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Abstract—Human-robot collaborative applications are gener-
ally based on some kind of co-working of the human operator
and the robot in the execution of a given task. A disruptive
change in the collaborative modalities would be given by the
capability of the robot to anticipate how it could be of help for
the operator. In case of an Autonomous Mobile Robot (AMR),
this would imply not only a safe navigation in presence of a
human operator, but the automatic adaptation of its motion to
the specific operation carried out by the operator. This paper
investigates the possibility of achieving operation recognition by
monitoring the human motion on a 2D map and classifying
his/her path on the map, taken as an image data sample. Deep
learning state-of-the-art libraries and architectures are exploited
with the aim of making the robotic system aware of the ongoing
process. The reported results, relative to a small training dataset,
are nonetheless promising.

Index Terms—Human-robot collaboration, AI, Mobile robotics

I. MOTIVATIONS AND STATE OF THE ART

Al-based solutions and digital technologies are evolving
quickly in the recent years. The necessity to improve the
productivity without penalizing human operators in the man-
ufacturing industry is becoming a challenge. Instead of im-
plementing the Industry 4.0 solutions, where all the tasks
are automated while ignoring the human during the process
optimization, it is possible to adopt the solutions envisaged
in the Industry 5.0 [1], where the factory is human-centered,
meaning that the autonomous robots are perceptive and aware
about human intentions. Human activity recognition is widely
investigated, leveraging sensors for multiple modalities to
enable specific applications [2]. In the Industry 5.0 context,
the robot is able to actively observe and learn patterns from
human workers using machine learning algorithms, so as to
predict the human actions and attempt to help. With these
features, it is possible to enable mass customization instead of
mass production [3].

The increasing demand on customized products requires
the combined efforts of intelligent manufacturing systems
along with unique human skills, such as creativity, complex
reasoning and socio-emotional intelligence [4]. The resulting
manufacturing system has high-precision automation and flex-
ible infrastructure able to react to dynamic needs, thanks to
the synergy between intelligent machines and humans with
flexible problem-solver and decision-maker skills.

A human trajectory tracking algorithm mixing human-
oriented Global Nearest Neighbour (GNN) data association
and Kalman filter-based human tracking is proposed in [5].
Vision-based approaches to detect humans and objects are
widely used; however, they do not provide accurate range
information. For this reason, the authors of [5] combined the
information of a 2D lidar and a RGB-D-based YOLO (You
Only Look Once) system to correct missed information while
tracking the human motion.

A dataset containing human motion trajectory and eye gaze
data called THOR (Tracking Human motion in the ORebro
university) is presented in [6]. The data of humans moving in
a room are collected mainly through a motion capture system
running at 100 Hz, moreover, the overall dataset is enriched
with information from a 3D lidar, eye gaze detectors and a
RGB-D camera. The recorded trajectories are available in 2D
maps, which are often used for training and motion prediction
models of human motion. In [7], human body pose and gaze
are analysed to obtain an accurate prediction of the human’s
intentions. A Recurrent Neural Network (RNN) is used to
predict sequences of multiple and variable length actions. Gaze
and skeleton dataset is collected using the Optitrack motion
capture and Pupil Labs binocular eye gaze tracking systems,
while the multiple action sequence comes from a CAD120
RGB-D motion dataset.

A Multiple Predictor System (MPS) for human motion
prediction is proposed in [8]. Depending on the context, it
automatically switches between three individual classifiers:
velocity-based position projection, time series classification
and sequence prediction. In order to enhance the robot’s ability
to adapt its behaviour in environments shared with humans,
the MPS is added in the path planning algorithm. In particular,
the human’s head 2D coordinates are used as features for the
predictors [9].

In [10], a human motion prediction algorithm is proposed
using a Hidden Markov Model (HMM). The HMM learns a set
of movements executed by a human operator in an assembly
task and then generates motion transition and observation
probability matrices. In this way, it is possible to predict the
motion of the human operator and perform assistive motion
planning in Human-Robot Collaborative applications. Simi-
larly, HMM is proposed in [11] to recognise human activities
based on the principle object affordances, i.e., the relationship
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between the activity and a particular object/tool.

AlexNet, a Deep Convolutional Neural Network (DCNN)
is modified employing transfer learning-enabled algorithm
in [12], to enhance the robot’s capability to learn human’s
actions. In particular, human actions can be divided in: (i)
generic body motions, e.g., grasping or holding a tool and
(ii) specific movements related to a context, e.g., actions
performed while using a tool. The training procedure involves
two separated deep neural networks, that analyse the human
motion and identify the tools associated to the tasks.

A multisensor framework exploiting online transfer learning
techniques for human tracking is presented in [13]. The
performance for all possible combinations of 3D lidar, 2D
lidar and RGB-D cameras are evaluated, and in particular, the
solution that combines 2D lidar and RGB-D camera achieved
the best results in terms of performance and precision to
learn people’s movements in the environment. In fact, the
sensor’s choice may enhance the robot’s perception of the
human [14], and therefore improve its learning curve about
human intentions.

The solution proposed in this paper aims at implementing
one of the main capabilities of the data-driven framework
introduced in [15], trying to achieve operation learning by
monitoring the human collaboration motion on a 2D map. This
work main goal is to demonstrate that human behaviour pre-
diction for improving human-robot collaboration applications
can achieve satisfying results by classifying the corresponding
human path on a map, taken as an image data sample.

The paper is organized as follows: Section II first quickly
recalls the data-driven framework this work is part of and
the relative problem scenario; it then describes the idea and
implementation choices that led to the current solution. In
Section III, the solution testing and discussion of results are
unfolded. Finally, Section IV draws some conclusions and
sketches the future work.

II. POSITION-BASED OPERATION RECOGNITION

This section briefly recalls the definitions and main concepts
developed in [15], where a Human-in-the-loop (HITL) data-
driven framework has been introduced. The main objective
of the outlined framework is to exploit human information
to learn a model for operation and task recognition, to make
a mobile cobotic platform or manipulator aware of the on-
going process, allowing to enable anticipatory behaviour for
improved collaboration along a flexible production line.

A. Problem and Idea

According to the definitions given in [15], this work devel-
ops a global function of the framework, namely the recognition
of the executed operation. Note that we consider an operation
as composed of a set of tasks, and each task is brought on —
at a “local” level — in collaboration with cobots at specific
workstations. Given a collaborative application, the present
work aims at allowing the system to learn to recognise the
operation — at a “global” level — by collecting information on
the human operator motion: at each set of human poses on the
map corresponds a specific operation. Note that, learning from
data with sufficient generalization capabilities requires data
availability. Moreover, being able to straightforwardly identify
the relevant information that a human gives back while moving

around and predict the often unpredictable human behaviour
are both quite complex objectives.

The idea is to emulate how a human being usually perceives
its surroundings: the decision making anticipating an action
is performed based on an approximated observation of the
surrounding environment, in favour of efficiency and resource
saving, i.e., when we look around we do not usually catch
every single information coming our way before taking a
decision. The goal of the presented solution is to demonstrate
that the path traversed by a human operator is a sufficient
information to identify the performed operation, to possibly
anticipate human behaviour in the described restricted context
scenario.

B. Solution

In order to record a set of poses occupied on a map by
a human operator, the current solution takes advantage of the
Sen3Bot meta-sensor implementation [16], [17], a smart AMR
whose role is to monitor and safely cooperate with humans.
Within the data-driven framework the project is brought to-
wards a collaborative evolution, the Sen3Cobot. Indeed, as
specified in [15], the global functions (i) and (ii), i.e., human
operator modeling and data collection are resolved taking
into consideration solely the human positions, identified by
a computer vision state-of-the-art object detection algorithm.

In the proposed solution, this set of positions is taken track
of by plotting it as a path. This way, the time information is
not included, as it is not a relevant information for operation
recognition. Rather, dropping the time information (i.e., prefer-
ring the path data with respect to the trajectory data) allows to
extend the operation recognition to different operators, which
of course take different total time of completion for each oper-
ation. Therefore, the chosen solution takes into consideration
that the digital representation of path data, when plotted on 2D
map, is simply a matrix. By dropping the time information and
given the duality of images as matrices, we translate a spatio-
temporal data recognition problem into an image classification
problem. This interpretation of data has revealed to be crucial,
as it allowed to add to the pool of possible methods to solve the
problem a whole range of well-known and well-documented
architectures, libraries and tools to implement deep learning
models, along with a huge community often providing those
tools as open source material.

Note that in the proposed solution the Sen3Cobot stack is
improved with the understanding of the executed operation,
i.e., implementing the framework global function (iii) — robotic
system awareness. In fact, the AMR currently implements
passive HITL behaviour, as it monitors the area to gather
position information from the detected human, and interprets
it as an operation to be recognized. However, in the context
of the overall data-drive framework, this passive step for
operation recognition is fundamental for the decision making
before action of the mobile cobot: based on the confidence of
the classification, the robot will be given different trajectories
to follow. To this end, the robot will need to act according to
the probabilities associated to each class of operations. This
means the system will iteratively check, while gathering new
data, if the guess has changed and send a different reference
to the mobile cobot accordingly. With the aim of dealing with
the data scarcity problem, the solution takes data augmentation
through simple transformations as a first step toward model



improvement. For what concerns data complexity, choosing
image datasets rather than video ones allows in some way to
have less noisy data, since the image contains only the map
and the detected relevant information, i.e., the human operator
path.

1) Tools: This subsection briefly introduces the main open
source SW tools on which the presented solution is based. First
of all, it is worth recalling that the data gathering provided
by the Sen3Bot is ROS 1-based (Robot Operating System),
featuring a vision module exploiting YOLO, containerized
using Docker. Also this additional recognition feature for
the Sen3Cobot has been containerized using Docker. Docker
[18] allows to build, run and manage Linux Containers. The
development and testing of self-contained applications can
be done in a lightweight, clean environment. Allowing to
leverage GPU within containers, local resources are exploited
for running — hundreds of times faster than a regular CPU
— Neural Network (NN) based algorithms. This also avoids
lag problems derived from using Cloud available GPUs, and
security issues.

For what concerns the operation recognition/image classifi-
cation problem, the fastai deep learning library, specifically
its second version fastai v2 [19], has been chosen. This
library provides low, mid and high-level APIs to intuitively
create deep learning models, either from scratch exploiting the
Python libraries it is built on (PyTorch, NumPy, PIL, pandas
and others), or allowing to use state-of-the-art architectures
and techniques made available following best-practices to get
the most out of the available hardware. The authors also made
available an interactive book written with Jupyter [20], an
open source project providing notebooks. A notebook is an
interactive programming environment — whose cells’ code can
be modified and run straightaway — capable of working with
different language backends, kernels, allowing to use several
different programming languages. For this first solution im-
plementation, notebooks represented a simple playground for
code development and testing. The solution is built upon [21],
which provides a docker image with pre-installed fastai
v2 libraries and notebooks, which has been modified to
be adapted to solve the considered problem. This enabled
containerization of the recognition feature. Given the solution
description provided in Section II-B, Figure 1 summarizes the
overall structure and tool choices.

Before moving on to the description of the implementation
choices, it is fundamental to put in evidence some assump-
tions, which influenced the development of this preliminary
solution. In order to develop a baseline model for our image
classification problem, we assume that a single human opera-
tor is moving within the monitored area, without additional
dynamic obstacles. Moreover, with the aim of starting out
with a basic classification problem, the number of operation
classes is limited to two. Note that we refer to classes of
operations since this enables the possibility of fine-tuning pre-
trained models using new operations, which may be variants
of the main class. In fact, since we defined an operation as a
set of tasks performed at workstations (providing the needed
machinery/cobot to bring on the necessary task), having main
classes of operations with slightly different variants is a
plausible situation. Furthermore, the number of operations in a
shop-floor is indeed usually limited to the available equipment
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Fig. 1: The proposed solution aims at recognizing — through
image classification — the operation executed by the human
operator, by tracking the human position on a 2D map. This
information will then be passed as input to the robotic system
control global function.

and setup for the manufacturing of a certain product.

2) Implementation: This subsection illustrates the solution
development and implementation details.

Positions collection In the Sen3Bot stack, the positions as-
sociated with the detected human operator are published
as virtual obstacles in the navigation local costmap of
the AMR: this allowed to enable safe overcoming of the
human obstacle. Within this work context, the published
ROS topic provides a source of position messages to be
plotted graphically on the RViz visualization tool.

Path plotting Filtering of messages was performed, since
all points falling within the detected human obstacle
bounding box are published as virtual obstacles: laser
data may correspond to points behind the human obstacle
surroundings (see Figure 2). Those points have been
filtered out and, among the points covering the bounding
box width, only the nearest one has been maintained at
each sampling instant.

Each human 2D position is then collected by a ROS node
that pushes it in a type Path ROS message — a standard
message type in the navigation stack — which is then
published on an ad-hoc ROS topic.

As can be seen in Figure 2, the resulting path is not very
smooth. Nevertheless, since it tracks a human motion,
this can be considered an expected output, due to the
non-smooth human motion and detection noise. Also, the
resulting path is inevitably dependent on the detection
and messages publication (ROS node spin) frequencies.

Data collection Even though simulation has been taken into



(a) Class A operations mean value.(b) Class B operations mean value.

Fig. 3: Mean values images for each of the considered classes
of operations, computed among the samples in each corre-
sponding collected dataset.

preted as a plotted path recognition) is now an image
classification problem, the well-known “go to” NN ar-
chitectures for this kind of learning problems are Con-

Fig. 2: After data filtering, the detected human path is pub- volutional Neural Network (CNN) models. Specifically,
lished, and its content plotted on the 2D map by passing the a Deep ResNet (Residual Network) architecture has been
type Path topic to an RViz Display. used. ResNets address the degradation of training accu-

consideration, a collection of real data has been preferred.
This is because training a learner on purely synthetic
data will unavoidably affect its capabilities of performing
classification on real data samples, to the extent that
it might not be able to recognize any operation at all.
Nevertheless, real data collection combined with data
augmentation can improve overfitting issues.

With the purpose of speeding up the data collection,
the operation executions have been video recorded and
periodic screenshots of the Rviz map visualization have
been generated.

Dataset creation Disjoint subsets of such collected samples

have been used for training, validation, and testing of
the algorithm, respectively. The samples have been gath-
ered from two different human operators’ motions, so
as to improve generalization capabilities of the learning
algorithm. Data samples have been saved in the dataset
/trainand /valid folders. Note that training and val-
idation sets include only images representing completed
operations. This is because we want the architecture
to fit its parameters based on representative samples of
each class of operations. On the other hand, to test the
model capabilities to recognize an operation from the
very beginning of its execution, testing is performed on
samples of ongoing operation executions. This allows to
observe the model capability to improve its confidence as
the operation/path goes towards completion.

To give a compact representation of the collected dataset
content, Figure 3 shows the mean values for each training
set for each operation. The mean of all the image tensors
corresponding to a certain class of operations is obtained
by taking the mean along dimension O of the stacked
rank-4 tensor. Notice that the manipulated tensor is rank
4, since the processed data are RGB images.

Architecture Since the operation recognition problem (inter-

racy (vanishing gradient) problem, i.e., the degradation
of training accuracy, associated with network depth [22].
To start out with a moderately deep network, a
ResNet18 has been selected as learning architecture.
For what concerns the optimization step, we choose cross-
entropy as our loss function, as it is the most common
loss function used for binary classification problems. This
function will be minimized by the stochastic gradient
descent procedure during weight stepping. The learning
rate has been set to 0.002, as suggested by 1r_find(),
a fastai function that plots the loss against learning
rate values and outputs a suggested value, corresponding
to the point where the gradient is the steepest.

Data augmentation A total of 300 image samples per class
of operations have been collected. Despite being aware
of the problem of overfitting due to data scarcity, the
choice have been dictated by the purpose of testing
the preliminary solution recognition capabilities keep-
ing the number of labelled images low, for the sake
of achieving a low complexity setup. Nevertheless, to
improve generalization capabilities and avoid overfitting,
data augmentation methods have been employed.

As a pre-processing step, all samples within the dataset
have been resized to reduce their dimension, as — in
our case — size reduction does not seem to affect the
model performance. Then, a set of transformations have
been selected, namely small rotations and warping, and
lighting editing. This set of transformations are defined
along with their relative application probabilities, i.e., the
probability with which the transformation will be applied
to random batch elements during training. The batch size
have been set to 64 and the training algorithm will take
care of shuffling in a random way across the training data
set when choosing candidates for each mini-batch.

Moreover as a callback for every tweak of the training
loop, we chose to apply the MixUp method [23]. MixUp
generates new data during the learning procedure through
convex combination of random pairs of images and



associated labels. A random sample of generated batch
elements can be seen in Figure 4.

Fig. 4: Sample of batch elements generated by MixUp algo-
rithm. As can be seen, shuffled samples are also affected by
the randomly applied transformations for data augmentation.

Model Once the described hyperparameters have been defini-
tively set, a one-cycle training policy have been per-
formed [24], which is a commonly used method for
training fastai models from scratch, i.e., without
transfer learning. As expected, most times the accuracy
saturated to 1 during the first couple of epochs, suggesting
overfitting issues. Nevertheless, the main aim of the
developed work is to test the obtained model on images
representing the sequence of sub-paths corresponding to
an operation. Therefore, the number of epochs for training
has been limited to 1. An accuracy of about 0.93 has
been achieved, with a training time of 4 s, running on
a PC equipped with a 4GB GDDR6 NVIDIA GeForce
GTX 1650 GPU. The trained model has been saved as
a baseline model for the considered problem. Figure 5
shows a subset of the top losses peaked during training.

III. TESTING

It is worth recalling that, in order to demonstrate the
feasibility of the proposed solution for operation recognition
problems to improve collaborative applications, the obtained
baseline model should be able to distinguish different classes
of operations. Additionally, it should ideally improve its guess
confidence as it is provided with a sequences of images
representing the progression of an operation execution. In
fact, within the data-drive framework, according to the output
of the proposed solution, a specific reference trajectory will
be fed to the mobile robot control system. In particular,
a reference trajectory should be generated, resulting from
the weighted combination of candidate reference trajectories,
were the weights are proportional to the associated operation
class probabilities.

BJA /1.00 /0.63 BJA /0.95 /0.62 BJ/A /0.93 /061

B/A/0.88 /058 B/A/0.70/0.50 AJA /0.65/0.52

AfA [ 0.65 /0.52

A/A[0.54/0.59 AJA [0.45/0.64

Fig. 5: Subset of samples that generated top losses. The title
of each image shows: Predicted class / Actual class / Loss /
Probability of actual class.

The baseline model has been first feed with progressive
screenshots from a class A operation execution. Then, the same
has been performed for a class B operation. Figure 6 reports
the obtained testing results for both the class A operation and
the class B operation testing samples.

As can be seen, for both sequences the model initially
struggles to correctly recognise the ongoing operation. This
is expected, since the first part of each representative path
is identical for both classes of operations, as the first visited
workstation is the same. Nevertheless, in the case of operation
A recognition the classification results start with a couple
of switching predictions, 74% A at step 1, passing through
59% B at step 6, and reaching 67% A at step 7, which
lead to a prediction above 99% from step 8. The recognition
of operation B generated similar results, starting from high
probabilities associated to the wrong class (95% probability
for A at step 1) and progressively switching to increasing
probabilities for class B, eventually reaching above 95%,
starting from step 8.

IV. CONCLUSIONS AND NEXT STEPS

This paper proposes a 2D human motion-based solution to
perform operation recognition in the context of human-robot
collaborative applications. The solution exploits deep learning
state-of-the-art libraries and architectures to obtain a model
able to recognize the operation associated to the motion of the
monitored human operator. To mainly demonstrate the solution
feasibility with the tackled problem, a small dataset have been
prepared for training purposes.

The obtained results showed signs of overfitting issues, as
expected due to data scarcity for training, but performed well
in generalization capabilities when tested on images containing
sub-path of the complete operation to be recognised. However,
the results are promising, and the possibility to tune the context
assumptions, the hyperparameters and the datasets dimension,
leaves room for significant improvements.

The next steps include improving the overall model gen-
eralization capabilities by exploring hyperparameters choices,
trying to get rid of overfitting through data collection and,
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Fig. 6: On the left: prediction labels and probabilities, along with the set of testing sample images, corresponding to an operation
A execution. On the right: prediction labels and probabilities, along with the input set of testing sample images, corresponding
to an operation B execution.

mainly, exploiting advanced augmentation techniques. More-
over, the classification may be extended to a wider set of
operation classes, so as to provide a more complete solution
whose associated model can be then fine-tuned on small class
variants.
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