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Abstract: In the last years, functionalized powders are becoming of increasing interest in additive
manufacturing (particularly in laser powder bed fusion processing, L-PBF), due to their improved
flowability and enhanced processability, particularly in terms of laser absorbance. Functionalized
powders may also provide higher final mechanical or physical properties in the manufactured parts,
like an increased hardness, a higher tensile strength, and density levels close to theoretical. Coatings
represent a possible interesting approach for powders’ functionalizing. Different coating methods
have been studied in the past years, either mechanical or non-mechanical. This work aims to present
an overview of the currently obtained coated powders, analyzing in detail the processes adopted for
their production, the processability of the coated systems, and the mechanical and physical properties
of the final parts obtained by using L-PBF for the powders processing.

Keywords: coated metal powders; absorbance; L-PBF; mechanical and physical properties

1. Introduction

Manufacturing techniques based on powder metallurgy (PM) play a significant role in
several different industrial fields including, among others, automotive [1,2], aerospace [3–5],
and biomedical [6,7]. PM is also growing in the production of electro-magnetic compo-
nents with properties difficult or impossible to be obtained with conventional forming
techniques [8–11].

The necessity of obtaining more performing PM parts led to the development of
functionalized base materials [12–14] and optimized processes. In this frame, the use
of coated powders has been significantly increasing in PM, aiming to improve the pow-
ders’ processability or to modify the final part’s microstructural, mechanical, physical,
and thermal properties. By coating the powders’ surface, it is possible to change melt-
ing temperatures [15], the flowability [15,16], and the absorbance [17–21] of the powder
itself. Microstructural characteristics can also be modified by coating with a second phase,
particularly nanoceramic particles such as ZrO2, Al2O3, B4C, SiC, TiB2, C-based struc-
tures [22–24]. These can induce grain refinement mechanisms, thus enhancing the me-
chanical strength [15,23]. Mechanical properties of the final parts, such as compressive
strength [25,26], hardness [15,26,27], yield strength [15,28], and physical properties like
density [19,29], are improvable by adopting coated powders.

Additive manufacturing (AM) represents a challenging topic for researchers, as demon-
strated by the increasing number of industrial applications in several different sectors [30].
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AM processes are classified after DIN EN ISO/ASTM 52900 standard [31]. They represent
an alternative to subtractive and formative manufacturing [32]. In particular, laser powder
bed fusion (L-PBF) is suitable for obtaining complex metallic objects owing to its geometric
freedom when selectively sintering the powders [33–35]. L-PBF is a layer-by-layer process
where a laser beam is applied to melt the metal powders selectively; the molten layer
then solidifies at a high cooling rate [36–40]. Adopting a laser source implies using metal
powders characterized by a proper laser absorptivity [41,42]. Poor absorbance causes
many defects such as pores, low-quality surfaces, and un-melted powder in the 3D-printed
parts [41,43–46].

Concerning the materials processable by L-PBF, beyond pure metals and alloys, also
intermetallic-based compounds can be printed to obtain dense parts [47–49]. The possibility
of integrating more parts into an assembly [37,38], obtaining high-density parts [50], and
having low material wastage [45,49], are some of the further advantages provided by L-PBF.
In order to guarantee uniform distribution of the powders in each layer, powders used for
L-PBF should be characterized by good flowability and spherical morphology [36,51–53].

L-PBF printed parts can be post-treated with hot isostatic pressing (HIP) technique [54,55].
HIP removes residual stresses, promotes grain growth and recrystallization [56], improves
mechanical properties, particularly creep and fatigue resistance [57,58]. In addition, HIP can
reduce porosity generated during the previous process, as demonstrated with steels [59],
Ti [60], and also Al [61] ingots obtained from casting.

Coated powders are adopted in the L-PBF process both for improving their process-
ability (especially for increasing the laser absorptivity and powders’ flowability) and/or the
properties of the final parts. For increasing laser absorptivity, at the emission wavelength
of the laser commonly adopted in L-PBF (1064 or 1070 nm), an increase of powders’ surface
roughness can be provided [62,63]. Another solution might be coating powders with a
material characterized by a lower reflectance [17–19,21,63–65]. Poor flowability of powders
can be attributed to the influence of van der Waals (vdW) forces. According to Rumpf [66],
the effect of vdW forces can be reduced by adequately tailoring the surface roughness of
the powders by coating them with smaller particles [67].

This work presents an overview of the most up-to-date coated systems (powder +
coating), including the description of the applied coating methods, in order to analyze
and understand not only the potentialities in improving materials’ processability through
L-PBF (such as improving their absorbance) but also some of the mechanical properties of
the final objects.

2. Base Metal Powders

Steels powders are widely used in an extensive range of industrial fields such as
aerospace [68], automotive [69], oil and gas industries [70], biomedical engineering [7,68,71],
and other fields, owing to their high ductility and high strength [72], biocompatibility
and, considering stainless steel powders, also to their high corrosion resistance [68,72].
Austenitic stainless steel powders show however low hardness and relatively poor wear
resistance; a strategy for improving the hardness and the wear resistance is coating the
metal powders using ceramic nanoparticles (e.g., TiB2) acting as a grain refiner. Extensive
dislocations are introduced too, leading to a finer microstructure and higher mechanical
properties [70,72].

Powders of titanium and its alloys are used in many industrial fields like chemical
industries [73,74], defense industrial sectors, aerospace [73,75,76], and biomedical appli-
cations [6,75,77]. This is due to their high specific strength, high biocompatibility, low
density, and optimal corrosion resistance [6,73,75,76,78]. However, titanium and its alloys
are also characterized by low hardness and relatively poor wear resistance responsible
for the limited industrial areas of use, especially for those applications characterized by
erosive and abrasive-based wear processes. The addition of ceramic particles can raise the
working temperature and the mechanical properties [74,79].
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Metal powders made of aluminum and its alloys find application in a wide range of
fields: aerospace [5,80], automotive [81,82], and domestic industries [80] owing to their
lightweight, high specific strength, high corrosion resistance, good thermal conductivity,
and good mechanical properties [5,80–82]. Aluminum matrix composites (AMCs) have
been adopted to increase wear resistance and hardness. Coating metal powders can
produce AMCs with reinforcement particles such as Al2O3 and SiC [83–85]; hexaborides
such as CeB6 and LaB6 are used as grain refiners in aluminum alloys both in powder
metallurgy [86] and in casting and wrought metallurgy [87,88].

Pure copper is widely used for electronic applications [89] and heat transfer compo-
nents [90] in different sectors like automotive and naval sector [91] due to its excellent
solderability and low electrochemical migration [92], superior electrical (58.7 × 106 S/m)
and thermal conductivity (400 W/(m·K)) [43,89,90,92]. Nevertheless, pure copper is soft, so
alloying it with Sn, Zn, Cr, and Ni is mandatory for structural applications; these enhance
the mechanical properties of copper but reduce its conductivity [93].

Powders Absorptance

The powders processed by L-PBF must have a good absorbance at the wavelength of
1064–1070 nm. Pure copper and aluminum are characterized by a low laser absorbance at
1070 nm [41,42,94], as shown in Figure 1 below.
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Figure 1 reports the absorbance of stainless steel 304, titanium, aluminum, and copper
as function of the wavelength. Ti-based powders show a relative absorbance of about 70%
in the range of 1064–1080 nm (corresponding to the red laser), whereas stainless steels
(Figure 1 reports the case of AISI 304) are generally characterized by values around 30–35%.
Copper and aluminum have a significantly lower absorbance in the red laser emission spec-
trum (below 10%). Moreover, copper also shows a quite critical absorbance since the energy
provided by the laser is quickly dissipated or reflected [18,21]. Different approaches have
been investigated to solve this problem: the first consists in the adoption of a high power
laser (800–1000 W) [95,96], the second in processing specifically designed alloys character-
ized by lower thermal conductivity [97,98], the third in substituting the red laser source
with a green or blue source (wavelengths of 515 nm [43] and 450 nm [99] respectively). At
these wavelengths, copper shifts its optical absorption mechanism from the intra-band to
the inter-band electronic transition [100]. Another possibility is by coating the powder’s
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surface with a different material characterized by a higher absorbance [17–19,21,64,65]. It
has been demonstrated that surface oxidation can increase absorbance up to 58% (from
32% for pure copper); however, this improvement does not appear to be sufficient for the
correct processing of the powder [65]. The absorbance of pure copper powders has also
been measured in [18,20], its value ranging between 26% and 39%.

3. Coating Processes

Generally, coating processes consist of depositing particles or ions on metal powders;
this target is achievable by mechanical or non-mechanical methods detailed in the article.
The non-mechanical methods consist of an extensive range of physical and thermal pro-
cesses with specific variations. Several processes involving solution, chemical, and physical
methods for coating powders have been developed and used to solve some of the critical
issues of mechanical coating methods.

3.1. Mechanical Methods
3.1.1. Ball Milling

Ball milling is a largely diffused technique that allows dispersing particles on metal
powders: it is a non-equilibrium process generally operating at low temperatures, with
conceptually linear operations, and a low overall cost [101,102]. The optimal control of
the results obtained from ball milling is however nontrivial; plenty of variables such as
ball size, rotation speed, duration, atmosphere, and process control agents (PCA) have
significant effects on its outcomes. PCA acts on powder’s purity, grain size, and shape.
The ball milling process can be both dry and wet depending on the necessity: in wet ball
milling, a solution is added as PCA to reducing the maximum temperature reached during
the process [101]. The general scheme of the ball milling process is reported in Figure 2; the
metal powders and the coating particles are inserted into a mill containing the balls and
the PCA if needed; the balls lead to a faster homogenization, promoting the adhesion of
the coating particles to the powder.
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Ball milling is widely adopted for coating metal powders to be used in L-PBF
[22,23,26–29,47,103–113] and in hot isostatic pressing (HIP) processes [27,114,115]. Ac-
cording to the energy level, ball milling can be high-energy (HEBM) or low-energy (LEBM).
The main differences between the two lie in ball-to-power ratio, mixing speed, and process-
ing time, with all the parameters being higher for HEBM. In particular, the ball-to-powder
ratio ranges from 5:1 to 30:1 in HEBM, whereas it is 1:1 in LEBM [105]. HEBM is often
coupled to nanoceramic particles [107,116] since they tend to agglomerate due to their
high aspect ratio easily. The promotion of strong vdW forces may cause the formation of
aggregates leading to microstructural inhomogeneities. HEBM deforms the powders to a
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high degree; indeed, they do not maintain the original spherical morphology, causing a
reduction of flowability and making powders less suitable for L-PBF [29,105,116].

On the other hand, after LEBM, powders retain their original spherical morphol-
ogy [105,116]. Zhai et al. [105] report LEBM to effectively coat steel particles with a uniform
layer of Y2O3 nanoparticles. Powders kept their spherical geometry after processing for
7 h, and LEBM determined an increase in surface roughness leading to a slight decrease in
flowability, apparent and tap densities.

Attar et al. [26] underlined the importance of milling time. In their study, the influence
of milling time on the distribution of TiB2 particles on the powder surface is evaluated: 1 h
is not sufficient to obtain a uniform coating, 4 h caused an excessive flattering of powders,
whereas 2 h provided both a uniform coating and a suitable geometry. Han et al. [23]
focused on the milling time, proposing to interval the milling with pausing steps to reduce
the temperature reached by the powders due to the impacts with the balls. They also
investigated the introduction of stearic acid lubricant to facilitate the process.

The ball milling process is also used for mechanical alloying (MA) [117,118]. HEBM
can lead to MA, resulting in a modification of powders’ size, microstructure, and mor-
phology. It can synthesize both equilibrium and non-equilibrium alloy phases such as
supersaturated solid solutions, nanostructures, metastable crystalline phases, and amor-
phous alloys. The high collision between powders and balls determinate a mass transfer
accelerating the diffusion of elements. Nevertheless, MA is characterized by a large
amount of uncertainty on the final microstructure [118]. MA has been adopted in order to
cover metal powders [22,27,47,114], which underwent characterization by X-ray diffraction
(XRD). Gu et al. [47] investigated Ti powders mixed with graphite and Al nano powders;
after 10 h processing, C peaks disappeared, while TiC was detected. A similar trend is
obtained with Al peaks, which gradually disappears during the processing and is not
detectable after 20 h of HEBM. AlMangour et al. [27] coated 316L powders with TiB2
particles (2.5 vol.%). After milling for 2 h, γ-Fe peaks were only detected (TiB2 was not
detected due to the small amount), after milling for 4–8 h XRD evidenced TiB2 peaks, also
α-Fe phase was identified, and its peaks intensity increased with milling time, due to the
plastic deformation causing γ-Fe to transform into α-Fe. Wang et al. [114] also observed
the formation of α-Fe and the reduction of γ-Fe peaks intensity after coating pre-alloyed
AISI 304 powders with Ti and Y2O3. After milling for 15 h, Ti and Y2O3 were not detectable
in the material, while YO1.401 and Ti3N1.29 peaks were indexable.

3.1.2. Turbula

Turbula proved to be effective in the mechanical coating of metals powders in several
studies [15,16,19,119].

The Turbula mechanically mixes powders and coating particles without using balls; as
a result, the deformation on the starting metal powders is strongly reduced. This technique
has been adopted by Jadhav et al. [19] to coat the copper powders and increase their optical
absorption and flowability. By adding 0.1 wt.% carbon particles, the authors enhanced the
optical absorption to 67%, starting from 29% for pure copper. Moreover, Karg et al. [16]
used turbula to add SiOx nanoparticles on aluminum alloy powders. The authors increased
the powder’s flowability leading to an increase in the relative density of the final parts after
L-PBF. Hentschel et al. [15] noticed that one of the most influential parameters is milling
time; they found that achieving a homogeneous distribution of nanoparticles needed at
least 2 h. The flowability of powders is increased by introducing 0.2 wt.% of nanoparticles;
a further increase in the concentration of nanoparticles causes a decrease in flowability but
remains acceptable for concentrations lower than 0.5 wt.%.
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3.2. Non-Mechanical Methods
3.2.1. Powders Immersion

Coating particles are dispersed in a solution into which metal powders are immersed,
with a possible variation being the drop by drop addition of coating particles to the
powders-containing solution. A general scheme of the process is shown in Figure 3.
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One coating process through powder immersion involving the use of solutions is
electroless plating [120]. This technique is preferred to the electrolytic plating process
owing to its lower cost, high efficiency, applicability independently of the shape of the
powder, and a dense and uniform coating deposition [121–124] whose thickness depends
on the powder morphology. Electroless plating has been used for coating powders in
different fields [17,23,122–127]. Li et al. [122] observed that the powder surface became
coarse and irregular; some coating clusters were detected, whose formation can be related
to the high deposition rate. Intermediate layers may be introduced to improve adhesion, as
investigated by Xu et al. [123]. Sn was used as an intermediate layer between the Cu powder
and the Ag coating then this system was heat treated to form an alloyed transition layer
increasing bonding strength and oxidation resistance. The coated powders maintained an
excellent dispersion, while their sphericity and surface smoothness decreased marginally.
Jadhav et al. [17] deposited a thin layer of 62 ± 14 nm of metallic Sn on copper powders;
the best results were obtained with a 0.28 wt.% Sn coating layer that led to an increase in
powders flowability and an enhancement from 19% to 51% of powders optical absorption.
The authors also underlined the importance of using starting powders with low sulfur
content, given their critical behavior in L-PBF. Geng et al. [125] homogeneously deposited
Ni onto Al powders. The process led to an increased laser absorbance owing to the Ni lower
laser reflectivity and increased surface roughness. In addition, flowability was comparable
to that of the starting powder.

Electrostatic self-assembly is another possible way of coating powders. The elec-
trostatic attraction allows to assemble spontaneously metal powders and the coating
particles during hetero-agglomeration [128,129]. Electrostatic self-assembly guarantees
good flowability and the possibility of depositing structures such as carbon nanotubes
(CNTs), preventing their destruction [62,63,116,128]. Zhou et al. [116] used CNTs and nano
Al2O3 to coat metal powders. The two nanoparticles are characterized by opposite charges
(negative the former and positive the latter), so a CNTs/Al2O3 hybrid was obtained by
mixing them. This structure resulted negatively charged since Al2O3 did not cover all
CNTs, leaving some uncovered surface that can bond to the metal powder. The hybrid
solution was slowly added to the metal powder colloid and then mechanically stirred.
The deriving coated powders are characterized by homogeneous dispersion of the hybrid
coating on the metal powders, suitable particle size and distribution, good flowability, and
enhanced surface roughness leading to an increased laser absorptivity. In a more recent
study Zhou et al. [62] used CNTs for coating titanium alloy powders. The oxidized surface
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of the metal powder is positively charged and, due to the electrostatic attraction, it reacts
with CNTs: an increase in the surface roughness has been detected coupled to a consequent
increase in laser absorptivity. Dong et al. [63] used graphene oxide sheets to coat Al alloy
powders; the coated powders are characterized by a decrease in thermal conductivity and
an increase in laser absorptivity.

A suspension characterized by a pH ranging between the two isoelectric points (IEPs)
of two different materials leads to a dielectrophoretic deposition, representing an alternative
way of coating powders [130,131]. Different studies have adopted coating ferritic steel
powders with Y2O3 nanoparticles [25,131–133]. Before the deposition step, the suspension
containing Y2O3 nanoparticles has been irradiated to de-agglomerate the nanoparticles.
The pH of the suspension is then set to a value able to guarantee that particles and powders
are oppositely charged. Finally, the steel powders are added to the suspension, and the pH
controls the adsorption. Thus, the dielectrophoretic deposition is scalable and economically
feasible [132].

Other solution-based methods for coating powders are reported in literature
[21,56,134–136]. Ma et al. [136] adopted an electro-codeposition process where mechanical
mixing and sonication were used to distribute Al2O3 nanoparticles and maintain disper-
sion. Metal powders coated by nanoparticles dissipate less laser-transferred heat, thus
generating an increase in the melt pool depth. The study also reports a reduced heat-
affected zone. Garmendia et al. [135] coated an aluminum alloy powder with a 1 wt.%
copper formate–methanol solution; powders were then heat-treated in vacuum, and the
copper precursor was reduced to metal copper. This coating process did not particularly
affect the size, flowability, and morphology of the powders. Smith et al. [56] used acoustic
mixing to coat NiCoCr powders with Y2O3 nanoparticles. The acoustic mixing uses a
wave that attained a resonance among the container, the powders, and the vibrating spring
system [137], providing homogenization of the powder in one hour. Zhang et al. [134]
coated aluminum alloy powders with styrene to process them through direct light pro-
cessing (DLP), a specific AM process requiring the dispersion of powders in a monomer
and its photoinitiator [138,139]. The necessity of coating aluminum alloy powders before
dispersing them into the monomer and in its photoinitiator is related to the agglomeration
of fine powders (size < 30 µm), having a high surface-to-volume ratio [140], and to the high
refractive index difference between the powders and the photosensitive resin; the latter
causing a low light penetration depth. Styrene monomer and its initiator are added to the
metal powders. They are stirred and heated to 75 ◦C; after 6 h, the powders are coated
and ready to be mixed with the monomer and its photoinitiator for printing. The coating
has a uniform thickness (200–400 nm), and the shape of the powder is not modified by the
coating process.

3.2.2. Chemical Vapor Deposition and Physical Vapor Deposition

Babul et al. [141] produced graphene-coated Cu powders using a chemical vapor
deposition (CVD) technique, including several steps. The first consisted of fluidizing the
metal powder in the coating chamber. For this purpose, vibrations were used, coupled to
hydrocarbons-containing gases flowing in the chamber. Next, hydrocarbon decomposition
was induced by enhancing the temperature, generating the carbon source to produce
graphene. Lastly, graphene was nucleated, growing on the surface of the metal powder.

Fluidized bed CVD (FBCVD) has recently been adopted for coating metal pow-
ders [142]. It can form homogeneous coatings due to its capability of suspending each
particle in the reactor. Particles are surrounded by the flowing gas containing the reactive
gaseous precursor. Liu et al. [48] used C2H2 as the gaseous precursor of CNTs and Ar as
the carrier gas. The decomposition temperature has been set to 550 ◦C; at this temperature,
C2H2 decomposed, nucleating on Ti-6Al-4V powder surface. With a continuous flux of
gases, the CNTs started to grow on metal powders leading to the formation of a homoge-
neous coating. FBCVD does not impact on powders geometry and guarantees uniform
coating and the maintenance of the original spherical geometry of the powders. In the
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paper authors noticed that the degree of sphericity corresponding to the ratio (equivalent
surface area diameter)/(equivalent circumscribed circle diameter) varies from 91.6 to 90.2.
Such values lead to a good flowability of the particles and consequentially to acceptable
processability [48,63,143–145]. FBCVD also allows depositing particles characterized by
strong vdW interactions, otherwise very difficult to be uniformly deposited [143]. A scheme
of FBCVD is shown in Figure 4.
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Li et al. [64] underline the importance of adopting a catalyst to synthetize CNTs. For
this reason, they evaluated how to introduce catalysts on the surface of the powder before
the FBCVD processing. Fe and Ni impurities in Ti-6Al-4V and other alloys have a catalytic
effect: a chemical etching was performed to activate these species [48,64,143]. However,
catalytic impurities cannot be introduced in Al powders; a 0.1 wt.% catalyst was therefore
inserted through electro-less plating [64,144]. A catalyst on the powders’ surface leads to
a better interfacial bonding strength and an excellent interfacial relationship between the
powders and the FBCVD coating.

Pannitz et al. [146] coated steel powders with few-layer graphene (FLG) or silicon
carbide (SiC) adopting a top spray configuration of the fluidized bed coating process; in
particular, they used the scheme of the process reported in Figure 5. Moreover, Lüddecke
et al. [67] applied this method for coating steel and aluminum powders with FLG or SiC or
iron oxide black (IOB).

The deposition consists in spraying the solution containing the coating particles on
metal powders; then, a drying step is provided. The coatings deposited via this technique
are homogeneous [67,146]. After the coating step, no significant variation in powders’
size is noticeable. As a general result, the laser absorption increases for all the coatings
investigated in these studies (few-layer graphene (FLG), silicon carbide (SiC), iron oxide
black (IOB)). In particular, FLG resulted in being the most efficient in reducing the metal
reflectance; SiC particles can enhance the powder’s flowability, while IOB is not as efficient
due to its high water content.
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Physical vapor deposition (PVD) techniques have successfully been used to deposit
coatings on metal powders, to be further processed through AM, HIP, and press and
sinter [20,147–150]. An homogeneous coating of stainless steel on copper powder and
coating of copper on stainless steel powder were obtained by Matos et al. [147]. They used
a high-frequency vibration system to keep metal powders moving during the deposition
coating, adopting a laboratory-made dc magnetron sputtering system; this process was
performed in a vacuum chamber. The coating layer is nanocrystalline regardless of the
particle shape, and coated powders show a reduction in interparticle friction. Fernandes
et al. [148,150] adopted this technique to obtain a homogeneous coating on WC powders,
providing the complete coverage of powders’ surface and low coating contents (~1 wt.%).
The coating layer led to an increase in the average powder size from 9.1 ± 0.5 µm to
10.7 ± 0.3 µm [148]. The increase of the average powder size is also related to a high
nanoporosity of the coating layer (around 20%), implying an increase in surface roughness
and consequentially in the specific surface area. The coating is permeable to air; however,
an increase in coating thickness leads to a decrease in permeability and provides a better
oxidation resistance. Simões et al. [149] used PVD for coating powders for HIPping. They
noticed an agglomeration of particles during the deposition caused by the non-spherical
geometry of the particles, the finer particles, and the broad particle size distribution.

PVD-coated Cu powders were used by Lassègue et al. [20] and Tiberto et al. [46]
for L-PBF processing. Lassègue et al. [20] used CrZr particles to coat Cu powders; the
authors obtained a coating non-homogeneous in thickness (from 32 to 445 nm). Despite
the dishomogeneities and the poor adhesion of the coating film on the Cu powders, a
considerable increase of optical absorbance is reported, without major impacts on the
processability of the coated powder. Tiberto et al. analyzed powders coated with titanium
and reported an increase in laser absorbance of titanium coating film, characterized by a
thickness of approx. 86–95 nm [46].

Jadhav et al. [18,151,152] developed a specific coating method for high reflective
metals powders in L-PBF manufacturing, consisting of pre-alloying the metal powder with
an alloying element that can react with carbon and nitrogen generating nitrides, carbides,
or carbonitrides. In addition, the alloying element must have a low or zero miscibility at
room temperature with the highly reflective metal. The alloyed metal powder can then be
treated in two different ways: (a) Coated using CVD, PVD, or other methods with a coating
containing C or N and then treated in a furnace; (b) directly heat-treated in nitrogen or
carbon or nitrogen-carbon atmosphere. In both cases, the heat treatment temperature is
set at 600–850 ◦C for at least 1 h. During the treatment, chemical reactions occur between
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the alloy element and C or N contained in the coating or the atmosphere, leading to
carbides, nitrides, or carbonitrides. Powders after the heat treatment are characterized by
the structure shown in Figure 6.
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Figure 6. Schematic cross-section of a coated powder, the thickness of the different layers is not in
scale.

The powder can be ideally divided into three parts: (1) the surface, corresponding to
the diffusion layer having a thickness around 459 nm, composed of carbides, nitrides, or
carbonitrides of the alloying element and this last in its metallic form; (2) a depleted layer
characterized by the highly reflective metal that has been depleted of the alloying element
passed in the diffusion layer; (3) the core, whose composition is that of the pre-alloyed
powder. This process leads to a considerable increase in absorbance. Nitrogen is finally
released from the powders in the L-PBF processing not to affect the chemical composition
of the final part.

Based on the aforementioned, in Table 1 a summarizing scheme is provided.

Table 1. A schematic summary of the coating methods’ characteristics.

Coating Method Feasibility of the Process Dispersion of the Coating
Particles Cost of the Process

HEBM Easy Good Low

LEBM Easy Good Low

Powders immersion Complex Excellent Depends on the specific adopted
method

Vapor based Complex Excellent High

4. Properties of L-PBF Processed Parts

AlMangour et al. [104] obtained a relative density of 99.99% using 316L powders with
5% TiB2; they also detected increased compressive mechanical yield strength
(σ0.2 = 827.5 ± 17.0 MPa @ TiB2 = 5 vol.%; σ0.2 = 980.9 ± 10.9 MPa @ TiB2 = 10 vol.%)
and ductility. Parts produced with coated powders through ball milling and parts deriving
from the powders direct mixing were analyzed [27]. As for the hardness, no relevant
difference was detected after adding 2.5 vol.% TiB2 while the parts obtained from ball-
milled powders showed a higher hardness when the TiB2 content is 15%. The effect of
HIP after L-PBF was also evaluated, which resulted in the elimination of significant cracks
and pores. A long HIP cycle however caused a decrease in hardness and wear resistance,
due to the transformation of equiaxed grains into nanoparticles agglomeration. Pannitz
et al. [146] processed stainless steel 1.4404 grade powders coated with SiC (4 vol.%), SiC
(1 vol.%), and FLG (0.75 vol.%). Relative densities of 93.9%, 99.9%, and 99.9% respectively
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were obtained. The addition of few-layer graphene (FLG) led to an improvement in laser
absorbance and faster heat dissipation into the solidified layer during the printing process.
Doñate-Buendia et al. [25] registered an increase of 29% in compressive strength using a
ferritic stainless steel powder PM2000 (74.90 wt.% Fe, 20.40 wt.% Cr, 3.94 wt.% Al, and
0.58 wt.% Ti, Si, and Cu traces) nanocoated with Y2O3. Wilms et al. [131] obtained a final
porosity of 0.5% processing a ferritic stainless steel powder (Nanoval—21.03 wt.% Cr,
4.67 wt.% Al and 0.47 wt.% Ti) homogenously decorated with nano-scaled Y2O3 powder
particles. No cracks and no increment in hardness have been detected, while an increase in
compressive strength was reached. AlMangour et al. [29] detected an improved density
by introducing finer coating particles onto 316L; they also noticed an increase in hardness
when increasing the TiC content.

Attar et al. [26] reached a relative density of 99.50% by coating titanium powders
with TiB2; such coating increases hardness due to the formation of titanium monoboride
from the reaction between TiB2 and the Ti matrix. Kun et al. [110] used TiC nanoparticles,
resulting in an increased tensile strength (914 MPa) with a ductility comparable to the
uncoated Ti powders. Zhou et al. [62] determined that CNTs react with the Ti matrix
generating TiC and leading to an increase of hardness compared to Ti and the titanium
matrix composites produced by traditional processes; the final microstructure is finer with
a uniform distribution of TiC particles. Liu et al. [48] produced Ti-6Al-4V samples starting
from powders coated with CNTs; this material is characterized by a higher ultimate tensile
strength (1255 MPa instead of 1078 MPa), yield strength (1162 MPa instead of 964 MPa),
and lower elongation (3.2% from 4.2%) compared to the material produced from uncoated
Ti-6Al-4V powders.

Geng et al. [144] noticed that CNTs react with Al during printing; this led to the
formation of Al4C3 distributed inside the grains and has a strengthening effect. Based
on the results presented by the authors, compared to uncoated aluminum powders, both
the ultimate strength and the yield strength increased, the first from 82 MPa to 129 MPa
while the second varied from 66 to 99 MPa. No difference was detected in the tensile
elongation. Geng et al. [125] evaluated the variation of mechanical properties at increased
fractions of Ni deposited on the surface of pure Al powders. The authors found that
the optimal fraction of Ni is 5 wt.%, since it increases the ultimate tensile strength from
124 ± 2.5 MPa to 182 ± 0.5 MPa and the yield strength from 95 ± 2 MPa to 146 ± 1 MPa
without reducing its elongation. A chemical reaction occurred between the coating (Ni)
and the matrix, generating the second-phase Al3Ni. In another study, Geng et al. [126]
observed that also Co coating reacts with Al matrix leading to the formation of Al9Co2;
this second phase and the Al matrix have a coherent interfacial relationship. The authors
also measured the surface roughness of the printed objects, which was lower than the pure
Al parts: surface roughness decreased as Co content was raised (the maximum content of
Co introduced is 1.1 wt.%). Zhou et al. [128] observed the precipitation of Al4C3 nanorods
when printing aluminum powders coated with graphene oxide (GO). Such precipitates are
monocrystalline and increase the mechanical properties owing to their intimate contact
with the matrix. Jue et al. [22] obtained a relative density of 97.30% and a hardness equal
to 175 HV0.1 by coating Al powders with Al2O3. Gu et al. [107] reached a hardness of
188.3 HV0.1 and tensile strength of 486 MPa while the elongation remained constant after
coating Al powders with TiC. Mair et al. [28], in their study about 2024 Al alloy decorated
with CaB6, were able to print parts characterized by an equiaxed microstructure, with a
relative density of 99.5%, hardness equal to 132 ± 4 HV5, a tensile strength of 391 ± 22 MPa,
a yield strength of 348 ± 16 MPa, and elongation equal to 12.6 ± 0.6%. Dong et al. [63]
noticed that GO sheets applied onto an AlSi10Mg powder partially reacts with the matrix
leading to the formation of Al4C3. They also found two different types of porosity, the
smaller ones represented by gas porosities, while the bigger and irregular ones to be
attributed to the fact that the GO sheets retain their shape during melting. Nevertheless, an
increase in hardness has been detected.
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By processing a CuCr powder with surface modified with N, Jadhav et al. [18] ob-
tained samples characterized by a thermal and electrical conductivity lower than the
un-modified material, but with a higher elongation at break and yield and tensile strengths.
Solution annealing and age hardening caused an improvement of all the aforementioned
properties, a part from elongation at break. In a previous study, on the evaluation of the
addition of 0.1 wt.% carbon nanoparticles on gas atomized Cu powder with purity of 99.7,
Jadhav et al. [19] produced parts with a relative density of 98% and a tensile strength of
125 ± 11 MPa. Using a CrZr-coated Cu powder, Lassègue et al. [20] obtained samples with
a relative density of 94.3% instead of 87.3% for the uncoated powders. Jadhav et al. [17]
evidenced the importance of having sulfur-free copper powders as starting material in
order to reduce the occurrence of defects such as porosity and solidification cracks. By
using sulfur-free powders, authors obtained a tensile strength of 256 ± 14 MPa, a yield
strength of 203 ± 4 MPa, and hardness of 90 ± 3 HV0.3, with electrical and thermal con-
ductivity respectively of 80 ± 1% international annealed copper standard (IACS) and
334 ± 4 (W/(m·K)). Lindström et al. [21] underlined the importance of incrementing the
laser absorbance to reach higher final densities in the printed parts.

Smith et al. [56] performed a HIP cycle on the AM-produced parts, highlighting that
ceramic nanoparticles have a pinning effect leading to the suppression of grain growth and
recrystallization.

Tables 2–5 provide a summary of the L-PBF process parameters applied on different
coated powders, including the relative density and mechanical properties measured on
printed parts.
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Table 2. A summary table reporting L-PBF process parameters, relative density and mechanical properties of printed parts using Fe-based alloys.

Metal Powder Coating Coating
Technique Ref. Laser Power

(W)
Scanning

Speed (mm/s)
Hatching

Distance (µm)
Layer

Thickness (µm) Relative Density Mechanical Properties

steels

TiB2 Ball milling [104] 100 83.33 - 50 99.99% σ0.2
2 = 980.9 ± 10.9 MPa

TiC Ball milling [106] 100 - 120 - 98.22% @ η 3 = 300
J/mm3

Max compressive yield
strength @η 3 = 67 J/mm3

Y2O3 Ball milling [105] 250 1200 - 40 99.6% @ 0.3 wt.%
Y2O3

-

TiB2 Ball milling [27] 100 83.33 120 50 91.5%

Hardness ~ 600 HV
COF 4 = 0.161 @ 15 vol.% TiB2
Wear resistance = 1.93 × 10−7

mm3/(N·m) @ 15 vol.% TiB2

TiC Ball milling [29] 100 250 50 50 ~96% @ 2.5 vol.%
nm-TiC

Hardness = 403 HV0.2 @ 15
vol.% nm-TiC

SiC Ball milling [119] 100 330 40 50 - TS 6 = 753 ± 49 MPa

FLG/SiC Fluidized bed [146] 130 700 80 30
~99.9% @ 1 vol.%

SiC and 0.75 vol.%
FLG

-

Y2O3 Solution 1 [25] 160 800 60 30 -

Hardness = 249 ± 7 HV0.1
σc,p0.2

5 = 538 ± 17 @Tamb;
σc,p0.2

5 = 430 ± 11 @600 ◦C
σc,p5

5 = 720 ± 15 @Tamb; σc,p5
5 = 620 ± 30 @600 ◦C

σc,p15
5 = 900 ± 30 @Tamb;

σc,p15
5 = 720 ± 30 @600 ◦C

Y2O3 Solution 1 [131] 160 800 - 30 99.2% -
1 Solution: referred to processes described in Section 3.2.1. 2 σ0.2: 0.2% offset yield strengths. 3 η: volumetric energy densities. 4 COF: coefficient of friction. 5 σc,px: compressive strength at plastic deformation of
x%. 6 TS: tensile strength.



Metals 2021, 11, 1831 14 of 23

Table 3. A summary table reporting L-PBF process parameters, relative density and mechanical properties of printed parts using Ti-based alloys.

Metal Powder Coating Coating
Technique Ref. Laser Power

(W)
Scanning

Speed (mm/s)
Hatching

Distance (µm)
Layer

Thickness (µm) Relative Density Mechanical Properties

Ti and its alloys

TiB2 Ball milling [108] 300 800 100 30

92.18% @ 1 wt.%
TiB2

91.33% @ 2 wt.%
TiB2

85.16% @ 3 wt.%
TiB2

Nanohardness = 9.96 ±
0.50 GPa @ 1 wt.% TiB2

Nanohardness = 10.57 ±
0.53 GPa @ 2 wt.% TiB2
Nanohardness = 9.98 ±
0.49 GPa @ 3 wt.% TiB2

TiB2 Ball milling [26] 180 118–154 100 100 >99.5%

Hardness = 402 ± 7 HV
YS 3 = 1103 ± 20 MPa

UCS 4 = 1421 ± 47 MPa
Maximum strain = 17.8 ± 3.2%

TiC Ball milling [109] 90 300 50 50 98.3%

Hardness = 577 HV0.2
COF 2 = 0.19 @ 12.5 wt.% TiC
Wear resistance = 2.3 × 10−16

m3/(N·m·lap) @ 12.5 wt.% TiC
Al Ball milling [47] 800 100 150 150 Near fully dense -

TiC Ball milling [110] 100 200 70 50 98.2% TS 5 = 914 MPa
El 6 = 18.3%

CNTs Solution 1 [62] 20.6 10 100 25 - Hardness = 581 ± 28 HV @
3 wt.% CNTs

CNTs FBCVD [48] 135 600 50 30 99.9%

YS 3 = 1162 MPa
UCS 4 = 2170 MPa

El 6 = 3.2%
UTS 7 = 1255 MPa

CS 8 = 23.8%
1 Solution: referred to processes described in Section 3.2.1. 2 COF: coefficient of friction. 3 YS: yield strength. 4 UCS: ultimate compressive strength. 5 TS: tensile strength. 6 El: elongation. 7 UTS: ultimate tensile
strength. 8 CS: compressive strain.
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Table 4. A summary table reporting L-PBF process parameters, relative density and mechanical properties of printed parts using Al-based alloys.

Metal Powder Coating Coating
Technique Ref. Laser

Power (W)
Scanning

Speed (mm/s)
Hatching

Distance (µm)
Layer

Thickness (µm) Relative Density Mechanical Properties

Al and its alloys

CNTs Solution 1 [144] 350 1250 60 30 99.1%
YS 4 = 99 MPa

El 6 ~ cost
UTS 7 = 129 MPa

Ni Solution 1 [125] 400 1000 60 30 Near fully dense @
0.5 wt.% Ni

YS 4 = 146 ± 1 MPa @ 0.5 wt.% Ni
El 6 = 18 ± 1% @ 0.5 wt.% Ni

UTS 7 = 182 ± 0.5 MPa @ 0.5 wt.%
Ni

Co Solution 1 [126] 400 1000 60 30 Near fully dense @
0.5 wt.% Co

YS 4 = 116 MPa @ 0.5 wt.% Co
El 6 ~ cost @ 0.5 wt.% Co

UTS 7 = 149 MPa @ 0.5 wt.% Co

SiO2 Turbula [16] 100 250 50 30 99.98% @ atm Ar Hardness = 132 HV @ η 2 =
80 J/mm3

GO Solution 1 [128] 20,6 10 100 25 97.36%

Hardness = 45.6 ± 2.2 HV
(trasversal cross section)

Hardness = 45.5 ± 2.5 HV
(longitudinal cross section)

Al2O3 Ball milling [22] 130 550 - 70 97.3%

Hardness = 175 HV0.1
COF 3 = 0.11

Wear resistance = 4.75 × 10−5

mm3/(N·m)

TiC Ball milling [107] 120 200 50 50 -
Hardness = 188.3 HV0.1

TS 5 = 486 MPa
El 6 = 10.9%

CaB6 Ball milling [28] 200 1000 100 30 >99.5%

Hardness = 132 ± 4 HV
YS 4 = 348 ± 16 MPa

El 6 = 12.6 ± 0.6%
UTS 7 = 391 ± 22 MPa

GO Solution 1 [63] 95 200 45–105 30 2.35 g/cm3 Hardness = 100.6 HV

Cu Solution 1 [135] 200 - 80 30 99.1 ± 0.2%

Hardness = 110.3 ± 5.8 HV0.5
YS 4 = 264 ± 1.8 MPa

El 6 = 12 ± 0.5%
UTS 7 = 461 ± 0.2 MPa

E 8 = 73 ± 1.8 GPa
1 Solution: referred to processes described in Section 3.2.1. 2 η: volumetric energy densities. 3 COF: coefficient of friction. 4 YS: yield strength. 5 TS: tensile strength. 6 El: elongation. 7 UTS: ultimate tensile
strength. 8 E: Young’s modulus.
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Table 5. A summary table reporting L-PBF process parameters, relative density and mechanical properties of printed parts using Cu-based alloys.

Metal Powder Coating Coating
Technique Ref. Laser Power

(W)
Scanning

Speed (mm/s)
Hatching

Distance (µm)
Layer

Thickness (µm) Relative Density Mechanical Properties

Cu and its alloys

Nitrides,
carbides Thermochemical [151] 500 800 90 30 98.6%

YS 2 = 183 ± 7 MPa
TS 3 = 254 ± 5 MPa

El 4 = 39 ± 2%
K 6 = 24 ± 0.2 IACS%

Thermal conductivity = 112 ±
1 W/(m·K)

C Turbula [19] 725 400 120 30 98%

Hardness = 0.637 ± 0.02 GPa
TS 3 = 125 ± 11 MPa

E 5 = 105 ± 2 GPa
Proof (yield) strength = 64 ±

7 MPa
Ductility = 3 ± 1%

K 6 = 22.7 × 106 S/m

C Mixing + heat
treatment [152] 500 700 90 30 96.1% @ 400 W and

200 m/s

YS 2 = 174 ± 3 MPa
TS 3 = 281 ± 1 MPa

El 4 = 36 ± 1%
K 6 = 39 ± 1 IACS%

Thermal conductivity = 196 ±
3 W/(m·K)

CrZr PVD [20] 270 300 90 - 94.3% -

Sn Solution 1 [17] 500 600 105 30 99.6%

Hardness = 90 ± 3 HV0.3
YS 2 = 203 ± 4 MPa
TS 3 = 256 ± 14 MPa

El 4 = 21 ± 2%
K 6 = 80 ± 1 IACS%

Thermal conductivity = 334 ±
4 W/(m·K)

Ni/Sn Solution 1 [21] 200 100 100 20 - -
1 Solution: referred to processes described in Section 3.2.1. 2 YS: yield strength. 3 TS: tensile strength. 4 El: elongation. 5 E: Young’s modulus. 6 K: electrical conductivity.



Metals 2021, 11, 1831 17 of 23

5. Conclusions

Powders coating processes are of increasing interest; the possible applications of coated
metal powders are wide and involve many aspects such as processability, mechanical, and
physical properties. Different ways of coating are possible. The so-called mechanical
coating techniques were among the first adopted. However, when high energy is involved,
a severe plastic deformation occurs, modifying powders’ shape and impairing the powders’
flowability. On the other hand, coating processes involving chemical solutions do not affect
the geometry and size distribution of the powders, usually resulting in homogeneous and
continuous coatings. These processes are characterized by different difficulties such as the
limited quantity of powder that can be treated together, the costs and the complexity of the
process itself; for these reasons it is mandatory to evaluate new techniques not currently in
the market in order to obtain constant and homogenous coating which can provide higher
processability.

Coated powders can improve L-PBF processability, in terms of higher flowability
and absorbance, especially for those metals characterized by a high laser reflectivity. The
surface modification of powder can pursue a higher laser absorbance. Two main factors
are involved: the surface roughness, which is usually increased by coatings, and the
choice of coating material with a high absorbance coefficient. Several parameters influence
flowability as well. A higher surface roughness can negatively affect it, whereas ceramic
nanoparticles can increase it, due to the intrinsic low van der Waals forces.

Mechanical properties of the final parts can also be improved by processing suitably
coated powders. Hardness can increase by using ceramic coating particles or by the grain
refining effect. Using metal powders homogeneously coated by nanoparticles may result
in an improvement of tensile strength and hardness without sacrificing ductility.
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