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Abstract—Impairment in the execution of simple motor tasks
involving hands and fingers could hint at a general worsening
of health conditions, particularly in the elderly and in people
affected by neurological diseases. The deterioration of hand
motor function strongly impacts autonomy in daily activities and,
consequently, the perceived quality of life. The early detection
of alterations in hand motor skills would allow, for example,
to promptly activate treatments and mitigate this discomfort.
This preliminary study examines an innovative pipeline based
on a single RGB-Depth camera and Google MediaPipe Hands,
that is suitable for the remote assessment of hand motor skills
through simple tasks commonly used in clinical practice. The
study includes several phases. First, the quality of hand tracking
is evaluated by comparing reconstructed and real hand 3D
trajectories. The proposed solution is then tested on a cohort of
healthy volunteers to estimate specific kinematic features for each
task. Finally, these features are used to train supervised classifiers
and distinguish between “normal” and “altered” performance
by simulating typical motor behaviour of real impaired subjects.
The preliminary results show the ability of the proposed solution
to automatically highlight alterations in hand performance,
providing an easy-to-use and non-invasive tool suitable for remote
monitoring of hand motor skills.

Index Terms—hand tracking, Google MediaPipe, telemedicine,
vision-based approach, Azure Kinect

I. INTRODUCTION

The quality of hand function has a significant impact on ev-
eryday life. The hands are involved in almost all daily actions
(e.g., personal care, work-related and creative activities) that,
in most cases, require fine movements and manual skills to
grasp and manipulate objects [1]. Therefore, it is evident that
an impaired hand function limits independence and autonomy,
negatively affecting the overall quality of life. Other than
accidental and temporary injuries, several long-term conditions
contribute to the deterioration of hand function: structural and
functional changes of the joints, muscles, and bones due to
aging [2] [3]; symptoms associated with neurodegenerative
and chronic pathologies, such as Parkinson’s disease (PD)

[4] [5]; consequences of acute events, such as stroke [6]
[7]. Especially in these contexts, it is essential to detect any
hand function alterations and promptly activate treatments
capable of mitigating the adverse effects on daily living.
Regarding the motor skills of the hand and fingers, the clinical
evaluation mainly relies on simple motor tasks (e.g., single
and multiple finger tapping, fingers mobility tasks) [8] [9]
[10] [11] commonly administered during scheduled outpatient
visits. In most cases, the motor examination produces only
a qualitative indication of the functional movements but no
objective measures. However, the kinematic analysis of the
hand motor performance could provide a quantitative char-
acterisation through measures and physical quantities easily
comparable over time [12]. The technological advancement of
the last few decades has favoured the development of different
hand tracking approaches that focus on kinematic analysis
and evaluation of hand movements. Many solutions include
wearable sensors. For example, [13] employs an IMU-based
wireless glove to measure finger movements in rheumatoid
arthritis. Concerning PD, wearable inertial units are commonly
used to evaluate standard upper limb motor tasks [14] [15]
[16]. The same technologies are also used to evaluate and
rehabilitate hand function after stroke [17] [18] [19]. However,
approaches based on wearable sensors are generally more
invasive and less practical in unsupervised settings. Alternative
solutions rely on optical devices, particularly 3D cameras and
computer vision techniques. For instance, [20] uses a single
3D camera to track specific points of the hand and fingers and
evaluate standard hand motor tasks in PD. The same occurs
in [21], in this case with the help of a passive glove with
colour markers to ensure high tracking robustness. The optical
approaches are also widely used in post-stroke subjects for
evaluation and rehabilitation purposes [22] [23]. In general,
these solutions focus on tracking a reduced number of hand
points, thus combining the optimal tracking of specific hand



movements and the real-time needs. A first effective attempt
to track the complete movement of the bare hand is Leap
Motion Controller [24]: the potentiality of this depth camera
has been investigated in several studies, thanks to its ability
in estimating a complete and articulated hand skeletal model
[25] [26] [27] [28]. The main drawbacks of this device are
the restricted hand tracking area and the loss of tracking
accuracy in high dynamic conditions [29] [21]. Therefore
complete, non-invasive and real-time hand tracking on a less
restricted workspace is still an open challenge. A promising
and interesting methodology to address these issues is Google
Mediapipe Hands (GMH), a recent open-source framework
with a simple pipeline that combines computer vision and
machine learning techniques to recognise bare hands and
provide a complete skeletal model of hand and fingers in real-
time [30] [31]. Currently, the potentiality of GMH has been
mainly explored for gesture-based interaction purposes [32]
[33] [34] [35] and in sign language recognition applications
[36] [37] [38], which are static or low-dynamic scenarios. On
the contrary, the state-of-the-art highlights that GMH has not
yet been applied in more dynamic scenarios, as required for
the analysis and automatic evaluation of hand motor skills.

In this context, the paper presents an innovative mixed
approach and non-invasive pipeline for the remote assessment
of the hand motor function. The proposed mixed-approach
combines GMH with a single RGB-Depth camera (i.e., Mi-
crosoft Azure Kinect DK), using depth information to imple-
ment a three-dimensional solution (GMH-D) to analyse the 3D
trajectories of hand movements and characterise them through
objective features. To this end, the study focuses on two hand
motor tasks (i.e., finger tapping and hand opening-closing)
commonly used in clinical practice to evaluate the hand mo-
tor dysfunctions in the elderly and pathological/neurological
subjects.

The main goals of this study are the following: to verify
the accuracy and robustness of GMH-D hand tracking by
comparing reconstructed and real hand trajectories; to estimate
specific kinematic features to characterise hand motor skills on
a cohort of healthy volunteers; to train supervised classifiers
to distinguish between “normal” and “altered” performance by
simulating typical motor behaviour of real impaired subjects.
The preliminary results suggest that the proposed solution
could be a useful tool to detect hand function alterations,
particularly suitable for remote monitoring applications thanks
to its non-invasiveness, portability, and usability. The rest of
the paper is organised as follows: Section II describes GMH
and the problem of uplifting its 2D tracking coordinates to 3D;
Section III describes the pipeline implemented, GMH-D and
its validation; Section IV details the experimental protocol and
the machine learning approach used to evaluate hand motor
skills; Section V presents the preliminary results of the study;
Section VI discusses key findings and future developments.

II. 3D TRACKING OF HAND MOVEMENTS

The 3D tracking of hand movements is still an open chal-
lenge. However, the recent development of better-performing

Fig. 1. Reference systems of coordinates extracted by GMH

sensors and algorithms could lead to innovative solutions
to address the problem. GMH, for example, implements a
computationally cheap, easy-to-use, and high-fidelity tool for
hand tracking from a monocular RGB video. For each cap-
tured frame, GMH applies two models: the first infers the
position and orientation of the hand palm in the image; the
second regresses from the palm bounding box the whole hand
skeleton, composed of 21 virtual joints related to fundamental
hand articulations.

For each tracked joint j, GMH provides two types of
coordinates, here denoted as image coordinates and world
coordinates (Fig. 1). The former is composed of a pair
(xj ,im , yj ,im) that locates j inside the image reference frame.
Axes Xim and Yim are normalised between 0 and 1 by image
height and width. A third parameter zj ,im , with roughly the
same scale as the other two axes, provides a depth estimation
of j with respect to the wrist reference (zwrist,im ≃ 0 ). The
function to estimate such parameter was learned by the ma-
chine learning model from training on synthetic hand images
[31]. On the contrary, world coordinates (xj ,wo , yj ,wo , zj ,wo)
are measured in metres and refer to a reference system with its
origin at the centre of the palm bounding box. This additional
set of 3D coordinates allows estimating real relative distances
between tracked joints. However, no validation of its reliability
for computing such distances has been carried out in the
literature so far. Moreover, no information of joints positioning
with respect to the real-world reference frame centred in the
RGB-camera (XR , YR , ZR) can be inferred from GMH.

Exploiting only 2D image coordinates, so neglecting the
depth estimation provided by GMH, mapping to 3D could
be realised through calibration techniques like Perspective-
n-Point (PnP) as done in [32], but these procedures require
complex setup and pre-processing. Another alternative for
2D coordinates uplifting is employing an additional camera
and performing triangulation [39]. A third approach relies
upon combining colour and depth video streams (i.e, using



Fig. 2. a) Example of tracking error by GMH which could alter depth
estimation of index finger; b) depth interference (black contour) at hand border

RGB-Depth sensors): this is the procedure implemented, for
example, in the Body Tracking algorithm of Kinect cameras,
whose quality in estimating human motion features has often
been successfully compared to gold standard motion capture
(MOCAP) systems [40]. In this case, given a virtual joint
2D position in the image and the corresponding depth value
measured by the sensor, 3D coordinates are estimated by a 2D-
to-3D projection procedure based on the intrinsic matrices of
the two embedded cameras (colour and depth) and the standard
pinhole camera model [41]. Even though a more complex
hardware is required, this solution is almost straightforward
and does not entail any complex preliminary setup, as in
most cases 2D-to-3D projection routines are already imple-
mented and ready-to-use for such devices in their Software
Development Kit (SDK). Moreover, recent years have shown
a positive trend towards the embedding of depth cameras
also in consumer-grade smartphones and tablets, to favour the
spread of Augmented Reality applications. A pure use of this
approach, however, would not leverage the depth estimation
model embedded in GMH and it is sensitive to phenomena
such as those shown in Fig. 2: due to reduced finger surface
and motion artifacts, caused by finger blurring during high-
speed movements, the virtual joints could be placed on the
borders or even completely outside them by the regression
model, thus reading a wrong corresponding value from the
associated depth-map. Furthermore, depth estimations for a
single video frame are usually performed averaging several
measurements obtained by Time-Of-Flight (TOF) technology:
hence, in case of objects moving at high dynamics as fingers,
depth estimations could have reduced accuracy, especially at
the borders [42] (Fig. 2b). This is reflected in unstable 3D
tracking and the subsequent corruption of all the distances
measured between wrongly reconstructed joints.

III. ACQUISITION PIPELINE DESCRIPTION

A. A mixed approach to 3D point estimation

This study proposes GMH-D, an innovative mixed approach
that tries to overcome the previously mentioned limitations
by combining the facilities of an RGB-Depth camera with
GMH coordinates. The implemented technique is based on

three fundamental assumptions, which have been empirically
observed:

• the relation dj = f(zj ,im), with dj the depth of virtual
joint j with respect to the camera centre, is approximately
linear for 0.3m ≤ dj ≤ 1m;

• the GMH wrist virtual joint will never fall outside the
body surface due to the wide wrist region, thus avoiding
inconsistent depth associations;

• wrist movements, even when studying the mobility of the
hand and its fingers, are limited: the wrist joint will be
in general visible, hence its depth estimation, performed
using TOF technology, will be consistent throughout the
whole hand movement.

Starting from these premises, GMH-D computes the 3D
coordinates of each hand joint j in the real-world reference
system (origin in the camera centre, Fig. 1) (xj,R, yj,R, zj,R)
using the following steps:

1) Unnormalise image coordinates (xj ,im , yj ,im) to get
virtual marker position in pixels (px ,j , py,j )

2) From the depth map aligned over the current RGB
frame, extract only the depth of the wrist virtual joint
dwrist

3) Compute approximate depth d̂j using (1)

d̂j = dwrist + zj,imdwrist (1)

4) Convert (px ,j , py,j , d̂j) to (xj,R, yj,R, zj,R) using
pre-defined internal 2D-to-3D projection procedures

This procedure removes the dependency of the reconstructed
3D hand from the depth value associated to the finger joints,
which could be unstable as discussed in Section II. At the same
time, it embeds also information coming from the complete
3D hand model provided by GMH.

B. System hardware and software components

The pipeline designed to test GMH-D is suitable for a
remote scenario in which hardware complexity should be min-
imised while producing accurate and reliable results for clini-
cal assessment of the hand motor skills. The required hardware
consists of an RGB-Depth (RGB-D) camera, working at or
above 30 frames-per-seconds (fps), and a processing unit to
elaborate the data stream. In this preliminary experiments,
an Azure Kinect camera connected to a Zotac minipc (Intel
i5 9th generation processor, 16 GB RAM) was employed,
even though the same pipeline could be implemented on
devices having similar hardware specifics. Azure Kinect was
selected also because its SDK already implements all the
necessary routines to perform 2D-to-3D projection using depth
information estimated through TOF technology.
Tracking data captured by GMH-D are then processed by
custom-written scripts for the automatic extraction of task-
specific kinematic features. Finally, these features are fed to
supervised machine learning models to identify normal or



altered task executions. Feature extraction and classification
were implemented in MATLAB and Python respectively. Fig.
3 summarises the implemented pipeline for acquisition and
processing.

C. Evaluation of GMH-D Hand tracking solution

The first step is to verify if GMH-D infers coordinates that
allow the correct reconstruction of relative distances between
tracked joints. In this assessment, a comparison with the
trajectories estimated by GMH world coordinates, as well as
those obtained by recovering the depth information for all 21
virtual hand joints directly from Azure Kinect was performed.
These two alternative methods are here denoted as “World
Coordinates Approach” (WCA) and “Kinect Approach” (KA).
For a fair comparison, KA needs some correction mechanism
to cope with the limitations described in Section II. A brute
but effective approach consists in applying the following
procedure for each virtual joint j:

1) Unnormalize image coordinates (xj ,im , yj ,im) to get
virtual marker position in pixels (px ,j , py,j )

2) Take a circle C in the depth map of radius r and centre
(px ,j , py,j )

3) Consider only pixels c ∈ C having a value of depth
dc such that dmin < dc < dmax , where dmin and dmax

are two threshold values defined with respect to hand
positioning in front of the camera

4) Select depth d̂j as in (2)

d̂j = min{dc,Px ∈ C} (2)

5) Convert (px ,j , py,j , d̂j) to (xj,R, yj,R, zj,R) using
pre-defined internal 2D-to-3D projection procedures

This correction procedure, repeated for each joint in each
frame, is time-consuming and dependant on the value chosen
for r, dmin and dmax , making KA best suited as an offline
processing methodology. On the contrary, both GMH-D and
WCA can run in our proposed system at 30 fps during live
video recordings. Furthermore, this correction procedure could
still fail in extreme cases.

The results produced by the three approaches should be
compared with a real measurement or a trustworthy approxi-
mation; this normally occurs through a MOCAP system, the
gold standard for human motion analysis. However, this kind
of evaluation is not feasible in this study, for two main reasons:
such system requires the use of passive or active markers,
which, in this case, could alter the appearance of the hand and
consequently the capability of GMH-D to estimate the hand
virtual model. In addition, MOCAP systems could interfere
with TOF technologies [43], deteriorating the quality of the
uplifting procedure of our method.
As an alternative solution, the hand motor tasks were executed
with the hand next to a ruler (ticks every 5 mm), parallel
to the camera plane. The real distance (RD) between joints
of interest, as read from the ruler, was manually annotated

from collected videos using Kinovea™ software. RD values
were then compared with the values estimated by GMH-D,
WCA, and KA. The experimental tests were carried out such
that the hand was, as much as possible, parallel to the ruler
plane and the camera plane at evaluation instants (maximum
and minimum motion peaks), thus reducing distortion effects
that could alter the visual assessment of RD. Even though
the ruler precision is reduced, its characteristics allow RD
estimation from a 720p video even at the maximum distance of
1 m. Furthermore, this level of precision could be sufficient to
provide a clinically relevant remote estimation of hand motor
abilities.
The validation procedure was completed considering also the
effects of two external factors: distance from camera (DF)
and velocity of hand movements (VF). To test the effects of
DF, the hand motor tasks were repeated at different distances,
respectively 30 cm (near), 60 cm (middle), and 1 m (far).
The near distance is the one that guarantees correct depth
estimation by Azure Kinect camera, whereas the far distance
was selected considering that, for an evaluation task focusing
on the hand, this is likely the farthest position at which
the hand will be placed and recorded. To test VF, only the
optimal distance from DF validation was considered. The
motor tasks were repeated at low, medium, and high speed.
In particular, these executions were guided by a metronome
running respectively at 45 bpm, 80 bpm, and 120 bpm.

IV. CHARACTERISATION OF HAND MOTOR SKILLS

A. Evaluating hand motor skills

For evaluating the hand motor skills, two motor tasks
commonly used in clinical practice were considered: finger
tapping (FT) and opening-closing of the hand (OC). Both
exercises are part of the Unified Parkinson’s Disease Rating
Scale (UPDRS) [11] [44] and are used in clinical practice to
evaluate the effects of symptomatology on fine movements
of upper limbs [25]. Moreover, the same tasks are used to
evaluate motor decline in older people and in other movement
disorders [9] [45].

FT and OC are challenging tasks for GMH-D due to the high
dynamic profile involving hand and fingers movements. FT
consists of repetitive tapping of thumb and index fingers, gen-
erally to be performed at the maximum amplitude and speed.
OC consists of repetitive opening and closing movements of
the hand, generally to be performed at the maximum amplitude
and speed.

B. Participants and experimental procedure

To validate the measures provided by the system and to
preliminarly check whether the parameters extracted by GMH-
D joints can discriminate altered FT and OC executions, only
healthy volunteers were recruited, without specific constraints.
Nevertheless, we tried to involve subjects having different
hand features (small vs big hand, male vs female) to test the
robustness of the tracking methodology under this variability
condition. Overall, 120 trials for each motor task were per-
formed by 10 subjects (5 males) recruited for the study. Mean



Fig. 3. Data acquisition and processing pipeline

hand length (std) for the male and female groups was 18.3
(0.6) cm and 16.5 (0.4) cm, respectively. Participants were
free to choose either right or left hand to perform the task,
considering this information not relevant for the test.

For DF validation, 5 subjects were involved. They were
asked to perform two trials of FT and two trials of OC for each
of the three investigated distances, collecting a 10 seconds
recording for each trial. To coordinate execution and align
the number of repetitions inside the time window, subjects
were asked to synchronise their movements with a metronome
running at 45 bpm. For VF validation, the same 5 subjects
were asked to position their hand at 60 cm (middle distance)
from the camera and perform again both FT and OC, two trials
for each exercise and speed (slow, medium, fast).

For the final automatic classification, other additional 5
subjects were recruited. The 10 subjects performed, two times,
three different trials at 60 cm from the camera: a normal (N)
execution with natural movement amplitude and speed; a re-
duced (R) execution, with normal speed but reduced movement
amplitude; a slow (S) execution, with normal amplitude but
reduced speed. The altered trials (R and S) were requested to
reproduce typical features of target population, which could
be easily mimicked by healthy subjects. For example, reduced
speed and low amplitude are typical signs in PD and elderly
people affected by hand arthritis.
Table I summarises the total number of trials collected for
validation and automatic classification purposes, for each
motor task.

C. Automatic characterisation of altered performance

The last part of our pipeline investigates whether some
kinematic parameters computed from GMH-D coordinates
could be used to distinguish between altered executions of
FT and OC. The kinematic characterisation of the two motor
tasks was performed by considering the trajectory over time
of the 3D distance between specific pairs of joints for each
movement: Thumb Tip (TT) and Index-finger Tip (IT) joints
for FT; Wrist (W) and Middle-finger Tip (MT) joints for OC.
Feature extraction was automatically performed by custom-
written MATLAB scripts; as only form of pre-processing of
raw tracking data, a low-pass filter with cutoff frequency at

10 Hz was applied to remove high-frequency noise, prior the
computation of TT-IT and W-MT distances. Table II reports
the parameters that were estimated for the two motor tasks
with a brief description: these features have been considered
on the basis of previous works on hand motor evaluation in
PD [21].

Finally, a statistical analysis of the estimated features was
carried out to identify trends in the data for the three types of
executions investigated (i.e., N, S, R).

For automatic classification, Support Vector Machine
(SVM) was employed. Features were first normalised using
z-score, then two separate classifiers were trained for FT
and OC. Nested cross-validation (10 outer train-test splits, 3
internal splits) was employed to evaluate performance: kernel,

TABLE I
TRIALS COLLECTED FOR EACH MOTOR TASK

Type of Trial N. of Trials

DF Validation
Near (30 cm) 10

Middle (60 cm) 10
Far (1 m) 10

VF Validation
Slow (45 bpm) 10

Medium (80 dpm) 10
Fast (120 bpm) 10

Classification
Normal (N) 20

Slow (S) 20
Reduced (R) 20

TABLE II
ESTIMATED KINEMATIC PARAMETERS FOR FT AND OC

Parameter Description Unit
mo m Range of motion as max - min (Mean) mm
mo cv Range of motion as max - min (Variation Coeffi-

cient)
ma m Maximum Amplitude of movement (Mean) mm
ma cv Maximum Amplitude of movement (Variation Co-

efficient)
mos m Maximum Opening Speed (Mean) mm/s
mos cv Maximum Opening Speed (Variation Coefficient)
mcs m Maximum Closing Speed (Mean) mm/s
mcs cv Maximum Closing Speed (Variation Coefficient)
dur m Movement duration (Mean) s
dur cv Movement duration (Variation Coefficient)
freq low Movement Frequency Hz



TABLE III
RMSE WITH RESPECT TO DF FOR FT AND OC

DF Method
FT OC

RMSE
(max peaks)

RMSE
(min peaks)

RMSE
(max peaks)

RMSE
(min peaks)

Near
WCA 1.54 4.90 0.64 2.78
KA 1.42 0.36 1.29 0.58

GMH-D 0.83 0.26 0.36 0.69

Middle
WCA 1.84 5.25 0.59 3.08
KA 0.93 0.33 1.13 0.76

GMH-D 0.48 0.32 0.40 0.49

Far
WCA 2.01 5.23 1.65 3.24
KA 1.04 0.74 1.08 0.67

GMH-D 0.55 0.50 0.30 0.58

cost of misclassification (C), γ and degree were optimised
using Grid Search in the internal cross-validation. Both multi-
classes (N, S, R) and binary classifications (Normal vs Altered)
were explored, considering either all the estimated features or
a subset of the most correlated to class label, with Pearson’s
correlation ∥ρ∥ > 0.6.

V. RESULTS

A. GMH-D measures validation

The comparison between GMH-D, WCA, KA and RD was
performed only at maximum and minimum peaks of fingers
movement, both for FT and OC. In fact, the peaks permit
the most accurate evaluation from videos of 3D distances
between reference points with respect to the ruler. In addition,
they correspond to the key moments in time evolution that
must be identified to perform all subsequent motion analyses.
The comparison was performed considering TT-IT distance
for FT, and the W-MT distance for OC. Fig. 4 contains some
examples of the task trajectories. It is important to notice that
minimum values for FT are not 0 because finger thickness and
positioning of virtual joints produce a residual distance (0.5
cm - 1 cm) even when fingers are touching.

Table III reports the Root Mean Square Error (RMSE) of
GMH-D, WCA and KA methods versus RD, for DF validation:
the RMSE estimated for maximum and minimum peaks were
kept separated to highlight the different behaviour of the
three methods. As it can be appreciated, GMH-D distance
estimations are the most stable to DF and the closest to
real measures, both in maximum and minimum peaks: RMSE
values are always smaller than 1 cm and often below 0.5
cm for both tasks. On the contrary, RMSE values for WCA
are high for FT maximum peaks (> 1.5 cm), but even more
for FT and OC minimum peaks. To investigate this failure,
the wrong reconstruction of virtual hand by WCA during a
FT trial was analysed (Fig. 5): GMH world model fails to
estimate relative depth when the two joints are very close,
generating a 3D model in which they are misaligned over the z
direction. On the contrary, GMH-D and KA do not present the
same phenomenon thanks to the embedding of depth camera
information in their estimation procedure.

In addition, WCA tends to worsen as DF increases. WCA
problems could depend on the data used to train the machine
learning model behind joint estimation.

TABLE IV
RMSE WITH RESPECT TO VF FOR FT AND OC

VF Method
FT OC

RMSE
(max peaks)

RMSE
(min peaks)

RMSE
(max peaks)

RMSE
(min peaks)

Slow
WCA 1.54 4.96 1.13 3.08
KA 1.42 0.35 0.60 0.76

GMH-D 0.83 0.26 0.40 0.50

Normal
WCA 1.84 5.25 1.23 2.53
KA 0.93 0.33 2.77 3.45

GMH-D 0.48 0.33 0.67 0.32

Fast
WCA 2.00 5.23 1.07 2.59
KA 1.04 0.74 6.03 2.57

GMH-D 0.55 0.50 0.60 0.51
Note: RMSE values are in cm

Regarding KA, it provides RMSE values closer to GMH-D, in
particular for mimimum peaks. However, it does not guarantee
an overall good reconstruction: RMSE values for maximum
peaks are often > 1 cm with respect to RD. As expected, KA
seems to be less affected by DF. In general, GMH-D surpasses
both methods, considering that KA strongly relies on the post-
processing correction procedure described in Section III(C)
and it does not always guarantee a perfect reconstruction (Fig.
4b). A distance of 60 cm from the camera seems to be optimal
to evaluate FT and OC using GMH-D, hence this value was
employed for the remaining steps of the pipeline evaluation.

With respect to VF, Table IV reports RMSE for minimum
and maximum peaks of the three investigated methods for
both motor tasks. Again, GMH-D proves to be the most
stable approach: whether the execution speed, the RMSE for
maximum and minimun peaks is always < 1 cm. On the
contrary, WCA and KA are characterised by more variable
and less accurate performance, with an average worsening as
velocity increases. This effect is evident especially for KA,
due to the phenomena described in Section II, which are
not completely solved by the proposed correction algorithm,
especially when the tasks become more challenging for hand
tracking.

B. Statistical analysis of kinematic features

For the statistical analysis, FT and OC trials divided in
the three previously mentioned groups (i.e., N, S, and R)
were considered. Table V shows mean values and standard
deviations for the estimated parameters divided by type of
execution. As expected, the values are in line with the type
of test: in the S category, there is a sharp drop in speed for
both tasks; in the R category, there is a marked decrease in
amplitude, especially for the FT task. Furthermore, in the R
category, there is also a marked decrease in the execution
speed. The subsequent analysis will allow highlighting the
significant differences between pairs of categories.

On the extracted kinematic features paired-t-test was per-
formed, to identify which parameters can discriminate more
between pairs of execution categories. In addition, correlation
of kinematic parameters to class label by Pearson’s correlation
was assessed. Results for the two statistical tests are reported,
with their significance (as expressed by p-value), in Table VI.
From the analysis, the difference N(FT) and S(FT) is more
significant for parameters related to mean duration (dur m)



Fig. 4. a) TT-IT distance during an FT trial: GMH-D estimates the closest values to RD peaks, whereas WCA completely fails in minimum peaks; b) W-MT
distance in an OC trial: KA method exhibits some spikes in the estimation of distance due to unstable depth tracking

Fig. 5. Wrong reconstruction by WCA when joints TT and IT are in contact

and movement frequency (freq low). In particular, the negative
sign for dur m and the positive sign for freq low highlight
that N(FT) is characterised by shorter duration and higher
frequency with respect to S(FT). The other kinematic param-
eters are not relevant, hence the two types of execution are
similar from that viewpoint, i.e., fingers speed was the same
for the two executions but a different cadence was followed,
as highlighted by freq low.
In the discrimination between N(FT) and R(FT), all parameters
show relevant discrepancy between the two categories, espe-
cially for mean amplitude, velocity, duration and frequency:
this result seems to support the idea that reducing amplitude
has affected indirectly also the other motor components during
test execution. Finally, in the comparison between the two
types of alterations (i.e., S(FT) and R(FT)) features related to
movement mean amplitude and velocity are the most signifi-
cant, whereas coefficients of variations are less discriminating,
but for ma cv: S(FT) likely favours a finer control in the
amplitude of the movement performed, whereas R(FT) is
characterised by higher variability in the finger opening phase.
About OC task, parameters related to mean duration, velocity
and frequency are the most discriminating when comparing

N(OC) and S(OC). Coefficients of variation for duration
(dur cv) and closing speed (mcs cv) are also significant,
whereas the ones for opening speed and amplitude are not:
this could depend on the intrinsic dynamic of the required
movement.
Considering N(OC) and R(OC), there is a significant differ-
ence for all parameters except dur cv (as in the case of FT)
and the variability parameters related to amplitude. This may
depend on the fact that OC movement is more constrained than
the movement involving two fingers only, and there is still a
tendency to reach more or less always the same maximum
and the same minimum, as it happens also in the pathological
condition. As for FT, the analysis shows that the reduced
execution has indeed led to an overall variation in kinematics,
which has impacted not only directly on the amplitude but,
indirectly, also on the other motor components.
As regards the comparison between S(OC) and R(OC), the
differences in the average values of the parameters related to
the amplitude and speed of movement are statistically sig-
nificant. There is no significant difference for the parameters
relating to duration and variability of speed. Concerning the
variability in amplitude, the difference is instead significant:
certainly the S(OC) performance favours a greater control
of the amplitude of the fingers compared to the R(OC)
performance that can show more variability during the test.
Regarding the results of Pearson’s correlation, in FT it appears
that all parameters are significant in identifying the test type,
with the exception of dur cv which is compliant with paired-
t-test outcome. The analysis also confirms that the parameters
most correlated with altered performance are indeed the mean
values of amplitude, speed, duration, and the frequency of
movement (∥ρ∥ > 0.5). In general, these features have an
inverse relationship (negative sign) with respect to the type of
test (normal or with abnormality) denoting a reduction in their
value for altered performance, with the exception of dur m
which has a direct relationship (positive sign), denoting an
increase of the parameter value for altered performance. Vice
versa, the parameters relating to variability are less significant



TABLE V
MEAN VALUES AND STANDARD DEVIATIONS OF PARAMETERS FOR FT AND OC TASKS

Parameter
Mean ± std

FT OC
Normal (N) Slow (S) Reduced (R) Normal (N) Slow (S) Reduced (R)

mo m (mm) 110.11 ± 18.65 118.60 ± 13.96 60.69 ± 14.84 123.04 ± 7.02 126.23 ± 8.47 105.05 ± 9.72
mo cv (-) 0.06 ± 0.06 0.03 ± 0.02 0.15 ± 0.09 0.03 ± 0.01 0.02 ± 0.01 0.05 ± 0.03

ma m (mm) 117.88 ± 18.21 126.00 ± 14.33 71.99 ± 15.12 164.84 ± 5.86 167.95 ± 5.78 156.76 ± 7.19
ma cv (-) 0.05 ± 0.04 0.03 ± 0.02 0.11 ± 0.08 0.02 ± 0.01 0.01 ± 0.01 0.03 ± 0.02

mos m (mm/s) 969.11 ± 213.09 856.12 ± 387.73 250.40 ± 84.36 1651.44 ± 150.45 1279.71 ± 271.82 581.78 ± 228.36
mos cv (-) 0.13 ± 0.05 0.19 ± 0.11 0.25 ± 0.15 0.09 ± 0.03 0.12 ± 0.08 0.19 ± 0.10

mcs m (mm/s) 1072.20 ± 309.05 1057.34 ± 496.93 303.61 ± 138.92 1764.80 ± 258.96 1217.33 ± 403.14 469.50 ± 222.07
mcs cv (-) 0.17 ± 0.08 0.21 ± 0.14 0.33 ± 0.21 0.10 ± 0.03 0.16 ± 0.06 0.18 ± 0.09
dur m (s) 0.78 ± 0.23 1.35 ± 0.13 1.40 ± 0.36 0.73 ± 0.02 1.41 ± 0.20 1.57 ± 0.35
dur cv (-) 0.13 ± 0.09 0.12 ± 0.08 0.11 ± 0.04 0.13 ± 0.04 0.08 ± 0.03 0.12 ± 0.10

freq low (hz) 1.33 ± 0.05 0.76 ± 0.12 0.98 ± 0.28 1.32 ± 0.05 0.76 ± 0.16 1.06 ± 0.31

TABLE VI
PAIRED-T-TEST AND PEARSON’S CORRELATION TO CLASS LABEL FOR FT AND OC

Parameter
Paired-T-Test Pearson’s coefficient

FT OC FT OCN vs S N vs R S vs R N vs S N vs R S vs R
mo m (mm) -1.34 7.39 *** 11.70 *** -1.03 6.69 *** 6.01 *** -0.68 *** -0.59 ***

mo cv (-) 1.45 -4.59 *** -2.99 * 1.74 -2.76 * -3.32 ** 0.48 *** 0.38 *
ma m (mm) -1.29 7.07 *** 10.80 *** -1.30 3.40 ** 5.28 *** -0.66 *** -0.43 **

ma cv (-) 1.32 -2.54 * -3.84 ** 2.11 -1.77 -2.69 ** 0.43 ** 0.27
mos m (mm/s) 0.94 11.7 *** 6.60 *** 4.25 *** 13.6 *** 12 *** -0.73 *** -0.89 ***

mos cv (-) -1.69 -2.93 * -1.50 -1.62 -3.55 ** -2.09 0.44 ** 0.51***
mcs m (mm/s) 0.12 8.32 *** 6.21 *** 4.63 *** 13.0 *** 6.27 *** -0.64 *** -0.87 ***

mcs cv (-) -1.09 -2.90 * -1.84 -4.23 *** -3.42 ** -0.617 0.39 ** 0.46 **
dur m (s) -8.17 *** -5.71 *** -0.54 -13.20 *** -9.00 *** -1.56 0.67 *** 0.80 ***
dur cv (-) 0.44 0.77 0.39 4.87 *** 0.457 -1.56 -0.13 -0.08

freq low (hz) 16.8 *** 5.04 *** -2.46 * 12.4 *** 3.04 ** -3.37 ** -0.50*** -0.34 *
Note: *** p < 0.001; ** p < 0.01; * p < 0.05

and with a direct relationship (positive sign of the coefficient),
demonstrating an increase in variability for altered trials. In
OC, it appears that all features are significant in identifying
the category, with the exception of the variability of duration
and amplitude: this result is in agreement with the paired-t-
test, from which it emerges that the dur cv parameter is never
significant in the comparison between type of trials, while
the mo cv and ma cv are only significant in the comparison
between S(OC) and R(OC) types. The analysis also confirms
that the parameters most correlated with altered performance
(whether in terms of speed or amplitude) are indeed the mean
values of the amplitude, speed, and duration parameters and
the variability of the speed parameters (∥ρ∥ > 0.5): in general,
these parameters have an inverse relationship (negative sign
of the coefficient) with respect to the type of test, denoting
a reduction of the feature for altered performance, with the
exception of the dur m which instead has a direct relationship
(positive sign of the coefficient). Vice versa, the coefficient
of variation of amplitude and duration are less significant or
not significant, with a direct relationship denoting an increase
in variability for altered performance. Fig. 6 shows scatter
plots of the data for FT and OC with respect to the top three
most correlated features: we can observe that N points are well
separated (with the exception of few outliers in FT) from S

and R points, which can be seen as an unique ”altered” (A)
class.

C. Results of the automatic classification

Accuracy performance of SVM classifiers from nested-
cross validation are reported in Table VII. Although complex
combinations of hyperparameters were considered, due to
the high separation among categories (Fig. 6), linear kernel
and C=1 proved to be the most recurrent (and sufficient)
configuration to classify FT and OC, both in the multi-classes
and binary problem. The neat separation between N and A
classes (i.e., grouping R and S) also explains the very high
accuracy achieved by the binary classifiers. Furthermore, as
expected, performance increased when reducing the feature set
to the most correlated parameters, thus removing irrelevant or
confusing features.
Even if these results are high, their statistical meaningfulness
is limited because they were achieved on data from a small

TABLE VII
ACCURACY OF SVM CLASSIFIERS

Feature set FT OC
Multiclass (%) Binary (%) Multiclass (%) Binary(%)

Full 91.5± 10.5 95.0± 10.0 95.5± 9.1 97.5± 7.5
ρ > 0.6 94.0± 9.2 97.5± 7.5 98.0± 6.0 100.0± 0.0



Fig. 6. Scatter plots of data for classification with respect to the three features most correlated to the class label: a) Scatter plot of FT data by type of trials
performed, Normal class is separated neatly from Reduced and Slow but for few outliers; b) Scatter plot of OC data by type of trials performed, Normal class
is separated neatly from Reduced and Slow

cohort of healthy subjects, performing simulations. For these
reasons, the two classes N and A can be considered as extreme
cases in a real, more variegated spectrum. It is expected that
real elderly and pathological subjects will span in the middle
between these two extremes, making the classification task
more challenging, but still feasible for the presented system.

VI. CONCLUSIONS

This work proposes a pipeline suitable for automatic and
non-invasive remote assessment of hand motor skills in elderly
and pathological subjects. This pipeline is based on GMH-
D, an innovative mixed approach to track and reconstruct
a 3D, 21-joints, virtual hand combining Google MediaPipe
Hands (GMH) and video recordings from a RGB-Depth cam-
era (Azure Kinect). GMH-D fuses together 2D coordinates
and relative depth estimations provided by GMH with depth
data from the Kinect, exploting then predefined 2D-to-3D
projection routines to infer 3D joints trajectories over time.
The validation results demonstrated that this method provides
an accurate and stable estimation of 3D coordinates at 60 cm
from the camera, also in conditions where the hand is involved
in highly dynamic and fast tasks as finger tapping (FT) or
repeated opening and closing of the hand (OC).
GMH-D is able to correctly estimate distances among joints of
interest at key time instants (minimum and maximum peaks)
with an error smaller than 1 cm, surpassing accuracy and
reliability of MediaPipe native 3D world coordinates (WCA)
and another method exploiting depth information from the
camera for all points estimation (KA). This result configures
the proposed approach as consistent for clinically-relevant
kinematic analysis.
Moreover, the method allows extracting kinematic parameters
that proved significant to identify simulated alterations of hand
movements. Indeed, supervised classifiers (SVM) trained on
these features were able to achieve a mean accuracy higher
than 90% in the recognition of altered FT and OC trials.

The proposed approach is clearly not exempted from limi-
tations: the method can currently only evaluate one hand at a
time; only motor tasks performed with the hand in front of the
camera and visible wrist were evaluated; the automatic clas-
sification results were obtained on a small cohort of subjects
performing simulated alterations. However, future works will
focus on overcoming these limitations: for example, exploring
alternatives to MOCAP systems, which could alter the quality
of the proposed method, to evaluate reconstructed distances
in more complex camera setup and more challenging hand
motor tasks; testing the pipeline on subjects with real impaired
hand mobility; migrating the solution on other devices, like
smartphones or tablets with an embedded RGB-D camera,
to make the acquisition system even more portable, hence
suitable for remote assessment scenarios.
Nevertheless, considering the preliminary results obtained by
this study, it is reasonable to expect that the proposed approach
could find a range of applications in clinical and non-clinical
scenarios where the computation of accurate kinematic param-
eters is required to estimate hand motor performance.
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