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Abstract—The challenges of managing datacenter traffic in-
crease with the complexity and variety of new Internet and
Web applications. Efficient network management systems are
often required to thwart delays and minimize failures. In this
regard, it appears helpful to identify in advance the different
classes of flows that (co)exist in the network, characterizing them
into different types according to the different latency/bandwidth
requirements. In this paper, we propose Howdah, a traffic iden-
tification and profiling mechanism that uses Machine Learning
and a congestion-aware forwarding strategy to offer adaptation
to different traffic classes with the support of programmable
data-planes. With Howdah, sender and gateway elements inject
in-band traffic information obtained using supervised learning.
When a switch or a router receives a packet, it exploits such host-
based traffic classification to adapt to a desirable traffic profile,
for example, balancing the load. We compare our solutions
against recent traffic engineering solutions and show the efficacy
of cooperation between host traffic classification and P4-based
switch forwarding policies, reducing packet transmission time in
datacenter scenarios.

Index Terms—load profiling, machine learning, traffic classifi-
cation

I. INTRODUCTION

In the last decades, datacenters have changed their topol-
ogy where the demand of the global network has increased
specially when new applications ask for more data at faster
speeds but still requiring low latency. Because of that, a new
focus was given not only to traffic in and out of the datacenter,
but even within it, with the need of changing datacenter’s
architecture to multi-rooted leaf-spine or fat-tree topologies.
These topologies have in common the presence of multiple
source-destination paths to handle the high volume of traffic.
Efficiently use the network resources, however, requires a load-
balancing strategy that moves network performance towards
optimality. One of the most used load-balancing techniques
remains ECMP (Equal-Cost Multi-Path), a routing strategy
that static hashes flows for path assignment. However, because
flows are randomly assigned to a path, ECMP does not take
into account a potential congestion in the network (as well
as link failures) and leads to uneven flows distribution (as
well as poor performance) [1]. Recent approaches attempted
to overcome these limitations, and while they are all sound
solutions, either introduced additional overhead, e.g., [2], [3]
or failed to apply efficient logic per-packet, e.g., [4], [5].
On the one hand, centralized schemes, such as Hedera [4],
B4 [5], FastPass [6] and SWAN [7], can perform congestion-

aware decisions, but demand considerable control traffic and
react too slowly for volatile (datacenter) traffic. On the other
hand, recent distributed approaches, such as CONGA [2]
and HULA [3], introduce periodic network feedback that
might lead to excessive overhead traffic and contribute to
congestion. In line with these efforts, the research question
that we are addressing in this paper is: “Can we balance
network traffic over uncongested paths without the need of
defining elaborate protocols for the exchange of information
between the switches or between the switches and a centralized
controller?”

In this paper we answer this question with Howdah, a
data-plane solution that aims at improving load profiling by
taking forwarding decisions via a distributed and (partially)
congestion-aware logic. The idea behind Howdah is a joint
optimization: minimization of collisions between flows and
maintenance of high utilization inside the datacenter network. 1

Load profiling [8], [9] subsumes load balancing: it may be
desirable to have different classes of traffic with different
priorities and traffic demands, hence it may be desirable to
depart from a merely balanced load. In Howdah, network
switches are instructed with P4 programs to run a data-driven
load profiling that, rather than flows, operates over flowlets —
burst of packets in a flow, split by a sufficiently large time
gap. Approaches based on flowlets have been shown to be
desirable as there are no packet reordering problems and no
modification to the TCP stack needed [10].

To further optimize path selection, forwarding actions are
differentiated according to the type of traffic carried in the
packets. Howdah internal sending hosts and peripheral gate-
ways run supervised Machine Learning (ML) model to predict
if each flow entails a large amount of data, elephant flow,
or a small amount, mouse flow, and this traffic knowledge is
transferred directly to the intermediate switches and inserted
into the packet in an in-band fashion. Based on the fact that
elephant flows are the ones responsible for network conges-
tion, they are routed over the fastest paths by considering the
least utilized path from the switch perspective; mice, less likely
to overload network nodes, just flow via flowlet ECMP.

1An howdah, derived from the arabic word hawdaj, which means “bed
carried by a camel”, is a carriage which is positioned on the back of an
elephant, or occasionally on some other animal such as a camel. We called
our solution Howdah since, as in the real howdah, it is a tiny overhead that
can serve several applications and can be carry over elephants or other flows.



We evaluated our classifier’s accuracy over real-world dat-
acenter traffic traces and experienced how a Support Vector
Machine (SVM) algorithm is simple yet effective enough to
accurately split traffic into classes. Then, we studied how
Howdah’s performance changes when different protocols are
used to carry the in-band traffic information. As we discuss
in Section IV, our mechanism can operate as an in-band
strategy on different existing protocols, e.g., MPLS, IPv4,
IPv6, or even on future Internet architectures [11]. We found
how IP type-of-service fields provides negligible overhead and
represents a valid implementation of our proposed architecture
in transferring information on traffic classes. We tested such
implementation in datacenter network scenarios and compared
it to recently proposed benchmarks. Our results validate how
our solution can reduce both Round-Trip-Time (RTT) and
Flow Completion Time (FCT) at high network loads, espe-
cially for elephant flows.

The rest of the paper is structured as follows. Section II
describes state-of-the-art techniques; while Section III outlines
the scenario considered and overviews our solution design.
In Section IV we study some options to carry the in-band
information using already defined protocols, and Section V
describes our traffic classification method. We present our
results in section VI and conclude the paper in section VII.

II. RELATED WORK

Efficient balancing/profiling of traffic load among available
paths is a critical issue, especially in highly stressed networks
as datacenters. Many recent studies addressed this problem,
proposing solutions that attempt to fully utilize the available
bandwidth resources. Although traditional and local routing
strategies (e.g., the standard ECMP) are extensively used in
practice, their performance is suboptimal for datacenters, given
the local, trivial, and stateless decisions that lead to split
traffic without knowledge of potential congestion on the net-
work [4], [12], [13]. Recent local approaches, as DRILL [14],
Clove [15], and PRESTO [16], attempt to solve ECMP’s short-
comings while confining decisions within each switch, ignor-
ing global information. DRILL forwarding decisions are load-
aware and based on local queue occupancy, enabling operating
on microsecond (packet-by-packet) timescales. PRESTO [16]
is based on the insight that, in a symmetric Clos where all
flows are small, ECMP provides near optimal load balance.
As such, it divides flows into “mice”, that are source-routed
so they are striped across all paths, without load-awareness.
However, both solutions have to deal with the performance im-
pact and computational bottleneck of TCP reordering, whose
problem is exacerbated in asymmetric topologies.

A common approach to take more appropriate actions is to
delegate forwarding logic to centralized controllers and take
congestion-aware decisions, as in as B4 [5], F10 [17], Ma-
hout [18], MicroTE [19], and Hedera [4], which are based on
the assumption that non-local (i.e., global) congestion informa-
tion is helpful to evenly balance load. While they have shown
near optimal traffic engineering for inter-datacenter WANs,

they are not designed for highly volatile datacenter networks
because of the coarse timescales of their control operations.

With the aim of working in microseconds yet using global
information, CONGA [2] operates in the data plane and makes
globally optimal allocations using a distributed approach,
allowing a faster reaction when handling asymmetry. Using a
leaf-to-leaf mechanism, in which switches at the edge (leaves
in Clos networks) gather and analyze congestion feedback
from remote switches to estimate real-time congestion on fab-
ric paths, CONGA combines this mechanism with the flowlet
switching strategy. Although this study validates the efficacy
of flowlet switching strategy to ensure efficient utilization
of network resources, especially if applied to datacenters, it
comes with two main limitations: first, global congestion state
at the edge switches may drastically increase and exceed the
switch memory; second, its implementation is designed for
custom hardware. These limitations are addressed explicitly
by HULA [3], a data-plane load balancing algorithm applied
on P4-based programmable switches, in which leaf switches
track congestion for the best path to a destination through
a neighboring switch and not for all paths, with no need of
having specifically designed hardware. In particular, HULA
uses probes to get information on the network status (i.e., link
failure, topology change) and update switches’ internal tables.
Our solution uses the same load profiling principles as HULA.
However, instead of using Top of Rack (ToR) switches to send
probes, we send additional information in each packet so that
each switch can better handle traffic congestion, leading to a
positive impact on performance.

A recent solution as CONTRA [20] provides a performance-
aware routing that can adapt to traffic changes at hardware
speed, allowing the users to specify network policies to rank
network paths given their current performance. After a verifi-
cation process, the CONTRA compiler decomposes these non-
arbitrary policies into P4 switch local programs opportunely
adapted to the topology. Nevertheless, HULA’s policy is the
default and best performing setting.

Inspired by the idea of adapting forwarding decisions,
we also provide some readily-available load profiling actions
that can be extended and customized by the users to meet
specific performance objectives. However, different from these
load profiling solutions, in our local congestion-aware routing
solution the switches are not the only ones doing all the work,
but they are assisted by the host machines for the traffic type
identification. This host-based traffic classification is inserted
in-band and then used for the forwarding decisions of the
switches in the network.

III. ARCHITECTURE AND PROTOCOL DESIGN

Howdah is constituted by a data-plane load balancing sys-
tem that uses a traffic classifier to differentiate forwarding
actions properly. Although the traffic classifier can be deployed
at the ingress of the network provider or at the sender, we
simply refer to this element as Howdah host. As such, we
can summarize the overall Howdah algorithm in a two-steps
process and two main architectural components: one running
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Fig. 1: Howdah overview. The system is based on the coopera-
tion of hosts that help network nodes by inserting information
about traffic classification, then processed by the P4 switches.

on local machines and gateways, and one running on P4-
enabled switches, as shown in Fig. 1. At first, the host classifies
the traffic using a supervised machine learning algorithm and
injects the output of the classification process in an opportune
field of the packet header (see Section IV). Secondly, when
an intermediate switch receives the flow, it checks the type of
traffic that is being sent and differentiates the actions. While
mouse flows are forwarded only following the information in
the packet header without the need to update each switch’s
statistics, this is not true for elephants, given their major
impact.

In the rest of this section we detail our design decisions,
focusing on how functionalities are split between end-hosts
and P4-enabled switches.

A. Host-based Traffic Classification within Howdah Hosts

While switches implement load profiling and traffic engi-
neering decisions, senders and gateways traditionally house the
traffic classification logic used during the forwarding process
of the switches. Since our network scenario is constituted
by a datacenter topology, we assumed that the sending hosts
for East-West (internal) traffic can be easily instructed to
classify the traffic via an ML model and insert this infor-
mation in the packet itself (see the details of our design in
Section V). Conversely, for the North-South traffic (from/to
outside), we assume that external hosts may not implement
any ML classification logic. Our gateway also applies the
same traffic classification algorithm before letting packets
in the datacenter network, along with other packet filtering
operations that are common in a datacenter. For traffic directed
outside, the classification data is stripped away before leaving
the datacenter.

Why traffic classification. Datacenters typically encounter a
variety of traffic classes hosting diverse services. Among them,
we can enumerate on-demand video delivery, storage and
file sharing, web search, social networks, cloud computing,
financial services, recommendation systems, and interactive
online tools [21]–[23]. These applications present different
traffic characteristics and distribution of flow arrivals, flow
sizes, and flow duration [24]. As an example, flows generated
by web search queries are usually much smaller and shorter
than flows of batch computing jobs. Instead, high-performance
computing (HPC) jobs like Hadoop, transfer petabytes of data
during the shuffle MapReduce phase [25].

Such a variety of applications leads to the creation of
long-lived connections, as well as short microbursts on the
same network. As common in the network management liter-
ature [18], [26], we refer to long-lived flows as “elephants”,
and to short microbursts as “mice”. The goal of our load
profiling solution is to provide high bisection bandwidth
for throughput-sensitive and latency-sensitive flows without
introducing excessive delay on remaining flows, by properly
balancing traffic loads among the available links. In line with
recent studies [27], [28] that have pointed out the importance
of classifying traffic in “elephants” and “mice”, we also argue
that long-lived flows must be identified to take appropriate
actions and better orchestrate traffic.

Moreover, while in this paper we only consider two different
types, the Howdah architecture, along with the P4 language,
provides flexibility to generalize on multiple differentiation
traffic types, e.g., bandwidth vs. delay-sensitive applications,
or web vs. database vs. HPC traffic.
Why host-based classification. A possible place where clas-
sifying packets would be the switch itself. However, the hard-
ware characteristics of network nodes badly fit the learning
procedure of an ML model, resulting in poor performance. Be-
sides, given the strict packet scheduling of datacenter switches,
the application of ML models would either negatively affect
the packets forwarding process or necessitate a specific soft-
ware and hardware design. To guarantee a fast packet forward-
ing, the literature has presented valuable examples of switches
collecting flow metrics but delegating the ML learning phase
to a centralized controller [4], [5], [29]. However, both a per-
flow statistic and a sampling mechanism do not scale: The
bandwidth between switches and the controller is limited, so
transferring statistics becomes the bottleneck in this traffic
management scheme. Moreover, collecting statistics per-flow
would consume significant switch resources, while a sampling
detection, i.e., sampling only a small fraction of incoming
packets, would lead to accurate detection of elephant flows
only after 10K packets [30]. In light of this, we argue that
the host and the gateway are the optimal places for detecting
elephant flows in datacenters. First, they have better visibility
over the frequency and amount of application data generated,
while network nodes can be biased by the network congestion.
Second, the application layer of datacenter programs can be
augmented with our Howdah layer, and this option is favored
by the single administrative domain and software uniformity of



common datacenters. Third, there are likely GPUs or general-
purpose CPUs on the hosts that better fit the ML classification
process.

B. P4-compatible Switches

The main task of the switch is to profile flowlets – burst
of packets belonging to the same flow separated by a sig-
nificant time interval – without the need of reordering when
those arrive at the destination [10]. It has been shown how
this method allows higher granularity while providing better
performance [2].

To make our switches programmable and make them control
plane independent, we instruct them with P4, a programming
language for protocol-independent packet processes [31]. Such
a language enables to program packet processing pipelines in
packet forwarding ASICs and allows defining custom parsing
rules and new protocol logic. P4’s control model follows
the SDN architecture and involves a separate control plane
to deploy commands directly on networking devices. This
approach provides many advantages compared to a hardware
implementation: the user can modify the size of all variables
and registers according to the topology of interest and the
workload demands. For example, since Howdah can work
with different packet header formats (see Section IV), the
packet parsing can be smoothly adapted to meet the desired
header policy. Moreover, P4 offers a switch abstraction that is
independent of the actual hardware: P4 programs are compiled
to a target-independent representation (front-end), and then
compiled again to different specific platforms, e.g., NetFPGA.
Howdah switch forwarding. In our solution, we redefine
P4 tables to apply match-action entries to implement our
load-profiling actions. In general, P4 tables of switches can
be used to specify behavior such as preliminary next-hops,
multicast groups, and ISO-OSI level-2 forwarding using MAC
addresses. With Howdah, once the hosts have inserted the
information about the traffic type, our P4 switches forward
the packets on the basis of this information and the ports
utilization. Concretely, we make use of a table that contains
the hash of the arriving flowlet, helpful to record the last time
a flowlet belonging to a certain flow was seen, and compute
the difference between store value and arriving time of a new
flow. If such a difference is below T, whose value is chosen
according to other state-of-the-art techniques [3], then the
switch forwards the flowlet to the stored best-hop; otherwise,
the switch recognizes a new flowlet, computes the hash of
the 5-tuple composed of the protocol, IP source & destination
address, TCP source & destination port, and finally stores the
current best next-hop. We define the concept of load profile as
the desired load on an outgoing link of the switch, enabling
the user to specify how to split traffic over these links. One
common scenario is an even load on the links of the switch,
but other circumstances may demand unequal balance if links
have different features or traffic have different priority. Our
P4-enabled switches can be effortlessly adapted to implement
the desired policy.

Ethernet IP BPP TCP

Ethernet IP TCP

Ethernet IPMPLS TCP

Fig. 2: Possible policies for Howdah’s packet header. Traffic
classification information is inserted directly into packet, lead-
ing to a small impact on the switch forwarding process.

In the special case of load balancing, forwarding rules
are applied on top a flowlet-based version of ECMP packet
forwarding: like traditional ECMP is based on selecting next-
hop hashing the 5-tuple, but rather than per-flow, decisions are
per-flowlet. In the case of mice, the switch simply forwards
the packet to the next best-hop according to the flowlet-based
version of ECMP. Otherwise, in the case of elephant traffic, the
selection of the next-hop also considers the least recently used
(LRU) port. As they are more prone to cause congestion in
the network, we consider the frequency of port utilization, and
we also need to update the statistics about the network in each
switch. As such, aside from the hash function computation, the
switch needs to update this utilization metric for each arriving
packet. Despite being simple, this LRU criterion effectively
avoids congestion– and reduces delay – as the flowlet is sent
throughout different ports where the probability of sharing the
bandwidth with other ongoing flows is reduced.

IV. IN-BAND TRAFFIC KNOWLEDGE POLICY

Recent studies have pointed out that additional network
information can reach a considerable amount of bytes and
become some of the heaviest packets in the network [32]. A
significant countermeasure is provided by the In-band network
measurement, which is becoming highly used in a variety of
network management applications to add network information
directly into each packet’s data.

For this reason, we use in-band network management in our
solution and configure the switch to forward the packet to the
next-hop, taking into account the additional data contained in
the packet itself. By combining in-band flow information with
P4, we reduce the control traffic of traditional SDN architec-
tures, e.g., OpenFlow, where the switches communicate with
the controller to decide flow rules. As explained in Fig. 1, the
control traffic is now carried in the header of the packets. In
what follows, we describe three possible algorithms to prove
the viability of this architecture, and to demonstrate that the
network programming framework can indeed be used to sup-
port applications with real-time networking demands without
needing to deploy custom hardware in networking devices
or even controllers. In particular, we examine the following
alternatives and identify advantages and disadvantages for each
of them.



IP Type of Service. The Type of Service (ToS) field has
been designed as the way to specify a datagram’s priority and
request a route for low-latency, high-throughput, or highly-
reliable service. These 8-bits have been split to serve the
function of Differentiated Services Code Point (DSCP), with
6 bits, and Explicit Congestion Notification (ECN), with 2
bits. Although the behavior of the router in response to these
values is not specifically defined, IP ToS definitions are widely
found in Unix implementations. For this reason, they appear as
the most viable approach to introduce our traffic classification
data in combination with our programmable switches. Results
in Section VI confirm the low overhead introduced by this
solution. However, the limited bits available also limit the
scalability and generability of the solution, which is unable
to accommodate a broader range of application requirements
and switch’s actions specification.
MPLS. Multiprotocol Label Switching (MPLS) is a routing
technique based on the key idea that packet-forwarding deci-
sions are made solely on the contents of labels assigned to data
packets, without the need to examine the packet itself. MPLS
works by prefixing packets with an MPLS header, containing
one or more labels and forming a label stack. Each entry in
the label stack contains four fields; among them comes the 3-
bit for Traffic Class field, typically used for QoS. An MPLS-
compliant version of Howdah would use this field to carry
the information about the traffic flow. Possibly, paths per flow
are reserved in advance by means of the Label Distribution
Protocol (LDP). This approach provides remarkable flexibility,
with more thorough traffic engineering decisions, at the cost of
an additional packet header, and an additional protocol, such
as LDP, for label distribution, or administrator effort to set up
the paths on each network device.
BPP. Big Packet Protocol (BPP) is a novel approach to
customize packet-based networking behavior, based on the
introduction of the concept of a BPP Collateral: a block of
data (metadata and forwarding instructions) carried with the
header and the user payload, used to inject meta-information
and guide intermediate switches on how to process those
packets [11]. Such BPP Collateral can be viewed as three
smaller blocks: BPP header, BPP command block, and BPP
metadata block. While the command and the metadata blocks
are optional, the header is essential because it contains infor-
mation on the BPP version, block length, some error handling,
and the “next header” or “next BPP block” field, which
links BPP blocks to each other. The command block is used
for condition type purposes or to evaluate some true/false
statements; the metadata block, as the name already suggests,
might be used to gather more information on the flow type
or to perform counting on hops or other values of interest.
In light of this, we envision our solution to work optimally
when the traffic knowledge is included in the metadata field.
We can, however, easily observe how this option implies a
larger amount of additional bytes, nearly 30 bits, but can be
easily extended to support precise service level guarantees and
to facilitate other traffic engineering operations.
Howdah essentials. Given the building blocks of Howdah

exposed previously, we envisioned our solution to work with
multiple protocols carrying the traffic information. In this
paper we limit our attention to some options that can be used to
inform the switches about the traffic type, as shown in Fig. 2.
However, we argue that other possible protocols, e.g., IPv6 or
VXLAN, can be employed given the programmability of our
P4 switches. Whatever the protocol carrying the classification
output, our solution involves a cooperation hosts-switches
towards optimized forwarding decisions: when the packet is
ready to be sent, the host adds a flow type bit useful to
the switches to distinguish between an elephant or a mouse
flow and react accordingly. The Howdah’s header is used by
the switch to distinguish between an elephant flow and a
mouse one by using a bit in this block: “0” if mouse, “1” if
elephant. In conclusion, this header field is used to inject meta-
information directly in the packet allowing guidance through
the network, where our Howdah switches, based on this value,
apply load balancing at the granularity of flowlets.

V. HOWDAH TRAFFIC CLASSIFICATION

One key aspect to consider in our system is traffic clas-
sification, as it impacts how packets are forwarded. In this
section, we describe the process running on the host machines
responsible for accomplishing the classification task.

A. SVM with SGD

In Howdah we model each flow using a Support Vector Ma-
chine (SVM) algorithm, a supervised machine learning algo-
rithm typically used for classification and regression purposes.
Its goal is to classify and label the data by finding a hyper-
plane that better divides items in a dataset and maximizes the
distance between the support vectors. This hyper-plane can
be of two types: a linear and an N-dimension one. A linear
hyper-plane splits the space (and consequently the dataset)
into two categories (or classes), while the N-dimension one
splits the space in N-dimensions (and classes). SVM is highly
used for big datasets, especially for document classification or
sentiment analysis. In the prototype presented in this paper, we
make use of a linear hyper-plane because we need to classify
our data using only two labels: elephants and mice flows.

The considerable dimension of our dataset, however, can
cause issues during the learning process. The literature has
presented alternative gradient descent (GD) techniques to solve
this issue, where three of the most common optimization
strategies are:

• Batch gradient descent (BGD), defined as a GD that at
each iteration takes the whole training set and computes
an average of all gradients;

• Stochastic gradient descent (SGD), defined as a GD that
deals with randomness in the training dataset using only
a simple sample at each iteration;

• Mini-batch gradient descent (MBGD), a mixture between
BGD and SGD where the training set is divided into
many groups. However, it needs to know the size of each
group (“mini-batch size”) as an additional variable for the
algorithm.



In our Howdah classifier, we make use of stochastic gradient
descent (SGD) since it can efficiently deal with a large dataset
like ours while also reducing efficiently the computation cost.

B. Howdah Classifier Methodology

Using an SVM algorithm in combination with SGD (re-
ferred simply as SVM in the following), our Howdah’s hosts
classify the type of traffic before transmission and tag the
packet accordingly. Our supervised classifier acts over an input
space of 1×N , where 1 refers to the fact that it just considers a
single packet, and N is the cardinality of features considered.
In particular, the features list of our ML model consists of
6-tuple: source IP address, destination IP address, source port
number, destination port number, transport protocol (such as
TCP or UDP). The output of this classification process is a
binary label indicating whether it is an “elephant” or “mouse”.

Any host in our datacenter, as well as the gateway, should
run a modified instance of either kernel-level network services
or application-level socket instances. While literature has
shown profitable usage of a shim layer on the end hosts [18],
[24], in our prototype we considered the latter option and
our results validate the efficacy VI. To further simplify the
operations over the host machines, we apply the classification
process only if necessary. In detail, protocols known to bring
little contribution to network congestion, such as ICMP, are
automatically labeled as mouse flows. On the other hand, for
unknown protocols and transport protocols that may be heavy
(i.e., TCP and UDP), the Howdah classifier runs before the
sending, and the output label is set in the packet header. Our
SVM classifier enables an accurate traffic classification while
not incurring an excessive burden for the host machine, as
detailed in Section VI. It must be noted that even though
forwarding is flowlet-based, the classification is per flow, thus
reducing the number of times classification is executed.

VI. EVALUATION

In this section we illustrate our evaluation results that guided
our solution design and validated Howdah’s benefits.

A. Evaluation Settings

To validate our solution over a datacenter-like network, we
deploy Howdah over Mininet, a network emulator that allows
reproducing arbitrary virtual networks for fast simulations.
Being specifically designed for software-defined networking
(SDN), it can also support P4-compatible switches via be-
havioral model version 2 (bmv2), which allows compiling a
P4 program into packet-processing actions of C++11 software
switches. We limit our attention to a load balancing problem.
We replicate in Mininet a leaf-spine topology with 10 server
racks connected to their related switches and each of these
connected to other 4 switches, as shown in Fig. 3; where
every link has 100 Mbps bandwidth. We use the iperf3 tool to
reproduce different traffic workloads and to induce congestion
in the network.

We then tested the traffic classifiers when the input is
three realistic workloads, taken from a publicly available

Fig. 3: Network topology used throughout the experimental
evaluation.

datasets [33]. We extracted three different datasets and stored
in a .pcap file, corresponding to three captures obtained during
the same day in the same datacenter but at diverse time
instants. We refer to them as: “US-UNV-1” composed of
887, 647 items, “US-UNV-2” composed of 913, 026 items, and
“US-UNV-3” composed of 887, 647 items. By scanning these
files, we extracted the necessary features for each flow, and the
flow label is assigned on the basis of the total bytes exchanged
by the flow: if this number is greater than D or the connection
lasts more than L seconds, it is an elephant, otherwise, it is a
mouse. As in [3], the threshold D is set to 1700 bytes while L
is 10 seconds, since we experienced these values are realistic
and the label assignment is not strongly imbalanced.
Traffic classifier benchmarks. We compare our Howdah
classifier against three recent solutions and a well-known (and
widely used) model. First, a Random Forest (RF ) model-
based technique as in [27], where the solution of this study
classifies flows with the goal of optimizing the incast comple-
tion time on different buffered switches using elephant-based
traffic. Second, [28], investigates between supervised and un-
supervised ML methods to identify flow types based on traffic
characteristics. Its prediction proposes an unsupervised ML so-
lution that uses a clustering technique as k−means, to predict
classes, labeling each flow “elephant” or “mouse”. Thirdly,
given its popularity, we consider a Neural Network (NN ) clas-
sifier, whose layout is made with three fully connected layers:
The first two hidden layers consist of 12 and 8 nodes and
use the rectified linear unit activation function; the third layer,
the output layer, has one node and uses the sigmoid activation
function. The number of layers and nodes for our classifier was
tried upon different experiments to find the one that maximizes
the metric measures of our classification problem.
Load balancer benchmarks. Despite the vast literature on
the datacenter load balancer and profiler, we compare our
approach against two of the most representative solutions:
CONGA [2] and HULA [3]. For example, even a more recent
solution as CONTRA [20] employs HULA as its default
approach. Differently from them, we do not make use of
out-of-band probes because it is overhead traffic, but we inject
network information directly inside the packet. Moreover, we
are not hardware-specific thanks to the P4 language, nor do
we need any centralized controller. Finally, ECMP is used as
a baseline.



TABLE I: Performance comparison of datacenter traffic classification for different ML models. Tests are performed over three
datasets, and SVM shows acceptable accuracy and generability.

US-UNV-1 US-UNV-2 US-UNV-3

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SVM 0.94 0.96 0.94 0.97 0.94 0.96 0.94 0.96 0.99 0.99 0.99 0.99
NN 0.93 0.92 0.99 0.96 0.93 0.93 0.99 0.95 0.99 0.99 0.99 0.99
k-means 0.83 0.99 0.83 0.91 0.84 0.99 0.84 0.91 0.97 0.99 0.98 0.99
RF 0.99 0.99 0.99 0.99 0.93 0.93 0.93 0.93 0.97 0.97 0.97 0.97

B. Traffic Classification Accuracy

To estimate the performance of our model, we first define
TP and TN as the numbers of elephants correctly predicted
(TP) or mice correctly predicted (TN); and FP and FN as
the numbers of elephants erroneously predicted (FP) or mice
erroneously predicted (FN). Having considered two classes –
elephants and mice– the definition of positive and negative
classes for a binary classifier is simplified. Then, we focus on
the most relevant ML measures: accuracy, precision, recall,
and f1-score, according to the definitions:

• Accuracy: the fraction of the test on which the model
provides a correct prediction:
accuracy = TP+TN

TP+TN+FP+FN ;
• Precision: the fraction of true positives that are effec-

tively and correctly classified as positives on the total of
positives: precision = TP

TP+FP ;
• Recall: the fraction of positives on the total of the real

positives: recall = TP
TP+FN ;

• F1-score is a way of combining both precision and recall
measures and it is defined as their harmonic average:
F1-score = 2∗TP

2∗TP+FP+FN .
After having trained all the considered classifiers over the

80% of samples in “US-UNV-1”, we measured the classifica-
tion performance over the remaining samples in this dataset
and over the other two files. We report the obtained results
in Table I. To obtain these metrics even in the case of
unsupervised learning, i.e., k − means, we combine it with
SVM, to fall in classification task and convert the unsupervised
results into classification performance metrics.

We can observe how, despite providing high precision, this
unsupervised approach poorly performs in comparison to other
supervised alternatives. Moreover, both RF and NN perform
well over the three datasets but provide lower accuracy and
F1-score than our SVM. Focusing on the RF classifier, then,
we can notice notable accuracy when tested to the same dataset
in which it is trained. However, this model does not give
comparable performance when applied to the other datasets.
On the other hand, our enhanced SVM model provides overall
more intriguing performance metrics, along with more gener-
ability: its performance is satisfactory even when applied to
other datacenter workloads.

C. Packet Header Impact

As explained in Section III, Howdah can work when com-
bined with multiple protocols responsible for adding extra
information directly in the packet header. Among them, in this

paper, we specifically focus on IP, BPP, and MPLS, although
more options are available. In Fig. 4a, we study the impact
of the diverse header format in terms of flow completion time
(FCT) for different network loads. FCT is defined as the time
when the first packet is sent until the last one is received,
and represents a key performance metric when speaking about
network congestion. The error bars in the graph refer to the
95% confidence intervals.

Since using the IP fields would require no additional bytes
and zero overhead, it can be seen that when the traffic load
increases, the benefits of this option are evident, leading to the
lowest FCT. However, when the congestion is minimal and
traffic load is less than 50%, the advantages of IP are minimal
too. This motivates us to use the IP header as the default
option and in the following tests, even though the alternatives
are valid and provide more flexibility.

D. Load Balancing Effectiveness

After the evaluation of our predictive model and the impact
of different packet header formats, we studied the load-
balancing effectiveness in a datacenter scenario by comparing
Howdah against the other benchmark solutions. The 10 servers
in Fig. 3 are used to send packets so that traffic replicates
the datacenter workload described in [12]. This allows us to
consider an increasing network load by varying the number
of receiving servers (from 1 to 9). First, we compare the FCT
obtained by Howdah and the other benchmark solutions for
load-balancing, normalizing all values obtained to a baseline
algorithm as ECMP. As shown in Fig. 4b, Howdah can stably
minimizes the FCT for all network loads considered. While
Hula performs well at high network load, Conga provides
the best results at low load. Our solution, instead, attains the
lowest FCT for any type of traffic in the datacenter, assuring
the less congested network configuration. We then move our
attention to another key metric as RTT, and we consider a spe-
cific network load, 70%, evaluating the cumulative distribution
function (CDF) of the RTT for sending traffic. By plotting
the CDF we can study the distribution of RTT values with a
particular focus on tails. As visible in Fig. 4c, our solution not
only diminishes the RTT on average compared to state-of-the-
art, but also lowers the RTT of the transmission of the most
long-lived packets. In particular, all responses are received by
0.12 seconds the request is sent, representing the minimum
among all the alternatives considered.

Moreover, to generalize our findings and study the behavior
at different network loads, we also report the RTT evolution
in Fig. 5. Our comparison differentiates the “elephant” from
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Fig. 4: (a) Flow Completion Time (FCT) performance for different packet headers, measuring their impact. (b) FCT comparison
for benchmark load balancing solutions. (c) CDF for RTT of benchmark solution when the network load is at 70%.
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Fig. 5: RTT evolution at varying network load, for (a) elephant flows, (b) mouse flows, and (c) on average. Differentiating
action per traffic type leads Howdah to attain the lowest RTT overall.

“mouse” flows to better analyze the behavior. Starting from
elephant traffic, Fig. 5a shows the RTT normalized to ECMP
and demonstrates that the more network loads, the more
notable improvements are brought by our solution. Although
for a load ranging from 50% to 60% we can notice Conga
slightly outperforming Howdah, we can also observe how
Conga is unable to react to higher loads. If then we compare
the RTT when sending mice traffic (Fig. 5b), it is even
more visible this Conga’s behavior, and occasionally performs
worse than ECMP. On the other hand, Howdah achieves better
performance, and the advantages for mouse flows are the most
prominent.

Averaging the results for the two types of traffic in Fig. 5c,
we observe that when the load is low (10% to 40%) the
network is not considerable congested, and Howdah, CONGA,
and HULA achieve almost the same RTTs. However, when the
load increases, Howdah increases its advantage. This enforces
what was already shown in FCT behavior and demonstrates
how our traffic classification, combined with differentiated
actions from switches, enables achieving better results overall.

E. Resource Consumption

Finally, we consider the impact of the traffic classifier over
the host machines. One of the challenges faced by the design
and implementation of Howdah is the efficiency in terms
of processing time, especially on board of host machines,
where are typically running resource-consuming processes. A
lightweight yet accurate classifier is thus essential. To this end,
we study the consumption of memory and CPU of different

0 100 200
Time (s)

4.4

4.6

4.8

5.0

R
A

M
(%

)

K-means
SVM
NN
RF

(a)

0 100 200
Time (s)

0

20

40

60

80

C
PU

(%
)

K-means
SVM
NN
RF

(b)

Fig. 6: (a) RAM and (b) CPU consumption of the considered
classifiers during the training process. Our SVM model al-
lows the lowest memory occupancy and a limited processing
requirement.

ML models during the training learning phase and report
results in Fig. 6. We can observe how our SVM classifier
consumes the lowest amount of RAM (Fig. 6a), while also
limiting the consumption of CPU (Fig. 6b). The reduced
memory footprint required by SVM, even when no specific
hardware is utilized, validates our design and motivates our
assumption to run the learning process on host machines.

VII. CONCLUSION

In this paper we presented Howdah, an in-band load bal-
ancing technique for programmable switches, whose pillar is
the cooperation host-switch: the host classifies sending traffic
using a specifically trained ML model, i.e., SVM, and inserts
it directly into the packet; the switch takes packet forwarding



decisions based on the information of the flow type and on
the status of the network itself. By letting each switch locally
decide the best next-hop per packet, our solution assures link
failure resistance and the ability to adapt to topology changes.
Throughout the paper, we also explored possible protocols that
can be used to include in-band information about ongoing
traffic type. Results demonstrate that overall, and especially
at high network loads, our solution reduces RTT and FCT
more than the state-of-the-art techniques.
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