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A minimizing problem of distances
between random variables with
proportional reversed hazard rate
functions.

Abstract Let 𝑋 be a random variable with distribution function 𝐹 and let
F𝑋 be the family of proportional reversed hazard rate distribution functions
associated to 𝐹. Given the random vector (𝑋,𝑌 ) with copula 𝐶 and respective
marginal distribution functions 𝐹 and 𝐺 ∈ F𝑋 , we obtain sufficient conditions
for the existence of 𝐺 ∈ F𝑋 that minimizes 𝐸𝐶 |𝑋 − 𝑌 |.

1 Introduction

Given a random variable 𝑋, several location measures can be defined as the
argument that minimizes a variability functional of 𝑋. Examples of such
measures are:

� The expectation, 𝜇𝑋 , which can be defined as the value that minimizes
the mean square error of 𝑋,

𝜇𝑋 = argmin𝑡 ∈R 𝐸 [(𝑋 − 𝑡)2] .

� The median, 𝑀𝑒𝑋 , defined as the value that minimizes the mean absolute
deviation:

𝑀𝑒𝑋 = argmin𝑡 ∈R 𝐸 |𝑋 − 𝑡 |
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� The 𝛼-expectile, 𝜌𝛼 (𝑋), which can be defined as the value that minimizes
the following linear combination of expected square excesses (Krätschmer
and Zähle (2017)):

𝜌𝛼 (𝑋) = argmin𝑡 ∈R

{
𝛼𝐸

[ (
(𝑋 − 𝑡)+

)2] + (1 − 𝛼)𝐸
[ (
(𝑡 − 𝑋)+

)2]}
� Analogously, the 𝛼-quantiles, 𝑞𝛼 (𝑋), that can be defined in a similar way:

𝑞𝛼 (𝑋) = argmin𝑡 ∈R
{
𝛼𝐸

[
(𝑋 − 𝑡)+

]
+ (1 − 𝛼)𝐸

[
(𝑡 − 𝑋)+

]}
Therefore, it is natural to wonder whether we can proceed analogously

with a different variability functional of 𝑋, that is, if the functional can be
minimized in order to have a measure that gives information about 𝑋.

Let us consider a random variable 𝑋 with strictly increasing distribution
function 𝐹 and ℎ : [0, 1] → [0, 1], a strictly increasing distortion function,
that is, an strictly increasing function such that ℎ(0) = 0 and ℎ(1) = 1.
Throughout the paper, we will consider that all variables are absolutely
continuous and that all distribution functions and copulas are continuously
differentiable. If we now consider (𝑋,𝑌 ), a random vector with copula
𝐶 and marginal distribution functions 𝐹 and 𝐺 = ℎ(𝐹) respectively, in
Ortega-Jiménez et al. (2021) was shown that 𝜈(𝑋) = 𝐸𝐶 |𝑋 − 𝑌 |, where

𝐸𝐶 |𝑋 − 𝑌 | =
∫ ∞

−∞
(𝐹 (𝑥) + 𝐺 (𝑥) − 2 𝐶 (𝐹 (𝑥), 𝐺 (𝑥))) 𝑑𝑥, (1)

is a comonotonic additive measure of variability in the sense of Bickel and
Lehmann (1979), that is, it is a measure that satisfies the following properties:

(P0) Law invariance: if 𝑋 and 𝑌 have the same distribution, then 𝜈(𝑋) = 𝜈(𝑌 ).
(P1) Translation invariance: 𝜈(𝑋 + 𝑘) = 𝜈(𝑋) for all 𝑋 and all constant 𝑘.
(P2) Positive homogeneity: 𝜈(0) = 0 and 𝜈(𝜆𝑋) = 𝜆𝜈(𝑋) for all 𝑋 and all 𝜆 > 0.
(P3) Non-negativity: 𝜈(𝑋) ≥ 0 for all 𝑋, with 𝜈(𝑋) = 0 if 𝑋 is degenerated at

𝑐 ∈ R.
(P4) Consistency with dispersive order: if 𝑋 ≤𝑑𝑖𝑠𝑝 𝑌 , then 𝜈(𝑋) ≤ 𝜈(𝑌 ).
(P5) Comonotonic additivity: if 𝑋 and 𝑌 are comonotonic, then 𝜈(𝑋 + 𝑌 ) =

𝜈(𝑋) + 𝜈(𝑌 ).

Recall that, given two random variables 𝑋 and 𝑌 with distribution functions
𝐹 and 𝐺, respectively, we say that 𝑋 is smaller than 𝑌 in the dispersive order
(𝑋 ≤𝑑𝑖𝑠𝑝 𝑌) if 𝐹

−1 (𝑝) − 𝐹−1 (𝑞) ≤ 𝐺−1 (𝑝) − 𝐺−1 (𝑞) for all 0 ≤ 𝑞 < 𝑝 ≤ 1.

Let us consider the distortion given by the power function ℎ(𝑡) = 𝑡𝛼, 𝛼 >
0. This distortion function characterizes the proportional reversed hazard
rate (PRHR) model, which has interesting applications in insurance risk
(see Psarrakos and Sordo (2019)). A variable satisfies such a model if its

reversed hazard rate function (𝑟 (𝑡) =
𝑓 (𝑡)
𝐹 (𝑡) ) is proportional to the baseline
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reversed hazard rate function. Given a random variable 𝑋, we will denote
as F𝑋 = {𝑋𝛼 : 𝐹𝑋𝛼

(𝑥) = 𝐹 (𝑥)𝛼, 𝛼 > 0} the family of all random variables
that satisfy the PRHR model. The interest on considering such distortion
function lies in the importance of the PRHR model, which has applications in
various areas, such as statistics, reliability engineering, demography, physics
or forensic science. The interested reader may consult Gupta and Gupta
(2007) for an extensive list of further applications.

Following the approach that initialized the paper, we can now consider the
following problem. Fixed the copula 𝐶 and the marginal distribution function
𝐹, we study sufficient conditions for the existence of a distribution function
𝐺 of 𝑌 ∈ F𝑋 such that the distance (1) is minimal. The first false intuition
may suggest, at least when 𝑋 and 𝑌 have the same support, that the smallest
value of 𝐸𝐶 |𝑋 −𝑌 | is reached when 𝐹 = 𝐺, that is, when 𝑌 =𝑠𝑡 𝑋. This is not
necessarily true, as we can see in the following counterexample. Considering
𝐶 the independence copula and 𝑋 ∼ 𝑈 (0, 1), it is easy to see that, considering
any 𝛼 ∈ (1, 2), if 𝑌1 has a distribution function 𝐺 (𝑢) = 𝑢𝛼 for 𝑢 ∈ [0, 1] and
𝑌2 ∼ 𝑈 (0, 1), then 𝐸𝐼 |𝑋 − 𝑌1 | < 𝐸𝐼 |𝑋 − 𝑌2 |. The minimum is reached when
𝛼 =

√
2. It may even happen that there is not a minimizer 𝛼 for the function.

If we consider the independence copula and 𝑋 ∼ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 (𝑘, 1), we can see
that, for some values of 𝑘, the minimizer exists and for some others it does
not. For 𝑘 = 1 the minimum is reached in 𝛼 = 0.390 and for 𝑘 = 1.3 is reached
in 𝛼 = 0.714. Although, it can be checked that, for example, for 𝑘 = 0.7 there
is not 𝛼 > 0 that minimizes such functional (Figure 1).

Fig. 1 𝐸𝐼 |𝑋 −𝑋𝛼 | in terms of 𝛼 considering 𝑋 ∼ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 (𝑘, 1) with 𝑘 = 0.7 (green),
𝑘 = 1 (orange) and 𝑘 = 1.3 (blue).

The rest of the work is organized as follows. Section 2 contains preliminaries.
In Section 3, given a random variable 𝑋, a copula 𝐶 and the family of
variables that satisfy the PRHR model, F𝑋 , we obtain sufficient conditions
for the existence of 𝑌 ∗ ∈ F𝑋 that minimizes 𝐸𝐶 |𝑋 − 𝑌 | within all 𝑌 ∈ F𝑋 .
Finally, Section 4 includes examples of the result, both for existence and
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nonexistence of such minimizer. A second step in this research would be to
obtain analytically the minimizer 𝛼 and to provide a plausible interpretation.
Such work remains for future research.

2 Preliminaries

Let us consider a random vector 𝑿 = (𝑋,𝑌 ) with marginal distribution
functions 𝐹 and 𝐺 and joint distribution function 𝐾. Throughout the paper,
as mentioned in the introduction, we will consider 𝐾, 𝐹, 𝐺 continuously
differentiable. By the Sklar theorem, the joint distribution 𝐾 can be written
as 𝐾 (𝑥, 𝑦) = 𝐶 (𝐹 (𝑥), 𝐺 (𝑦)), where 𝐶 is the joint distribution function of the
vector-copula (𝐹 (𝑋) , 𝐺 (𝑌 )). Such 𝐶 is the copula (Nelsen (2007)) of the
vector 𝑿 and, under the given assumptions, it is unique and continuously
differentiable.

We need the following definitions. Here and throughout the paper, the
term “increasing” is used for “non-decreasing” and “decreasing” is used for
“non-increasing”.

Definition 1 Let 𝑿 = (𝑋,𝑌 ) be a random vector with copula 𝐶 and marginal
distribution functions 𝐹, 𝐺. 𝑋 is stochastically increasing in 𝑌 (𝑋 ↑𝑆𝐼 𝑌), if
𝑃 [𝑋 > 𝑥 | 𝑌 = 𝑦] increases in 𝑦 for all 𝑥. A vector is positively dependent
through stochastic ordering (𝑃𝐷𝑆) if 𝑋 ↑𝑆𝐼 𝑌 and 𝑌 ↑𝑆𝐼 𝑋.

As 𝑃 [𝑋 > 𝑥 | 𝑌 = 𝑦] = 1 − 𝜕2𝐶 (𝐹 (𝑥), 𝐺 (𝑦)), 𝑋 ↑𝑆𝐼 𝑌 if 𝜕2𝐶 (𝑢, 𝑣) decreases
in 𝑣 for all 𝑢. We will say that the copula 𝐶 is 𝑃𝐷𝑆 if the vector is 𝑃𝐷𝑆.

Definition 2 A random variable 𝑋 with distribution function 𝐹 and density
function 𝑓 is said to have the increasing failure rate property (𝐼𝐹𝑅) if its

hazard rate function 𝑟 (𝑥) = 𝑓 (𝑥)
1−𝐹 (𝑥) , is increasing.

3 Determining min{𝒀∈F𝑿 } 𝑬𝑪 |𝑿 − 𝒀 | with 𝑿 and 𝑪 fixed.

We will see that, under some conditions on the fixed copula, if the variable 𝑋
is 𝐼𝐹𝑅, then min{𝑌 ∈F𝑋 } 𝐸𝐶 |𝑋 −𝑌 | is reached. We need some results to prove
it. From now on, we will denote

𝜑0 (𝑢) = lim
𝑣→0

𝜕2𝐶 (𝑢, 𝑣) and 𝜑1 (𝑢) = lim
𝑣→1

𝜕2𝐶 (𝑢, 𝑣).

Such limits exist for all 𝑢 ∈ (0, 1). When the copula is 𝑃𝐷𝑆, 𝜕2𝐶 (𝑢, 𝑣)
decreases in 𝑣. Since

∫ 1

0
𝜕2𝐶 (𝑢, 𝑣)𝑑𝑣 = 𝑢, for all 𝑢 ∈ (0, 1), it follows that

that 𝜑0 (𝑢) ≥ 𝑢 ≥ 𝜑1 (𝑢).
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Lemma 1 Let 𝐶 be an absolutely continuous copula, and let 𝑋 be an IFR
random variable with 𝐹, 𝑓 and 𝑟 its respective distribution, density and hazard
rate functions. Assume that 𝑟 (𝐹−1 (0)) ≠ 0. Then:

lim
𝛼→0

∫ 1

0

1 − 2 𝜕2𝐶 (𝑢, 𝑢𝛼)
𝑓 (𝐹−1 (𝑢)) 𝑢𝛼 log(𝑢)𝑑𝑢 =

∫ 1

0

1 − 2𝜑1 (𝑢)
𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢, (2)

lim
𝛼→∞

∫ 1

0

1 − 2 𝜕2𝐶 (𝑢, 𝑢𝛼)
𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢 =

∫ 1

0

1 − 2𝜑0 (𝑢)
𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢. (3)

Proof If we define, for all 𝑢 ∈ (0, 1), 𝑛 ∈ N, 𝑔𝑛 (𝑢) = 1−2 𝜕2𝐶 (𝑢,𝑢1/𝑛)
𝑓 (𝐹−1 (𝑢)) 𝑢1/𝑛 log(𝑢),

𝑔(𝑢) = 1−2𝜑1 (𝑢)
𝑓 (𝐹−1 (𝑢)) log(𝑢), ℎ𝑛 (𝑢) =

1−2 𝜕2𝐶 (𝑢,𝑢𝑛)
𝑓 (𝐹−1 (𝑢)) log(𝑢), ℎ(𝑢) = 1−2𝜑0 (𝑢)

𝑓 (𝐹−1 (𝑢)) log(𝑢),
then, for all 𝑢 ∈ (0, 1) lim𝑛→∞ 𝑔𝑛 (𝑢) = 𝑔(𝑢) and lim𝑛→∞ ℎ𝑛 (𝑢) = ℎ(𝑢). As

|𝑔𝑛 (𝑢) | and |ℎ𝑛 (𝑢) | are bounded by − log(𝑢)
𝑓 (𝐹−1 (𝑢)) , by the Dominated Convergence

Theorem, if − log(𝑢)
𝑓 (𝐹−1 (𝑢)) is a positive integrable function, (2) and (3) hold. By

the Cauchy-Schwarz inequality and considering the hazard rate function 𝑟:

∫ 1

0

− log(𝑢)
𝑓 (𝐹−1 (𝑢)) 𝑑𝑢 =

∫ 1

0

− log(𝑢)
1 − 𝑢

1

𝑟 (𝐹−1 (𝑢)) 𝑑𝑢 ≤

≤
(∫ 1

0

(
− log(𝑢)
1 − 𝑢

)2
𝑑𝑢

)1/2 (∫ 1

0

(
1

𝑟 (𝐹−1 (𝑢))

)2
𝑑𝑢

)1/2
(4)

Note that
∫ 1

0

(
− log(𝑢)
1−𝑢

)2
𝑑𝑢 = 𝜋2

3 and, since 𝑟 increases and 𝑟 (𝐹−1 (0)) ≠ 0,
1

𝑟 (𝐹−1 (𝑢)) is bounded. Therefore, (4) is finite and the assertion follows. �

Lemma 2 Let 𝑋 be an IFR random variable with 𝐹, 𝑓 and 𝑟 its respective
distribution, density and hazard rate functions. Then:∫ 1

0

1 − 2𝑢

𝑓 (𝐹−1 (𝑢)) (− log(𝑢))𝑑𝑢 (5)

is strictly positive and finite.

Proof First we will show that

𝑏(𝑠) =
∫ 𝑠

0

(
1 − 2𝑢

1 − 𝑢 (− log(𝑢))
)
𝑑𝑢 > 0 for all 𝑠 ∈ [0, 1] .

Since 𝑏′(𝑠) = 1−2𝑠
1−𝑠 (− log(𝑠)), 𝑏(𝑠) increases if 𝑠 < 1/2 and decreases if 𝑠 > 1/2.

Moreover, 𝑏(0) = 0 and 𝑏(1) = 2−𝜋2/6 > 0, therefore 𝑏(𝑠) > 0 for all 𝑠 ∈ (0, 1] .
We can rewrite (5) in the following form:∫ 1

0

(
1 − 2𝑢

1 − 𝑢 (− log(𝑢))
)

1

𝑟 (𝐹−1 (𝑢)) 𝑑𝑢. (6)
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As 𝑋 is IFR, 1/𝑟 (𝐹−1 (𝑢)) decreases in 𝑢. By Lemma 4.7.1 in Barlow and
Proschan (1975), if, for all 𝑠 ∈ [0, 1], 𝑏(𝑠) =

∫ 𝑠

0

(
1−2𝑢
1−𝑢 (− log(𝑢))

)
𝑑𝑢 is positive,

then (6) is also positive. 𝑏′(𝑠) = 1−2𝑠
1−𝑠 (− log(𝑠)), so 𝑏(𝑠) increases if 𝑠 < 1/2

and decreases if 𝑠 > 1/2. As 𝑏(0) = 0 and 𝑏(1) = 2 − 𝜋2/6 > 0, 𝑏(𝑠) > 0 for
all 𝑠 ∈ (0, 1] and (6) is strictly positive. Also, by Cauchy-Schwarz inequality,
(6) is smaller or equal than:(∫ 1

0

(
1 − 2𝑢

1 − 𝑢 (− log(𝑢))
)2
𝑑𝑢

) 1
2 (∫ 1

0

1

𝑟 (𝐹−1 (𝑢))2 𝑑𝑢
) 1

2

.

Integrating by parts and considering the Spence’s function, given by 𝐿𝑖2 (𝑢) =∫ 𝑢

0
− log(𝑡)
1−𝑡 𝑑𝑡, we can see that

∫ 1

0

(
− log(𝑢) (1−2𝑢)

1−𝑢

)2
𝑑𝑢 ≤ 1 + 𝐿𝑖2 (1) < 3 (we

can obtain, computationally, that the value is approximately 1.2936). As we
already saw in Lemma 1 that the second element is finite, (5) is finite. �

We can now move on to the main result:

Proposition 1 Let 𝑋 be a random variable with 𝐹 and 𝑓 its respective
distribution and density function. Let us consider the family of random
variables F𝑋 described above. Let us consider the random vector X = (𝑋,𝑌 )
with 𝑃𝐷𝑆 copula 𝐶, such that 𝜕2𝐶 (𝑢, 𝑢𝑛) increases in 𝑢 for all 𝑛 ∈ N and
lim𝑢→1 𝜑1 (𝑢) = 1. If 𝑋 is 𝐼𝐹𝑅, there exists 𝛼0 > 0 such that 𝑋𝛼0 ∈ F𝑋 and:

𝐸𝐶 |𝑋 − 𝑋𝛼0 | ≤ 𝐸𝐶 |𝑋 − 𝑌 | for all 𝑌 ∈ F𝑋 .

Proof Given 𝑋, we can consider the function 𝛼 ↦→ 𝐸𝐶 |𝑋 − 𝑋𝛼 |, given by:∫ ∞

−∞
(𝐹 (𝑥) + 𝐹 (𝑥)𝛼 − 2 𝐶 (𝐹 (𝑥), 𝐹 (𝑥)𝛼)) 𝑑𝑥 =

∫ 1

0

𝑢 + 𝑢𝛼 − 2𝐶 (𝑢, 𝑢𝛼)
𝑓 (𝐹−1 (𝑢)) 𝑑𝑢

This is a continuous and derivable function for 𝛼 > 0, and

𝜕𝛼𝐸𝐶 |𝑋 − 𝑋𝛼 | =
∫ 1

0

1 − 2 𝜕2𝐶 (𝑢, 𝑢𝛼)
𝑓 (𝐹−1 (𝑢)) 𝑢𝛼 log(𝑢)𝑑𝑢

In order to see that there exists 𝛼0 that minimizes 𝐸𝐶 |𝑋 − 𝑋𝛼 |, it would be
enough to see that

1. lim𝛼1→0
(
𝜕𝛼𝐸𝐶 |𝑋 − 𝑋𝛼 |𝛼=𝛼1

)
< 0, and

2. lim𝛼2→+∞
(
𝜕𝛼𝐸𝐶 |𝑋 − 𝑋𝛼 |𝛼=𝛼2

)
≥ 0.

It would mean that there exists at least one value 𝛼0 > 0 where 𝐸𝐶 |𝑋 − 𝑋𝛼 |
attains a local minimum, and necessarily one of them will be the global one.

By Lemma 1, lim𝛼1→0
(
𝜕𝛼𝐸𝐶 |𝑋 − 𝑋𝛼 |𝛼=𝛼1

)
= −

(∫ 1

0
1−2𝜑1 (𝑢)
𝑓 (𝐹−1 (𝑢)) (− log(𝑢))𝑑𝑢

)
and, as 𝑢 ≥ 𝜑1 (𝑢), by Lemma 3,
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lim
𝛼1→0

(
𝜕𝛼𝐸𝐶 |𝑋 − 𝑋𝛼 |𝛼=𝛼1

)
≤ −

(∫ 1

0

1 − 2𝑢

𝑓 (𝐹−1 (𝑢)) (− log(𝑢))𝑑𝑢
)
< 0.

In order to study lim𝑛→∞ 𝜕𝛼𝐸𝐶 |𝑋 − 𝑋𝛼 |𝛼=𝑛, let us note that, as 𝜕2𝐶 (𝑢, 𝑢𝑛)
increases in 𝑢, for each 𝑛 there exists 𝑐𝑛 ∈ [0, 1) such that, for 𝑢 < 𝑐𝑛,
𝜕2𝐶 (𝑢, 𝑢𝑛) ≤ 1

2 and for 𝑢 > 𝑐𝑛, 𝜕2𝐶 (𝑢, 𝑢𝑛) ≥ 1
2 . Note also that lim𝑛→∞ 𝑐𝑛 < 1

(such limit exists due to the smoothness of 𝐶); otherwise, if lim𝑛→∞ 𝑐𝑛 =

1, then 𝜑1 (𝑢) ≤ 1
2 for all 𝑢 ∈ (0, 1), which contradicts the fact that

lim𝑢→1 𝜑1 (𝑢) = 1. Taking this into consideration, we have that, for all 𝑛 ∈ N:

𝜕𝛼𝐸𝐶 |𝑋 − 𝑋𝛼 |𝛼=𝑛 =

∫ 1

0

1 − 2 𝜕2𝐶 (𝑢, 𝑢𝑛)
𝑓 (𝐹−1 (𝑢)) 𝑢𝑛 log(𝑢)𝑑𝑢 =∫ 𝑐𝑛

0

1 − 2 𝜕2𝐶 (𝑢, 𝑢𝑛)
𝑓 (𝐹−1 (𝑢)) 𝑢𝑛 log(𝑢)𝑑𝑢 +

∫ 1

𝑐𝑛

1 − 2 𝜕2𝐶 (𝑢, 𝑢𝑛)
𝑓 (𝐹−1 (𝑢)) 𝑢𝑛 log(𝑢)𝑑𝑢 >

𝑐𝑛𝑛

∫ 𝑐𝑛

0

1 − 2 𝜕2𝐶 (𝑢, 𝑢𝑛)
𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢 + 𝑐𝑛𝑛

∫ 1

𝑐𝑛

1 − 2 𝜕2𝐶 (𝑢, 𝑢𝑛)
𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢 >

> (𝑐𝑛)𝑛
∫ 1

0

1 − 2𝜕2𝐶 (𝑢, 𝑢𝑛)
𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢 (7)

Taking limits in (7), lim𝑛→∞ (𝑐𝑛)𝑛 = 0 and by Lemma 2,

lim
𝛼→∞

∫ 1

0

1 − 2 𝜕2𝐶 (𝑢, 𝑢𝛼)
𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢 =

∫ 1

0

1 − 2𝜑0 (𝑢)
𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢

Note that, as 𝑢 ≤ 𝜑0 (𝑢) ≤ 1,∫ 1

0

1 − 2𝑢

𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢 ≤
∫ 1

0

1 − 2𝜑0 (𝑢)
𝑓 (𝐹−1 (𝑢)) log(𝑢)𝑑𝑢 ≤

∫ 1

0

− log(𝑢)
𝑓 (𝐹−1 (𝑢)) 𝑑𝑢

In Lemmas 2 and 3, we saw that both the bounds are finite, so we can

conclude that lim𝑛→∞
(
(𝑐𝑛)𝑛

∫ 1

0
1−2𝜕2𝐶 (𝑢,𝑢𝑛)

𝑓 (𝐹−1 (𝑢)) (log(𝑢))𝑑𝑢
)
= 0, and, therefore

lim𝛼2→+∞
(
𝜕𝛼𝐸𝐶 |𝑋 − 𝑋𝛼 |𝛼=𝛼2

)
≥ 0. This concludes the proof. �

4 Examples

Let us give some examples of 𝑃𝐷𝑆 copulas that satisfy both that 𝜕2𝐶 (𝑢, 𝑢𝑛)
increases in 𝑢 for all 𝑛 ∈ N and that lim𝑢→1 𝜑1 (𝑢) = 1:

1. Independence, 𝐶 (𝑢, 𝑣) = 𝑢𝑣.
2. Farlie-Gumbel-Morgenstern copula, 𝐶𝜃 (𝑢, 𝑣) = 𝑢𝑣(1 + 𝜃 (1 − 𝑢) (1 − 𝑣)), for
𝜃 ∈ [0, 1].

3. Frank copula, 𝐶𝜃 (𝑢, 𝑣) = − 1
𝜃
log

(
1 + (𝑒−𝑢𝜃−1) (𝑒−𝑣 𝜃−1)

𝑒−𝜃−1

)
, for 𝜃 > 0.

4. Copula 17 in Table 4.1 in Nelsen (2007), for 𝜃 > 1,



8

𝐶𝜃 (𝑢, 𝑣) =
(
1 +

[
(1 + 𝑢)−𝜃 − 1

] [
(1 + 𝑣)−𝜃 − 1

]
2−𝜃 − 1

)−1/𝜃
− 1

Note that there are many 𝑃𝐷𝑆 copulas that do not verify such conditions.
For example, there are copulas that satisfy lim𝑢→1 𝜑1 (𝑢) = 1 but do not verify
that 𝜕2𝐶 (𝑢, 𝑢𝑛) increases in 𝑢. Examples of this are the following copulas in
Table 4.1 in Nelsen (2007): 1 (Clayton), 3 (Ali-Mikhail-Haq), 13 and 19. Also,
it can be checked that, for some 𝑃𝐷𝑆 copulas, lim𝑢→1 𝜑1 (𝑢) = 0 and therefore,
do not satisfy conditions on Proposition 1. Examples of this are the Gaussian
copula for 𝜌 > 0 or the following copulas in Table 4.1 in Nelsen (2007): 2, 4
(Gumbel-Hougard), 6, 12 and 14.

Let us also recall the importance of the property 𝐼𝐹𝑅 in 𝑋. If (𝑋,𝑌 ) is
independent and 𝑋 ∼ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 (𝑘, 1), the IFR assumption fails for 𝑘 < 1.
Figure 1 shows that for 𝑘 = 0.7, 𝐸𝐼 |𝑋 − 𝑋𝛼 | increases in 𝛼 and the minimizer
does not exists.
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