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Abstract—Mobile robots can highly contribute to achieve the
production flexibility envisaged by the Industry 4.0 paradigm,
provided that they show an adequate level of autonomy to operate
in a typical industrial environment, in which the presence of
both static and dynamic obstacles must be managed. Robot
Operating System (ROS) is a well known open-source platform
for the development of robotic applications, recently updated to
the enhanced ROS2 version, including a navigation stack (Nav2)
providing most, but not all the capabilities required to a mobile
robot operating in an industrial environment. In particular, it
does not embed a strategy for dynamic obstacle handling. Aim
of this paper is to enhance Nav2 through the development of a
Dynamic Obstacle Layer, as a plug and play solution suitable for
the integration of the dynamic obstacle information acquired by
a generic 2D LiDAR sensor. The effectiveness of the proposed
solution is validated through a campaign of simulation tests,
carried out in Webots for a TurtleBot3 burger robot, equipped
with a RPLIDAR A3 LiDAR sensor.

Index Terms—Autonomous Mobile Robots, Dynamic path
planning, ROS2

I. INTRODUCTION

Nowadays, mobile robots are frequently employed in in-
dustrial automation, surveillance, transportation, personal and
medical applications. In an industrial context, mobile robots
are revolutionising flexible manufacturing systems and logis-
tics, where Automated Guided Vehicles (AGVs) have predom-
inated for years. Even though they accomplish localization and
navigation based on robust methods, such as wire guidance,
ceiling mounted bar codes, or magnetic tape following, they
have two main disadvantages [1]: a limited drive-path and
a restricted interaction with the workstations. On the other
hand, Autonomous Mobile Robots (AMRs) are developed as
intelligent agents that can actively interact with the industrial
environment and so, they better attain the level of flexibility
envisioned by the Industry 4.0 revolution.

To this aim, AMRs perform autonomous navigation, typ-
ically achieved by integrating perception data, localization,
cognition and motion control. Navigation can be decomposed
into the following tasks [2]: (i) modelling the world as a
map, (ii) computing collision-free trajectories, and (iii) path
following while avoiding collision with obstacles.

The last two tasks are usually referred to as the motion plan-
ning problem [3], which over the years boosted the develop-
ment of several algorithms for its solution, based on different

mathematical approaches and technologies [4]. Path planning
algorithms can be grouped in global and local planners. The
former exploit the information of the map to build a feasible
obstacle-free path to traverse from one point to another. The
latter instead, compute new intermediate waypoints taking into
account the local information provided by the sensors. Such
waypoints try to avoid the obstacles that were not known a-
priori, matching as much as possible the ones provided by the
global planner. There are many dynamic obstacle avoidance
strategies that recompute the trajectories by generating arcs,
segments, clothoid lines, etc, whose outputs are intermediate
waypoints that deviate the robot from dynamic obstacles [5].

ROS is a well-known open-source platform for developing
robotic applications. In particular, the ROS navigation stack
metapackage [6] constitutes a widely established framework
for robot autonomous navigation. Local planners made avail-
able in ROS are Dynamic Window Approach (DWA), Elastic
Band (EBand) and Time Elastic Band (TEB).

The DWA is an online collision avoidance algorithm that
takes into account the dynamics of the mobile robot. Consid-
ering the velocity and acceleration constraints of the robot,
its operating principle includes two main phases: firstly, it
generates a valid velocity search space, and then it selects
the optimal solution through a cost function evaluating the
trajectories scores [7]. EBand deforms the global path when
new obstacles are detected, using an artificial force model [8].
An elastic band is created by a contraction force that pulls
the robot towards the goal position, while a repulsive force
pushes the path away from obstacles. TEB is an improvement
of the EBand, in which the time information is added to the
path computation. Nevertheless, issues arise when the dynamic
obstacle intercepts the recomputed path, so three elastic bands
are created as alternative paths and the shortest one compliant
with the planning requirements is chosen [9]. The choice of the
most suitable planner depends on the navigation requirements,
and it is generally a trade-off among precision, speed and
performance. For instance, according to [10], [11], DWA
planner stands out for its small computing power requirement
and repeatability in consecutive tests, while EBand provides
more accurate results, and TEB is the fastest to react to
the dynamic obstacles, although it requires more computer
resources as it tries to optimize multiple trajectories.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



ROS currently has two versions: from now on we will
refer to the original version as ROS1. Despite ROS1 usage
has increased a lot since its first distribution, it has some
architectural limitations that prevents it from being competitive
with other solutions. In fact, ROS1 requires significant com-
puting power and cannot guarantee fault-tolerance, deadlines
or process synchronization and, most importantly, it does not
satisfy real-time execution requirements [12]. The first ROS2
distribution was released in 2017 with the following design
goals: support teams of multiple robots, small embedded
platforms, real-time control, non-ideal networks, and multi-
platform support [13]. Alongside ROS2, the navigation stack
underwent a substantial architecture evolution as well, giving
birth to the Navigation2 (Nav2) stack [14]. However, Nav2 still
leaves some open issues about dynamic obstacles avoidance,
as raised by the ROS2 community [15]. Indeed, it does not
embed a strategy for dynamic obstacles handling: navigation
is performed on the basis of a costmap representation of the
environment, where static occupied costmap cells are inflated
by an exponentially decreasing cost decay rate, irrespective of
whether they are occupied by moving or still objects. Thus, the
robot plans a more pessimistic trajectory and maintains a larger
separation from obstacles than actually required by collision
avoidance, but without the awareness of the temporal evolution
of the occupancy grid. As a consequence, the AMR naviga-
tion performance is affected by unnecessary delay, which in
dynamic factory environments and shopfloors results in lower
productivity and preventable downtimes.

The main goal of this paper is to propose the Dynamic
Obstacle Layer (DOL) approach, as a plug and play solution
to integrate the current Nav2 stack with the dynamic obstacles
information coming from a generic 2D LiDAR sensor, starting
from some preliminary results available in [16]. First, Section
II outlines some characteristics of the Nav2 architecture,
highlighting how the DOL is integrated. Then, some related
works, taken as a starting point for this study, are presented.
Section III illustrates the concepts and theory behind the DOL
approach, while Section IV presents the main steps followed
for the implementation in ROS2. The results are analysed
in Section V. Finally, the conclusion and future works are
outlined in Section VI.

II. BACKGROUND

A. Nav2: A navigation system

Nav2 comes with a modular and (run-time) reconfigurable
core, consisting in a Behavior Tree (BT) navigator [17]
and task-specific asynchronous servers: Planner, Controller
and Recovery servers. They are action servers hosting the
environmental representation used by the algorithm plugins
to compute their outputs, under the orchestration of the BT
navigator. In particular:

• The task of Planner plugins is the computation of a valid,
and potentially optimal, path from the current pose to a
goal pose, serving the function of global planning.

• Controller plugins replace the local planner of Nav1:
they compute a feasible control effort to follow the global

plan, based on a local environmental representation, thus
performing local planning.

• The Recovery behaviours are plugins triggered by the BT
when a navigation failure occurs.

The Planner and Controller servers work on two dif-
ferent costmap representations of the environment, the
global costmap and the local costmap, respectively. The for-
mer built upon a pre-loaded static map and the latter based
on sensor information. The huge potential of the costmap
representation in Nav2 lies in the adoption of the costmap
layers method [18]: unlike traditional monolithic costmaps,
where all the data are stored in a singular grid of values,
in the costmap layers approach, each layer tracks one type
of obstacle or constraint, and then modifies a master costmap
that is used for the path planning. The base layers in Nav2 are
essentially three: (i) static layer – stores the costs associated
with the static map provided at launch time, (ii) obstacle layer
– continuously marks and clears cells according to sensor
data, and (iii) inflation layer – propagates cost values out from
occupied cells that decrease with distance, in order to provide
a safety margin for the robot navigation.

The dynamic obstacle handling is usually faced in mo-
tion planning at a local level, meaning that in Nav2 dy-
namic obstacle avoidance should be addressed by the Con-
troller Server. In fact, among the Controller Server plugins
for local planning deployed in Nav2 there are the DWB
Controller (nav2 dwb controller), and the TEB Controller
(teb local planner). In particular, the former is the successor
to the DWA controller in ROS1.

The DOL has been thought as an additional costmap layer
plugin to the local costmap, embedding the information of dy-
namic obstacles velocity and orientation information into the
occupancy grid, together with the existing controller plugins.

B. Dynamic path planning

Being the current flexible production plants highly demand-
ing environments, research is brought on with the aim of
enhancing the ROS1 NavStack to make it compliant with
industrial highly dynamic and ever-changing environments
[19], along with ROS1 to ROS2 migration processes to take
advantage and improve well-established frameworks, provid-
ing valuable capabilities, e.g., task planning [20]. Given its
features, ROS2 is suitable for industrial-grade mobile plat-
forms, making it a relevant choice for industrial applications
to achieve safe dynamic obstacles avoidance. Several works
about laser range finder data processing for dynamic obstacles
detection and tracking are available in literature [21]–[23].
Here, the dynamic obstacles detection is performed applying
some heuristic algorithms directly on the LiDAR pointclouds,
clustering the obstacles based on parameters such as the
cluster radius or the distance between points. In this work,
dynamic obstacles are detected and tracked taking advantage
of the occupancy grid provided by the Nav2 packages, making
it a modular solution such as the ROS1 costmap converter
package implemented in [24]. In this way, the DOL is less
dependent on the type of sensor used. Then, a policy for



Fig. 1: Dynamic Obstacle Layer method steps.

translating the obstacles velocity and orientation information
into the costmap has been defined exploiting the available
Inflation Layer structure and applying a risk level set concept
similar to the one presented in [25].

III. THE DOL APPROACH

The DOL approach developed in this work is articulated in
three steps:
Object detection Starting from the costmap representation of

the environment, dynamic obstacles are identified and
separated from static ones, applying image processing
algorithms and running average filters.

Object tracking Detected dynamic obstacles are tracked and
their velocity is estimated applying a Kalman Filter.

Cost assignment A developed costmap layer assigns costs
around each moving obstacle in the local costmap, ac-
cording to a 2D Gaussian shape, with variances pro-
portional to the obstacle velocity and oriented along its
moving direction.

A. Object detection

Once the robot is ready to navigate, its costmap repre-
sentation of the environment is handled as an image during
the object detection step. So, foreground indicates whatever
is moving, while the background is everything that is static.
Background subtraction is obtained applying two running
average filters to each pixel – a “fast” and a “slow” filter:

Pf (t+1) = β[(1−αf )Pf (t)+αfC(t)]+
1− β

8

∑
i∈NN

Pf,i(t)

Ps(t+1) = β[(1−αs)Ps(t) +αsC(t)] +
1− β

8

∑
i∈NN

Ps,i(t)

where Pf (t) and Ps(t) represent the output of the fast and the
slow running average filters at time t, respectively. β denotes
the ratio between the contribution of the central cell filter and
the effect of the neighbouring cells to Pf (t) and Ps(t), so to
capture the running average filter of the 8 Nearest Neighbour
(NN) cells, since large objects form blocks of cells in the local

costmap. The gains αf and αs define the effect of the current
costmap C(t) on both filters. Therefore, the two filter rates
are chosen such that

0 ≤ αs < αf ≤ 1

Then, two thresholding steps are performed to filter out
the high and low frequency noise and identify those pixels
occupied by dynamic obstacles:

1) The fast filter classifies a cell as foreground if it exceeds
threshold c1:

Pf (t) > c1

2) The difference between the fast and the slow filter has to
exceed a threshold c2 in order to eliminate quasi-static
obstacles with low frequency noise:

Pf (t)− Ps(t) > c2

The constant values c1 and c2 have been set heuristically based
on the range of values that cells can assume in a Nav2 costmap
(from 0 to 255) and considering the same settings adopted in
[24]. The output is a binary map where all the dynamic pixels
are marked with “1”, as it is shown in the general scheme of
the DOL approach reported in Figure 1.

Then, the SimpleBlobDetector heuristic algorithm, provided
by the OpenCV library [26], clusters the dark pixels in the
binary image into blobs representing each dynamic obstacle
in terms of contours – a list of the cells which define the blob
contours – and centroid – the coordinate of the cell (pixel) in
the weighted center of the blob.

B. Object tracking

The centroid of dynamic obstacles progresses with each
costmap update and subsequent foreground detection. The
assignment of blobs in the current map to obstacle tracks con-
stitutes a data association problem. In order to disambiguate
and track multiple objects over time, the current obstacles are
matched with the corresponding tracks of previous obstacles.
A new track is generated whenever a novel obstacle emerges
that is not tracked yet. Tracks that are not assigned to current



Fig. 2: a) Local obstacle reference frame (black) with respect to the global (map) reference frame (red). b) A point q within
the back area. c) A point q in the frontal space.

objects in the foreground frame are temporarily maintained.
The track is removed if it is no longer confirmed by object
detections over an extended period of time. The assignment
problem is solved by the so-called Hungarian algorithm [27],
which solves weighted assignment problems by minimizing
the total Euclidean distance between the tracks and the current
set of obstacle centroids.

Then, a Kalman filter estimates the current velocity of
tracked obstacles assuming a first order constant velocity
model, since it is sufficient to capture the prevalent motion
patterns of humans and robots in indoor environments.

C. Cost assignment

To include the dynamic obstacles information into the
costmap, the region around each detected obstacle is inflated
with a 2D Gaussian shape. In particular, the magnitude of
the obstacle velocity has been associated with the peak of the
Gaussian; in this way, faster obstacles are inflated more than
slower ones. This has the aim to make the local planning aware
of the obstacle with a sufficient heads-up for replanning.

Furthermore, the orientation information is used to inflate
more the cells along the moving direction of the obstacles.
This is actually obtained blending two 2D Gaussian shapes,
one inflating the cells in front of the obstacle and the other
inflating the cells on its back region. Given an obstacle O
with centroid in position c(x, y) in the map reference frame,
we define a local coordinate system with origin in c, X-axis
oriented along the velocity vector direction, Z-axis pointing
outwards the costmap plane and Y-axis set according to the
right-hand rule (Figure 2a). Therefore, the obstacle inflation
region is represented by the following function:

Φc,Σfront,Σback
(q) = δ(q)Φc,Σfront

(q)+ [1− δ(q)]Φc,Σback
(q)

where q = (xq, yq) collects the coordinates of a point
in the map reference frame, Φc,Σfront

and Φc,Σback
are the

Gaussian functions that inflate the frontal and the back area
of the obstacle, respectively. δ(q) selects the correct Gaussian
function depending on whether the considered cell is in the

frontal or back space of the obstacle (Figs. 2b and 2c), and it
is defined as follows:

δ(q) =

{
1 if v⃗ · q⃗ ≥ 0

0 if v⃗ · q⃗ < 0
⇒ δ(q) =

{
1 if cos|ϑc − ϑ| ≥ 0

0 if cos|ϑc − ϑ| < 0

where v⃗ is the velocity vector of the obstacle and angles ϑc

and ϑ are defined as in Figure 2a. Each Gaussian function is
computed as:

Φc,Σ(q) = Aexp

{
− [d cos(ϑ− ϑc)]

2

2σ2
x

− [d sin(ϑ− ϑc)]
2

2σ2
y

}
where d is the Euclidean distance between q and c(x, y), A

is an amplitude parameter set to the maximum cost possible
on the costmap, i.e., 255, and σ2

x, σ2
y are the diagonal entries

of the Σ covariance matrix, which determines the shape of the
inflation region. In particular, the two covariance matrices are
defined as follows:

Σfront =

(
σ2
x_front 0

0 σ2
y_front

)

Σback =

(
σ2
x_back 0
0 σ2

y_back

)
Therefore, σx and σy can be tuned to model a generic shape

at will. Here, in order to take into account the obstacle velocity
magnitude, a maximum obstacle speed max_speed has been
set. Then, in order to inflate more the front region, we defined
the speed ratio r = vel

max_speed , where vel is the estimated
obstacle speed. Finally, the variances are modified according
to the following heuristics:

σ2
x_front = (1 + r)σ2

x_front

σ2
y_front = (1− r

2 )σ
2
y_front

σ2
x_back = (1− r)σ2

x_back

σ2
y_back = (1− r

4 )σ
2
y_back

(1)

In this way, the Gaussian shape is lengthened in the
direction of the obstacle motion and narrowed in the lateral
area.



Fig. 3: Interaction scheme between internal SW functional blocks and the simulated external environment.

IV. IMPLEMENTATION IN ROS2 FRAMEWORK

The presented approach has been implemented within ROS2
Foxy version on an Intel NUC8 with a Linux Ubuntu 20.04
environment. For testing purposes, during the development
phase, a virtual environment has been created using the Webots
simulator, while Rviz has been used for outputs visualisation
and debugging. The simulated robot is the TurtleBot3, for
which both Webots and Nav2 already provide a physical model
and interface packages. Nevertheless, the DOL still remains in-
dependent of the robot which is considered. Concerning Nav2,
due to its modular architecture, different configurations are
possible, according to the specific plugins that are activated.
Here, the default Nav2 configuration has been employed,
according to the dedicated TurtleBot3 navigation packages,
including the nav2 dwb controller (DWB) as plugin for the
Controller Server.

As it is shown in Figure 3, the ros2 costmap to dynamic
obstacles package provides the nodes implementing the obsta-
cle detection functions and publishing the blobs corresponding
to detected obstacles through a specific custom ROS2 mes-
sage type on the /detection topic. The kf hungarian tracker
package provides a subscription to this topic, so that it
can perform object tracking. Then, it publishes the dy-
namic obstacles and their estimated velocities on the lo-
cal costmap/tracking topic, which is created when Nav2 is
launched. Finally, the costmap layer, implemented through
nav2 dynamic costmap layer plugin, processes this informa-
tion to compute the Gaussian costs and updates the master
costmap used for the robot navigation.

V. SIMULATION TESTS AND ANALYSIS

In this section the path planning approach available in ROS2
(DWB Controller) and the DWB integrated with the proposed
Dynamic Obstacle Layer method (DWB + DOL) are compared
through simulations for a DOL preliminary evaluation.

The simulations have been run on Webots employing a
TurtleBot3 burger robot, a two-wheeled robot equipped with a
RPLIDAR A3 LiDAR sensor. In particular, the sensor provides
a maximum distance range of 25m, an angular resolution of
0.225◦ and a scan rate of 15Hz.

A. Experimental setup
Webots allows to create realistic 3D virtual worlds including

the physical properties of each object (Figure 4). In particular,

it is possible to specify the dynamic behaviour of robotic
objects (Robot Nodes) through a Webots Controller.

Fig. 4: dyn env 1.wbt virtual world on the right and Rviz
output on the left with DOL plugin.

The world created for testing is an empty rectangular arena
10m×6m where dynamic obstacles are simulated as wooden
boxes of 20 cm × 20 cm base and 50 cm tall, configured as
Robot Nodes. Starting from an assigned initial position, each
box moves with a constant speed back and forth traversing
the entire arena along the short side direction. A Webots
Controller has been coded for each obstacle and the speed can
be commanded when the world is launched, so that simulations
scenarios can be easily modified. Note that, before launching
the navigation tests, SLAM was performed, exploiting the
turtlebot3 cartographer package, to obtain and upload the
static map of the virtual environment without boxes.

In order to compare the performances of the baseline
DWB with the DWB + DOL configuration, the TurtleBot3
is commanded to navigate in the dyn env 1.wbt world N
times, from one side of the rectangular arena to the opposite
side, covering a total distance of 8m, as shown in Figure 5.
The Planner plugin used for computing the global path is
nav2 navfn planner/NavPlanner. A brief demo video show-
ing the experimental setup and behaviour using DWB alone
and DWB + DOL can be found at [28].

The parameters recorded for the evaluation purpose are: the
travel time, the number of wait recovery behaviours triggered
during travel and if any collision occurred. Such data have
been collected from experiments conducted in two different
conditions: obstacles (boxes) moving at constant speed set to
0.6m/s (Test set 1) and 0.8m/s (Test set 2).



Fig. 5: dyn env 1.wbt test scheme.

The performance indices considered for each set are de-
scribed hereafter.
Smooth navigations It indicates how many times the Turtle-

Bot3 smoothly navigated to the goal position. It includes
also the cases in which the robot stopped briefly to avoid
collisions with a moving box in its proximity.

Wait recoveries It is the number of times the wait recovery
behaviour has been triggered, still successfully reaching
the goal. A wait recovery is usually triggered when
obstacles come suddenly too close and the Controller
Server cannot find an affordable path by a given timeout
interval.

Collisions It corresponds to the percentage of unsuccessful
navigation due to a collision of the TurtleBot3 with a
moving box.

Successful navigations It is the total amount of times in
which the robot successfully reached the goal position,
either performing a smooth navigation or after triggering
the recovery behaviour.

B. Results and discussion

For the first test set, N1 = 50 simulations have been
launched for both DWB and DWB + DOL configurations.
Table I sums up the global navigation results.

TABLE I: Navigation results at 0.6m/s obstacles speed.

DWB + DOL DWB
Smooth navigations 86,0% 82,0%
Wait recoveries 10,0% 0,0%
Collisions 4,0% 18,0%
Total successful
navigations

96,0% 82,0%

As can be seen, the proposed method combined with
DWB reported a greater successful navigation rate than the
simple DWB: 96% against 82%, respectively. In particular,
the ‘smooth navigations’ percentage is quite similar with the
two approaches, but the DWB + DOL solution reported fewer
collisions, because the wait recovery was triggered more times.
This means that the dynamic obstacle layer provides a safer
navigation if it is combined with the actual DWB planner.

Indeed, the Gaussian costs forewarn the TurtleBot about an
approaching obstacle and the Recovery Server is triggered on
time if moving on would result in a collision. On the other
hand, with the chosen obstacle speed (0.6m/s) and the same
Nav2 parameters settings, DWB does not react on time if an
obstacle suddenly approaches.

It can be noted that the number of ‘smooth navigations’
for DWB + DOL and DWB over the total number of tests
is similar (86% and 82%, respectively), but the travel time
performances are different. Figure 6a shows the box plots
representing the travel time data of all the ‘smooth navigations’
achieved by the robot with the two approaches. First of all, one
can notice that the DWB distribution is more asymmetric and
for sure non-Gaussian. Secondly, the mean travel time reported
in DWB + DOL is lower than that of DWB, even if only of
1 s. However, the most important result is that the interquartile
range (IQR) for DWB + DOL is smaller than DWB box. Thus,
it seems that the proposed method ensures to estimate a more
confident travel time for a given environment and settings.
Finally, it has to be noticed that outliers lay all below the box
plot for the DWB + DOL (shorter travel times), while they are
all longer travel times for the DWB plot. This suggests that
carrying out more tests might produce less overlapped box
plots.

For the second set of data, the obstacle speeds have been
set to 0.8m/s. This value has been chosen in order to push
the available DWB Controller to its limits. Indeed, in this
case, only N2 = 30 simulations are sufficient to clearly prove
the poor performance of the DWB compared to the DWB +
DOL approach. Actually, the only difference in the settings
and parameters of the whole environment – and the Nav2
parameters – with respect to the previous test set is the obstacle
speed. The same performance indices have been taken into
consideration and the results are shown in Table II.

TABLE II: Navigation results at 0.8m/s obstacles speed.

DWB + DOL DWB
Smooth navigations 50,0% 43,3%
Wait recoveries 36,7% 0,0%
Collisions 13,3% 56,7%
Total successful
navigations

86,7% 43,3%

It is worth noting that the number of collisions during
the simulations launched with only DWB have remarkably
increased (from 18,0% at 0.6m/s to 56,7%); likewise, for the
DWB + DOL, collisions increased from 4,0% at 0.6m/s to
13,3%. Nevertheless, for the DWB + DOL case, the percentage
of triggered recoveries has increased as well, ensuring 86,7%
of successful navigations, while the percentage of success
in case of DWB has halved with respect to Test set 1.
Despite this, for the second test set, travel time data have
been collected over N2 = 30 data points (Figure 6b). Given
that the ‘smooth navigations’ indices are equal to 50% (DWB
+ DOL) and 43,3% (DWB), it is worth pointing out that no
robust consideration can be made.



(a) Test set 1
(b) Test set 2

Fig. 6: Box plot of the travel times during ‘smooth navigations’ for both test sets.

It can be noticed that the median values of both test sets
are very similar. The first remarkable difference is that in Test
set 2, due to the small amount of data, the DWB + DOL box
plot has a greater variance. This is also because the faster are
the obstacles, the more corrective actions are performed by
the robot, making the travel time more unpredictable.

Concerning the data for DWB, the variance has been consid-
erably reduced with respect to the previous test set. However,
the data sample is too small, since the robot performed
successfully a smooth navigation 13 times out of 30.

As it is shown by the simulation results, the DOL approach
definitely reports some performance improvements in terms
of collisions rate, but still collisions occur, even at the lower
obstacle speed of 0.6m/s. One reason behind this could be
the not optimal communication between the Webots virtual
environment and the Navigation Stack, that may cause delays
in the obstacle detection and costs computation. However, this
is strictly related to the computational performances of the
whole ROS2 and Linux environment installed on the Intel
NUC platform.

Despite this, some Nav2 parameters could be tuned to
reduce the collisions rate with the adopted HW/SW setup. Re-
ferring to the Configuration Guide section of DWB Controller
in the Nav2 documentation page, they are:

• controller frequency (default 20 Hz): it corresponds to
the controller server update rate. Higher values may lead
to a faster reaction to obstacles since the local trajectory is
replanned more frequently by the DWB Controller plugin.

• update frequency (default 5Hz): updating more often the
local_costmap allows the robot to read more recent
Gaussian cost values. In this way, the local path planning
is computed using more reliable data, improving obstacle
avoidance.

• <dwb plugin>.sim time (default 1.7 s): it is the time in
which the DWB plugin simulates looking ahead to gener-
ate affordable local trajectories before scoring them and
choosing the best one. Slightly increasing this parameter,

the DWB Controller should better discriminate colliding
trajectories from non-colliding ones. Nevertheless, since
the DWB is a local planner, higher values may prevent
the correct performance of the Planner Server.

• <dwb plugin>.BaseObstacle.scale (default 0.02): it is the
scale used by the DWB plugin to score a trajectory and
it depends on the location of the path in the costmap. As
the value raises, it is more likely that the robot will avoid
passing through inflated cells. As a result, the navigation
should be smoother but longer.

Modifying the above listed parameters, especially the first
three, may be a valid option to improve the overall perfor-
mance. However, higher computing resources may be needed,
so the parameter values should be finely tuned according to
the actual target hardware and application requirements.

For what concerns the Gaussian cost assignment, the vari-
ances (Gaussian shape parameters), have been set empirically
and based on an hypothetical obstacle maximum speed as in
(1). As alternative, an additional function could be introduced
to compute the costs combining the obstacle speeds with
the robot speed. For instance, if the robot maximum speed
is too small with respect to the obstacle one, it should not
try to pass over it, so Gaussian costs should be modulated
accordingly. On the other hand, the obstacle speed information
could be directly included into the local planner, but at the
price of achieving a much more complex approach, no more
as modular as the proposed DOL.

Therefore, the proposed Dynamic Obstacle Layer approach
seems to provide a safer navigation in presence of dynamic
obstacles. At the same time, in the majority of the test cases,
the DOL allows to plan a smoother trajectory than the DWB
Controller alone, resulting in reduced travel times starting
from the same conditions. Indeed, despite the TurtleBot has a
maximum speed lower than the set obstacle speeds, it manages
to adjust the trajectory when an obstacle is reported by the
DOL, dodging it or passing behind it, even if there is still
much room for improvements of the travel time performance.



VI. CONCLUSIONS AND FUTURE WORKS

The proposed Dynamic Obstacle Layer approach imple-
ments a strategy for dynamic obstacle handling that can be
easily integrated with the current ROS2 Navigation Stack,
thus being a flexible and modular solution for the problem
of navigation in dynamic environments. The simulation tests
carried out in a virtual environment have shown a relevant
performance improvement in terms of collisions rate and travel
times, integrating the DOL with the available DWB Controller.
The two carried out simulation tests, highlighted how the
combination of DWB and DOL can improve navigation safety
as the dynamic obstacles’ speed increases.

Nevertheless, the DOL code involves many parameters (e.g.,
filters parameters, blob detection parameters, Gaussian costs
scaling factors, etc.), some of which have been set based on
intuition and manual tuning in this initial implementation.

Therefore, this paper represents the starting point of various
possible future works in different directions. First of all, the
DOL has been tested only in a virtual environment. Even
though Webots has been set to provide as realistic simulations
as possible, only tests in real world can validate the proposed
approach, i.e., using a physical TurtleBot with real sensors
and checking the actual performance of the robot under
particular scenarios. Beyond that, object detection is based
on the thresholds set for the running average filter: using
the values based on reference examples, however, does not
allow to achieve the desired filtering accuracy for low obstacle
velocities. Thus, a set of tests should be carried out to finely
tune these parameters according to the hypothetical future
application scenarios.

Finally, the incorporation of camera information can be
investigated to provide more detailed information about dy-
namic obstacles, e.g., discriminating a walking person from
another robot, so that the robot could react accordingly with
different planning strategies. Semantic information can be
easily integrated in a multi-layer costmap on the base of the
current DOL, and Planner and Controller plugins can be easily
foreseen to implement different behaviours.
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