 6=⇒ A ∈ MH) The matrix

A =

[
−1 −1
2 −1

]
satisfies µ2(A) = −0.5, so A ∈ LDS.

However, α(dAeMzr) =
√

2− 1 > 0, so A /∈MH.
(ii) (A ∈ T H 6=⇒ A ∈ LDS) is proved in [5, Remark 4].

(iii) (A ∈ H 6=⇒ A ∈ T H) The matrix A =

[
1 1
−4 −3

]
satisfies α(A) = −1, so A ∈ H. However, A /∈ T H
since it has a positive diagonal entry.

https://arxiv.org/abs/2110.08298
https://arxiv.org/abs/2110.08298


This insert corresponds to Lemma 6. For A ∈ Rn×n, c ∈ Rn, 0 ≤ dmin ≤ dmax ∈ R, and η ∈ Rn>0,

max
d∈[dmin,dmax]n

µ∞,[η]([c] + [d]A) = max
{
µ∞,[η]([c] + dminA), µ∞,[η]([c] + dmaxA)

}
, (5)

max
d∈[dmin,dmax]n

µ1,[η]([c] +A[d]) = max
{
µ1,[η]([c] + dminA), µ1,[η]([c] + dmaxA)

}
, (6)

max
d∈[dmin,dmax]n

µ∞,[η]([c] +A[d]) = max{µ∞,[η]([c] + dmaxA), µ∞,[η]([c] + dmaxA− (dmax − dmin)(In ◦A))}, (7)

max
d∈[dmin,dmax]n

µ1,[η]([c] + [d]A) = max{µ1,[η]([c] + dmaxA), µ1,[η]([c] + dmaxA− (dmax − dmin)(In ◦A))}. (8)

III. NOVEL LOG NORM RESULTS

A. Optimizing non-Euclidean log norms

First, we provide novel results on optimizing diagonal
weights for `1 and `∞ log norms and provide computational
methods to compute these weights.

Theorem 4 (Quasiconvexity of µ with respect to diagonal
weights). For fixed A ∈ Rn×n, consider the maps from Rn>0

to R defined by

η 7→ µ1,[η](A),

η 7→ µ∞,[η]−1(A).
(9)

Then
(i) The maps in (9) are quasiconvex and their sublevel sets

are polytopes.
(ii) Minimizing the maps in (9) may be executed via the

optimization problems

inf
b∈R,η∈Rn>0

b

s.t. dAe>Mzrη ≤ bη,
(10)

for µ1,[η](A) and

inf
b∈R,η∈Rn>0

b

s.t. dAeMzrη ≤ bη,
(11)

for µ∞,[η]−1(A).

Remark 5. The optimization problems in (10) and (11) may
be modified such that η ∈ [ε,∞[

n for ε > 0 sufficiently small
so that the inf becomes a min. Then the problems may be
solved by a bisection on b ∈ [−‖A‖, ‖A‖], where each step
of the algorithm is a linear program (LP) in η.

Next, we provide closed-form expressions for `1 and `∞
log norms over a certain polytopes of matrices. Polytopes
of interest are defined by a nominal matrix multiplied by a
diagonally-weighted uncertainty and shifted by an additive
diagonal matrix. Such matrix polytopes arise in tests verify-
ing the contractivity of several classes of RNNs.

Lemma 6 (Worst-case `1/`∞ log norms under multiplicative
scalings). Any A ∈ Rn×n, c ∈ Rn, 0 ≤ dmin ≤ dmax ∈ R,
and η ∈ Rn>0 satisfy formulas (5)-(8).

Recall that the log norm is a convex function and that
the maximum value of a convex function over a polytope is
achieved at one of the vertices of the polytope. In the special

case in Lemma 6, formulas (5)-(8) ensure that one needs to
check only 2 vertices of the polytope, rather than 2n.

Finally, we show how the optimal diagonal weights that
minimize the worst-case log norm of a matrix polytope as
in Lemma 6 can be easily computed.

Corollary 7. Let A, c, dmin, and dmax be as in Lemma 6.
Then for µ[η](·) denoting either µ1,[η](·) or µ∞,[η]−1(·) the
minimax problems

min
η∈[ε,∞[n

max
d∈[dmin,dmax]n

µ[η]([c] + [d]A),

min
η∈[ε,∞[n

max
d∈[dmin,dmax]n

µ[η]([c] +A[d]),

may each be solved by a bisection algorithm, each step of
which is an LP.

B. Monotonicity of diagonally-weighted log norms

Theorem 8 (Monotonicity of α and µ). For any A ∈ Rn×n

(i) α(A) ≤ α(dAeMzr),
(ii) for all p ∈ [1,∞] and η ∈ Rn>0, we have µp,[η](A) ≤

µp,[η](dAeMzr), with equality holding for p ∈ {1,∞}.
(iii) For p ∈ {1,∞},

inf
η∈Rn>0

µp,[η](A) = α(dAeMzr) ≥ α(A).

Theorem 8(iii) demonstrates that using diagonally-
weighted `1 and `∞ log norms, the best bound one can
achieve on α(A) is α(dAeMzr), which may be conservative.
In the following example, we show that the `2 norm does
not have the same conservatism. Despite the conservatism,
Theorem 4 demonstrates that optimizing diagonal weights
is computationally efficient, being an LP at every step of
the bisection, while optimizing weights for the `2 norm
is an LMI at every step, which is more computationally
challenging than an LP of similar dimension.

Example 9. The matrix A∗ =

[
1 1
−1 1

]
has eigenvalues

{1 + i, 1 − i} whereas dA∗eMzr has eigenvalues {2, 0}.
Therefore, α(A∗) = 1 < 2 = α(dA∗eMzr). Additionally,
(A∗+A>∗ )/2 = I2 =⇒ µ2(A∗) = 1 and µ2(dA∗eMzr) = 2.

C. Log norms of principal submatrices

Given a matrix A ∈ Rn and a non-empty index set
I ⊂ {1, . . . , n}, let AI ∈ R|I|×|I| denote the principal
submatrix obtained by removing the rows and columns of A
which are not in I. Next, given a non-empty I ⊂ {1, . . . , n},
define the zero-padding map padI : R|I| → Rn as follows:



padI(y) is obtained by inserting zeros among the entries of
y corresponding to the indices in {1, . . . , n}\I. For example,
with n = 3 and I = {1, 3}, we define pad{1,3}(y1, y2) =
(y1, 0, y2). Then it is easy to see that given a norm ‖·‖ on Rn
and non-empty I ⊂ {1, . . . , n}, the map ‖·‖I : R|I| → R≥0
defined by ‖y‖I = ‖ padI(y)‖ is a norm on R|I|.

Lemma 10 (Norm and log norm of principal submatrices).
Assume ‖ · ‖ is monotonic, let µ and µI denote the log
norms associated to ‖ · ‖ and ‖ · ‖I respectively. Any matrix
A ∈ Rn×n satisfies

(i) ‖AI‖I ≤ ‖A‖,
(ii) µI(AI) ≤ µ(A),

(iii) if µ(A) < 0, then A ∈ T H.

Corollary 11. If A ∈ MH ⊂ Rn×n, then AI ∈ MH for
every non-empty I ⊂ {1, . . . , n}.

IV. ONE-SIDED LIPSCHITZ MAPS AND NONSMOOTH
CONTRACTION THEORY

A. Review of one-sided Lipschitz functions

We review weak pairings and one-sided Lipschitz maps as
introduced in [9]; see also the earlier works [37], [1].

Definition 12 (Weak pairing). A weak pairing on Rn is a
map J·, ·K : Rn × Rn → R satisfying:

(i) (Subadditivity and continuity in its first argument)
Jx1 + x2, yK ≤ Jx1, yK+ Jx2, yK , for all x1, x2, y ∈ Rn
and J·, ·K is continuous in its first argument,

(ii) (Weak homogeneity) Jαx, yK = Jx, αyK = α Jx, yK and
J−x,−yK = Jx, yK for all x, y ∈ Rn, α ≥ 0,

(iii) (Positive definiteness) Jx, xK > 0 for all x 6= 0n,
(iv) (Cauchy-Schwarz) | Jx, yK | ≤ Jx, xK1/2 Jy, yK1/2 for all

x, y ∈ Rn.
Additionally, we say a weak pairing satisfies Deimling’s
inequality if Jx, yK ≤ ‖y‖ lim

h→0+
h−1(‖y + hx‖ − ‖y‖) for

all x, y ∈ Rn, where ‖ · ‖ = J·, ·K1/2.

Deimling’s inequality is well-defined since J·, ·K1/2 defines
a norm on Rn. Conversely, if Rn is equipped with a norm ‖·‖
then there exists a (possibly non-unique) weak pairing J·, ·K
such that ‖ · ‖ = J·, ·K1/2; see [9, Theorem 16]. Henceforth,
we assume that weak pairings satisfy Deimling’s inequality.

We establish the relationship between weak pairings and
log norms in the following lemma.

Lemma 13 (Lumer’s equality [9, Theorem 18]). Let ‖ · ‖ be
a norm on Rn with compatible weak pairing J·, ·K. Then

µ(A) = sup
x∈Rn,x 6=0n

JAx, xK
‖x‖2 , for all A ∈ Rn×n. (12)

Definition 14 (One-sided Lipschitz functions [9, Defini-
tion 26]). Consider f : U → Rn where U ⊆ Rn is open
and connected. We say f is one-sided Lipschitz with respect
to a weak pairing J·, ·K if there exists b ∈ R such that

Jf(x)− f(y), x− yK ≤ b‖x− y‖2, for all x, y ∈ U.

We say b is a one-sided Lipschitz constant of f . Moreover,
the minimal one-sided Lipschitz constant of f is

osL(f) := sup
x,y∈U,x 6=y

Jf(x)− f(y), x− yK
‖x− y‖2 . (13)

If f is continuously differentiable and U is convex, it can
be shown that osL(f) = supx∈U µ(Df(x)), where Df :=
∂f
∂x is the Jacobian matrix of f .

A vector field f : Rn → Rn satisfying osL(f) ≤
−c < 0 is said to be strongly infinitesimally contracting with
rate c. Any two trajectories x(·), y(·) satisfying ẋ = f(x)
additionally satisfy ‖x(t) − y(t)‖ ≤ e−ct‖x(0) − y(0)‖ for
all t ≥ 0. Moreover, if f is continuous, then all solutions
converge to a unique equilibrium.

B. Nonsmooth contraction theory

In this section we consider locally Lipschitz f and show
that in this case, the definition of osL does not depend on the
weak pairing and instead depends only on the norm through
the log norm.

Theorem 15 (osL simplification for locally Lipschitz f ).
For f : U → Rn locally Lipschitz on an open convex set,
U ⊆ Rn. Then for every c ∈ R the following statements are
equivalent:

(i) osL(f) ≤ c,
(ii) µ(Df(x)) ≤ c for almost every x ∈ U .

Note that Df(x) exists for almost every x ∈ U by
Rademacher’s theorem. Theorem 15 demonstrates that lo-
cally Lipschitz f enjoy a similar simplification in the osL
definition as do continuously differentiable functions.

In neural network models, nonsmooth activation functions
such as ReLU, LeakyReLU, and nonsmooth saturation func-
tions are prevalent; Theorem 15 allows us to use standard
log norm results to analyze these models.

V. CONTRACTING NEURAL DYNAMICS

We consider several models of neural circuits and charac-
terize their one-sided Lipschitz constants and therefore their
strong infinitesimal contractivity.

A. Hopfield neural network

We start with the continuous-time Hopfield neural network
model, first introduced in [16]:

ẋ = −Cx+AΦ(x) + u =: fH(x), (14)

where C ∈ Rn×n is a positive semi-definite diagonal matrix,
A ∈ Rn×n is arbitrary, u ∈ Rn is a (possibly time-varying)
input, and Φ is a diagonal activation function. In other words,
Φ(x) = [φ1(x1), . . . , φn(xn)], where each φi : R → R is
Lipschitz and satisfies the slope-restricted constraints

dmin := inf
x,y∈R,x 6=y

φi(x)− φi(y)

x− y ≥ 0,

dmax := sup
x,y∈R,x 6=y

φi(x)− φi(y)

x− y <∞.
(15)



In other words, this ensures that φ′i(x) ∈ [dmin, dmax] for
almost every x ∈ R. Many common activation functions
satisfy these constraints including ReLU, tanh and sigmoids.

Theorem 16 (One-sided Lipschitzness of Hopfield neural
network). Consider the Hopfield neural network model (14)
with irreducible dAeMzr and constant u ∈ Rn. Then

(i) osL1,[η](fH) = max
{
µ1,[η](−C + dminA), µ1,[η](−C +

dmaxA)
}

, for arbitrary η ∈ Rn>0.
(ii) The vector η minimizing osL1,[η](fH) is the solution to

inf
b∈R,η∈Rn>0

b

s.t. (−C + dmindAe>Mzr)η ≤ bη,
(−C + dmaxdAe>Mzr)η ≤ bη.

(iii) if C = cIn, then, with wA ∈ Rn>0 being the left
dominant eigenvector of dAeMzr,

inf
η∈Rn>0

osL1,[η](fH) = osL1,[wA](fH)

= −c+ max{dminα(dAeMzr), dmaxα(dAeMzr)}. (16)

(iv) if dmin = 0 and C � 0, then, with w∗ ∈ Rn>0 being the
left dominant eigenvector of −C + dmaxdAeMzr,

inf
η∈Rn>0

osL1,[η](fH) = osL1,[w∗](fH)

= max
{
α(−C), α(−C + dmaxdAeMzr)

}
. (17)

In particular, Theorem 16 provides exact values for the
minimal one-sided Lipschitz constant of the Hopfield neural
network with respect to diagonally-weighted `1 norms.

As a consequence of this theorem, let b?, η? be the optimal
solution for the LP in statement (ii). If b? < 0, then
the Hopfield neural network (14) is strongly infinitesimally
contracting with rate |b?| with respect to ‖ · ‖1,[η?].
Remark 17. In the event that dAeMzr is reducible, the
results from Theorem 16 still provide tests for contraction
of the Hopfield model. Consider, for example, case (iii)
above. The model is strongly infinitesimally contracting
provided that osL(fH) < 0, and if dAeMzr is reducible, by
Lemma 1 for every ε > 0, there exists η ∈ Rn>0 such that
µ1,[η](dAeMzr) ≤ α(dAeMzr) + ε. Thus, if (16) is negative,
then −c+ max{dmax(α(dAeMzr) + ε), dmin(α(dAeMzr) + ε)}
may be made negative as well by taking ε small enough.

B. Firing-rate neural network model

A related model, which is frequently used in the machine
learning literature and is closely-related to the Hopfield
neural network model is the model

ẋ = −Cx+ Φ(Ax+ u) =: fFR(x), (18)

which we refer to as the firing-rate model. The interpretation
for this name is that if Φ(x) is nonnegative for all x ∈ Rn
(as is ReLU), then the positive orthant is forward-invariant
and x is interpreted as a vector of firing-rates, while in the
Hopfield model, x can be negative and is thus interpreted as
a vector of membrane potentials.

In what follows, we show that while the Hopfield model
is naturally one-sided Lipschitz with respect to a diagonally-
weighted `1 norm, the firing-rate model is naturally one-sided
Lipschitz with respect to a diagonally-weighted `∞ norm.

Theorem 18 (One-sided Lipschitzness of firing-rate model).
Consider the firing-rate model (18) with invertible A and
irreducible dAeMzr and constant u ∈ Rn. Then

(i) osL∞,[η]−1(fFR) = max{µ∞,[η]−1(−C +
dminA), µ∞,[η]−1(−C+dmaxA)}, for arbitrary η ∈ Rn>0

(ii) The choice of η minimizing osL∞,[η]−1(fFR) is the
solution to

inf
b∈R,η∈Rn>0

b

s.t. (−C + dmindAeMzr)η ≤ bη,
(−C + dmaxdAeMzr)η ≤ bη.

(iii) if C = cIn, then, with vA ∈ Rn>0 being the right
dominant eigenvector of dAeMzr,

inf
η∈Rn>0

osL∞,[η](fFR) = osL∞,[vA]−1(fFR)

= −c+ max{dminα(dAeMzr), dmaxα(dAeMzr)}. (19)

(iv) if dmin = 0 and C � 0, then, with v∗ ∈ Rn>0 being the
right dominant eigenvector of −C + dmaxdAeMzr,

inf
η∈Rn>0

osL∞,[η](fFR) = osL∞,[v∗]−1(fFR)

= max
{
α(−C), α(−C + dmaxdAeMzr)

}
. (20)

C. Other related models

We apply Theorem 16 and the log norm results in
Lemma 6 to the following related neural circuit models, all
of which are studied in the classic book [21]. In the following
Theorems, we assume all Metzler matrices are irreducible.

Theorem 19 (Contractivity of special Hopfield models). (i)
If A ∈MH, and dmin > 0, the Persidskii-type1 model

ẋ = AΦ(x)

is strongly infinitesimally contracting with respect to
norm ‖ · ‖1,[wA] with rate dmin|α(dAeMzr)|.

(ii) If −C + dmaxA ∈ MH, the Hopfield neural network
fH with dmin = 0 and positive diagonal C is strongly
infinitesimally contracting with respect to ‖·‖1,[w∗] with
rate −max

{
α(−C), α(−C + dmaxdAeMzr)

}
> 0.

Theorem 20. From [21, Theorem 3.2.4], consider

ẋ = Ax− CΦ(x),

with diagonal C � 0. If A − dminC ∈ MH with corre-
sponding dominant left eigenvector w∗∗, then this model is
strongly infinitesimally contracting with respect to ‖·‖1,[w∗∗]

with rate −α(dAeMzr − dminC) > 0.

Theorem 21. From [21, Theorem 3.2.10], consider

ẋi =
∑n

j=1
aijφij(xj)

1See[21, Definition 3.2.1]



for each i ∈ {1, . . . , n} and with each φij Lipschitz and
slope-restricted in [dmin, dmax]. If dmin > 0 and

B := dmaxA− (dmax − dmin)(In ◦A) ∈MH,
with corresponding dominant left and right eigenvectors
wB , vB , respectively, then this model is strongly infinitesi-
mally contracting with rate −α(dBeMzr) > 0 with respect to
both ‖ · ‖1,[wB ] and ‖ · ‖∞,[vB ]−1 .

The next two theorems serve as non-Euclidean versions of
early results on contractivity of Lur’e systems (in application
to the entrainment problem) established first in [41].

Theorem 22 (Contractivity of Lur’e system). From [21,
Theorem 3.2.7], consider the Lur’e system

ẋ = Ax+ vφ(y),

y = w>x,

where A ∈ Rn×n, v, w ∈ Rn and φ : R → R is Lipschitz
and slope-restricted in [dmin, dmax]. Consider the following
two optimization problems:

min
b∈R,η∈[ε,∞[n

b

s.t. dA+ dminvw
>e>Mzr η ≤ bη,

dA+ dmaxvw
>e>Mzr η ≤ bη,

(21)

and
min

c∈R,ξ∈[ε,∞[n
c

s.t. dA+ dminvw
>eMzr ξ ≤ cξ,

dA+ dmaxvw
>eMzr ξ ≤ cξ.

(22)

Let b?, η? be optimal parameters for (21) and c?, ξ? be
optimal parameters for (22). Then

(i) if b? < 0, then the closed-loop dynamics are strongly
infinitesimally contracting with rate |b?| with respect to
‖ · ‖1,[η?].

(ii) if c? < 0, then the closed-loop dynamics are strongly
infinitesimally contracting with rate |c?| with respect to
‖ · ‖∞,[ξ?]−1 .

Theorem 23 (Multivariable Lur’e system). Consider the
multivariable Lur’e system

ẋ = Ax+BΦ(y),

y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and Φ is
diagonal and is slope-restricted in [dmin, dmax] with dmin ≥ 0.
Define (·)+ and (·)− by (x)+ = max{x, 0} and (x)− =
min{x, 0}. Define F ∈ Rn×n componentwise by

Fii = Aii + dmax

m∑
j=1

(BijCji)+ + dmin

m∑
j=1

(BijCji)−,

Fij = |Aij |

+ max

{
dmax

m∑
k=1

(BikCkj)+ + dmin

m∑
k=1

(BikCkj)−,

−dmin

m∑
k=1

(BikCkj)+ − dmax

m∑
k=1

(BikCkj)−

}
,

for i 6= j. Then, if F ∈ MH with corresponding dom-
inant left and right eigenvectors wF , vF , the closed-loop
dynamics are strongly infinitesimally contracting with rate
−α(dF eMzr) > 0 with respect to both ‖ · ‖1,[wF ] and
‖ · ‖∞,[vF ]−1 .

D. Remarks on absolute, connective, and total contractivity

In this section we clarify that our results in Theorems 16–
23 indeed establish absolute, connective, and total contrac-
tion, in the following senses.

First, in the spirit of the classic work on absolute stabil-
ity [41], [13], by absolutely contracting we mean dynamical
systems that are contracting for all choices of activation
functions in a given class. (The class of activation function
in this paper is all weakly increasing Lipschitz functions.)

Second, in the spirit of the classic work on connective sta-
bility [36], by connectively contracting we mean dynamical
networks that remain contracting under the removal of any
possible subset of edges (other than self-loops). It is easy
to see that the action of removing any edge from a synaptic
matrix leads to an equal or larger contraction rate.

Third and final, if each component of the state x cor-
responds to a single neuron, the removal of some neurons
corresponds to pruning the neural network. By Corollary 11,
if A ∈ MH, then any principal submatrix of A is also in
MH. In other words, if any neurons are removed from the
neural network, the resulting neural network is guaranteed to
remain contracting with an equal or larger contraction rate.
We refer to this property as total contraction, because of the
analogy with the property of totally Hurwitz matrices.

VI. DISCUSSION

In this paper, we present novel non-Euclidean log norm
results and a non-smooth contraction theory simplification
and we apply these results to study the contractivity of RNN
models, primarily focusing on the Hopfield and firing-rate
models. We provide efficient algorithms for computing the
optimal non-Euclidean contraction rate and corresponding
norm. Our approach is robust with respect to activation
function and additional unmodeled dynamics and, more
generally, establishes the strong contractivity property which,
in turn, implies strong robustness properties.

As a first direction of future research, we plan to in-
vestigate contractivity under conditions such as Lyapunov
diagonal stability (LDS) of the synaptic matrix. LDS is
known to imply asymptotic stability of Hopfield neural
networks, however, it is not known to imply contractivity
(with respect to a constant norm). More broadly, we believe
that our non-Euclidean contraction framework for RNNs
serves as a first step to analyzing robustness and convergence
properties of other classes of neural circuits including central
pattern generators and other machine learning architectures
including modern Hopfield networks [23].
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