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The rising awareness of environmental issues and the increase of renewable energy sources (RESs) has
led to a shift in energy production toward RES, such as photovoltaic (PV) systems, and toward a dis-
tributed generation (DG) model of energy production that requires systems in which energy is generated,
stored, and consumed locally. In this work, we present a methodology that integrates geographic infor-
mation system (GIS)-based PV potential assessment procedures with models for the estimation of both
energy generation and consumption profiles. In particular, we have created an innovative infrastructure
that co-simulates PV integration on building rooftops together with an analysis of households’ electricity
demand. Our model relies on high spatiotemporal resolution and considers both shadowing effects and
real-sky conditions for solar radiation estimation. It integrates methodologies to estimate energy demand
with a high temporal resolution, accounting for realistic populations with realistic consumption profiles.
Such a solution enables concrete recommendations to be drawn in order to promote an understanding of
urban energy systems and the integration of RES in the context of future smart cities. The proposed
methodology is tested and validated within the municipality of Turin, Italy. For the whole municipality,
we estimate both the electricity absorbed from the residential sector (simulating a realistic population)
and the electrical energy that could be produced by installing PV systems on buildings’ rooftops (consid-
ering two different scenarios, with the former using only the rooftops of residential buildings and the lat-
ter using all available rooftops). The capabilities of the platform are explored through an in-depth
analysis of the obtained results. Generated power and energy profiles are presented, emphasizing the
flexibility of the resolution of the spatial and temporal results. Additional energy indicators are presented
for the self-consumption of produced energy and the avoidance of CO2 emissions.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the main challenges of our century, as highlighted by the
European Commission, among others, is to reduce greenhouse gas
emissions [1]. Many countries are investing in the development
and deployment of renewable energy source (RES) systems in
order to reduce their dependence on fossil fuels for energy genera-
tion. This aim implies both an increasing installation of RES and the
smart use of energy in our cities. Indeed, the increase in renewable
energy production is changing how we produce and manage
energy. Green energy sources are irregular by nature, as they
depend on environmental features that typically change over time
and space. As a result, we are transitioning from a unified and
centralized energy production method to a more flexible and
distributed one. Successfully shifting toward a distributed
generation (DG) model of energy production is becoming increas-
ingly important, and requires a production system in which energy
is generated, stored, and consumed locally.

This decentralization trend empowers consumers, who are
encouraged to generate their own electricity and consequently
reduce their energy demand from the grid. In addition to the
self-consumption of locally produced electricity within individual
households, more advanced concepts such as renewable energy
communities (RECs) have been developed. An REC is a micro-
system that can self-produce renewable energy or invest in its
production, thereby covering its own energy needs [2]. In June
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2018, the European Union agreed on a corresponding legal frame-
work as part of a recast of the Renewable Energy Directive (a.k.a.
RED II) [3], which took effect in December 2018. When consumers
acquire ownership of renewable energies, they can become pro-
sumers, generating part of the energy they consume [4,5]. Con-
sumer (co)ownership in renewable energy is an essential
cornerstone to the overall success of the energy transition. These
new challenges for the energy sector call for solutions that allow
the optimization of energy flows by connecting decentralized
energy suppliers with consumers. Structuring an REC involves
many resources and accomplishments, from the legal and the eco-
nomic frameworks through which RECs can subsist, to technical
and engineering architecture for the operation and maintenance
of the community.

The integration of DG resources changes the balance of the
actual electricity distribution network by shifting both the time
of energy generation and the location of production. The novel con-
cept of the smart grid promotes novel services for the smart man-
agement of energy loads and energy production. To develop and
test such new services, we needmassive and pervasive information
about the status of the grid, at even the household and appliance
level. In the near future, information and communication technolo-
gies (ICT)—especially advanced metering infrastructure (AMI)—will
allow pervasive data retrieval and collection of a large amount of
energy-related information on the consumption behaviors of citi-
zens [6,7]. However, the presence of AMI is still limited, although
it is growing. Regarding residential energy consumption profiles
in particular, there is still a lack of distributed sensors capable of
collecting and exchanging energy-related data. To overcome the
lack of actual information, we need realistic models to produce
realistic simulated synthetic data. The challenge considered in this
research is the capability to simulate all the different entities in an
REC, from generation to consumption.

In the development of simulation and modeling tools for dis-
tributed energy systems, geographic information systems (GIS)
play a crucial role. According to the Environmental System
Research Institute, GIS are ‘‘an organized collection of computer
hardware, software, geographic data, and personnel designed to
efficiently capture, store, update, manipulate, analyze, and display
all forms of geographically referenced information” [8]. GIS provide
the geographical basis for simulating and modeling smart urban
energy systems (UESs) [9]. In particular, GIS provide heterogeneous
information on the environment of the area of interest, such as
information on population distribution, buildings’ locations and
characteristics, local energy resources, or the localization of sen-
sors. Furthermore, GIS make it possible to perform accurate simu-
lations in a region for planning and evaluating the power
production from renewable and distributed energy sources. Finally,
GIS make it possible to build thematic maps, which are essential
for presenting and visualizing results for planners and decision-
makers. Another key aspect is the importance of working with
open geospatial data, which can be freely downloaded, visualized,
and shared.

In this paper, we review GIS-based spatial and spatiotemporal
models and methods for modeling UES and thereby demonstrate
that methodologies to estimate both photovoltaic (PV) potentials
and energy demand in high spatiotemporal resolution are still miss-
ing. We present a methodology that integrates GIS-based PV poten-
tial assessment procedures with models to estimate both energy
generation and energy consumption profiles in high spatiotemporal
resolution. Our methodology is based on open-source GIS solutions
and canmodel urban electricity generation and consumption, start-
ing from publicly available data. Furthermore, we integrate a tech-
nique to simulate realistic synthetic populations, thus generating
an additional open dataset. We have created an innovative co-
simulation infrastructure, which builds on a modular framework
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to perform co-simulationwith different energy scenarios. In particu-
lar, this work assesses the integration of PVs on building rooftops
with an analysis of households’ electricity demand. Within this
research work, we test the methodology in a real urban context,
applying it to the city of Turin, Italy. By providing the requested
input information, the co-simulation infrastructure can be easily
replicated in other realities, such as city districts, rural areas, or
entire cities. Froma spatial point of view, the proposedmethodology
can generate results ranging from a single building rooftop to a
whole region. Froma temporal point of view, it can reproducepower
and energy profiles extending from 10 min to daily or yearly
resolution. The high spatiotemporal discretization employed by
the proposedmethodology enables us tomake accurate estimations
of both energy profiles and environmental indicators.

The rest of this work is organized as follows. Section 2 reviews
relevant state-of-the-art solutions for modeling and simulating
UES. Section 3 introduces the proposed methodology and the
design of the co-simulation infrastructure. Section 4 presents the
experimental results obtained by applying the proposed method-
ology in a real-world city. Section 5 presents the current limita-
tions of the proposed co-simulation infrastructure and future
works. Finally, Section 6 provides concluding remarks.
2. Related work

To identify GIS-based methodologies for the estimation of RES
potentials and the determination of energy demand, we conducted
a comprehensive literature review. A wide range of methodologies
have been developed to integrate PV systems in urban environ-
ments, and these have been applied to different study areas and
spatiotemporal resolutions. For all the reviewed solutions, we paid
particular attention to the granularity of both spatial and temporal
resolution, enhancing those methodologies that favor higher dis-
cretization. During the revision process, special attention was
given to the nature of the tools and data sources employed (i.e.,
proprietary or open) and to the technical structure of the
methodologies (examples of the main keywords used include mod-
ularity, flexibility, and co-simulation). The solutions in the litera-
ture are specially designed to estimate only the generation side
of the UES. Therefore, in the introductive Section 2.1, we analyze
the main expertise required to determine and integrate PV power
production. We present methodologies in the literature from
solutions at the country scale (Section 2.2) and at the urban scale
(Section 2.3) to solutions with a high resolution (Section 2.4). We
then analyze those solutions that combine both the production
and the demand side of PV systems integration (Section 2.5). The
last analyzed category includes solutions that are developed as a
full-service platform (Section 2.6). Finally, in Section 2.7, we high-
light the main limitations and gaps in this field and present the sci-
entific contributions of our work. The results of the literature
review are summarized in Table 1, which reports all the significant
features outlined in this review, highlighting the main technical
characteristics that distinguish each methodology [10–31].
2.1. Potential PV elements

To assess the potential of rooftop-mounted PV systems, the
main elements to be determined are the effective suitable rooftop
area and the real solar irradiance that impinges on the surface. A
high spatial resolution makes it possible to retrieve rooftop proper-
ties such as altitude, slope (or inclination), and aspect (or orienta-
tion). Given these parameters, it is possible to determine the
portion of the roof that is suitable for the installation of PV sys-
tems, excluding objects such as dormers and chimneys. To this
end, two kinds of data models are predominantly used: digital



Table 1
Overview of urban energy system GIS-based spatiotemporal methodologies.

Refs. Main context Min
spatial
resolution

Multiscale
spatial
resolution

Shadows Min
temporal
resolution

Multiscale
temporal
resolution

Real-
sky

Loads Synth-
pop

Open
dataset

Co-
sim

This work — 25 cm
p p

10 min
p p p p p p

Suri et al. [10] Country scale (Section 2.2) 1 km
p � 1 month

p � � � � �
HOMER [11] Country scale (Section 2.2) N.A.

p � 1 month
p � p � � �

Lund et al. [12] Country scale (Section 2.2) N.A.
p � 1 h

p � p � � �
Wiginton et al. [13] Urban scale (Section 2.3) 20 cm � p

1 year � � � � p �
Bergamasco and Asinari [14,15] Urban scale (Section 2.3) N.A. � � 1 year � � � � p �
Mainzer et al. [16] Urban scale (Section 2.3) N.A. N.A. � 15 min � � � � p �
Assouline et al. [17] Urban scale (Section 2.3) 2 m

p � 1 month N.A. � � � p �
Kodysh et al. [18] High spatial resolution

(Section 2.4)
1 m

p p
1 year

p � � � p �

Hofierka and Kaňuk [19] High spatial resolution
(Section 2.4)

1 m � p
1 year

p p � � p �

Brito et al. [20] High spatial resolution
(Section 2.4)

1 m � � 1 year � � � � p �

Nguyen and Pearce [21] High spatial resolution
(Section 2.4)

55 cm
p p

3 min
p � � � p �

Agugiaro et al. [22] High spatial resolution
(Section 2.4)

1 m � p
1 year

p p � � p �

Bottaccioli et al. [23] High spatial resolution
(Section 2.4)

25 cm
p p

15 min
p p � � p �

Litjens et al. [24] Electricity demand integration
(Section 2.5)

50 cm
p p

1 month
p � p � � �

Ramirez Camargo et al. [25] Electricity demand integration
(Section 2.5)

1 m
p p

sub-
hourly

p p p � p �

Groppi et al. [26] Electricity demand integration
(Section 2.5)

N.A. N.A. � 1 year � � p � � �

Luthander et al. [27] Electricity demand integration
(Section 2.5)

50 cm � � 1 year � � p � � �

Girardin et al. [28] Full-service platforms
(Section 2.6)

N.A.
p � 1 year

p � p � p �

Berkeley Lab [29] Full-service platforms
(Section 2.6)

N.A.
p � 1 h

p � p � � �

Alhamwi et al. [30] Full-service platforms
(Section 2.6)

N.A.
p � 15 min

p � p � p �

Fonseca et al. [31] Full-service platforms
(Section 2.6)

2 m
p � 1 h

p � p � p �

Min: minimum; Co-sim: co-simulation; Synth-pop: synthetic populations; N.A.: not available;
p
: presence; �: lack.
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orthophotos (DOPs) and digital surface models (DSMs). DOPs are
aerial photography or satellite imagery that has been geometrically
corrected (orthorectified). When combined with image classifica-
tion and object-recognition techniques, DOPs can be used to
retrieve building characteristics, reaching spatial resolutions on
the order of a few meters. A DSM is a digital model of terrain sur-
face created from elevation data. The main techniques to generate
DSMs are light detection and ranging (LiDAR; i.e., laser scanning)
and photogrammetric point clouds. A DSM represents the earth’s
surface and includes all the objects on it (e.g., trees and buildings).
DSMs can reach a very high spatial resolution of just a few cen-
timeters. For this reason, DSMs are mostly used to shape building
footprints. DSMs also enable the estimation of shadowing effects
of near and distant objects, which is difficult to achieve with DOPs.
Ruiz-Arias et al. [32], Haurant et al. [33], and Ramirez Camargo and
Dorner [34] demonstrated that significant improvements can be
achieved in estimating solar resources when the resolution of
satellite images is increased and shadowing is considered using
high-resolution DSMs.

Many tools have been developed to compute the real solar irra-
diance that impinges on a surface, such as Solar Analyst and r.sun.
Solar Analyst is provided by ArcGIS [35], a proprietary software,
while r.sun is part of the open-source GRASS-GIS platform [19].
Both have been used to develop a large number of cadastres for
solar irradiance all around the globe. These cadastres enable the
calculation of theoretical solar radiation potential based on geo-
graphic parameters (i.e., latitude and longitude). This theoretical
200
calculation corresponds to the solar radiation under clear-sky con-
ditions. The calculation of solar radiation under real-sky conditions
integrates real meteorological data, which considers clouds and
real weather conditions.

2.2. Country scale

Studies on a country scale have been published with a spatial
resolution ranging from several kilometers to a dozen meters. Suri
et al. [10] pioneered the use of GIS in this context by combining
r.sun with measurements from 566 ground meteorological stations
to generate a database of yearly and monthly solar radiation maps
with a spatial resolution of 1 km in Europe. The resulting PV poten-
tial database was made available through the PV-GIS platform [36].
PVWATTS [37], i-GUESS [38], HOMER [11], and EnergyPLAN [12]
are web applications for regional energy planning to estimate
yearly, monthly, and hourly PV production using a typical meteo-
rological year (TMY). They provide maps for yearly solar radiation
and PV potential, and support the design of microgrid systems by
evaluating different configurations based on their life-cycle cost.
The main limitation of these solutions lies in their coarse resolu-
tion, both spatial (1 km) and temporal (1 month), which does not
enable accurate calculations for PV energy production. Further-
more, none of these solutions considers real-sky conditions.
Finally, most of these solar radiation maps are proprietary, and a
final user can make calculations only by using the proposed web-
based solution.
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2.3. Urban scale

At the urban scale, the spatial resolution can drop to below 1 m.
One solution is to combine high-resolution DOPs with image clas-
sification and object-recognition methodologies. Wiginton et al.
[13] used both building footprint vector data and a feature analyst
extraction software on DOPs with a 20 cm resolution to identify
potential rooftop areas suitable for PV deployment in southeast
Ontario, Canada. These areas were reduced by including factors
such as shading and orientation. The PV energy output was calcu-
lated for different technologies, considering the yearly cumulated
average solar radiation for every municipality under analysis as
the driving factor. Bergamasco and Asinari [14,15] followed a
similar approach to calculate PV deployment potential in Turin,
in northwest Italy. Using building footprints, high-resolution DOPs,
and an image recognition algorithm, they identified suitable roof-
top areas. They used the solar radiation data at a 1 km resolution,
as available in PV-GIS, instead of the average solar radiation data
for the whole municipality. As in Ref. [13], their final PV potential
results were cumulated to a city scale. Mainzer et al. [16] used
OpenStreetMap to retrieve the sizes and locations of all buildings
in the area of interest. Next, they applied a series of image process-
ing algorithms to retrieve roof ridgelines and deduce the orienta-
tion of partial roof areas. Some solutions use high-resolution
DOPs and machine learning techniques to retrieve suitable areas
or determine solar irradiance. Assouline et al. [17], Mohajeri
et al.[39], Miyazaki et al. [40], and Dwivedi et al.[41] developed
Dwivedi et al. [41] developed a machine learning technique to spa-
tially extrapolate weather variables and estimate roof characteris-
tics from high-resolution satellite images. They used a combination
of support vector machines and GIS to estimate the rooftop solar
PV potential for urban areas. The main limitation of these solutions
lies in the datasets needed to train the model, which consist of an
enormous amount of meteorological data.

2.4. High spatial resolution

Kodysh et al. [18] employed LiDAR to generate a 1 m DSM for
Knox County, TN, USA. They used this DSM as input for the ArcGIS
Solar Analyst and calculated monthly average days of solar radia-
tion to develop a cadastre of total yearly solar radiation. Hofierka
and Kaňuk [19] combined a DSM with a buildings’ footprint vector
data with information on height to generate a DSM with 1 m
resolution for Bardejov, Slovakia. They used r.sun with PV-GIS data
to calculate the real-sky solar radiation and PV potential for the
case-study area. The researchers performed a coarse calculation
estimating that PVs could cover 2/3 of the city’s electricity demand.
Brito et al. [20] combined LiDAR data and photogrammetric meth-
ods to generate a 1 m DSM of a part of Carnaxide, Oeiras, Portugal.
They performed the clear-sky solar radiation calculation with Arc-
GIS Solar Analyst and approximated real-sky conditions with PV-
GIS data. Nguyen and Pearce [21] used LiDAR data of a part of
downtown Kingston, ON, Canada, to generate a 55 cm DSM. They
used r.horizon to speed up the solar radiation calculation and eval-
uated the differences in the results due to DSM resolution, the
presence or absence of shadows, and the temporal granularity of
the estimation. Agugiaro et al. [22] examined the solar radiation
potential and created a WebGIS platform for evaluating PV poten-
tial in Trento, Italy. They used a LiDAR-derived 1 m DSM together
with local imagery and advanced automated image-matching
methods to generate a DSM with a 50 cm resolution. They calcu-
lated the clear-sky daily sums of solar radiation and adjusted the
values to real-sky conditions with the aid of seven years of mea-
surements obtained from a pyranometer installed on a building
in the area of interest. In our previous work [23], we used a
high-resolution DSM (25 cm) to recognize and exclude encum-
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brances on rooftops, such as chimneys and dormers. Moreover,
Ref. [23] takes into account real-sky conditions by using real
weather data to compute incident solar radiation on the tilted sur-
face of rooftops and to estimate PV performance and energy
production.
2.5. Energy demand integration

The analyzed solutions in the literature do not estimate energy
demand. Indeed, a design for an advanced power infrastructure
cannot disregard a suitable consideration of both energy genera-
tion and consumption. Both Litjens et al. [24] and Ramirez
Camargo et al. [25] designed a spatiotemporal framework to eval-
uate the electricity demand that can be fulfilled by PV energy. For
the demand side, they used a combination of household statistics,
historical residential demand time series, and annual electricity
consumption from residential grid connections. Groppi et al. [26]
proposed a model that analyzes the evolution in energy demand
after the installation of both PV and solar thermal systems. They
used calculations derived from an analysis of building construction
age class to evaluate the average consumption for each consumer
typology. Luthander et al. [27] proposed a solution that focuses
on determining how self-consumption from residential PV systems
can change by using shared or individual power grid connections.
They used consumption data from 21 detached single-family
houses over one year with a time resolution of 10 min. All the ana-
lyzed methodologies consider the urban context in a spatiotempo-
ral framework, taking into account both energy generation and
consumption. However, most of the solutions in the literature rely
on data from grid operators, standard load profiles, or models for
certain typologies of users. None of them deal with realistic models
of the activities and behaviors of house inhabitants or with an
accurate estimation of the distribution of heterogeneous families.
2.6. Full-service platforms

Finally, a wide range of solutions—both proprietary and open-
source—are used for microgrid optimization and RES systems sim-
ulation. Girardin et al. [28] developed the EnerGIS platform to eval-
uate integrated energy conversion systems in urban areas. Their
models compute heat and electricity demand for a geographical
area, evaluating building heating and cooling loads as a function
of outdoor temperature. DerCAM is a techno-economic optimiza-
tion model, which provides as a result, for example, the lowest-
cost configuration of DG technologies for a specific building [29].
Robinson et al. [42] developed SUNtool, a planning platform that
considers energy supply, demand, and user behavior under uncer-
tainty. The user selects the global location of the area of interest,
and the software retrieves both climate data and a specific dataset
containing detailed attribution information for buildings as a func-
tion of age, type of use, and occupancy. Alhamwi et al. [30,43] pre-
sented an open-source GIS-based platform called FlexiGIS for the
optimization of UES. FlexiGIS uses a systematic approach for a
bottom-up simulation of urban electricity supply and demand
down to the building unit level. City Energy Analyst [31] is an
open-source software for the analysis of building energy systems
at neighborhood and district scales. The software reproduces
hourly PV generation profiles on rooftops with low discretization
(2 m), not accounting for shadowing and encumbrances. The model
that generates the energy demand profiles uses a hybrid approach
in which data from local building archetypes are used as an input
of a dynamic building energy model. These analyzed solutions are
designed to reproduce microgrids as a whole, providing a general
overview of many aspects involved in energy systems. This gener-
ality can result in poor resolution and specific capabilities. None of
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the aforementioned solutions relies on shadow analysis or real-sky
considerations.
Fig. 1. Schema for the proposed co-simulation platform.
2.7. Scientific contribution

The field of spatiotemporal modeling of RES potentials is only in
its early development stage, and emphasis has been placed on
either models with a large spatial coverage, such as entire coun-
tries, or the study of small areas, such as buildings or neighbor-
hoods. These developments are still insufficient to support the
planning process of DG systems for municipalities, and further
research is necessary. Models with a low spatiotemporal dis-
cretization, which are usually available for large areas, can only
be used for optimization purposes when dealing with UES. In par-
ticular, reliable methodologies are still missing for the modeling of
rooftop PV electricity generation potentials and electricity demand
at the urban scale in a high spatiotemporal framework. The main
gaps encountered in the literature can be summarized as follows:

� Using proprietary data sources;
� Using low spatiotemporal resolution (focusing only on one
aspect involved in the energy system);

� Not considering real-sky conditions and shadowing effect for
the solar radiation analysis;

� Needing for a huge amount of data to train the model;
� Dealing with standard non-realistic models and load profiles.
In this paper, we introduce a novel methodology to cover the

shortcomings of previous contributions in this area. Our methodol-
ogy integrates reliable GIS-based PV potential assessment proce-
dures with models to estimate both electric generation and
consumption profiles. As shown in Table 1, our model relies on a
high spatiotemporal resolution (25 cm and 10 min, respectively)
and considers both the shadowing effects and the real-sky condi-
tions for the solar radiation estimation. To do so, real weather data,
considering clouds and real weather conditions, are used to com-
pute incident solar radiation on the tilted surface of rooftops and
to estimate PV performance and energy production. We have cre-
ated an innovative infrastructure that co-simulates rooftop PV pro-
duction and households’ electricity demand. The proposed solution
integrates open data and models with different urban geometric
characteristics (e.g., census data and real weather parameters) in
a GIS environment. Our infrastructure involves realistic models of
the activities and behaviors of house inhabitants and performs an
accurate estimation of the distribution of heterogeneous families.
It integrates with the UES design methodologies to estimate energy
demand with high temporal resolution, accounting for realistic
populations with realistic consumption profiles. Such a powerful
co-simulation environment makes it possible to perform a wide
range of different simulations. The end user can define the desired
granularity for the co-simulation, in terms of both spatial resolu-
tion (from a single household to an entire city) and temporal reso-
lution (from a few minutes to days or months). This methodology
allows concrete recommendations to be made in order to promote
the knowledge and comprehension of UES and the integration of
RES in the context of future smart cities [44,45]. In addition, it
enables further considerations on the design and the maintenance
of an REC (e.g., quantitative analysis of decentralized storage sys-
tems scenarios, considerations on the strengthening of the distri-
bution network).
3. Proposed platform

In this section, we describe a spatiotemporal modeling
approach that addresses the gaps described in Section 2 to promote
renewable energy generation planning. We propose a GIS-based
distributed software infrastructure that can co-simulate both elec-
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tricity demand and supply for the area of interest. The methodol-
ogy identifies suitable areas for RES exploitation (e.g., the roofs of
industrial settlements and residential buildings) in relation to the
surrounding area, the real RES availability, and the existing envi-
ronmental and landscape constraints.

The infrastructure is developed to be distributed across differ-
ent computer systems (i.e., servers and/or cloud systems), follow-
ing a service-oriented design pattern [46]. In this approach, each
service is highly decoupled and focused on performing a single
task. This is a paramount characteristic when designing modular
and flexible solutions, in order to model and co-simulate different
energy flows in a single solution [47].

This work combines and extends the methodologies developed
by our two previous works [23,48], by providing:

� A flexible and adaptable spatial discretization, which can be
expanded from a single building to an entire city.

� A flexible and adaptable temporal discretization, which can
simulate intervals from 10 min to an entire year.

� An advanced co-simulation environment, which combines
both production and consumption simulations.

� Increased methodological reliability, by integrating other
developed simulation tools (introduced in the next sections).

The schema represented in Fig. 1 highlights the main functional
layers of the proposed methodology. The architecture of the plat-
form begins by reproducing the urban energy infrastructure within
the area of interest (the data-source layer). In this layer, raw urban
input information is imported (e.g., DSM, cadastral maps, time use,
and census data). In the services layer, the input data sources are
first processed and filtered to create a geo-referenced dataset;
next, the spatial and temporal distributions of electricity demand
and supply are simulated and validated. In the application layer,
the aggregation geometry and the main output results are defined
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by the end user. The flexibility of the platform allows the end user
to obtain results at different geographical resolutions and with dif-
ferent temporal discretization. The rest of this section describes
each layer in detail.
3.1. Data-source layer

The data-source layer (the lower layer in Fig. 1) imports all the
necessary input datasets into the infrastructure to simulate PV
generation and residential load consumption. A key element of
our infrastructure is to use open data whenever possible.

A cadastral map contains information about the land area (e.g.,
boundaries, ownership, and occupancy). It consists of a set of
shapefiles covering the whole extension of the city. A shapefile is
a particular form of vector data composed of a geo-referenced layer
with geometrical features, such as dots, lines, or polygons. Each
polygon provides its relative attributes (e.g., intended use and sur-
face area) and the Cartesian coordinates of its vertices in the
adopted reference system.

A DSM with a high resolution (less than 1 m) makes it possible
① to define the exact slopes of rooftops, ② to better recognize
encumbrance on rooftops, such as chimneys and dormers, that will
not allow the deployment of PV panels, and ③ to obtain a better
simulation of the shadows that will affect the PV energy produc-
tion. Thus, the higher the DSM resolution, the greater the accuracy
of the energy production estimation.

The real weather data needed by our methodology are solar
radiation and air temperature, which are used to compute energy
production estimation (i.e., solar radiation for PV systems) and
energy consumption (i.e., domestic lighting according to natural
light). As proposed by Ref. [49], we excluded solar radiation sam-
ples with ① an altitude lower than 7� and ② a clearness index
lower than 0 or higher than 1. We also excluded measured samples
of global horizontal radiation with higher values than those under
clear-sky conditions, again as suggested by Ref. [49].

The time use (TUS) survey provides statistical information at
10 min intervals on the activities and behaviors of inhabitants of
all ages and genders; moreover, this information can be grouped
by type of day (i.e., weekdays or weekends) [50,51]. TUS data is
used to build a user-activity model that simulates the activities
and behaviors of individual household members and, as a conse-
quence, their respective electricity consumption at home
(Section 3.2.2).

The use of energy survey gives an overview of energy consump-
tion [52] and provides a statistical distribution of different appli-
ances according to family size. In particular, it provides the
percentage of use of electric appliances, grouped by weekdays
and weekends. Our methodology exploits statistics on the distribu-
tion and usage of appliances to build a virtual and realistic popula-
tion for simulation (Section 3.2.1). It associates a consistent set of
appliances together with their respective percentage of use in each
virtual family.

Our methodology exploits the load profiles of real appliances,
which were collected by sampling different appliances with a
1 Hz resolution. The use of sampled load trends makes the whole
multiscale model flexible in terms of easily including further appli-
ances with different characteristics (e.g., load size, model, brand,
and production year). For example, two similar virtual families
can have a similar set of appliances with different characteristics
and hence different load profiles. In such a scenario, the aggregated
household load consumption of both families is different.

Census data typically provides statistics on families and popula-
tions. In the present work, we used information from census data
to generate a synthetic population consisting of heterogeneous
and statistically consistent families (Section 3.2.1).
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3.2. Services layer

The services layer (the middle layer in Fig. 1) consists of two
sub-layers: ① the scenario creation layer and ② the co-
simulation layer. The services layer integrates the input data
sources provided by the data-source layer to correlate them and
create a geo-referenced dataset (the scenario creation layer), which
is then used to feed all the simulation modules needed by the
whole infrastructure (the co-simulation layer). In this section, we
analyze in detail the structure of these sub-layers.
3.2.1. Scenario creation layer
The scenario creation layer creates the scenario geo-referenced

dataset. To produce the data structure needed by the simulators,
two main functions are performed:① defining the rooftop suitable
area, which is needed to allow the PV-generation simulator to per-
form a high-resolution spatial assessment of PV systems, and
② generating the synthetic population, which is needed to allow
the electricity demand simulator to reproduce realistic and reliable
building load profiles.

To calculate the potential of rooftop PV systems with a high
spatiotemporal resolution, the first step is to identify areas where
PV generation plants could be placed. Therefore, objects such as
dormers and chimneys must be excluded from the analysis, by
exploiting high-resolution DSM and cadastral maps coming from
the data-source layer. As previously mentioned, we integrated
and extended our previous work [23] to estimate the rooftops’ suit-
able areas. The surface areas of a roof are classified based on the
inclination and orientation [53], which are the two main construc-
tion factors affecting the energy production of PV systems. Within
this work, we identify areas representing tilted rooftops with an
orientation (c) between 135

�
and 235

�
(oriented between the

southeast and southwest) and with a slope (h) between
10

�
and 45

�
. However, the end user can give new ranges as input

for c and h in order to select the desired suitable surfaces.
From the resulting map, we remove small areas that are too

small for installing a PV system (i.e., areas where deployable PV
systems are smaller than 1 kilo Watt peak ðkWpÞ). To select only
areas belonging to building rooftops, the resulting map is clipped
with the building shapes in the cadastral map. The end user can
define the required simulation constraints. In addition, the type
of building being considered for PV installation can be selected
(e.g., residential buildings, industrial buildings, and offices). Finally,
we exclude from the computation those buildings that are not suit-
able for a hypothetical installation of PV systems, considering the
buildings’ intended use and avoiding historical buildings.

A synthetic population is a simplified microscopic representa-
tion of an actual population. The synthetic population matches
the aggregated statistical measures of the actual population, so
the synthetic population is a realistic depiction of the real popula-
tion. Households and persons are selected from random samples
such that the joint distribution of their attributes of interest (e.g.,
age, gender, and work) match the known aggregate distributions
available through census data. At its core, the synthetic population
module implements PopulationSim [54], a tool that is part of the
open-source collaborative framework ActivitySim [55]. The syn-
thetic population module is used as an extension of Ref. [48], by
feeding the electricity demand simulator with a realistic popula-
tion (Section 3.2.2).

PopulationSim receives three main inputs, which the end user
can define via comma-separated values (CSVs) files:

(1) Seed tables: These are composed of two lists representing
households and persons for each selected seed geography (i.e., geo-
graphical discretization chosen by the end user). They are pro-
duced from census data and describe the composition of a
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random sample of the population, specifying the required number
of attributes for each entity. The attributes employed in this work
comply with the classes of users needed by the electricity demand
simulator (e.g., part-time working male, full-time working female,
and child).

(2) Marginal table: This represents the reference marginal dis-
tribution. It comes from the census data and describes the compo-
sition of the target geography. It is divided into sub-regions (e.g.,
census tract and districts), and provides a detailed composition
of households and persons for each sub-region.

(3) Control variables: This is a logical map that describes all the
attributes of interest and the related path to establish their values
from the various seed tables.

The main output of the synthetic population is a JSON file
describing, for each household, the inhabitant composition, which
assigns to each virtual person (with the corresponding attribute of
interest) a virtual house in a geographic area.

3.2.2. Co-simulation layer
The co-simulation layer provides different simulation modules

and defines a common structure, synchronizing and enabling com-
munication among the different software components. Each model
of the co-simulation layer consists of different software modules. It
is worth noting that we designed our solution to be ready for fur-
ther integration with third-party software components. Each mod-
ule can eventually be invoked, even by third-party software, to
retrieve information and simulation results.

The PV-generation simulator estimates the PV energy produc-
tion on suitable areas on rooftops. We followed and extended the
methodology of the PV-Sim proposed in our previous work [23].
The PV-generation simulator computes solar irradiance in high
spatiotemporal resolution for each suitable area identified in the
scenario creation layer. Following this methodology, we computed
sub-hourly clear- and real-sky solar radiations. To compute clear-
sky solar radiation, the PV-generation simulator produces a set of
direct and diffuse solar radiation maps with 10 min time intervals.
To compute real-sky solar radiation, it simulates the incident radi-
ation on the tilted surface of buildings, considering real meteoro-
logical data coming from third-party services, such as Weather
Underground [56]. The inputs needed by the simulation module
are ① the suitable areas retrieved by the rooftop suitable area
module and ② weather data on the outdoor air temperature and
solar irradiance under real-sky conditions. Then, the PV-
generation simulator estimates the PV productions for the ana-
lyzed geometry. To calculate the output power, real meteorological
data are used to estimate the air and PV-cell temperatures. In addi-
tion, we used the characteristics of commercial PV modules as
default values (i.e., efficiency and temperature coefficient). How-
Fig. 2. Orchestrato
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ever, before performing the simulation, the end user can change
these parameters, depending on the characteristics of the PV sys-
tem of interest. The final output of the simulator is a GeoJSON that
provides information for each building on the size of the deploy-
able PV system and the related generation profiles (with a
10 min time-step) for the requested simulation period.

The electricity demand simulator simulates households’ elec-
tricity load profiles. It is centered on our previous work Home-
Sim [48], which is a bottom-up multiscale model to simulate
energy consumption trends with different spatiotemporal resolu-
tions. Home-Sim exploits a Monte Carlo non-homogeneous semi-
Markov model that takes into account both the probability of per-
forming an action at a certain time of day and the duration of the
action itself, and that provides ① a realistic model of the activities
and behaviors of house inhabitants and ② an accurate estimation
of the distribution of heterogeneous families with appliances.
The simulation accuracy of the model depends on the level of detail
provided by the dataset that describes the population of the ana-
lyzed area of interest. To this end, instead of using raw census data,
as in our previous work [48], we integrated the synthetic popula-
tion generated in the synthetic population module of the scenario
creation layer, thereby providing a realistic, geo-referenced, and
detailed distribution of both households and persons. The inputs
needed by the simulation module are ① the synthetic population
generated by the synthetic population module;② TUS surveys that
include information on 12 different classes of users (e.g., part-time
working male, full-time working female, and child) [57]; ③ sur-
veys on energy use that provide the distribution of appliances
according to family size and statistics on the usage of household
appliances in families [52]; and ④ load profiles of real appliances
sampled at 1 Hz [58]. Once the house inhabitants are grouped into
specific categories, each activity is associated with one or more
appliances that have been modeled following a stochastic method-
ology. This information is used by the platform to produce a
GeoJSON that provides realistic residential load profiles (with
a 10 min time-step) for either weekdays or weekends, with
multilevel aggregation.

The orchestrator ① synchronizes and coordinates the different
simulators and ② geo-references their inputs and output results
in a common GIS environment. Fig. 2 reports the orchestrator
work-flow. The co-simulation platform uses simulators in a com-
mon context to perform a coordinated simulation of the defined
scenario. Thus, all simulators involved in a simulation scenario
run their own processes with their own event loops. As shown in
Fig. 2, the first task is to perform a geospatial classification of all
the data structures, following the geographical discretization and
the connections defined in the scenario selection module of the
application layer. Each piece of input data is connected to the
r work-flow.
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others in the chosen reference geometry. The orchestrator receives
the raw data from the data-source layer as input and geographi-
cally connects them to create a geo-referenced map (see ‘‘selected
geographical area” and ‘‘residential buildings” in Fig. 2). For each
selected area, it associates several buildings and, for each building,
it associates a set of models (see ‘‘rooftop suitable area” and ‘‘syn-
thetic population” in Fig. 2). Each geographical point has the speci-
fic attributes needed to calculate both the electricity production
and the electricity demand. Therefore, building PV generation is
directly connected with the electricity demand of the associated
families and households. All the models run on the corresponding
simulators (see ‘‘PV generation” and ‘‘electricity demand” in Fig. 2).
In this way, at each time-step, the orchestrator requests each
simulator to run its stand-alone calculations in a loop, producing
the power values associated with its model. Within the same
time-step, the orchestrator spatially aggregates the single output
according to the selected geographical discretization (e.g., city dis-
trict, municipality), thus obtaining a set of values that does not
refer to the specific module results (e.g., single household con-
sumption, single PV system production) but is aggregated over
the selected geographical discretization (see ‘‘spatial combination”
in Fig. 2). At the end of the whole co-simulation process, the final
output is a set of aggregate values that can correspond to energy
or power indicators (see ‘‘results & indicators” in Fig. 2).

3.3. Application layer

The application layer represents the upper layer of the proposed
infrastructure (Fig. 1). It is dedicated to end-user applications, and
it can provide information about performed simulations with dif-
ferent levels of detail. With the scenario selection module, the
end user can define the different requirements to simulate the
desired scenario by providing: ① the geographical area, by provid-
ing the effective shapefile and connecting it to the OpenStreetMap
environment; ② the spatial and temporal resolution (from a single
household to an entire city and from a few minutes to days or
months, respectively), in respect to the provided data source; and
③ the technical specifications of the different modules.

The output result module is composed of the main result values
and indicators. At each time-step, the main outputs of the co-
simulation platform are ① the electricity demand (Pload), ② the
PV power production (Pprod), ③ the directly self-consumed power
(Pself ), and ④ the not-consumed injected power (Pinject). Pself is
the share of Pprod that can be directly consumed by the selected
area, as a result of Pload. Pinject is the share of Pprod that overcomes
Pload; for that reason, it can be injected into the distribution grid
or into a proper energy storage system. Algorithm 1 outlines the
logic behind the calculation of such values.

Algorithm 1. The logic behind the calculation of such values.

if Pprod < Pload :

Pself ¼ Pprod

Pinject ¼ 0
else Pprod � Pload :

Pself ¼ Pload

Pinject ¼ Pprod � Pload

It is important to emphasize that the described procedure to
determine both Pself and Pinject is performed at each time-step. This
particular condition makes it possible to simulate the actual self-
consumed electricity, reproducing the realistic performance of an
REC that, instant by instant, ‘‘understands” whether it can consume
the energy it has produced, or if it needs to obtain energy from the
distribution grid.
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At the end of the whole co-simulation, the main aggregated val-
ues are ① the amount of absorbed energy (Eload), ② the energy
generated by PVs (Eprod), ③ the self-consumed energy (Eself ), and
④ the energy that could be injected (Einject). The first two indicators
make it possible to characterize a given geographical area in terms
of its PV potential and REC potential. Regarding the last two values,
as before, it is important to highlight that they are not a mere inte-
gral subtraction of final energies; rather, they are calculated at
each time-step as the difference of instantaneous powers. Those
values well represent the energy exchanges that are generated in
the same selected geographic area. For that reason, the platform’s
ability to produce these results enables further consideration of
the design and the maintenance of an REC (e.g., dimensioning
and location of storage systems, strengthening of the distribution
network).

To better understand the obtained results, two temporal PV
integration indicators are assessed: the self-consumption ratio
(SCR) and the self-sufficiency ratio (SSR) [59,60]. The SCR is used
to quantify the share of electricity that is self-consumed from the
total annual produced PV energy. The SSR quantifies the share of
electricity consumption that is fulfilled by PV electricity. A more
exhaustive definition of these indicators is provided in Appendix
A Section S1.

One last indicator concerns the avoided CO2 emissions. The
residential sector is responsible for 27 % of primary energy
consumption [61] and accounts for a large amount of CO2 gas
production. In 2018, the European Parliament affirmed that ‘‘the
building stock . . . is responsible for approximately 36% of all CO2

emission in the European Union” [62]. For this indicator, a more
exhaustive definition is given in Appendix A Section S1.

3.4. Replicability

The novel methodology presented in this manuscript can be
used to assess the PV integration on building rooftops as well as
analyze households’ electricity demand. Within this research work,
we tested the methodology in an urban context, but it can be
applied to many other energy systems. By providing the requested
input information, the co-simulation process can be easily repli-
cated in other realities, such as city districts, rural areas, or entire
cities. The data source layer (Section 3.1) describes in detail all
the input data needed by the platform to simulate the desired sce-
nario. Most of these data are open and easily accessible for several
locations. In Europe, Eurostat provides many of the requested sur-
veys [63]. The resolution of the final output of the simulation pro-
cess is strictly correlated to the resolution of the initial input data
sources.
4. Experimental results

To test and validate the simulation of the proposed software
infrastructure, we selected the municipality of Turin as a case
study. Turin is a city located in Piedmont, in northwest Italy. It cov-
ers an area of about 130 km2 and has a population of over 875 000
inhabitants [64]. A detailed description of both the geography of
the location and the adopted dataset is provided in Appendix A
Section S2. The minimum area selected for the simulation coin-
cides with the census tract defined by the Italian National Institute
of Statistics (ISTAT) [64]. For each of the 3710 census tracts com-
posing the municipality of Turin, the entire co-simulation proce-
dure described in Section 3 was applied. An in-depth analysis of
both energy results and indicators was performed, highlighting
the major strengths and weaknesses according to the evaluated
geometry. As explained in Section 3, for the demand side of the
platform, calculations are only applied to residential buildings.
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For the production side, a distinction was made between two dif-
ferent scenarios: ① Scenario RES considers only the energy that
can be produced using the available surfaces of residential roof-
tops, while ② Scenario TOT considers the energy that can be pro-
duced using all available rooftop surfaces, including all possible
buildings, both residential and non-residential. Both scenarios
exclude buildings that are not suitable for PV installations, such
as historical buildings, churches, or bell towers. Scenario TOT is
considered as if the energy produced by all the rooftops of the cen-
sus tract could be directly consumed by its residential buildings.
This simplification allows us to assess how an REC can share its
energy production, even though we are conscious that many other
parameters (e.g., electricity distribution network and energy stor-
age systems) might be considered to describe the effective
settlement.

The results from the production side of the platform were com-
pared with those obtained by Bergamasco and Asinari [15], whose
work we consider to be a benchmark, allowing a fair comparison of
the very same geographical area. Their methodology is also applied
to the municipality of Turin, and it calculates the energy that might
be produced by deploying a widespread rooftop PV system. In
comparison with our work, they only simulate the PV production,
and do not evaluate the actual population or the effective electrical
consumption. As described in Section 2, they exploit image recog-
nition algorithms to retrieve building rooftop shapes from high-
resolution DOPs. For solar radiation, they use the yearly irradiance
values produced by PV-GIS with a 1 km resolution, considering
only clear-sky conditions [10]. In comparison with their methodol-
ogy, as explained in Section 3, we calculate the solar radiation with
a higher spatiotemporal resolution (10 min and 25 cm) and con-
sider both clear-sky and real-sky conditions. We use their results
as a benchmark for the production side of our methodology; the
obtained enhancements are discussed in Section 4.1.

The rest of this section presents the experimental results, high-
lighting the flexible capabilities of the platform, first at the district
level (Section 4.1), to better understand geographical distribution
and dependencies. This first analysis highlights the capabilities of
the co-simulation process over the entire year. Then, Section 4.2
discusses the experimental results at the census tract level, to
emphasize the local performance of the platform. This second anal-
ysis highlights the capabilities of the co-simulation process up to
the daily simulation.
4.1. Energy performance at the district level

Table 2 (Scenario RES) and Table 3 (Scenario TOT) report in
detail the main results at the district level. In these tables, data
on technical information, energy aggregated results, and energy
indicators are summarized for each district in Turin. For both sce-
narios, beyond the individual district results, a final summarizing
line reports the aggregated values for the whole municipality. Both
tables show that the electricity consumption for the residential
sector for the whole municipality of Turin, calculated over a popu-
lation of about 860 000 inhabitants, is around 592 GW�h�a�1. As
explained in Section 3, this value is calculated over a realistic pop-
ulation that aligns with the available census data and simulates
realistic load profiles for household appliances.

Table 2 describes the Scenario RES and reports that the esti-
mated total amount of produced energy is around 353 GW�h�a�1.
The total available rooftop area for this scenario is 1:9 km2. Table 3
describes the Scenario TOT and reports that the total amount of
estimated energy produced is about 685 GW�h�a�1, using an avail-
able rooftop surface of 3:7 km2. This area includes non-residential
rooftops as well, such as schools, shops, and factories.
206
Those integral results were compared with the results produced
by Bergamasco and Asinari [14,15], and discrepancies and similar-
ities between the two methodologies were identified. We divide
the comparison between the area definition side and the power
production side. For the area definition side, the two methodolo-
gies are compared. Bergamasco and Asinari calculated that, for
the whole municipality of Turin, 43 500 residential buildings had
1:7 km2 of suitable area for PV installation. Our result, in Scenario
RES, is quite similar, identifying about 45 000 buildings and
1:9 km2 of available surfaces. For the power production side, we
can affirm that our simulation presents increased considerations
of the time dependencies of both solar radiation and real weather
data. Beyond that, a comparison between the effective PV poten-
tials was made. Bergamasco and Asinari reported final results only
for the whole municipality level, indicating that it could produce
about 600–800 GW�h�a�1, depending on PV panel typologies. We
compare here the Scenario TOT production result, which is about
592 GW�h�a�1.

Another interesting observation involves the avoided CO2 emis-
sions indicator. As explained in Appendix A Section S1, this indica-
tor is in proportion to the PV energy production (Eprod), and does
not consider the direct use of the energy produced. The simplifica-
tion assumed with this hypothesis is that all the energy produced
by PV systems avoids being produced by traditional pollutant
fossil-fuel systems. With this premise, we can observe that the
maximum reduction of CO2 emissions is obtained where the
energy production is maximized—namely, the Centro district for
the Scenario RES (14 Mt�a�1) and the Mirafiori Sud district for
the Scenario TOT (45 Mt�a�1).

Fig. 3 summarizes, with a comprehensive bar plot, the distribu-
tion of energy production and energy demand within the districts
of the municipality of Turin. The plot depicts both energy con-
sumption and production, emphasizing the differences between
Scenario RES and Scenario TOT. It clearly shows that, for certain
districts (e.g., Mirafiori Sud and Falchera), the difference between
Scenario RES and Scenario TOT can reach high amounts. This is
because large factories are located in these districts which—if used
for PV installation purposes—would allow the production of a sig-
nificant amount of electrical energy. It can also be seen that, for
certain districts, just the Eprod from residential buildings (Scenario
RES) would be sufficient to supply the Eload of the whole district.
In particular, five districts (i.e., Barca, Borgo Po e Cavoretto, Centro,
Falchera, and Madonna del Pilone) might produce more electricity
than they consume with only Scenario RES. In contrast, five dis-
tricts (i.e., Aurora Porta Palazzo, Madonna di Campagna, Mirafiori
Sud, Regio Parco, and Vanchiglia) can only overcome their electri-
cal consumption with Scenario TOT. Finally, for 15 districts (i.e.,
Barriera di Milano, Borgata Vittoria, Cenisia, Crocetta, Lingotto
Filadelfia, Mirafiori Nord, Nizza Millefonti, Parella, Pozzo Strada,
Rebaudengo, San Donato, San Paolo, San Salvario, Santa Rita, and
Vallette Lucento), their total electrical consumption cannot be
supplied by PV systems, even if the whole available rooftop surface
were to be used.

The spatial dependency of the SCR and SSR has been accurately
analyzed, and the results are reported in Appendix A Section S3.
4.2. Energy performance at the census tract level

In this section, the experimental results are discussed for three
significant census tracts, emphasizing the platform’s capability to
reach a high spatiotemporal resolution. For each tract, both the
energy on a monthly basis and the daily power profiles are pre-
sented for two reference days in winter and summer, respectively.

The first analyzed census tract belongs to the Parella district,
which was chosen because it represents an area with a typical



Table 2
Summary table for Scenario RES.

District name S
(km2)

Pop Building Savail
(km2)

Eload
(GW�h�a�1)

Eprod
(GW�h�a�1)

Eself
(GW�h�a�1)

Einject
(GW�h�a�1)

SCR
(%)

SSR
(%)

CO2
avoid

(Mt�a�1)

Aurora Porta Palazzo 2.74 37 342 1 381 0.08 26.47 15.25 7.74 7.51 50.77 29.26 7.37
Barca 4.43 10 891 1 835 0.06 6.62 11.08 2.70 8.38 24.40 40.84 5.35
Barriera di Milano 2.83 47 124 2 462 0.09 32.38 16.32 9.06 7.26 55.50 27.97 7.88
Borgata Vittoria 3.83 39 268 2 012 0.08 26.42 14.43 7.50 6.93 51.96 28.39 6.97
Borgo Po e Cavoretto 13.61 18 730 4 371 0.11 13.80 20.70 5.45 15.22 26.50 39.75 10.00
Cenisia 2.34 38 408 2 031 0.08 28.63 14.98 8.64 6.34 57.66 30.17 7.24
Centro 3.76 36 518 1 724 0.16 29.34 29.59 10.30 19.29 34.81 35.12 14.29
Crocetta 2.78 33 564 1 690 0.10 26.62 18.02 8.58 9.45 47.59 32.22 8.70
Falchera 12.88 11 302 798 0.04 6.37 7.26 2.26 5.00 31.17 35.53 3.51
Lingotto Filadelfia 3.60 48 560 1 178 0.07 31.23 12.48 7.87 4.61 63.09 25.21 6.03
Madonna del Pilone 15.50 14 001 3 614 0.09 10.37 16.32 4.06 12.25 24.90 39.18 7.88
Madonna di

Campagna
5.28 40 984 2 294 0.08 27.55 15.52 8.12 7.40 52.30 29.47 7.50

Mirafiori Nord 3.79 43 262 1 300 0.05 25.89 9.51 5.40 4.12 56.71 20.85 4.60
Mirafiori Sud 11.35 34 197 1 733 0.08 20.42 14.27 6.02 8.26 42.15 29.46 6.89
Nizza Millefonti 3.51 27 990 979 0.04 17.99 7.10 4.88 2.22 68.73 25.69 3.43
Parella 4.91 46 282 2 873 0.09 33.51 16.57 9.08 7.49 54.78 27.08 8.00
Pozzo Strada 4.23 56 618 2 653 0.08 39.12 15.45 9.77 5.67 63.27 24.98 7.46
Rebaudengo 1.61 14 730 578 0.02 9.15 3.37 2.26 1.11 67.02 24.66 1.63
Regio Parco 2.43 16 778 557 0.03 10.88 5.97 2.93 3.03 49.17 26.96 2.88
San Donato 2.71 47 440 2 090 0.11 34.91 20.42 10.75 9.67 52.66 30.81 9.86
San Paolo 2.21 34 585 1 619 0.05 23.75 9.83 5.76 4.07 58.59 24.25 4.75
San Salvario 2.34 35 351 1 290 0.07 27.00 13.34 7.74 5.61 57.99 28.67 6.45
Santa Rita 3.57 55 903 1 769 0.10 36.76 17.86 10.59 7.27 59.32 28.82 8.63
Vallette Lucento 7.49 40 262 1 523 0.07 23.76 13.29 7.15 6.14 53.78 30.08 6.42
Vanchiglia 3.44 30 095 1 287 0.08 22.21 14.44 7.14 7.30 49.43 32.14 6.98
Turin RES 127.18 860 185 45 641 1.90 592.14 353.38 171.78 181.59 50.17 29.90 170.68

S: area extension; Pop: population; Savail: suitable roof area; CO2
avoid: avoided CO2 emissions.

Table 3
Summary table for Scenario TOT.

District name S
(km2)

Pop Building Savail
(km2)

Eload
(GW�h�a�1)

Eprod
(GW�h�a�1)

Eself
(GW�h�a�1)

Einject
(GW�h�a�1)

SCR
(%)

SSR
(%)

CO2
avoid

(Mt�a�1)

Aurora Porta Palazzo 2.74 37 342 1 959 0.14 26.47 26.34 8.71 17.63 33.07 32.91 12.72
Barca 4.43 10 891 2 360 0.11 6.62 20.25 2.82 17.42 13.95 42.68 9.78
Barriera di Milano 2.83 47 124 2 992 0.12 32.38 22.70 9.73 12.97 42.85 30.04 10.96
Borgata Vittoria 3.83 39 268 2 802 0.13 26.42 23.81 8.11 15.70 34.07 30.71 11.50
Borgo Po e Cavoretto 13.61 18 730 4 774 0.15 13.80 27.13 5.69 21.45 20.96 41.21 13.11
Cenisia 2.34 38 408 2 467 0.11 28.63 21.07 9.05 12.01 42.98 31.62 10.18
Centro 3.76 36 518 2 267 0.24 29.34 43.98 10.93 33.05 24.85 37.25 21.24
Crocetta 2.78 33 564 2 065 0.14 26.62 25.48 8.91 16.57 34.95 33.46 12.31
Falchera 12.88 11 302 1 512 0.45 6.37 82.63 2.47 80.16 2.99 38.81 39.91
Lingotto Filadelfia 3.60 48 560 1 620 0.11 31.23 19.74 8.57 11.17 43.43 27.45 9.54
Madonna del Pilone 15.50 14 001 3 965 0.11 10.37 20.62 4.19 16.43 20.32 40.42 9.96
Madonna di

Campagna
5.28 40 984 3 133 0.15 27.55 28.37 9.14 19.23 32.23 33.18 13.70

Mirafiori Nord 3.79 43 262 1 686 0.10 25.89 17.93 6.06 11.86 33.82 23.42 8.66
Mirafiori Sud 11.35 34 197 2 641 0.51 20.42 93.40 6.78 86.62 7.26 33.21 45.11
Nizza Millefonti 3.51 27 990 1 454 0.07 18.99 12.90 5.42 7.48 42.01 28.54 6.23
Parella 4.91 46 282 3 524 0.16 33.51 30.25 10.03 20.22 33.15 29.92 14.61
Pozzo Strada 4.23 56 618 3 346 0.12 39.12 23.09 10.95 12.14 47.43 27.99 11.15
Rebaudengo 1.61 14 730 758 0.03 9.15 5.22 2.46 2.75 47.22 26.93 2.52
Regio Parco 2.43 16 778 833 0.06 10.88 11.88 3.21 8.67 27.00 29.47 5.74
San Donato 2.71 47 440 2 583 0.14 34.91 25.94 11.33 14.61 43.67 32.45 12.53
San Paolo 2.21 34 585 1 988 0.07 23.75 13.58 6.26 7.32 46.10 26.36 6.56
San Salvario 2.34 35 351 1 685 0.10 27.00 17.94 8.34 9.60 46.50 30.90 8.67
Santa Rita 3.57 55 903 2 224 0.14 36.76 25.38 11.32 14.07 44.58 30.78 12.26
Vallette Lucento 7.49 40 262 2 108 0.13 23.76 23.37 7.79 15.58 33.34 32.79 11.29
Vanchiglia 3.44 30 095 1 715 0.12 22.21 22.76 7.54 15.22 33.13 33.95 10.99
Turin TOT 127.18 860 185 58 461 3.72 592.14 685.76 185.82 499.94 33.27 32.26 331.22
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mixture of residential and non-residential buildings, including
offices, schools, and commercial buildings (Fig. 4(a)). As shown in
Table 4, this census tract is populated by 587 persons living in
207
28 residential buildings and consuming about 273 MW�h�a�1. It
can be seen that, with Scenario RES, the electricity produced is
not able to meet the residential energy loads. Considering Scenario



Fig. 3. District energy integrals: annual consumed energy (Eload) (Mt�a�1), annual produced energy with Scenario RES (ERES
prod) (GW�h�a�1), and annual produced energy with

Scenario TOT (ETOT
prod) (GW�h�a�1).
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TOT instead (i.e., considering non-residential buildings as well), the
PV production exceeds the amount of consumed electricity by
about 50 MW�h. This census tract has a fairly high SCR, ranging
from 65:3% in the Scenario RES to 32:8% in the Scenario TOT. Also,
the SSR is slightly greater than the average value, ranging from
32:7% in the Scenario RES to 40:7% in the Scenario TOT. CO2 emis-
sion reductions are limited, reaching at most 160 t�a�1.

Fig. 4(b) gives a more comprehensive view of the energy flows
occurring during the year. It can be seen that, even if the total
energy produced over the year is sufficient to supply the energy
needs, this situation happens only between March and September.
During winter, not even Scenario TOT can satisfy the entire resi-
dential energy needs. This issue becomes even more evident in
the bottom part of Fig. 4, where the daily power flows of a typical
day during winter (Fig. 4ðcÞ) and summer (Fig. 4ðdÞ) are presented.
It is clear that PV production overcomes energy loads only during
daylight, whenever it is possible. For example, for a summer day
when the daylight is longer, PV systems cannot directly supply
the energy loads at night.

The second analyzed census tract belongs to the Madonna del
Pilone district (Fig. 5(a)Þ, which was chosen because it represents
an area in which the energy production from residential buildings
is maximized. Table 5 shows that this census tract is populated by
381 persons living in 151 residential buildings and consuming
about 282 MW�h�a�1. Here, the amount of electricity that could
be produced with residential buildings exceeds the energy needs
by 257 MW�h. When considering non-residential buildings as well,
the excess of electricity increases to 489 MW�h. This census tract
presents a relatively low SCR, ranging from 22.2% in the Scenario
RES to 16.2% in the Scenario TOT. In contrast, the SSR is much
higher, ranging from 42.6% in the Scenario RES to 44.3% in the Sce-
nario TOT. A census tract with these characteristics (relatively low
SCR and high SSR) is a good candidate for PV installation, which
will cover almost half of the energy load; moreover, there will be
many periods during the day when a surplus of PV energy produc-
tion will occur. In this case, the CO2 emission reductions are higher
than in the previously analyzed census tract in Parella, reaching at
least 260 t�a�1.

Fig. 5(b) provides a more comprehensive view of the energy
flows during the year. In this case, the monthly average energy pro-
duced is not always sufficient to supply the energy needs. How-
ever, from February to November, the energy produced in both
Scenario RES and Scenario TOT can satisfy the residential energy
208
loads. Furthermore, it is noticeable that the excess of energy pro-
duced in a year in this census tract is much greater than that of
the previously analyzed census tract in Parella.

The bottom part of Fig. 5 shows the aforementioned considera-
tion, where the PV production can provide the complete supply for
the electricity load only during a certain range of daytime. During
winter (Fig. 5(c)), there are fewer daylight hours, and the time evo-
lution of the energy loads often does not align with the rooftop PV
production. During summer (Fig. 5(d)), there are more daylight
hours; therefore, PV production starts earlier and ends later (in
addition to being more powerful). As a result, the complete electri-
cal load can be supplied more frequently by the PV systems.

The last analyzed census tract belongs to the Falchera district
(see Fig. 6(a)). As already mentioned, Falchera is one of the two
industrial districts in the municipality of Turin. Thus, the analyzed
census tract represents an area in which the energy production
from industrial buildings is maximized. Table 6 and Fig. 6(b) show
that the census tract is devoid of inhabitants and, therefore, of res-
idential energy loads. For this reason, the energy produced with
Scenario RES is equal to zero. Instead, the electricity produced with
Scenario TOT appears to be very high, reaching over 62 GW�h�a�1.
As this census tract is devoid of Eself , both the SCR and SSR are equal
to zero. A huge reduction in CO2 emissions could be obtained with
Scenario TOT, accounting for over 30 000 t�a�1. Figs. 6(c) and (d)
only show the produced energy with Scenario TOT, emphasizing
the high seasonality of PV energy production.

5. Limitations and future work

In this paper, we introduced a novel methodology to cover the
shortcomings of solutions in the existing literature, as described
in Section 2. As pointed out in Section 3.1, the requested data
sources are open and easily accessible for many locations. Never-
theless, our model relies on a high spatiotemporal resolution (i.e.,
25 cm and 10 min, respectively), which allows it to identify rooftop
encumbrances (e.g., chimneys and dormers) and shadows under
real-sky conditions for accurate solar radiation estimation. A
DSM with a lower resolution will not correctly identify such
encumbrances, which will affect the identification of available
rooftop surfaces and the computation of shadow evolutions. The
DSM was provided by the city council and reports rooftop shapes
with high accuracy, highlighting encumbrances such as chimneys
and dormers. This data source has a significant production cost,



Table 4
Summary table for the census tract in Parella: Scenario RES and Scenario TOT.

Scenario S (m2) Pop Building Savail (m2) Eload (MW�h�a�1) Eprod (MW�h�a�1) Eself (MW�h�a�1) Einject (MW�h�a�1) SCR (%) SSR (%) CO2
avoid (t�a�1)

RES 108 032.8 587 28 727.3 272.8 136.7 89.3 47.4 65.3 32.7 66.0
TOT 108 032.8 587 41 1 775.1 272.8 338.1 110.9 227.2 32.8 40.7 163.3

Fig. 4. Summary results for the census tract in Parella. (a) A geo-referenced representation of the available building and rooftop surfaces for Scenario RES (SRESavail) and for
Scenario TOT (STOTavail); (b) a histogram of the monthly consumed energy (Eload), monthly produced energy with Scenario RES (ERES

prod), and monthly produced energy with Scenario
TOT (ETOT

prod); (c, d) daily consumed power (Pload), daily produced power with Scenario RES (PRES
prod) and daily produced power with Scenario TOT (PTOT

prod) in a reference day for the
(c) winter and (d) summer seasons.
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so its provision is not straightforward. Nevertheless, many munic-
ipalities and city councils in Europe are producing DSMs of princi-
209
pal regions and cities, some created with LiDAR and some with
other image reconstruction techniques.



Table 5
Summary table for the census tract in Madonna del Pilone: Scenario RES and Scenario TOT.

Scenario S (m2) Pop Building Savail (m2) Eload (MW�h�a�1) Eprod (MW�h�a�1) Eself (MW�h�a�1) Einject (MW�h�a�1) SCR (%) SSR (%) CO2
avoid (t�a�1)

RES 697 381.6 381 151 3 151.0 281.6 539.9 120.0 419.9 22.2 42.6 260.8
TOT 697 381.6 381 169 4 436.8 281.6 771.0 124.8 646.2 16.2 44.3 372.4

Fig. 5. Summary results for the census tract in Madonna del Pilone. (a) A geo-referenced representation of the available building and rooftop surfaces for Scenario RES (SRESavail)
and Scenario TOT (STOTavail); (b) a histogram showing the monthly consumed energy (Eload), monthly produced energy with Scenario RES (ERES

prod) and monthly produced energy
with Scenario TOT (ETOT

prod); (c, d) daily consumed power (Pload), daily produced power with Scenario RES (PRES
prod), and daily produced power with Scenario TOT (PTOT

prod) in a
reference day for the (c) winter and (d) summer seasons.
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The platform results can highlight the elements needed to
design and maintain an REC, with different levels of detail (both
in time and in space). The obtained results identify the exact power
210
flows involved in the energy system, highlighting periods and loca-
tions where electricity is in excess or in defect. Such results set out
a groundwork for the integration of RES and flexibilization



Table 6
Summary table for the census tract in Falchera: Scenario RES and Scenario TOT.

Scenario S (m2) Pop Building Savail (m2) Eload (MW�h�a�1) Eprod (MW�h�a�1) Eself (MW�h�a�1) Einject (MW�h�a�1) SCR (%) SSR (%) CO2
avoid (t�a�1)

RES 0 0 0 0 0 0 0 0 0 0 0
TOT 1 772 344.9 0 128 348 028.9 0 62 473.2 0 62 473.2 0 0 30 174.6

Fig. 6. Summary results for the census tract in Falchera. (a) A geo-referenced representation of the available building and rooftop surfaces for Scenario RES (SRESavail) and Scenario
TOT (STOTavail); (b) a histogram reporting monthly consumed energy (Eload) and monthly produced energy with Scenario RES (ERES

prod) and Scenario TOT (ETOT
prod); (c, d) daily consumed

power (Pload), daily produced power with Scenario RES (ERES
prod), and daily produced power with Scenario TOT (PTOT

prod) in a reference day for the (c) winter and (d) summer
seasons.

M. Massano, E. Macii, A. Lanzini et al. Engineering 26 (2023) 198–213

211



M. Massano, E. Macii, A. Lanzini et al. Engineering 26 (2023) 198–213
technologies in the context of future smart cities. Hence, they
enable the analysis of the strengthening of existing distribution
networks, evolving existing power grids into smart grid models
[44,45]. Future works will include GIS software components for
simulating and analyzing electrical distribution grids. This can only
be achieved by possessing both the topological and topographical
data of distribution networks, which is difficult to achieve. To meet
this limitation, software such as those reported in Refs. [65–67]
could be used to generate synthetic, realistic, and geo-referenced
electrical distribution networks.

Moreover, the results presented here empower the design and
dimensioning of storage systems, considering conventional chem-
ical storage systems or more advanced techniques such as electric
vehicles [68], demand side management, or demand response
strategies. The purpose of the proposed co-simulation platform is
not confined to a mere PV installation feasibility calculation;
rather, it enables the performance of a wide-ranging analysis
whose results can be used to foster novel energy decision-
making strategies.
6. Conclusion

In this work, we proposed a GIS-based distributed software
infrastructure that can co-simulate both electricity demand and
energy supply for the area of interest. The methodology identifies
suitable areas for RES exploitation (e.g., the roofs of industrial set-
tlements and residential buildings) in relation to the surrounding
area, the actual RES availability, and the existing environmental
and landscape constraints. We have created an innovative infras-
tructure that co-simulates rooftop PV production and households’
electricity demand. Our methodology integrates reliable GIS-
based PV potential assessment procedures with models to estimate
electric generation and consumption profiles. Our model relies on a
high spatiotemporal resolution and considers both the shadowing
effects and the real-sky conditions for the solar radiation estima-
tion. Real weather data, considering clouds and real weather con-
ditions, are used to compute incident solar radiation on the tilted
surface of rooftops and to estimate PV performance and energy
production. The infrastructure involves realistic models of the
activities and behaviors of house inhabitants and provides an accu-
rate estimation of the distribution of heterogeneous families. It
integrates methodologies to estimate energy demand with a high
temporal resolution, accounting for realistic populations with real-
istic consumption profiles. The proposed solution integrates open
data and models with different urban geometric characteristics
(e.g., census data and real weather parameters) in a GIS
environment.

The exploitation of our software infrastructure can benefit var-
ious users and applications. Individual citizens can evaluate the
economic and environmental savings that can be achieved by
installing new PV systems, considering the possibility of self-
supplying their domestic consumption or sharing the ownership
within the neighborhoods to form an REC. Energy aggregators
can use our results to identify and plan for the new capacity of
PV rooftops, which is highly productive. Distribution system oper-
ators can take advantage of the proposed solution for network bal-
ancing and for planning retrofits and/or extensions of existing
distribution grids. Finally, energy and city planners can evaluate
the impacts of the installation of large PV systems in city districts.
All these considerations are feasible, thanks to the high flexibility
of the platform, which makes it possible to investigate different
scenarios with different spatiotemporal resolutions. The high spa-
tiotemporal discretization of the data sources allows end users to
carry out simulations for both operational and long-term planning
activities.
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Within this research work, we tested the methodology in a real
urban context by applying it to the city of Turin, Italy. For the
whole municipality, we simulated both residential domestic loads
and rooftop PV production. The electricity consumption was calcu-
lated over a realistic population, in alignment with the available
census data, and simulated the realistic load profiles of household
appliances. The total calculated electricity consumption for the
whole municipality was around 592 GW�h�a�1. The production side
was divided between Scenario RES, which considers PV installation
only on residential buildings, and Scenario TOT, which also consid-
ers installation on non-residential buildings. The total available
rooftop area for Scenario RES is 1:9 km2, and the estimated total
amount of produced energy is around 353 GW�h�a�1. In compar-
ison, the total available rooftop area for Scenario TOT is 3:7 km2,
and the estimated total amount of produced energy is around
685 GW�h�a�1.
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