POLITECNICO DI TORINO
Repository ISTITUZIONALE

A proof-of-concept 5G mobile gateway with eBPF

Original

A proof-of-concept 5G mobile gateway with eBPF / Parola, F.; Miano, S.; Risso, F.. - ELETTRONICO. - (2020), pp. 68-
69. (Intervento presentato al convegno ACM SIGCOMM 2020 tenutosi a Virtual event nel August 10 - 14, 2020)
[10.1145/3405837.3411395].

Availability:
This version is available at: 11583/2970894 since: 2022-09-05T12:38:48Z

Publisher:
Association for Computing Machinery

Published
DOI:10.1145/3405837.3411395

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
ACM postprint/Author's Accepted Manuscript, con Copyr. autore

(Article begins on next page)

08 May 2024

A Proof-of-Concept 5G Mobile Gateway with eBPF

Federico Parola
Politecnico di Torino, IT
$252895@studenti.polito.it

ABSTRACT

In this poster we propose the first proof-of-concept open-source
implementation of a 5G Mobile Gateway based on eBPF/XDP and
present benchmarks that compare its performance with alternative
technologies. We show how it outperforms other in-kernel solutions
(e.g., OvS) and is comparable with DPDK-based platforms.

CCS CONCEPTS

+ Networks — Programmable networks; Middle boxes / net-
work appliances.

KEYWORDS

Network Functions, eBPF, XDP, 5G Mobile Gateway, 5G User Plane
Function

1 INTRODUCTION

In the context of 5G mobile networks, the Mobile Gateway (MGW)
is increasingly located close to the Radio Access Network (RAN),
enabling telcos to deploy virtualized network functions and ser-
vices at close proximity to mobile users, hence benefiting from the
reduced latency.

In this scenario, data plane technologies such as DPDK may
not be appropriate because they take control of the entire server,
leaving no resources to other jobs unless rigid hardware partition-
ing is enforced. This behaviour would not be acceptable in “mini”
data centers that feature a limited number of servers; in this case
resources should be dynamically shared between services for the
best flexibility. In this scenario, eBPF/XDP can represent a better
solution; while its raw performance are inferior to DPDK-based
platforms [3], its better integration with vanilla Linux kernel makes
it suitable to be used with cloud orchestrators such as Kubernetes.

However, no eBPF/XDP implementations of a MGW exist so far.
This originates from the event-driven nature of the eBPF platform,
which poses non trivial challenges in the implementation of key
components such as shapers/policers, and the difficulties in writing
complex data plane services. This poster aims at filling this gap,
presenting the first proof-of-concept open—source1 implementation
of a mobile gateway and its preliminary benchmarking. This work
confirms the feasibility of a MGW in eBPF/XDP and shows that the
performance of this first PoC implementation greatly outperform
other in-kernel solutions and is comparable with more efficient
DPDK-based platforms.

2 DESIGN

Figure 1 illustrates the high-level architecture of a mobile network,
with different instances of a mobile gateway that are placed on the
the same servers where the others MEC services are running. The
gateway handles the data traffic of several user equipments (UE),

https://github.com/polycube-network/polycube/tree/mobile-gateway

Sebastiano Miano
Politecnico di Torino, IT
sebastiano.miano@polito.it

Fulvio Risso
Politecnico di Torino, IT
fulvio.risso@polito.it

MEC Service
(Container)

User Equip. Base Stations
(UE) (85)

GTP tunnels

MEC Service
(V)

Data traffic

O~

\
0— &~

Mobile Edge Gateway

D ~ () Mobile Edge
—_— Gateway

Radio Access Network (RAN) Mobile Packet Core (MPC) Packet Data Network (PDN)

Figure 1: Mobile Gateway prototype architecture.

which is encapsulated into GTP-u tunnels, and acts as a point of
contact with packet networks like Internet. Moreover, it includes
functionalities such as access control, per-flow QoS, guaranteed
and maximum bit rate and traffic classification/monitoring.

We implemented a subset of these functionalities as four separate
in-kernel network services, leveraging one or more eBPF programs
deployed through the Polycube [5] eBPF framework, which in addi-
tion to simplifying the development and chaining of such services,
provides an automatically generated REST API to control the ser-
vice behavior. These modules include:

1) GTP Handler. In the upstream direction (UE-to-MGW) this
module acts as a GTP tunnel terminator; it removes the GTP head-
ers (i.e., GTP, UDP and outer IP) and retrieves the Tunnel Endpoint
Identifier (TEID), which is then passed to the next module in the
chain (i.e., traffic policer) through a shared eBPF PERCPU hash map.
On the downstream direction (MGW-to-UE), it matches the IP des-
tination address of the packet (i.e., the IP address of the UE) with
an eBPF HASH map containing the UE-BS mapping. Then, it encap-
sulates the packet into a new GTP tunnel, retrieving the TEID from
the shared eBPF map, and sends it to the base station.

2) QoS Management. The next module of the chain is in charge of
dropping, passing or shaping the packets of a specific traffic class
that is equal to the TEID. For bandwidth management, we imple-
mented and evaluated three different policing mechanisms. They
have low memory overhead since they are bufferless, and they have
small CPU overhead because there is no need to schedule or man-
age queues. More complex traffic shapers (e.g., pacing, hierarchical
token bucket) are not entirely implementable in eBPF/XDP but re-
quire a cooperation with the Linux Traffic Control (TC) subsystem
for buffer management and queuing.

Fixed Window Counter (FWC): A userspace thread is in charge
of resetting, every W seconds an eBPF HASH map containing the
mapping TEID - Window Counter (WC), which is defined as the
product of the desired rate R and the window size W. Once a new
packet is received, the MGW atomically decreases the WC size in
the map based on the packet size; when the value is zero the packet
is discarded.

F. Parola et al.

9 16 900 6
‘ eBPF-mgw . eBPF-mgw =<5 eBPF-mgw (1 user)
Y OvS.DPDK 1 OvS.DPDK 800 6BPF-mgw (1k users)
k
BESS Ovs-Kemel 5
a7 ~C Ovs-Kerel F12 = 700 %
26 L g t £ g4
£ £10 i£ 600 s
=5 - = 5 b
2 - 2e - o f E500 5,
54 =) _— — 8 400 S
g S e e 8 g
o3 S ° - — 22
K £ - a 300 £
F ol S [e =3
—— e £ 200
P — 2b— 1
2 400 /
0 0 7
1 3 10 80 100 800 1000 30(1 2 4 6 o 0 Baseine WC 1B TBK SW
#of users # of cores Router +Classifier +Policer _+GTPHandler Algorithm

Figure 2: Multiple users scala- Figure 3: Multicore scalability

bility (downlink). (downlink).

Token Bucket (TB): Unlike the FWC, the TB requires to read and
update the eBPF map value to refill the bucket with the correct num-
ber of tokens. Unfortunately, this operation can not be atomically
performed in user space, given the impossibility to acquire a lock
to an eBPF map entry in that context. Therefore we perform this
task directly in the data plane, using the bpf_spin_lock to read
and modify several variables atomically, and we store an additional
timestamp value in the eBPF map, which is used to retrieve the
number of tokens to be added after the last refill.

Sliding Window (SW): Given the rate limit of R and burst limit of
B, a fixed window of size W = B/r is defined. Every time a new
packet arrives, its arrival time is checked against the information
saved in the eBPF map. If the time is inside the window, the packet
is allowed and the window is shifted forward by a value t = S/r
where S is the packet size, otherwise the packet is discarded.

3) Traffic Classifier. This module is used to map a packet in the
downlink direction to its corresponding TEID, which is used to
enforce the correct QoS. To support more complex classification
rules we used the same algorithm defined in [4], which is compatible
with the limitation present in eBPF.

4) Router. The router component can work in both “shared” mode,
where the host FIB table is used to decide the next hop of the packet
through the Internet, or in “private” mode where a separate BPF
LPM_TRIE map is used and configured by the MGW control plane.

3 EVALUATION

We compared our eBPF MGW with equivalent pipelines based on
different data plane technologies (BESS [2], OvS-DPDK and OvS-
kernel [6])? available in TIPSY [1].

Scalability with multiple users. We scaled the number of con-
figured users (each one with a single tunnel) up to 3000, setting
one tunnel endpoint every 100 users and one route on the PDN
every 10 users. Moongen generated an average of 10 UDP flows
per user. Fig. 2 shows that the eBPF pipeline outperforms both
other in-kernel alternatives and also (user space) BESS with an high
number of configured users, due to the poor scalability of the latter.
Multicore scalability. We configured 100 users, 10 routes and
1 base station, scaling the pipeline with an increasing number of
cores, with an average of 10 flows per user. Fig. 3 shows that the
scalability of the eBPF implementation is in line with the one of its
in-kernel and user space counterparts.

2Tester and DUT connected with a dual-port Intel XL710 40Gbps NIC. DUT with
Intel Xeon Gold 5120 14-cores CPU @2.60GHz (hyper-threading disabled) and Ubuntu
18.04.1 LTS. Moongen packet generator. Kernel 5.6 for eBPF, kernel 5.0 with DPDK
19.11 for other technologies.

Figure 4: Packet processing Figure 5: Throughput with dif-
time breakdown.

ferent rate limiters.

Modules overhead. We analyzed the impact of the different mod-
ules on the performance of the eBPF gateway with both low (1) and
high (1000) number of configured users. Fig. 4 shows the average
time needed to process each packet, starting only with the Router
and then gradually adding other modules. Results show that the
most resource-hungry service is the Classifier, whose algorithm
scales linearly with the number of rules we use in this scenario, but
that can be reduced with a more careful implementation.

Rate limit algorithms overhead. Tests in fig. 5 evaluate the
overhead introduced by different rate limiters. The Policer has been
attached to a simple eBPF program forwarding packets between the
interfaces of the DUT and configured with a high rate limit in order
not to influence the number of forwarded packets. The WC shows
the best performance, thanks to its simplest data plane that reaches
almost the baseline speed. The TB (used in all the previous tests)
has an additional cost due to the spinlocks, while the TB-K bar
show the overhead introduced by the timestamping alone (ktime
helper). The SL shows the poorest performance, relying both on
spinlocks and ktime timestamping.

REFERENCES

[1] TIPSY Authors. 2018. TIPSY: Telco pIPeline benchmarking SYstem. (2018). https:
//github.com/hsnlab/tipsy

[2] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A software NIC to augment hardware. (2015).

[3] Heiland-Jergensen et al. 2018. The express data path: Fast programmable packet
processing in the operating system kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies. 54-66.

[4] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Bernal, Yunsong Lu,
and Jianwen Pi. 2019. Securing Linux with a Faster and Scalable Iptables. (2019).

[5] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Vasquez Bernal, Yun-
song Lu, Jianwen Pi, and Aasif Shaikh. 2019. A Service-Agnostic Software Frame-
work for Fast and Efficient in-Kernel Network Services. In 2019 ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems (ANCS).
IEEE.

[6] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. 2015. The Design and Implementation of Open vSwitch. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).

https://github.com/hsnlab/tipsy
https://github.com/hsnlab/tipsy

	Abstract
	1 Introduction
	2 Design
	3 Evaluation
	References

