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Note on Efron’s monotonicity property
under given copula structures.

Abstract . Given a multivariate random vector, Efron’s marginal monotonicity
(EMM) refers to the stochastic monotonicity of the variables given the
value of their sum. Recently, based on the notion of total positivity of the
joint density of the vector, Pellerey and Navarro (2021) obtained sufficient
conditions for EMM when the monotonicity is in terms of the likelihood ratio
order. We provide in this paper new sufficient conditions based on properties
of the marginals and the copula. Moreover, parametric examples are provided
for some of the results included in Pellerey and Navarro (2021) and in the
present paper.

1 Introduction and background

Given a random vector of independent continuous marginals with logconcave
densities, Efron (1965) studied the stochastic monotonicity of the marginals
given the value of their sum, obtaining the following result.

Proposition 1 (Efron (1965))

Let 𝑋1, 𝑋2, · · · , 𝑋𝑛 be 𝑛 independent random variables with 𝐼𝐿𝑅 densities,
let 𝑆 =

∑𝑛
𝑖=1 𝑋𝑖 be their sum, and let Φ (𝑥1, 𝑥2, · · · , 𝑥𝑛) be a real measurable
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function, increasing in each of its arguments. Then, the function 𝑠 ↦→
𝐸 (Φ (𝑋1, 𝑋2, · · · , 𝑋𝑛) | 𝑆 = 𝑠) is increasing.

Throughout this paper, the term “increasing” is used for “non-decreasing”
and “decreasing” is used for “non-increasing”. Recall that a continuous
random variable 𝑋 having density 𝑓 is said to have the increasing likelihood

ratio (𝐼𝐿𝑅) property if 𝑓 (𝑥+𝑦)
𝑓 (𝑥) decreases in x for all 𝑦 ≥ 0, i.e., if log 𝑓 (𝑥) is

concave. 𝑋 is said to have the increasing proportional likelihood ratio (𝐼𝑃𝐿𝑅)
property if 𝑓 (𝜆𝑥)/ 𝑓 (𝑥) is increasing in 𝑥 for any positive constant 𝜆 < 1.
Equivalently, a random variable 𝑋 with density 𝑓 is 𝐼𝑃𝐿𝑅 if and only if
𝑥 𝜂(𝑥) increases in 𝑥, where 𝜂(𝑥) = − 𝑓 ′(𝑥)/ 𝑓 (𝑥) (see Oliveira and Torrado
(2015)). Note that 𝐼𝐿𝑅 implies 𝐼𝑃𝐿𝑅, but the reverse does not hold (Ramos
and Sordo (2001)). Let us also recall that, given 𝑋 and 𝑌 two continuous
random variables with respective distribution functions 𝐹, 𝐺 and densities
𝑓 , 𝑔, respectively, 𝑋 is said to be smaller than 𝑌 in the usual stochastic order
(𝑋 ≤𝑠𝑡 𝑌) if 𝐹 (𝑥) ≥ 𝐺 (𝑥) for all 𝑥 ∈ R. The order 𝑋 ≤𝑠𝑡 𝑌 holds if and only
if, for all increasing functions 𝜙 : R→ R, E[𝜙(𝑋)] ≤ E[𝜙(𝑌 )], provided that
these expectations exist. Analogously, 𝑋 is said to be smaller than 𝑌 in the
likelihood ratio order (𝑋 ≤𝑙𝑟 𝑌) if 𝑓 (𝑥)/𝑔(𝑥) is decreasing in the union of the
supports (Shaked and Shanthikumar (2007)).

From now on, based in Proposition 1, we will refer as “Efron’s strong
monotonicity” (ESM) to the monotonicity of 𝑠 ↦→ {(𝑋1, 𝑋2, · · · , 𝑋𝑛) | 𝑆 = 𝑠} in
terms of any stochastic order, and “Efron’s marginal monotonicity”(EMM) to
the monotonicity of 𝑠 ↦→ {𝑋𝑖 | 𝑆 = 𝑠}. Efron’s monotonicity and its subsequent
generalizations have been of great interest in different areas, as economics,
combinatorial probability, dependence modeling and statistical theory. For
a list of references on its applications, the interested reader may consult
Saumard and Wellner (2018); Pellerey and Navarro (2021).

The results obtained in Efron (1965) have been extended in several ways.
Lehmann (1966) showed that the conditions stated in Proposition 1 imply
EMM in terms of the 𝑙𝑟-order. More recently, Saumard and Wellner (2018)
extended Efron’s results to bivariate vectors with non-independent variables,
providing conditions in terms of the second derivatives of −𝑙𝑜𝑔 𝑓 (𝑥, 𝑦), which
imply ESM and EMM in the usual stochastic order. In the same framework,
Oudghiri (2021) provided sufficient conditions for an stronger ESM and EMM
assumption, considering not only that 𝜙(𝑠) = 𝐸 (Φ (𝑋1, 𝑋2, · · · , 𝑋𝑛) | 𝑆 = 𝑠)
increases in s, but also that 𝛼(𝑠)𝜙(𝑠) increases in s, for some functions 𝛼. Also
in the bivariate setting, for non-independent vectors, Pellerey and Navarro
(2021) give sufficient conditions which imply ESM in the usual stochastic
order. They also generalize the result in Lehmann (1966), connecting the
EMM monotonicity in the 𝑙𝑟-order to the notion of total positivity.
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Let us recall that, in the bivariate framework, a function 𝑝 : R2 → R+ is
said to be totally positive of order 2 (𝑇𝑃2) if, for 𝑥1 < 𝑥2 and 𝑦1 < 𝑦2, it is
verified that 𝑝(𝑥2, 𝑦2)𝑝(𝑥1, 𝑦1) ≥ 𝑝(𝑥1, 𝑦2)𝑝(𝑥2, 𝑦1). Let us note that, for such
𝑝, if at each point (𝑥, 𝑦), the second order partial derivative 𝜕2

𝜕𝑥𝜕𝑦
log(𝑝(𝑥, 𝑦))

exists, then 𝑝 is 𝑇𝑃2 if and only if 𝜕2

𝜕𝑥𝜕𝑦
log(𝑝(𝑥, 𝑦)) ≥ 0 (Karlin (1967)).

Pellerey and Navarro (2021) provide the following results.

Proposition 2 (Pellerey and Navarro (2021))

Let the vector (𝑋1, 𝑋2) have a joint density 𝑓 . Then, the following conditions
are equivalent:

1. The function 𝑓 (𝑥, 𝑠 − 𝑥) is 𝑇𝑃2 in (𝑥, 𝑠);
2. [𝑋1 | 𝑆 = 𝑠1] ≤𝑙𝑟 [𝑋1 | 𝑆 = 𝑠2] whenever 𝑠1 ≤ 𝑠2;
3. [𝑆 | 𝑋1 = 𝑥1] ≤𝑙𝑟 [𝑆 | 𝑋1 = 𝑥2] whenever 𝑥1 ≤ 𝑥2.

Proposition 3 (Pellerey and Navarro (2021))

Let the vector (𝑋1, 𝑋2) have a joint density 𝑓 . If 𝑓 (𝑥1, 𝑥2) is 𝑇𝑃2 in (𝑥1, 𝑥2)
and logconcave in 𝑥2 (respectively, 𝑥1) for every 𝑥1 (respectively, 𝑥2), then
𝑓 (𝑥, 𝑠 − 𝑥) ( 𝑓 (𝑠 − 𝑥, 𝑥)) is 𝑇𝑃2 in (𝑥, 𝑠).

Let X = (𝑋1, 𝑋2) be a random vector with joint density 𝑓 and survival
copula 𝐶. Let 𝑐 the second mixed partial derivative of 𝐶 (here 𝑐 is referred
to as the density of the survival copula 𝐶 ). As pointed out in Example 2.4
in Pellerey and Navarro (2021), 𝑓 (𝑥1, 𝑥2) is 𝑇𝑃2 in (𝑥1, 𝑥2) if and only if
𝑐(𝑢1, 𝑢2) is 𝑇𝑃2. However, the condition 𝑐(𝑢, 𝑧 − 𝑢) is 𝑇𝑃2 in (𝑢, 𝑧) does not
imply that 𝑓 (𝑥, 𝑠 − 𝑥) is 𝑇𝑃2 in (𝑥, 𝑠). This suggests to find conditions on 𝑐

and the marginals implying that 𝑓 (𝑥1, 𝑥2) is 𝑇𝑃2 in (𝑥1, 𝑥2). This is what we
do in Section 2 below. In Section 3, we provide a list of copulas that, when
joined to exponential or uniform marginals, imply that 𝑓 (𝑥, 𝑠 − 𝑥) is 𝑇𝑃2 in
(𝑥, 𝑠). The final Section 4, instead, is devoted to an application of Proposition
3 in the context of generalized order statistics (GOSs).

2 Efron’s marginal monotonocity in terms of the copula

Given a random vector (𝑋1, 𝑋2) with exponential marginals and joint density
𝑓 , our first result provides a conditions on the density of the corresponding
survival copula 𝑐 that ensures that 𝑓 (𝑥, 𝑦 − 𝑥) is 𝑇𝑃2 in (𝑥, 𝑦). Note that
𝑓 (𝑥1, 𝑥2) = 𝑐(𝐹1 (𝑥1), 𝐹2 (𝑥2)) 𝑓1 (𝑥1) 𝑓2 (𝑥2).

Proposition 4 Let the vector (𝑋1, 𝑋2), with 𝑋1, 𝑋2 ∼ exp(𝜆) have joint
density 𝑓 and density of the survival copula 𝑐. If 𝑐 (𝑢, 𝑣/𝑢) is 𝑇𝑃2 in (𝑢, 𝑣),
for all 0 < 𝑢 < 1, 0 < 𝑣 < 𝑢, then 𝑓 (𝑥, 𝑦 − 𝑥) is 𝑇𝑃2 in (𝑥, 𝑦).
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Proof The function 𝑓 (𝑥, 𝑠 − 𝑥) is 𝑇𝑃2 in (𝑥, 𝑠) if

𝑓 (𝑥, 𝑠2 − 𝑥)
𝑓 (𝑥, 𝑠1 − 𝑥) =

𝑐(𝐹1 (𝑥), 𝐹2 (𝑠2 − 𝑥)) 𝑓1 (𝑥) 𝑓2 (𝑠2 − 𝑥)
𝑐(𝐹1 (𝑥), 𝐹2 (𝑠1 − 𝑥)) 𝑓1 (𝑥) 𝑓2 (𝑠1 − 𝑥)

=
𝑐(𝐹1 (𝑥), 𝐹2 (𝑠2)/𝐹2 (𝑥))
𝑐(𝐹1 (𝑥), 𝐹2 (𝑠1)/𝐹2 (𝑥))

is increasing in 𝑥 for all 𝑠1 < 𝑠2. The monotonicity follows from the fact that

𝐹2 (𝑠 − 𝑥) =
𝐹2 (𝑠)
𝐹2 (𝑥)

, 𝑓2 (𝑠2−𝑥)
𝑓2 (𝑠1−𝑥) is constant in 𝑥 and 𝑐 (𝑢,𝑣1/𝑢)

𝑐 (𝑢,𝑣2/𝑢) is decreasing in 𝑢

for 𝑣1 < 𝑣2. This last condition is equivalent to say that 𝑐 (𝑢, 𝑣/𝑢) is 𝑇𝑃2 in
(𝑢, 𝑣) , for all 0 < 𝑢 < 1, 0 < 𝑣 < 𝑢. �

In Proposition 3, the joint density function 𝑓 (𝑥1, 𝑥2) is required to be
logconcave in 𝑥2 for every 𝑥1, which is equivalent to say that {𝑋2 |𝑋1 = 𝑥1} is
𝐼𝐿𝑅 for all 𝑥1. This condition can be weakened when it is expressed in terms
of the density of the survival copula whenever the marginal 𝑋2 is exponential.

Proposition 5 Let (𝑋1, 𝑋2) be a random vector with joint density 𝑓 and
density of the survival copula 𝑐. Let 𝑋2 ∼ exp(𝜆). If 𝑐 (𝑢, 𝑣) is 𝑇𝑃2 in (𝑢, 𝑣)
and {𝑈2 |𝑈1 = 𝑢1} is 𝐼𝑃𝐿𝑅, where 𝑈𝑖 ∼ 𝐹𝑖 (𝑋𝑖) for 𝑖 = 1, 2 for all 𝑢1, then
𝑓 (𝑥, 𝑦 − 𝑥) is 𝑇𝑃2 in (𝑥, 𝑦).

Proof Since 𝑐 (𝑢, 𝑣) is 𝑇𝑃2 in (𝑥1, 𝑥2), then 𝑓 (𝑥1, 𝑥2) is 𝑇𝑃2 in (𝑥1, 𝑥2). By
Proposition 3, it remains to see that 𝑓 (𝑥1, 𝑥2) is logconcave in 𝑥2 for all 𝑥1.
This is the same as proving that

𝑓 (𝑥1, 𝑥2 + 𝑦)
𝑓 (𝑥1, 𝑥2)

=
𝑐(𝐹1 (𝑥1), 𝐹2 (𝑥2 + 𝑦)) 𝑓2 (𝑥2 + 𝑦)

𝑐(𝐹1 (𝑥1), 𝐹2 (𝑥2)) 𝑓2 (𝑥2)
=

𝑐(𝐹1 (𝑥1), 𝑒−𝜆𝑦𝐹2 (𝑥2))
𝑐(𝐹1 (𝑥1), 𝐹2 (𝑥2))

is decreasing in 𝑥2 for all 𝑥1 and 𝑦 ≥ 0, where we have used that 𝑋2 ∼
exp(𝜆). Taking into account that 𝑓{𝑈2 |𝑈1=𝑣 } (𝑢) = 𝑐(𝑣, 𝑢), this follows from
the fact that {𝑈2 |𝑈1 = 𝑢1} is 𝐼𝑃𝐿𝑅 for all 𝑢1, which is equivalent to say that
𝑓{𝑈2 |𝑈1=𝑣 } (𝛼𝑢)/ 𝑓{𝑈2 |𝑈1=𝑣 } (𝑢) increases in 𝑢 for all 𝑣 and any 0 < 𝛼 ≤ 1. �

It should be noted that the sufficient conditions in Proposition 4 neither
imply, nor are implied, by the conditions in Proposition 5. For example, if
𝑋1, 𝑋2 ∼ exp(𝜆) and 𝐶 is the Ali-Mikhail-Haq copula with parameter 𝜃 ≤ 1
(see Subsection 3.3) then (𝑋1, 𝑋2) satisfies the conditions on Proposition 4
but not those in Proposition 5. Similarly, if 𝑋2 ∼ exp(𝜆), 𝑋1 � exp(𝜆) and 𝐶

is a Clayton copula (see Subsection 3.2) then (𝑋1, 𝑋2) satisfies the conditions
on Proposition 5 but not those in Proposition 4.

3 Examples of copulas

Given a copula 𝐶 (joint distribution function of (𝑈1,𝑈2)) with density 𝑐, we
consider the following properties:

� (P1) 𝑐(𝑢, 𝑠 − 𝑢) is 𝑇𝑃2 in (𝑢, 𝑠) for 0 < 𝑢 < 1, 𝑢 < 𝑠 < 1 + 𝑢.
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� (P2) 𝑐(𝑢, 𝑣) is 𝑇𝑃2 in (𝑢, 𝑣) for 0 < 𝑢 < 1, 0 < 𝑣 < 1.
� (P3) 𝑐(𝑢, 𝑣) is logconcave in 𝑣 for all 𝑢.
� (P4) 𝑐(𝑢, 𝑣/𝑢) is 𝑇𝑃2 in (𝑢, 𝑣) for 0 < 𝑢 < 1, 0 < 𝑣 < 𝑢.
� (P5) 𝑣𝜂{𝑈2 |𝑈1=𝑢 } (𝑣) = −(𝑣 𝜕

𝜕𝑣
𝑐(𝑢, 𝑣))/𝑐(𝑢, 𝑣) increases in 𝑣 for all 𝑢.

Given X = (𝑋1, 𝑋2) with copula 𝐶 and survival copula 𝐶, if any of these
conditions hold:

� 𝑋1, 𝑋2 ∼ 𝑈 (0, 1) and 𝐶 verifies (P1) (Proposition 2),
� 𝑋1, 𝑋2 ∼ 𝑈 (0, 1) and 𝐶 verifies (P2) and (P3) (Proposition 3),
� 𝑋1, 𝑋2 ∼ exp(𝜆) and 𝐶 verifies (P4) (Proposition 4),
� 𝑋1 ∼ exp(𝜆) and 𝐶 verifies (P2) and (P5) (Proposition 5),

then 𝑓 (𝑥, 𝑦 − 𝑥) is 𝑇𝑃2 in (𝑥, 𝑦). Next, we provide examples of parametric
families of copulas satisfying the property (P2) that also satisfy some of the
other properties. Note that this is not the general case, for example, copulas
(4.1.4) (Gumbel-Hougaard copula) and (4.1.2) in Nelsen (2007) satisfy (P2)
but not (P1), (P3) (P4) or (P5).

3.1 Farlie-Gumbel-Morgenstern copula

Let consider the copula given by 𝐶𝜃 (𝑢, 𝑣) = 𝑢𝑣(1 + 𝜃 (1 − 𝑢) (1 − 𝑣)), for 𝜃 ∈
[−1, 1], 𝑢, 𝑣 ∈ [0, 1]. The copula density 𝑐𝜃 (𝑢, 𝑣) = 1+𝜃 (1−2𝑣) (1−2𝑢) is 𝑇𝑃2 for
𝜃 ∈ [0, 1], thus (P2) holds and, for such values, 𝑑

𝑑𝑠
𝑑
𝑑𝑢

(log(𝑐𝜃 (𝑢, 𝑠−𝑢)) ≥ 0 for

all 0 < 𝑢 < 1, 𝑢 < 𝑠 < 𝑢 + 1, and (P1) holds. Moreover, 𝑑2

𝑑𝑣2
(log(𝑐𝜃 (𝑢, 𝑣)) ≤ 0,

therefore 𝑐𝜃 verifies (P3). Analogously, as 𝑑
𝑑𝑣

𝑑
𝑑𝑢

(log(𝑐𝜃 (𝑢, 𝑣/𝑢))) ≥ 0 for all

𝜃 ∈ [0, 1], (P4) is verified for such values. Finally, as 𝑑
𝑑𝑣

(
−𝑣 𝜕

𝜕𝑣
𝑐 (𝑢,𝑣)

𝑐 (𝑢,𝑣)

)
≥ 0 if

and only if (1 − 2𝑢)𝜃 ≥ 0, (P5) does not hold for all 𝑢 and 𝜃 ≠ 0.

3.2 Clayton copula

Let consider the copula 1 in Table 4.1 in Nelsen (2007), given by 𝐶𝜃 (𝑢, 𝑣) =
(𝑢−𝜃 +𝑣−𝜃 −1)−1/𝜃 for 𝜃 > −1 with 𝜃 ≠ 0 (note that, when 𝜃 tends to zero, this
is the independence copula, which trivially verifies (P1)-(P5), as the density

is 1). The density is given by 𝑐𝜃 (𝑢, 𝑣) = 𝑢−1−𝜃𝑣−1−𝜃
(
𝑢−𝜃 + 𝑣−𝜃 − 1

)−2− 1
𝜃 (1+𝜃).

It is easy to see that, for 𝜃 > 0, (P2) holds, but (P1) does not. Consequently,
(P3) also fails to be satisfied (because (P2) and (P3) imply (P1)). It can

be easily computed that both 𝑑
𝑑𝑣

𝑑
𝑑𝑢

(log(𝑐𝜃 (𝑢, 𝑣/𝑢))) and 𝑑
𝑑𝑣

(
−𝑣 𝜕

𝜕𝑣
𝑐 (𝑢,𝑣)

𝑐 (𝑢,𝑣)

)
are

positive for all 𝜃 > 0, so, for such values, (P4) and (P5) holds. Here, we
can see an example of the fact that 𝐼𝑃𝐿𝑅 does not imply 𝐼𝐿𝑅. Considering
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a vector (𝑈1,𝑈2) with a Clayton copula, there are values of 𝑢1 for which
{𝑈2 |𝑈1 = 𝑢1} is 𝐼𝑃𝐿𝑅 but it is not 𝐼𝐿𝑅.

3.3 Ali-Mikhail-Haq copula

Let us now consider the copula 3 in Table 4.1 in Nelsen (2007), given by
𝐶𝜃 (𝑢, 𝑣) = 𝑢𝑣

(1−𝜃 (1−𝑢) (1−𝑣)) for 𝜃 ∈ [−1, 1). The density of the copula, given by

𝑐𝜃 (𝑢, 𝑣) =
1 + 𝜃 (𝑢 + 𝑣 + 𝑢𝑣 − 2 + (1 − 𝑢) (1 − 𝑣)𝜃)

(1 − (1 − 𝑢) (1 − 𝑣)𝜃)3

is 𝑇𝑃2 for 𝜃 ∈ [0, 1). Computing 𝑑
𝑑𝑠

𝑑
𝑑𝑢

(log(𝑐𝜃 (𝑢, 𝑠−𝑢))) and 𝑑2

𝑑𝑣2
(log(𝑐𝜃 (𝑢, 𝑣))),

we see that, for all 𝜃 ∈ [0, 1), 𝑐(𝑢, 𝑠 − 𝑢) is 𝑇𝑃2 in (𝑢, 𝑠) but 𝑐(𝑢, 𝑣) is not
logconcave in 𝑣 for all 𝑢. It can be also shown that 𝑑

𝑑𝑣
𝑑
𝑑𝑢

(log(𝑐𝜃 (𝑢, 𝑣/𝑢))) is
positive for all 0 < 𝑢 ≤ 1 and 0 ≤ 𝑣 ≤ 𝑢 if and only if 𝜃 ∈ [0, 1/2] (which
means that (P4) holds whenever 𝜃 ∈ [0, 1/2]). Finally, (P5) does not hold.

3.4 Frank copula

Given the copula 𝐶𝜃 (𝑢, 𝑣) = − 1
𝜃
log

(
1 + (𝑒−𝑢𝜃−1) (𝑒−𝑣 𝜃−1)

𝑒−𝜃−1

)
, for 𝜃 ∈ R \ {0}

(copula 5 in Table 4.1 in Nelsen (2007)), the density is given by

𝑐𝜃 (𝑢, 𝑣) =
𝑒 (1+𝑢+𝑣) 𝜃

(
𝑒𝜃 − 1

)
𝜃(

𝑒 (𝑢+𝑣) 𝜃 − 𝑒𝜃
(
𝑒𝑢𝜃 + 𝑒𝑣 𝜃 − 1

) )2 .
This function is 𝑇𝑃2 in (𝑢, 𝑣) if 𝜃 ≥ 0 and, since 𝑑2

𝑑𝑣2
(log(𝑐𝜃 (𝑢, 𝑣))) < 0

for all 𝜃 ≠ 0, (P3) and (P1) hold for 𝜃 ≥ 0. It can be verified that
𝑑
𝑑𝑣

𝑑
𝑑𝑢

(log(𝑐𝜃 (𝑢, 𝑣/𝑢))) is positive (and therefore (P4) holds) for all 0 < 𝑢 ≤ 1
and 0 ≤ 𝑣 ≤ 𝑢 if and only if 𝜃 ∈ [0, 1]. Property (P5) does not hold whatever 𝜃.

The results of this section can be summarized in Table 1:

P1 P2 P3 P4 P5

FGM copula 𝜃 ∈ [0, 1] 𝜃 ∈ [0, 1] 𝜃 ∈ [−1, 1] 𝜃 ∈ [0, 1]
Clayton copula 𝜃 > 0 𝜃 > 0 𝜃 > 0
AMH copula 𝜃 ∈ [0, 1) 𝜃 ∈ [0, 1) 𝜃 ∈ [0, 1

2 ]
Frank copula 𝜃 > 0 𝜃 > 0 𝜃 ∈ R \ {0} 𝜃 ∈ (0, 1]

Table 1 Values of the parameters under which properties P1 to P5 are satisfied.
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4 Other examples: Generalized Order Statistics (GOSs)

In this Section, we aim to provide further examples of parametric families
where Proposition 3 can be applied. With this purpose, we introduce the
notion of generalized order statistics (GOSs) (see Kamps (1995)).

Definition 1 Let 𝑛 ∈ N, 𝑘 ≥ 1, 𝑚1, . . . , 𝑚𝑛−1 ∈ R, 𝑀𝑟 =
∑𝑛−1

𝑗=𝑟 𝑚 𝑗 , 1 ≤ 𝑟 ≤ 𝑛−1,
be parameters such that 𝛾𝑟 = 𝑘 + 𝑛 − 𝑟 + 𝑀𝑟 ≥ 1 for all 𝑟 ∈ {1, . . . , 𝑛 − 1},
and let 𝑚̃ = (𝑚1, . . . , 𝑚𝑛−1) if 𝑛 ≥ 2 (𝑚̃ ∈ R arbitrary, if 𝑛 = 1). If the random
variables 𝑈(𝑟 ,𝑛,𝑚̃,𝑘) , 𝑟 = 1, . . . , 𝑛, possess a joint density of the form

ℎ (𝑢1, . . . , 𝑢𝑛) = 𝑘

(
𝑛−1∏
𝑗=1

𝛾 𝑗

) (
𝑛−1∏
𝑗=1

(
1 − 𝑢 𝑗

)𝑚 𝑗

)
(1 − 𝑢𝑛)𝑘−1

defined on 0 ≤ 𝑢1 ≤ ... ≤ 𝑢𝑛 ≤ 1, then they are called GOSs. For a given
distribution function 𝐹, the random variables 𝑋(𝑟 ,𝑛,𝑚̃,𝑘) = 𝐹−1 (

𝑈(𝑟 ,𝑛,𝑚̃,𝑘)
)
, for

𝑟 = 1, ..𝑛, are called the GOSs based on 𝐹.

Several models of ordered random variables are included in this model:

� Considering 𝑚𝑖 = 0 for all 𝑖 = 1, . . . , 𝑛 − 1 and 𝑘 = 1, we get the order
statistics from a distribution 𝐹.

� Taking 𝑚𝑖 = −1 for all 𝑖 = 1, . . . , 𝑛 − 1 and 𝑘 = 1, we get the first 𝑛 record
values from a sequence of random variables with distribution 𝐹 (or the
first 𝑛 epoch times of a nonhomogeneous Poisson process).

� A generalization of the previous model is the case in which 𝑘 ∈ 𝑁, resulting
in the so-called 𝑘-records.

� GOS also includes some other models of interest such as sequential order
statistics and progressively type-II censored order statistics.

Proposition 6 Let 𝐹 be an absolutely continuous distribution function with
logconcave density 𝑓 . Let (𝑋(𝑖,𝑛,𝑚̃,𝑘) , 𝑋( 𝑗 ,𝑛,𝑚̃,𝑘) ), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, a bivariate
random vector of GOSs from 𝐹. Assume that any of the following conditions
is satisfied:

(a) 𝑘 ≥ 1, 𝑚𝑖 ≥ 0.
(b) 𝑘 > 0, 𝑚𝑖 ≥ −1 and the failure rate function 𝜆(·) of 𝐹 is log-concave.

Then, {𝑋(𝑖,𝑛,𝑚̃,𝑘) |𝑋(𝑖,𝑛,𝑚̃,𝑘) +𝑋( 𝑗 ,𝑛,𝑚̃,𝑘) = 𝑡} increases in 𝑡 in the likelihood ratio
order.

Proof It is well-known that any random vector of GOS is 𝑀𝑇𝑃2 (Belzunce et
al. (2005)). Then, the bivariate vector (𝑋(𝑖,𝑛,𝑚̃,𝑘) , 𝑋( 𝑗 ,𝑛,𝑚̃,𝑘) ), 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, is
𝑇𝑃2. In order to obtain the result, by Proposition 2.4 in Pellerey and Navarro
(2021), it is sufficient to prove that {𝑋( 𝑗 ,𝑛,𝑚̃,𝑘) |𝑋(𝑖,𝑛,𝑚̃,𝑘) = 𝑡} has a logconcave
density function (or it is ILR). It is known that

{𝑋( 𝑗 ,𝑛,𝑚̃,𝑘) | 𝑋(𝑖,𝑛,𝑚̃,𝑘) = 𝑡} 'st {𝑋( 𝑗−𝑖,𝑛−𝑖,𝑚̃′,𝑘) | 𝑋(1,𝑛−𝑟+1,𝑚̃′,𝑘) > 𝑡},



8

where 𝑚̃′ =
(
𝑚′

1, . . . , 𝑚
′
𝑛−𝑟

)
is such that 𝑚′

𝑗
= 𝑚𝑛− 𝑗 for 𝑗 = 1, . . . , 𝑛 − 𝑟. If

condition (a) or (b) holds, then 𝑋( 𝑗−𝑖,𝑛−𝑖,𝑚̃′,𝑘) has a logconcave density (Chen
et al. (2009)) and it is easy to see that logconcavity is preserved by right
truncations, that is, {𝑋( 𝑗−𝑖,𝑛−𝑖,𝑚̃′,𝑘) | 𝑋(1,𝑛−𝑟+1,𝑚̃′,𝑘) > 𝑡} has also a logconcave
density and the assertion follows. �

In particular:

� If 𝑓 is logconcave and 𝑋𝑖:𝑛, 𝑋 𝑗:𝑛 are two order statistics with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

then, {𝑋𝑖:𝑛 |𝑋𝑖:𝑛+𝑋 𝑗:𝑛 = 𝑠} increases in 𝑠 in the 𝑙𝑟-ratio order. In particular,
it holds for {min(𝑋1, 𝑋2) |𝑋1 + 𝑋2 = 𝑠}. It can be also checked that, when
𝑛 = 2, {max(𝑋1, 𝑋2) |𝑋1 + 𝑋2 = 𝑠} increases in 𝑠 in the 𝑙𝑟-ratio order.

� If 𝑋𝐿𝑛
, 𝑋𝐿𝑚

, 𝑛 < 𝑚 are two record values of 𝐹 and 𝑓 and the failure rate
function 𝜆(𝑡) are both logconcave, then {𝑋𝐿𝑛

|𝑋𝐿𝑛
+ 𝑋𝐿𝑚

= 𝑠} increases in
𝑠 in the likelihood ratio order.

� If 𝑋𝐿𝑘
𝑛
, 𝑋𝐿𝑘

𝑚
, 𝑛 < 𝑚 are two 𝑘-record values of 𝐹, and 𝑓 (.) and 𝜆(.) are both

logconcave, then {𝑋𝐿𝑘
𝑛
|𝑋𝐿𝑘

𝑛
+ 𝑋𝐿𝑘

𝑚
= 𝑠} increases in 𝑠 in the 𝑙𝑟-ratio order.
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Saumard, A. and Wellner, J. A. (1965). Efron’s monotonicity property for
measures on R2. J. Multivar. Anal 166,212–224

Shaked, M. and Shanthikumar, J.G. (2007) Stochastic orders. Springer


