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Abstract—As the telecommunication industry becomes more
and more energy intensive, energy efficiency actions are crucial
and urgent measures to achieve energy savings. The main
contribution to the energy demand of buildings devoted to the
operation of the telecommunication network is cooling. The
main issue in order to assess the impact of cooling equipment
energy consumption to support energy managers with awareness
over the buildings energy outlook is the lack of monitoring
devices providing disaggregated load measurements. This work
proposes a Non-Intrusive Load Disaggregation (NILD) tool that
exploits a literature-based decomposition with an innovative
LSTM Neural Network-based decomposition algorithm to assess
cooling demand. The proposed methodology has been employed
to analyze a real-case dataset containing aggregated load profiles
from around sixty telecommunication buildings, resulting in
accurate, compliant, and meaningful outcomes.

Index Terms—Non-Intrusive Load Disaggregation, Long Short-
Term Memory, Cooling Load

I. INTRODUCTION

The Information and Communication Technology (ICT)
branch is experiencing an exponential growth of energy de-
mand, being currently responsible for approximately 2% of
global GHG emissions [1] and for around 7% of the worldwide
electricity demand [2]. Telecommunication network and their
management buildings, such as telephone switches, which are
generally referred to as Central Offices, and Data Centers, are
one of the main contribution of the energy consumption in
the ICT sector. In fact, Central Offices, Data Centers, and
their transmission network are responsible of about 2% of the
global electrical demand in 2019 [3]. For instance, the Italian
telecommunication sector was responsible for 3.863 GWh of
electrical demand in 2018 [4], which corresponds to 1.27% of
the total national electricity consumption.

Owing to its energy intensiveness and to its on-going
growth, the telecommunication sector is becoming more and
more of interest for what concerns energy consumption and
GHG emissions reduction policies [5]. This interest is attested
by institutional directives [2], [6] and by companies efforts
to achieve energy savings [7], [8]. Specifically, energy con-
sumption reduction is addressed by employing new generation
Central Offices and Data Centers [9], [10]. Nevertheless, the
energy consumption reduction of telecommunication buildings
must be achieved by focusing as well on supporting energy
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efficient renovation of existing buildings. For this reason, an
accurate analysis of these buildings inefficiencies and the
estimation of potential savings to provide retro-fit scenarios
represent a fundamental task to be addressed.

Recently, energy research community discussed many issues
related to the energy efficiency enhancement of Central Offices
and Data Centers, such as structural transformation, techno-
logical innovation [11], and renewable energy sourcing [12].
Nevertheless, the main issue in energy efficiency of Central
Offices and Data Centers is cooling. In facts, the cooling
system is responsible for impressive shares of these buildings
electricity demand due to the heat generation of ICT equip-
ment that must respect overheating constraints. In order to
detect energy inefficiency, assess the potential savings related
to retrofit scenarios, and enable efficiency actions, strong
awareness about buildings energy outlook is needed. To this
extent, smart monitoring of industrial sites is becoming more
and more popular, as it allows to retrieve reliable and detailed
electricity consumption measurements. On the other hand, in
order to achieve effective energy consumption reduction, it is
desirable to extend analysis to the largest possible number of
sites, by means of proper non-intrusive analysis tool.

For the above mentioned reasons, this paper introduces
a methodological pathway to perform Non-Intrusive Load
Disaggregation (NILD) of Central Offices and Data Centers
energy consumption into its different load contributions. The
proposed approach is applied to a real-case dataset, containing
load profiles from around sixty telecommunication manage-
ment buildings located in Italy. The main contribution of the
proposed methodology is to enable the NILD application to
load profiles characterised by low sampling rate. In facts,
most of the existing methodologies take advantage of high
sampling rates, which may not be available for many industrial
sites. Moreover, these techniques have been rarely applied to
industrial buildings. This determined a scarcity in the literature
referring to this important sector. In particular, the proposed
methodology, taking advantage of both specific expertise in
the sector and Long Short Term Memory (LSTM), represents
the first attempt to deal with the NILD challenge in the
telecommunication management buildings sector.

II. RELATED WORKS

Reliable and detailed information of the cooling load of in-
dustrial sites represents a starting point for taking effective en-
ergy efficiency actions. In fact, real-time monitoring enhances



optimal energy management to improve energy efficiency of
industrial premises. Nevertheless, smart monitoring requires
many sensors to be installed, determining high deployment and
management costs. Thus non-intrusive techniques are required
to analyze the energy behaviour of not sensorized buildings.
These techniques called Non-Intrusive Load Disaggregation
(NILD) provides accurate estimates of electrical load disaggre-
gation from the overall electrical building consumption. NILD
techniques may be designed to assess the energy demand of
individual appliances or to disaggregate the total load in sub-
categories.

To this purpose, energy research community explored dif-
ferent automated analysis tools, such as Aided Integer Linear
Programming [13] and Factorial Hidden Markov model [14],
to assess electrical consumption of individual appliances in
residential field. Yan et al. [15] exploited a model driven
simplified approach, considering energy balance of build-
ings and linear regression models, tuned accordingly to an
optimization algorithm. The goal of such a study was to
distinguish among three groups of cooling load different end-
uses. Assessment of cooling demand is as well addressed
by Xiao et al. in [16] where authors employed a Random
Forest algorithm to determine the load disaggregation due to
four fundamental contributions, namely equipment, occupants,
fresh air, and building envelope.

It is worth noting that the predominant approach in this
branch of research is data-driven. To this extent, Machine
Learning (ML) techniques are widely adopted algorithm to
perform NILD. Among this diversified family of techniques,
a leading role has been assumed by Artificial Neural Networks
(ANN). A relatively simple Feed-Forward Neural Network
(FFNN) has been used by Racines et al. [17] to assess the
impact of lights, PC and other appliances electrical demand
in educational buildings. Nevertheless, researchers frequently
selected more complex Neural Network models. For instance,
LSTM [18], [19] is a particular model of Recurrent Neural
Network, which was designed with specific features, namely
the forget gate and the cell internal state, to be capable
of preserving long-term dependency information. LSTM was
employed to disaggregate households electrical load by Xia et
al. [20], to determine individual appliances consumption.

The aforementioned approaches foster a number of practi-
cal energy efficiency oriented measures, such detecting mal-
functioning devices, monitoring individual loads to deepen
awareness over the energy demand and providing specific
renovation scenarios or suggesting energy saving actions or
to improve demand side response. Finally, NILD has been
employed as well to improve performance of energy demand
forecasting models. For instance, Lin et al. [21] used Sparse
Coding algorithm to estimate cooling sub-loads. In turns, this
components were fed as input to a NN, determining enhanced
short term load forecasting accuracy.

It is worth remarking that most of the attention have been
addressed to the residential sector. Nevertheless, widespread of
NILD is desirable as well regarding the industrial sector. This
paper deals with the specific task of providing a methodology

Fig. 1. The general scheme of the proposed methodology, comprehending
for a literature based and a NN-based disaggregation blocks.

to be applied in a particularly meaningful sector, namely the
Telecommunication sector. This is achieved by means of a
novel pathway, that is a mixed algorithm employing both
Machine Learning tools, namely LSTM neural network, and
a base load decomposition block, which takes advantage of
the specific domain expertise in the sector. The designed
LSTM block allows the employment of low sampling rate data,
representing an important step forward the NILD techniques
widespread. With respect to the scarce research investigating
the field to date, this methodology shall foster the state-of-
the-art of NILD techiniques and enhance application of this
fundamental tool to the industrial sector.

III. METHODOLOGY

This work is intended to support load disaggregation for
telecommunication building in order to enhance energy aware-
ness and support energy efficiency actions over these sites.
Specifically, the aim of this analysis is to estimate each of
the four contributions composing the telecommunication sites
typical energy balance equation:

ETOT (t) = ETLC(t) + EDISS(t) + ECLC(t) + EAUX(t) (1)

where ETLC takes into account the electrical demand from
the ITC equipment, EDISS represents the energy lost of the
energy station for energy conversion, UPS and other required
energy services, ECLC is cooling system contribution to elec-
trical load and EAUX comprehends the electrical demand from
the lighting system and from other services. The object of this
investigation is a real-world dataset with hourly resolution. It
includes the aggregated consumption time series from around
sixty Central Offices and Data Centers of the most important



telecommunication service provider in Italy. The dataset is
integrated with weather data, specifically with temperature and
solar radiation measurements. The methodological pathway
foresees the following three steps, as reported in Figure 1:
i) the Preprocessing, ii) the Base Load Decomposition, and
iii) The LSTM-based Disaggregation.

A. Preprocessing

Abnormal values presence in the dataset may depend by
anomaly events regarding the energy demand of the site or
by measurement fallacies. Each building load profile is pre-
processed in order to filter out possible outliers. This filtering
step is particularly important, as it represent a preparatory step
for the LSTM training. In facts, removing abnormal values
and measurements noise improve the accuracy of the LSTM
Neural Networks, since the training won’t depend from the
back-propagation of errors related to these anomalies. The task
of detecting these points is achieved by employing a simple
gradient-based statistical approach. This algorithm determines
whether a point is a noise point in accordance to its gradient
with respect to the previously recorded data. Specifically,
abnormal points are defined as those featuring a gradient
exceeding 3 times the standard deviation of the gradients from
the whole time series.

B. Base Load Disaggregation

In this step, the preprocessed building load profiles are
analysed to estimate their base load. The typical load profiles
observed for Central Offices and Data Centers enlighten that
the ETLC contribution is tolerably constant. This behaviour is
due to ITC equipment that is not affected by processed traffic
[22] or other environment variables. Secondly, since the energy
lost for energy conversion is proportional to the converted
energy itself, it may be stated that EDISS is proportional to
ETLC . Hence, this contribute can be assumed constant as well.
As a result, Equation 1 can be written as:

ETOT (t) = ETLC + EDISS + ECLC(t) + EAUX(t) (2)

The two constant loads ETLC and EDISS represent the
base load for the building load profiles time series. Load
fluctuations instead are determined by variation of the the
demand from lighting, or other occupancy related services,
and to the cooling load. We consider that lightning and aux-
iliaries services determined by occupancy are not expected to
affect electrical load during nights. These hypothesis hold true

TABLE I
CONVERSION LOSSES AND ELECTRICAL DEMAND BY UPS IN DATA

CENTERS, ELEBORATED FROM [23]

Space Type Typical Area TLC CONV UPS
Closet <10m2 1 0.05 -
Room 10− 99m2 1 0.05 0.2

Localized 50− 199m2 1 0.05 0.2
Midtier 200− 2000m2 1 0.05 0.2

High-end >2000m2 1 0.03 0.1
Hyperscale >2000m2 1 0.03 -

particularly regarding pure Central Offices and Data Centers.
Since the winter weather conditions do not make it necessary
for the cooling system of the sites to intervene in order to
keep internal temperature below the temperature set point,
the aggregated electrical demand measured during this winter
night time intervals can be assumed to depend solely by the
two aforementioned constant contributions. Hence, the base
load can be estimated as:

Emin ≈ mean(min(Ei)d), i ∈ [1, 4], d ∈ winterdays (3)

where Ei is the energy demand from the ith hourly time step
from winter day d. To further distinguish within ETLC and
EDISS , we consider other findings of recent years literature.
In facts, some researches have been investigating wide dataset
of telecommunication sites to provide accurate statistical data
over the energy outlook of Central Officies and Data Centers.
Specifically, Shebabi [23] reported the results that are elabo-
rated and summarized in Table I, providing typical load quotas
regarding the conversion losses and the energy employed for
UPS. It should be pointed out that the two contributions
reported in the Table, ECONV and EUPS , represent the two
fundamental loads of the conversion losses quota introduced
in the energy balance equation, EDISS . Hence, we may write:

EDISS ≈ ECONV + EUPS (4)

This step allow us to estimate the first two contribution of
the four loads introduced in Equation 1.

C. LSTM-Based Disaggregation

This step represents the main innovation of this methodol-
ogy. To find the optimal LSTM configuration, the preprocessed
dataset is first split into a training set and a validation set
following the standard procedure for Neural Network training.
Hence, we considered the following inputs to be fed in the
network: energy demand trend, outdoor temperature, solar
radiation, day type (i.e. week day or week-end), hour of
the day, and a binary variable considering whether a day
was affected by the pandemic related limitations. It is worth
noting that using the output variable of the model as an
input normally determines better forecasting accuracy. This
approach represents an auto-regressive techniques, that is
tracking the dependence of the present output value from its
previous values. However, LSTM auto-regressive technique is
not applied to the Neural Network and it consider the solely
energy consumption trend value. This allows the network
to weaken the dependency of the outputs from previously
recorded load values, hence limiting the impact of the eventual
presence of outliers in the time serie. At the same time, a
stronger dependency by the other input variables is outlined, in
order to design a model capable of providing reliable reference
predictions.

Furthermore, we configured the networks to have two
hidden layers. The number of training epochs was limited to
600. A dropout layer was included in the network and located
between the two hidden layers. This particular layer enhances



TABLE II
THE FIVE BEST ARCHITECTURES OF THE LSTM NETWORKS, RESULTING FROM THE GRID SEARCH PROCEDURE

Learning Mode Learning
Rate

Learning
Rate Decay Look back Number of neurons

1st hidden layer Dropout Number of neurons
2nd hidden layer MAPE

Mini-Batch 0.0005 1 ∗ 10−4 4 128 0.2 12 2.794
Mini-Batch 0.0002 5 ∗ 10−5 4 128 0.2 12 2.801
Mini-Batch 0.0002 5 ∗ 10−5 4 128 0.18 16 2.812
Mini-Batch 0.0002 5 ∗ 10−5 4 128 0.25 16 2.815

proper fitting of the network, as it is designed to avoid over-
fitting phenomena. The loss function was set as mean absolute
error.

Considering these constrains, we tested a number of pos-
sible configurations of the network by modifying the other
hyper-parameters of the LSTM. Specifically, we performed an
iterative procedure to look for the best configuration which
is generally addressed to as grid-search. The variable hyper-
parameters were the learning mode, learning rate, the learning
rate decay over epochs, the look back, the number of neurons
in the first and in the second hidden layer and the value of the
dropout layer.

The LSTM has been tested applying three learning modes,
namely online learning, batch learning and mini-batch learn-
ing. In online learning, the time series is handled element by
element, and the connection weights are updated in accordance
to the loss function calculated after each single step. This mode
may provide accurate results in a limited number of epochs,
nut is exposed to the risk of being stuck on local minima, that
are sub-optimal models. On the contrary, the whole training
set is considered at once, and weights update is performed
once per epoch. In this case, the loss function decreases much
slower over epochs, but the model have higher probabilities of
evolving to an optimal solution. The mini-batch learning mode
is a spreading solution which represent a trade-off within the
other two modes.

Once the best configuration of LSTM has been selected,
the aggregated load is estimated for both the training and the
validation set. We will refer to this estimated load as E∗

TOT

In parallel, a fictitious input matrix is created. This artificial
input dataset maintains the real inputs which are fed into the
network to retrieve total load estimation, with the exception of
the binary input regarding the day type. Specifically, this value
is set to 1, corresponding to week-end and holidays, for any
time step of the input matrix. This input matrix is fed into the
trained network to retrieve another electrical load output. The
output can be described as the energy consumption the site
would have if any day of the considered time series were a
week-end or holiday, that is assuming that all the contributions
to energy demand which depend from occupancy are removed
from the load time series which is returned by the LSTM. For
this reason we will refer to this output as E∗

TOT,NoOccupancy .
This means that the only responsible of the fluctuations of the
resulting load is the variation of the cooling system demand.
It is worth remarking that ECLC represents the cooling load
attributable to only the ICT equipment cooling. In facts, the

energy demand related to HVAC of offices or other personnel
dedicated areas is included, according to this methodology, to
the EAUX quota. Finally, these two quotas can be obtained
by considering the equations:

ECLC = E∗
TOT,NoOccupancy −ETLC −EDISS −EUPS (5)

and:
EAUX = E∗

TOT − E∗
TOT,NoOccupancy (6)

IV. RESULTS

The proposed methodology is applied to a dataset of around
sixty Central Offices, located in several regions of Italy. It
should be remarked that the LSTM-based Disaggregation step
is performed separately for each building. In fact, the best
LSTM architecture may vary according to the considered
time series and to its complexity. Notice that, due to the
confidentiality of the analysed data, electrical load values can
not be reported. For this reason, they were hide from the plots.

A. LSTM-Training and Accuracy

The optimal architecture of LSTM models was designed by
performing an iterative grid search procedure. An example of a
few tested configurations from the model training regarding a
site is reported in Table II. All models resulted in a enhanced
final accuracy when setting a rate of decay of the learning
rate. The grid-search procedure enlightened that a good value
for the look-back, that is the number of previous time steps
considered, is four. This means that the model is considering
the input variables from the last four hours in order to estimate
the energy demand of the site at a certain time step. The grid

Fig. 2. Comparison within real load values and outputs of the designed LSTM
model
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58.4%

EAUX
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Fig. 3. Disaggregation of electricity bill from a Central Office

search procedure pointed out as well that the best performing
LSTM models for this case study feature an high number of
neurons in the first hidden layer, and a relatively low one in
the second hidden layer. For instance, the best configuration
reported in Table II is characterised by 128 and 12 in the first
and second hidden layers respectively. The dropout layer s of
particular interest for LSTM-training. Specifically, it enhanced
reduction of the gap among the accuracy of the training set
and the validation set for all the considered sites. Furthermore,
in many cases the dropout layer made it possible to pop out
from a local minimum, and to enhance further improvement
of the model. Still, the best dropout values were in the range
0.1-0.28 for all the considered buildings.

Finally, the LSTM models generally achieved good perfor-
mances, as they were good predictors of the sites electrical
load. This is attested both by accurate estimated load curves
shape and by low mean absolute errors with respect to real
values. A comparison within the estimated total load and the
recorded values is reported in Figure 2. The Mean Absolute
Percentage Errors for the analyzed sites, calculated for the
validation sets, ranged between 1.5% and about 10%. This
variation were mostly determined by the complexity of the
times series. In facts, a few time series featured strong
presence of noise, while others were characterized by regular,

Fig. 4. Auxiliaries load over the first months of 2020, retrieved by the
proposed methodology for one of the investigated TLC sites

smooth and physically rational electrical load profiles.

B. Load Disaggregation

The electrical load quotas were obtained by considering the
outputs of the LSTM models and applying Equations 6 and 5,
in addition to the employment of the base load disaggregation
block described in III-B. Firstly, we compared the outcomes
of this methodology to the values obtained by previous studies
over a subset of the investigated sites. The results were
compliant, even if slight differences exist regarding single
consumption quotas. Generally, the quote accounting for the
lighting and auxiliaries load, depending on the occupancy of
sites, is not too relevant for many sites. In facts, EAUX is
below 10% for any building, but in some cases this quota
represent less than 3% of the total energy demand of sites. On
the opposite the cooling contribution resulted as a fundamental
load quota, as expected. Values reported by buildings ranged
between about 15% to over 25% of the total energy demand.
Figure 3 reports the total consumption percentages from a
Central Office for year 2019.

One of the most interesting outcome of the study is the
fact that the load contributions are described for each hour of
the time series. This may enlighten several meaningful issues
concerning the investigated sites. For instance, Figure 4 depicts
the estimated auxiliaries load over the first months of year
2020 for a Central Office. It may be easily seen that this
consumption quota roughly halves at the beginning of March
2019, which was the beginning of the first national lock down
due to the pandemic. A similar behaviour is reported in the
whole set of buildings, with the total estimated energy demand
from EAUX from 2020 which is about a half than in 2019 for
the vast majority of sites.

Another interesting outcome is that the lighting and auxil-
iaries load is represented by the weekly pattern retrieved by
the model. In facts, it resulted that, in many Central Offices,
EAUX have higher value in the first days of the working
week, while it usually has lower values and earlier decrease
on Friday. This behaviour is reported by the load profile in
Figure 5. Finally, the cooling load is characterised by a strong
seasonal effect but daily fluctuations are evident as well. Most

Fig. 5. Estimated auxiliaries and lighting load, retrieved by means of the
proposed methodology



Fig. 6. Estimated cooling demand by months for a CO, retrieved by means
of the proposed methodology

of the sites are characterised by a cooling load which ramp up
between May and June (see Figure 6, going back to minimum
consumption values in October. A few sites have longer time
intervals characterised by high cooling demand. This issue is
related to the geographical location of sites, with long lasting
cooling season for those sites located in the warmer country
regions.

V. CONCLUSION AND FUTURE WORK

This work introduces a methodology to estimate the four
main contributions of energy demand of Central Offices and
Data Centers, namely ICT equipment load, conversion losses,
cooling load, and auxiliaries and lighting load. This data-
driven approach allows the design of proper and accurate
LSTM Neural Network models to estimate cooling demand
and auxiliaries and lighting load. The methodology, compre-
hending as well a base load disaggregation block relying on the
specific expertise of the telecommunication sector, provides
estimation of each single sub-load profile. The cooling load
resulted as the most crucial issue determining energy demand
fluctuations of Central Offices. This work shall be extended
to an higher number of sites, in order to support energy
managers and operators with fundamental information about
telecommunication buildings’ energy outlooks.
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