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GROUND STATES FOR THE PLANAR NLSE WITH A POINT

DEFECT AS MINIMIZERS OF THE CONSTRAINED ENERGY

RICCARDO ADAMI, FILIPPO BONI, RAFFAELE CARLONE, AND LORENZO TENTARELLI

Abstract. We investigate the ground states for the focusing, subcritical nonlinear
Schrödinger equation with a point defect in dimension two, defined as the minimizers of
the energy functional at fixed mass. We prove that ground states exist for every positive
mass and show a logarithmic singularity at the defect. Moreover, up to a multiplication
by a constant phase, they are positive, radially symmetric, and decreasing along the ra-
dial direction. In order to overcome the obstacles arising from the uncommon structure
of the energy space, that complicates the application of standard rearrangement theory,
we move to the study of the minimizers of the action functional on the Nehari manifold
and then establish a connection with the original problem. A refinement of a classical
result on rearrangements is proved to obtain qualitative features of the ground states.

AMS Subject Classification: 35Q40, 35Q55, 35B07, 35B09, 35R99, 49J40, 49N15.

Keywords: standing waves, nonlinear Schrödinger, ground states, delta interaction, radially symmetric

solutions, rearrangements.

1. Introduction

The Nonlinear Schrödinger Equation (NLSE) has provided for almost fifty years the
effective description of the evolution of the wave function of a Bose-Einstein condensate
(BEC) in the Gross-Pitaevskii regime. More recently, interest has grown in the possibility
of modeling a BEC in the presence of defects or impurities by means of a NLSE with an
additional pointwise interaction located at the defect. If the spatial scale of the impurity
is supposed to be much smaller than the dispersion of the wave function, one can describe
it by means of a Dirac’s delta potential [29, 58, 59], obtaining the evolution equation

i
∂ψ

∂t
= (−∆ + αδ0)ψ + β|ψ|p−2ψ, α ∈ R \ {0}, β ∈ R \ {0}, p > 2, (1)

where the sign of β establishes the focusing or defocusing character of the equation, and,
correspondingly, the attractive or repulsive behaviour of the condensate.

A large part of the available results concerns the one-dimensional case, that models the
so-called cigar-shaped condensates. In particular, well-posedness was established in [12]
for the entire class of pointwise potentials, while existence and stability of standing waves
were shown in [40, 37, 50, 12, 13, 16, 11]. On the other hand, the well-posedness for the
two and three-dimensional models was established in [24]. Here we aim at discussing the
existence and the properties of ground states for the two-dimensional case in the focusing
regime, i.e. when β < 0.

In fact, equation (1) is just formal in dimension two. In order to state it rigorously,
one has to replace −∆ + αδ0 with a suitable self-adjoint operator Hα, acting on L2(R2)
(see Section 1.2 below). Such operator acts as the Laplacian far from the origin and its
domain contains functions that exhibit a logarithmic singularity at the origin, like the
fundamental solution of the Laplacian. As shown in [18], the operator Hα can be also
understood as the limit of a sequence of Schrödinger operators −∆ + Vε, where, for every
ε > 0, the potential Vε is regular, peaked, shrinking around the origin as ε → 0, and
suitably renormalized: this is expected from an operator that aims at embodying a delta
interaction at the origin.
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Incidentally, let us mention that the literature on the NLSE with a potential is much
wider than the corresponding one about NLSE with singular potentials: among the others,
we mention the seminal works [35, 57] and the papers [39, 38] for their results about
stability and instability of standing waves.

Moreover, the analysis of models with point interactions like (1) is strictly connected
with the study of singular solutions for elliptic equations, that traces back to the eighties
[22, 29, 41, 48, 52, 54, 55, 60]. In particular, it is well-known that solutions to the focusing
stationary NLSE

−∆u− |u|p−2u− ωu = 0,

that are regular in R2 \ {0}, vanish at infinity and are singular at 0, behave like the
fundamental solution of the Laplacian at the origin.

Finally, we highlight that all results and proofs contained in the present paper concern
the space dimension two. In [2] we extend the results to the three-dimensional case.

1.1. Future developments. In our intention the present paper is the first step of a
research programme devoted to the study of the standing waves of the NLSE on multi-
dimensional structures, that is domains consisting of pieces of different space dimensions
glued together through suitable boundary conditions. Such structures are known in the
literature as quantum hybrids and one of the simplest models is provided by a plane
attached to a half-line. It has been shown [27, 33, 34] that the conditions to be imposed
at the junction between the plane and the half-line prescribe a logarithmic singularity for
the restriction of the wave function to the plane, exactly like for the Schrödinger equation
with a point interaction. Therefore, the present work lays the foundations of our research
plan towards nonlinear quantum hybrids.

A further branch of the same research project concerns a different family of singular
perturbation of the Laplacian, called concentrated nonlinearities, namely

i
∂ψ

∂t
= (−∆ + τ |ψ|p−2δ0)ψ, τ ∈ R \ {0}, p > 2. (2)

The standard nonlinearity is no longer there, while a pointwise nonlinearity is present at
the defect. Specifically, this can be done by replacing the strength of the delta interaction
α by a nonlinear term that depends on the solution. As a particular choice, we took
τ |ψ|p−2. Such equation has been studied in one [10, 17, 28, 45, 46], two [6, 7, 26] and three
dimensions [8, 9, 14, 15]. It is, then, natural to investigate the dynamics of a system in the
presence of both types of nonlinearity. The one-dimensional case and the case of the star
graphs have been already addressed in [20] and [3], respectively, while high-dimensional
cases are still unexplored.

1.2. Setting and main results. Let us stress again that writing (1) is formal, as in two
dimensions the delta interaction is not a small perturbation of the Laplacian. It is well-
known that a rigorous definition can be given through the theory of self-adjoint extensions
of hermitian operators. Eventually, one finds [18] that there exists a family (Hα)α∈R of
self-adjoint operators that realizes a nontrivial point perturbation of −∆.

The domains of such operators are

D(Hα) :=
{
v ∈ L2(R2) : ∃q ∈ C, λ > 0 s.t.

v − qGλ =: φλ ∈ H2(R2) and φλ(0) = (α+ θλ) q
}
,

and the action reads

Hαv := −∆φλ − qλGλ, ∀v ∈ D(Hα).
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We denoted

θλ :=
log
(√

λ
2

)
+ γ

2π
, (3)

with γ denoting the Euler-Mascheroni constant, and Gλ the Green’s function of −∆ + λ,
namely

Gλ(x) :=
1

2π
F−1

[
(|k|2 + λ)−1

]
(x) =

K0(
√
λx)

2π
. (4)

Here, K0 denotes the modified Bessel function of the second kind of order 0, also known as
Macdonald function (see [1, Section 9.6]), and F denotes the unitary Fourier transform.
The function Gλ has a singular behaviour at the origin, namely

Gλ(x) = − log |x|
2π

+ o(log |x|), x→ 0

that prevents Gλ from belonging to H1(R2).
Functions in D(Hα) consist then of a regular part φλ, on which the operator acts

as the standard Laplacian, and a singular part qGλ, on which the operator acts as the
multiplication by −λ. The two components are connected by the boundary condition
φλ(0) = (α+ θλ) q. The strength q of the singular part is called the charge. We highlight
that λ is a dumb parameter as it does not affect neither the definition of Hα nor the charge
q (see Remark 2.1).

Finally, we recall that the spectrum of Hα is given by

σ(Hα) = {`α}∪ [0,+∞), with `α := −4e−4πα−2γ < 0 sole eigenvalue for any α ∈ R. (5)

The rigorous form of the focusing NLSE with a pointwise impurity (δ-NLSE) is therefore

i
∂ψ

∂t
= Hαψ − |ψ|p−2ψ, α ∈ R, p > 2. (6)

As proven in [24], the flow generated by (6) preserves the mass.

Remark 1.1. In getting (6) from (1), we fixed β = −1. No generality is lost since, given

any solution ψ of (6), then ψβ := (−β)
− 1
p−2ψ solves

i
∂ψβ
∂t

= Hαψβ + β|ψβ|p−2ψβ, α ∈ R, β < 0.

In doing this, many relevant thresholds of the equation could a priori be affected, but this
is not actually the case since no threshold appears in the main results of the paper.

Standing waves are solutions to (6) of the form ψ = eiωtu(x), with ω ∈ R. An easy
computation shows that ψ is a standing wave for (6) whenever u is a bound state, i.e.

u ∈ D(Hα), (7)

Hαu+ ωu− |u|p−2u = 0. (8)

Among all the bound states, we focus on ground states. The proof that a ground state
satisfies (7) and (8) is straightforward and is reported in Appendix A.

In order to give a precise definition of the ground states of (8), we first introduce the
quadratic form associated with Hα, which has domain

D :=
{
v ∈ L2(R2) : ∃q ∈ C, λ > 0 s.t. v − qGλ =: φλ ∈ H1(R2)

}
, (9)

and action

Q(v) := ‖∇φλ‖22 + λ
(
‖φλ‖22 − ‖v‖22

)
+ (α+ θλ) |q|2, ∀v ∈ D, (10)

where we denoted by 〈·, ·〉 the hermitian product in L2(R2) and by ‖ · ‖p the usual norm
in Lp(R2). As (10) is the quadratic form of the self-adjoint operator Hα, it is independent
of the choice of λ. Notice that, as expected when passing from operator to quadratic
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form, functions in D have a rougher regular part than functions in D(Hα) (from H2(R2)
to H1(R2)), and that in D there is no boundary condition linking the regular and the
singular part. We observe that Q(v) = 〈v,Hαv〉, whenever u ∈ D(Hα).

Let us introduce the main object of our study, the energy functional associated with
the δ-NLSE, which is another quantity conserved by the flow generated by (6) ([24]).

Definition 1.2. Given α ∈ R and p > 2, the δ-NLS energy is the functional E : D → R
defined by

E(v) :=
1

2
Q(v)− 1

p
‖v‖pp

=
1

2
‖∇φλ‖22 +

λ

2

(
‖φλ‖22 − ‖v‖22

)
+

(α+ θλ)

2
|q|2 − 1

p
‖v‖pp. (11)

Remark 1.3. As a peculiar feature of point interactions in dimensions two and three, the
energy space D is strictly larger than H1. Furthermore, if v belongs to H1, i.e. it has no
charge, then its energy reduces to the standard NLS energy defined by

E0(v) :=
1

2
‖∇v‖22 −

1

p
‖v‖pp,

so that the δ-NLS energy is an extension of the NLS energy.

We can now give the following fundamental definition.

Definition 1.4. Given µ > 0, a function u belonging to the space

Dµ := {v ∈ D : ‖v‖22 = µ}.
and satisfying

E(u) = inf
v∈Dµ

E(v) =: E(µ),

is a ground state at mass µ for the NLSE with a point defect.

Thus, a ground state is a minimizer of the energy constrained to a submanifold of
constant mass µ. It turns out that the whole set of ground states at mass µ is orbitally
stable for any µ > 0: the result is proven by adapting the techniques introduced in [31]
and is reported in Appendix C.

We can now state the main result of the paper.

Theorem 1.5 (δ-NLS ground states). Let p ∈ (2, 4) and α ∈ R. Then, for every µ > 0,

(i) there exists a ground state for the δ-NLS at mass µ;
(ii) if, fixed λ > 0, u = φλ + qGλ is a ground state, then:

(a) for any λ > 0 both φλ and q are not identically zero,
(b) u is positive, radially symmetric, and decreasing along the radial direction, up

to multiplication by a constant phase; moreover, φλ is nonnegative if λ = ω,
and positive if λ > ω, with ω = µ−1(‖u‖pp −Q(u)).

Remark 1.6. One can also see that if u is a ground state for the δ-NLSE, then the associated
frequency ω = µ−1(‖u‖pp−Q(u)) is positive. Indeed, by the Lagrange Multiplier Theorem,
one has

〈E′(u), v〉+ ω〈u, v〉 = 0, ∀v ∈ D,
so that, setting v = u and combining with (65), (10) and (11),

2E(u)− p− 2

p
‖u‖pp = −ω‖u‖22. (12)

Then, by Remark 1.3,

E(u) = E(µ) 6 E0(µ) := inf
v∈H1

µ(R2)
E0(v),
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with H1
µ(R2) := {v ∈ H1(R2) : ‖v‖22 = µ}, which is negative whenever p ∈ (2, 4) (see, e.g.,

[53] or the proof of Proposition 3.3). Thus (12) implies that ω > 0 .

We stress that Theorem 1.5 treats power nonlinearities with p ∈ (2, 4) only, namely
the subcritical nonlinearities of the NLSE, since as in the standard case this is necessary
to establish boundedness from below of the constrained energy without prescriptions on
the mass µ (see Proposition 3.1). In addition, also regarding existence, positivity, and
symmetry, Theorem 1.5 retraces the results on the NLSE. However, point (ii)(a) shows
that δ-NLS ground states and NLS ground states cannot coincide as the singular part of
the former ones cannot vanish.

As a final remark, we highlight that, while point (i) of Theorem 1.5 is proved by min-
imization of E on Dµ, point (ii) is proved through minimization of another functional,
called Action, constrained to a set called Nehari manifold. More precisely,

Definition 1.7. Fixed ω ∈ R, the δ-NLS action at frequency ω is the functional Sω : D →
R defined by

Sω(v) := E(v) +
ω

2
‖v‖22. (13)

We introduce the constraint

Definition 1.8. Fixed ω ∈ R, the Nehari manifold at frequency ω associated to the δ-NLS
is defined by

Nω := {v ∈ D \ {0} : Iω(v) = 0}, (14)

where Iω : D → R denotes the quantity

Iω(v) := 〈S′ω(v), v〉 = ‖∇φλ‖22 + λ‖φλ‖22 + (ω − λ)‖v‖22 + (α+ θλ) |q|2 − ‖v‖pp. (15)

As a consequence, the minimizers of the δ-NLS action at frequency ω are all functions
u ∈ Nω such that

Sω(u) = d(ω) := inf
v∈Nω

Sω(v),

and, as showed in Appendix A, they are bound states of the δ-NLS.

Remark 1.9. We use the notation

Qω(v) := Q(v) + ω‖v‖22, (16)

so that

Sω(v) =
1

2
Qω(v)− 1

p
‖v‖pp and Iω(v) = Qω(v)− ‖v‖pp. (17)

The link between minimizers of the action and ground states is provided by the following
Lemma, whose proof is an adaptation of what established in [32] and [47] for the NLSE.
We report it in Appendix B.

Lemma 1.10. Let p > 2, α ∈ R and µ > 0. If u is a ground state of mass µ, then it is
also a minimizer of the action at the frequency ω = µ−1(‖u‖pp −Q(u)).

We give the following result for the minimizers of the action functional.

Theorem 1.11 (δ-NLS action minimizers). Let p > 2 and α ∈ R. Then,

(i) a minimizer of the action (13) at frequency ω does exist if and only if ω > ω0 :=
−`α, with `α defined in (5);

(ii) if, fixed λ, u = φλ + qGλ is a minimizer of the action (13) at frequency ω > ω0,
then:
(a) for any λ > 0 both φλ and q are not identically zero,
(b) u is positive, radially symmetric, and decreasing along the radial direction, up

to multiplication by a constant phase factor; in particular, φλ is nonnegative
if λ = ω, and positive if λ > ω.
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First, we note that, in view of Lemma 1.10, point (ii) of Theorem 1.5 is a straightforward
consequence of Theorem 1.11. Indeed, if there exists a ground state of mass µ, then by
Lemma 1.10 and point (i) of Theorem 1.11 it is also a minimizer of the action at frequency
ω > ω0. Hence, the conclusion follows by point (ii) of Theorem 1.11.

Furthermore, we mention that in order to establish (ii)(b) we use an equivalent formu-
lation of the problem of minimization of the action consisting in minimizing Qω on the
functions in D with fixed Lp norm. More details on this point are given at the beginning of
Section 5 and in Remark 5.1. The technique relies on the minimality of the ground states
only and is different from other classical techniques, such as the moving planes introduced
in [42], and from more recent variational methods like [36, 47], where the Euler-Lagrange
equation is used to enhance the regularity of the minimizers.

During the final draft of the present paper we got acquainted that the results of Theorem
1.11 had been proved independently in the contemporary work [36]. In particular, except
from the overlap of point (i)(a) of Theorem 1.11 with [36, Theorem 1.2], the proof of
point (ii)(b) of Theorem 1.11 relies on different techniques, as explained above. Moreover,
the goals of the two papers are different: while the present paper is mainly focused on
the study of ground states of the energy at fixed mass, [36] deals with the minimizers of
the action under the Nehari’s constraint, discussing their orbital stability for asymptotic
regimes of the frequency ω.

Organization of the paper.

· Section 2 introduces some preliminary results that are useful throughout the paper;
more precisely:

– in Section 2.1 we recall some well-known features of the Green’s function of
−∆ + λ,

– in Section 2.2 we establish two extensions of the Gagliardo-Nirenberg inequal-
ity (Proposition 2.2),

– in Section 2.3 we establish a rearrangement inequality for the Lp-norms of the
sum of nonnegative functions (Proposition 2.4);

· Section 3 addresses the existence of ground states (Theorem 1.5–(i));
· Section 4 addresses the existence of action minimizers (Theorem 1.11–(i));
· Section 5 establishes the main features both of the δ-NLS ground states and of the

action minimizers (Theorem 1.5 –(ii)/Theorem 1.11–(ii)).

Acknowledgements. The authors thank Simone Dovetta for helpful discussions and the
anonymous referees for suggesting how to improve the paper. In particular, we added
Appendix C in order to fulfil their advices.

The work was partially supported by the MIUR project “Dipartimenti di Eccellenza
2018-2022” (CUP E11G18000350001) and by the INdAM GNAMPA project 2020 “Modelli
differenziali alle derivate parziali per fenomeni di interazione”.

Data availability statement. Data sharing not applicable to this article as no datasets
were generated or analysed during the current study.

2. Preliminary results

In this section we collect some preliminary results, that will be exploited in the proofs
of Theorem 1.5 and Theorem 1.11.
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2.1. Further properties of the Green’s function. First, we recall that Gλ ∈ L2(R2) \
H1(R2), is positive, radially symmetric, decreasing along the radial direction, has expo-
nential decay at infinity, and is smooth up to the origin, where it satisfies

Gλ(x) = − 1

2π
log

(√
λ|x|
2

)
+

γ

2π
+ o(1), as |x| → 0

(see [1, Sec. 9.6] and [25, Eq. (1.5)]). Thus Gλ belongs to Lp(R2), 2 6 p <∞. Moreover,

‖Gλ‖22 =
1

4πλ
and ‖Gλ‖pp =

‖G1‖pp
λ

. (18)

On the other hand, using (4), one can prove that Gλ − Gν ∈ H2(R2). Also, by direct
computation,

‖Gλ − Gν‖22 =
1

4π

(
1

λ
+

1

ν
+

2 log(ν/λ)

λ− ν

)
, (19)

‖∇(Gλ − Gν)‖22 =
1

4π

(
(λ+ ν) log(ν/λ)

λ− ν
− 2

)
. (20)

Finally, we note that if ν < λ, then

Gλ(x) =
K0(
√
λx)

2π
= Gν

(√
λ

ν
x

)
< Gν(x), ∀x ∈ R2 \ {0}. (21)

2.2. Extensions of the Gagliardo-Nirenberg inequality. We need a generalization
of Gagliardo-Nirenberg inequality to the energy space D.

Let us recall the standard two-dimensional Gagliardo-Nirenberg inequality ([30, Theo-
rem 1.3.7]): there exists Cp > 0 such that

‖v‖pp ≤ Cp‖∇v‖
p−2
2 ‖v‖22, ∀ v ∈ H1(R2). (22)

First, the set of functions in the energy space with q 6= 0 can be written as

D \H1(R2) =
{
u ∈ L2(R2) : ∃q ∈ C \ {0} s.t. u− qG |q|2

‖u‖22

=: φ ∈ H1(R2)
}
. (23)

In other words, functions in D \ H1(R2) admit the decomposition with λ = |q|2
‖u‖22

, where

the right-hand side is well defined as the next remark shows.

Remark 2.1 (Hα and q do not depend on λ > 0). Let us consider v ∈ D(Hα). By definition,
there exist q ∈ C and λ > 0 such that v = φλ + qGλ, φλ ∈ H2(R2) and φλ(0) = (α+ θλ)q.
Notice that

q := −2π lim
|x|→0

v(x)

log |x|
,

therefore q does not depend on λ. Moreover, choosing 0 < ν 6= λ, it is possible to
decompose the same function as v = φν + qGν . Since, as mentioned in Section 2.1,
Gλ − Gν ∈ H2(R2), one gets that φν := φλ + q(Gλ − Gν) belongs to H2(R2). Moreover, (4)
also implies

(Gλ − Gν)(0) = (4π)−1 log(ν/λ), (24)

so that θλ + (Gλ − Gν)(0) = θν , whence φν(0) = (α+ θν) q. Finally, by (4)

−∆(Gλ − Gν) = νGν − λGλ,

so −∆φλ−qλGλ = −∆φν−qνGν and thus the decompositions with ν and λ are equivalent.

We can now state the following
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Proposition 2.2 (Extended Gagliardo-Nirenberg inequalities). For every p > 2, there
exists Kp > 0 such that

‖v‖pp ≤ Kp

(
‖∇φλ‖p−2

2 ‖φλ‖22 +
|q|p

λ

)
, ∀v = φλ + qGλ ∈ D, ∀λ > 0. (25)

Moreover, there exists Mp > 0

‖v‖pp ≤Mp

(
‖∇φ‖p−2

2 + |q|p−2
)
‖v‖22, ∀v = φ+ qG |q|2

‖v‖22

∈ D \H1(R2). (26)

Proof. If we fix v = φλ + qGλ ∈ D, for some λ > 0, then (22) and (18) yield

‖v‖pp = ‖φλ + qGλ‖pp ≤ 2p−1
(
‖φλ‖pp + |q|p‖Gλ‖pp

)
≤ Kp

(
‖∇φλ‖p−2

2 ‖φλ‖22 +
|q|p

λ

)
,

that is (25).

If we suppose, in addition, that q 6= 0 and set λ = λq := |q|2
‖v‖22

, then by (18), (25) and

the triangle inequality there results

‖v‖pp ≤Mp

(
‖∇φ‖p−2

2 ‖v‖22 + ‖∇φ‖p−2
2

|q|2

λq
+
|q|p

λq

)
≤Mp

(
‖∇φ‖p−2

2 + |q|p−2
)
‖v‖22

possibly redefining Mp, which concludes the proof. �

Remark 2.3. Note that, whenever q = 0, i.e. v ∈ H1(R2), (25) reduces to (22).

2.3. A rearrangement inequality in Lp-spaces. Let us start by recalling the definition
of radially symmetric nonincreasing rearrangement of a function in R2 and its main features
(see e.g. [51, Chapter 3]). All the definitions and the results in Section 2.3 are valid in
every Rd, with d > 2.

First, given a measurable A ⊂ R2 with finite Lebesgue measure, we denote by A∗ the
open ball centred at zero with Lebesgue measure equal to |A|, that is

A∗ := {x ∈ R2 : π|x|2 < |A|}.
Now, let f : R2 → R be a nonnegative measurable function vanishing at infinity, i.e.
|{f > t}| := |{x ∈ R2 : f(x) > t}| < +∞, for every t > 0. We call the radially symmetric
nonincreasing rearrangement of f the function f∗ : R2 → R defined by

f∗(x) =

∫ ∞
0

1{f>t}∗(x) dt, (27)

with 1{f>t}∗ the characteristic function of {f > t}∗. Definition (27) clearly implies

|{f > t}| = |{f∗ > t}| and {f > t}∗ = {f∗ > t} (28)

and
1∗A ≡ 1A∗ , for every measurable A ⊂ R2, |A| < +∞. (29)

One can also check that

(Φ ◦ f)∗ ≡ Φ ◦ f∗, for every nondecreasing Φ : R+ → R+ (30)

and that (28) yields

‖f∗‖p = ‖f‖p, ∀f ∈ Lp(R2), f > 0, ∀ p > 1. (31)

Another well known property of rearrangements is the Hardy-Littlewood inequality,
which states that, given two nonnegative measurable functions f, g : R2 → R vanishing at
infinity, there results ∫

R2

f(x)g(x) dx ≤
∫

R2

f∗(x)g∗(x) dx (32)

and, if f is radially symmetric and decreasing, then the equality holds in (32) if and only
if g = g∗ a.e. on R2.
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We also need to compare ‖f + g‖p and ‖f∗ + g∗‖p and a related result is stated in the
next Proposition. The first statement is actually a special case of a well known result
proved in [19, Theorem 2.2]. The second statement is a refinement of that result and, as
far as we know, no proof of it is present in the literature. Our proof adapts the arguments
used in [51, Theorems 3.4 and 3.5].

Proposition 2.4 (Rearrangement inequality). For every pair of nonnegative functions f ,
g ∈ Lp(R2), with p > 1, there results∫

R2

|f + g|p dx ≤
∫

R2

|f∗ + g∗|p dx. (33)

Moreover, if f is radially symmetric and strictly decreasing, then the equality in (33)
implies that g = g∗ a.e. on R2.

Proof. First, we introduce the function

J+(t) :=

{
J(t) if t ≥ 0,

0 if t < 0,
with J(t) := |t|p.

It is straightforward that J+ is of class C1, with J ′+ nonnegative and nondecreasing in R
and, in particular, positive and increasing in R+. Therefore,

|f(x)+g(x)|p = J+(f(x)+g(x)) =

∫ g(x)

−f(x)
J ′+(f(x)+s) ds =

∫ +∞

−∞
J ′+(f(x)+s)1{g>s}(x) ds,

whence, integrating over R2 and using Tonelli’s theorem, we get∫
R2

|f(x) + g(x)|p dx

=

∫
R2

J+(f(x) + g(x)) dx =

∫ +∞

−∞

(∫
R2

J ′+(f(x) + s)1{g>s}(x) dx

)
ds

=

∫ +∞

0

∫
R2

J ′+(f(x)− s) dx ds︸ ︷︷ ︸
=:I1

+

∫ +∞

0

∫
R2

J ′+(f(x) + s)1{g>s}(x) dx ds︸ ︷︷ ︸
=:I2

(34)

where we used the fact that 1{g>−s} ≡ 1 for every s > 0. Now, combining (28) and (30)
with Φ(·) = J ′+(· − s), one sees that

I1 =

∫ +∞

0

∫
R2

J ′+(f∗(x)− s) dx ds. (35)

On the other hand, combining (28), (29), (30) with Φ(·) = J ′+(·+ s)−J ′+(s) and (32), one
sees that∫

R2

J ′+(f(x) + s)1{g>s}(x) dx

=

∫
R2

(
J ′+(f(x) + s)− J ′+(s)

)
1{g>s}(x) dx + J ′+(s)|{g > s}|

6
∫

R2

(
J ′+(f(x) + s)− J ′+(s)

)∗
1∗{g>s}(x) dx + J ′+(s)|{g∗ > s}|

=

∫
R2

(
J ′+(f∗(x) + s)− J ′+(s)

)
1{g∗>s}(x) dx + J ′+(s)|{g∗ > s}|

=

∫
R2

J ′+(f∗ + (x) + s)1{g∗>s}(x) dx, (36)
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so that

I2 6
∫ +∞

0

∫
R2

J ′+(f∗ + (x) + s)1{g∗>s}(x) dx ds. (37)

Hence, in view of (34), (35) and (37) one easily finds that (33) is satisfied.
It is left to prove that, if f is radially symmetric decreasing and the equality is fulfilled

in (33), then g = g∗ a.e. on R2. To this aim, fix f radially symmetric and decreasing and
assume that the equality in (33) holds. Then, one can check that f = f∗ a.e. on R2 and
that, by (36),∫

R2

J ′+(f(x) + s)1{g>s}(x) dx =

∫
R2

J ′+(f(x) + s)1{g∗>s}(x) dx, for a.e. s > 0. (38)

Since J ′+ is increasing on R+ and and f is radially symmetric decreasing, J ′+(f(·) + s) is
radially symmetric decreasing too. Hence there exists a continuous bijection r : R+ → R+

such that {x ∈ R2 : J ′+(f(x) + s) − J ′+(s) > t} = Br(t)(0), namely the centered ball of
radius r(t). In addition, by dominated converge, the function

FC(t) :=

∫
R2

1Br(t)(0)(x)1C(x) dx = |Br(t)(0) ∩ C|

is continuous on R+ for any measurable C ⊂ R2 fixed.
Now, fix s > 0 such that (38) holds and set C = {x ∈ R2 : g(x) > s}. Arguing as before,

one can find that FC(t) ≤ FC∗(t). From (36) and (38), using the layer-cake representation,
one obtains that

∫∞
0 FC(t) dt =

∫∞
0 FC∗(t) dt and, hence, FC(t) = F ∗C(t) for every t > 0.

As C∗ is a centered ball too, this implies that for every r > 0 either C,C∗ ⊂ Br(0) or
C,C∗ ⊃ Br(0) up to sets of zero Lebesgue measure, so that C = C∗. Finally, as this is
valid for every s > 0, using again (28) and the layer-cake representation, there results that
g = g∗ a.e. on R2. �

Remark 2.5. Up to some minor modifications, in order to prove the first part of Proposition
2.4 it suffices the simple convexity of J , the strict convexity being necessary for the sole
second part. Hence, (33) holds also for p = 1.

Before concluding the section, we also mention another well known result on rearrange-
ments that will be used in the sequel: if f ∈ H1(R2), then f∗ ∈ H1(R2) and in particular

‖∇f∗‖2 ≤ ‖∇f‖2. (39)

Equation (39) is usually called the Pólya-Szegő inequality.

3. Ground states existence: proof of Theorem 1.5–(i)

In this section, we prove point (i) of Theorem 1.5, that is the existence of δ-NLS ground
states of mass µ for every µ > 0.

To this aim, the first step is to establish boundedness from below of E|Dµ in the L2(R2)-

subcritical case. Preliminarily, it is convenient to write the functional E as

E(u) =
1

2
‖∇φ‖22 +

|q|2‖φ‖22
2‖u‖22

+

(
α− 1 +

log
(
|q|

2‖u‖2

)
+ γ

2π

)
|q|2

2
− ‖u‖

p
p

p
, if u ∈ D \H1(R2),

1

2
‖∇u‖22 −

1

p
‖u‖pp, if u ∈ H1(R2),

(40)

where we use the decomposition u = φ + qG |q|2
‖u‖22

introduced in (23), for every u ∈ D \

H1(R2).
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Proposition 3.1. Let p ∈ (2, 4) and α ∈ R. Then E(µ) > −∞, for every µ > 0.

Proof. Let u ∈ Dµ. Assume, first, that u ∈ H1
µ(R2). Therefore, (22) entails

E(u) ≥ 1

2
‖∇u‖22 −

Cp
p
‖∇u‖p−2

2 µ,

so that E is bounded from below on H1
µ(R2) since 2 < p < 4.

Then, assume that u ∈ Dµ \H1
µ(R2). By (26)

E(u) ≥
(

1

2
‖∇φ‖22 −

Mp

p
‖∇φ‖p−2

2 µ

)
+
|q|2‖φ‖22

2µ

+

α− 1 +
log
(
|q|

2
√
µ

)
+ γ

2π

 |q|2
2
− Mp

p
|q|p−2µ

 , (41)

and here again E is bounded from below in Dµ \H1
µ(R2) since 2 < p < 4 (note that the

log(|q|)|q|2 term balances the negatively diverging |q|2 term). Summing up, E is lower
bounded on the whole Dµ. �

Further than boundedness from below, it is also useful to establish a comparison between
the δ-NLS energy infimum and the NLS energy infimum.

Proposition 3.2. Let p ∈ (2, 4) and α ∈ R. Then,

E(µ) < E0(µ) < 0, ∀µ > 0. (42)

In order to prove this, we preliminarily recall without proof a well known result about
NLS ground states (see [53, Theorem II.5] for a proof of the existence part, while the proof
of the properties satisfied by the ground states is a consequence of [43, Theorem 2]).

Proposition 3.3. Let p ∈ (2, 4) and µ > 0. Then, there exists a NLS ground state of
mass µ, i.e. u ∈ H1

µ(R2) such that E0(u) = E0(µ). Moreover, such minimizer is unique,
positive and radially symmetric decreasing, up to multiplication by a constant phase and
translation.

The positive minimizer of the two-dimensional standard NLS functional at mass µ is
usually called two-dimensional soliton and in the following it will be denoted by Sµ.

Proof of Proposition 3.2. Fix µ > 0 and let Sµ be the unique NLS ground state of mass
µ mentioned in Proposition 3.3. First, note that, as Sµ is positive, it cannot be a δ-NLS
ground state of mass µ. Indeed, if Sµ is a δ-NLS ground state, then Sµ has to satisfy (7)
and, in particular, φλ(0) = (α+ θλ)q. However, as mentioned in Section 2.2, Sµ ∈ H1(R2)
implies q = 0, so that Sµ ≡ φλ and φλ(0) = 0. Hence, Sµ(0) = 0, which contradicts its
positivity. Summing up, Sµ is not a δ-NLS ground state at mass µ and, thus, there exists
v ∈ Dµ such that E(v) < E(Sµ) = E0(µ), which proves the left inequality in (42).

Concerning the right inequality, fix again µ > 0, and consider v ∈ H1
µ(R2). Now, using

the mass-preserving transformation

vσ(x) = σv(σx),

there results

E0(vσ) =
σ2

2
‖∇v‖22 −

σp−2

p
‖v‖pp.

However, as p ∈ (2, 4), this immediately entails that E0(µ) ≤ E0(vσ) < 0, for every σ � 1,
which completes the proof. �
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The second step of the proof of point (i) in Theorem 1.5 consists in a characterization
of the δ-NLS energy minimizing sequences of mass µ, i.e. sequences

(un)n ⊂ Dµ such that E(un)→ E(µ), as n→ +∞.
This is provided by the next two lemmas.

Lemma 3.4. Let p ∈ (2, 4), α ∈ R and µ > 0. If un = φλ,n + qnGλ is a minimizing
sequence for the δ-NLS energy, then there exists n̄ ∈ N and a constant C > 0, such that
|qn| > C for every n ≥ n̄.

Proof. We proceed by contradiction. Suppose that there exists a subsequence of qn, that
we do not rename, such that qn → 0. Then, ‖φλ,n‖22 is bounded since it converges to µ.
Moreover, applying Gagliardo-Nirenberg inequality (25) to definition (11) one obtains

E(un) >
1

2
‖∇φλ,n‖22 +

λ

2
(‖φλ,n‖22 − µ) +

(α+ θλ)

2
|qn|2 −

Cp
p

(
‖∇φλ,n‖p−2

2 ‖φλ,n‖22 +
|q|p

λ

)
=

1

2
‖∇φλ,n‖22 +

λ

2
(‖φλ,n‖22 − µ) +

(α+ θλ)

2
|qn|2 + o(1)

that guarantees the boundedness of ‖∇φλ,n‖2, since E(un) is bounded from above and
p < 4.

We introduce the sequence ξn =
√
µ

‖φλ,n‖2φλ,n, such that ‖ξn‖22 = µ and ‖∇ξn‖22 =
µ

‖φλ,n‖22
‖∇φλ,n‖22 is bounded. Then, using that and the fact that qn → 0 and φλ,n−un → 0

strongly in every space Lp(R2) with 2 6 p <∞, one obtains

E(un) = E0(φλ,n) + o(1) = E0(ξn) + o(1)

> E0(Sµ) + o(1), as n→∞,
where Sµ is a ground state for E0 at mass µ. So, passing to the limit,

E(µ) > E0(µ),

that contradicts Proposition 3.2 and then qn cannot converge to zero. This conclusion
holds for every subsequence of a minimizing sequence for E, therefore limit points of the
complex sequence qn must be separated from zero, and the proof is complete. �

Lemma 3.5. Let p ∈ (2, 4), α ∈ R and µ > 0. Let also (un)n be a δ-NLS energy
minimizing sequence of mass µ. Then, it is bounded in Lr(R2), for every r > 2, and there
exists u ∈ D \H1(R2) such that, up to subsequences,

· un ⇀ u in L2(R2),
· un → u a.e. in R2,

as n→ +∞. In particular, if one fixes λ > 0 and the decomposition un = φn,λ+qnGλ, then
(φn,λ)n and (qn)n are bounded in H1(R2) and C, respectively, and there exist φλ ∈ H1(R2)
and q ∈ C \ {0} such that u = φλ + qGλ and, up to subsequences,

· φn,λ ⇀ φλ in L2(R2),
· ∇φn,λ ⇀ ∇φλ in L2(R2),
· qn → q in C,

as n→ +∞.

Proof. Let (un)n be a δ-NLS energy minimizing sequence of mass µ. By Banach-Alaoglu
Theorem, un ⇀ u in L2(R2) up to subsequences. Moreover, owing to Lemma 3.4 we can
suppose without loss of generality that for every n the charge qn satisfies |qn| > C > 0,
then we can rely on the decomposition introduced in (23) and used in (26), namely un =

φn + qnGνn with νn := |qn|2
‖un‖22

. This decomposition guarantees

‖φn‖2 6 ‖un‖2 + |qn|‖Gνn‖2 6
(

1 +
1

2
√
π

)
√
µ
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for every n, so that the sequence φn is bounded in L2(R2).
Using (40) and (41), we have

E(un) >

(
1

2
‖∇φn‖22 −

Mp

p
µ‖∇φn‖p−2

2

)
+
|qn|2‖φn‖22

2µ

+

α− 1 +
log
(
|qn|
2
√
µ + γ

)
2π

 |qn|2
2
− Mp

p
µ|qn|p−2,

(43)

for a suitable Mp > 0. First, we note by (43) that (∇φn)n is bounded in L2(R2) and (qn)n
is bounded in C, so that, up to subsequences, qn → q and q 6= 0 since |qn| > C > 0.

Fix λ > C2
µ with C2 = 1+supn |qn| and consider the decomposition of each un according

to λ, that is un = φn,λ + qnGλ with φλ,n := φn + qn(Gνn − Gλ). Exploiting (19) and (20)
and the estimates on φn and qn, one finds that there exists M1,M2 > 0 such that for every
n > n̄

‖φn,λ‖22 ≤ 2

[
‖φn‖22 +

1

4π

(
|qn|2

λ
+ µ+ 2|qn|2

log λ+ log(µ)− 2 log(|qn|)
νn − λ

)]
≤M1

and

‖∇φn,λ‖22 ≤ 2

[
‖∇φn‖22 +

|qn|2

4π

((
λ+
|qn|2

µ

)
log λ+ log(µ)− 2 log(|qn|)

λ− νn
− 2

)]
≤M2.

Hence (φn,λ)n, (∇φn,λ)n are bounded in L2(R2), which implies, via the Banach-Alaoglu
theorem, that φn,λ ⇀ φλ, ∇φn,λ ⇀ ∇φλ in L2(R2), up to subsequences, and that u =
φλ + qGλ. Furthermore, by Rellich-Kondrakov theorem, φn,λ → φλ in Lrloc(R

2), for every
r > 2, so that un → u a.e. in R2.

It is then left to prove that (φn,λ)n, (∇φn,λ)n are bounded in L2(R2) also when the

decomposition parameter is smaller than C2
µ . To this aim, let 0 < λ̃ < C2

µ . We can use the

decomposition un = φ
n,λ̃

+ qnGλ̃, where φ
n,λ̃

= φn,λ + qn(Gλ−Gλ̃), with λ ≥ C2
µ . However,

arguing as before, one can see that qn(Gλ − Gλ̃) is bounded in H1(R2), which concludes
the proof. �

Finally, we have all the tools to prove the existence part of Theorem 1.5

Proof of Theorem 1.5-(i). Let (un)n be a δ-NLS energy minimizing sequence of mass µ.
Assume also, without loss of generality, that it is a subset of Dµ \ H1(R2), so that we
can write un = φn,λ + qnGλ, with qn 6= 0 and λ > 0. As a consequence, all the results of
Lemma 3.5 hold and all the following limits hold up to subsequences.

Set m := ‖u‖22. By weak lower semicontinuity of the L2(R2)-norm, m ≤ µ. Moreover,
as q 6= 0, m 6= 0. Assume, then, by contradiction, that 0 < m < µ. Note that, since
un ⇀ u in L2(R2), ‖un − u‖22 = µ−m+ o(1), as n→ +∞. On the one hand, since p > 2
and µ

‖un−u‖22
> 1 for n sufficiently large, there results that

E(µ) ≤ E
(√

µ

‖un − u‖22
(un − u)

)
=

1

2

µ

‖un − u‖22
Q(un − u)− 1

p

(
µ

‖un − u‖22

) p
2

‖un − u‖pp

<
µ

‖un − u‖22
E(un − u)

and thus

lim inf
n

E(un − u) ≥ µ−m
µ
E(µ). (44)

On the other hand, a similar computation yields

E(µ) ≤ E
(√

µ

‖u‖22
u

)
<

µ

‖u‖22
E(u),
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so that
E(u) >

m

µ
E(µ). (45)

In addition, we can also prove that

E(un) = E(un − u) + E(u) + o(1) as n→ +∞ (46)

Indeed, since, un ⇀ u, φn,λ ⇀ φλ, ∇φn,λ ⇀ ∇φλ in L2(R2) and qn → q, we have that

Q(un − u) = Q(un)−Q(u) + o(1), n→ +∞,
while ‖un‖pp 6 C and un → u a.e. on R2, enable one to use the well known Brezis-Lieb
lemma ([21]) in order to get

‖un‖pp = ‖un − u‖pp + ‖u‖pp + o(1), n→ +∞.
Combining (44), (45) and (46), one can see that

E(µ) = lim inf
n

E(un) = lim inf
n

E(un − u) + E(u) >
µ−m
µ
E(µ) +

m

µ
E(µ) = E(µ),

which is a contradiction. Therefore, m = µ, so that u ∈ Dµ and, in particular, un → u in
L2(R2) and φn,λ → φλ in L2(R2).

It is, then, left to show that

E(u) ≤ lim inf
n

E(un) = E(µ). (47)

However, by all the limits obtained before, it suffices to prove that un → u in Lp(R2), in
order to get (47). Now, from (25),

‖un − u‖pp ≤ Kp

(
‖∇φn,λ −∇φλ‖p−2

2 ‖φn,λ − φλ‖22 +
|qn − q|p

λ

)
and then since ‖∇φn,λ − ∇φλ‖2 is bounded, φn,λ → φλ in L2(R2) and qn → q in C, the
claim is proved. �

4. Action minimizers existence: proof of Theorem 1.11 – (i)

The aim of this section is proving point (i) of Theorem 1.11, that is the existence/nonexistence
of δ-NLS action minimizers at frequency ω.

Preliminarily, we recall that, in the standard case, NLS-action minimizers are those
functions u ∈ N0

ω such that S0
ω(v) = d0(ω), with

d0(ω) := inf
v∈N0

ω

S0
ω(v),

S0
ω(v) := E0(v) +

ω

2
‖v‖22,

N0
ω := {v ∈ H1(R2) \ {0} : I0

ω(v) = 0}, I0
ω(v) := ‖∇v‖22 + ω‖v‖22 − ‖v‖pp.

We also note that
Sω(v) = S̃(v) > 0, ∀v ∈ Nω, (48)

with Sω and Nω given by (13) and (14), respectively, and

S̃(v) :=
p− 2

2p
‖v‖pp.

Hence, combining with the fact that Sω |H1(R2)
= S0

ω and Nω ∩H1(R2) = N0
ω, it is straight-

forward that
0 ≤ d(ω) ≤ d0(ω), ∀ω ∈ R. (49)

In addition, since d0(ω) = 0, for every ω 6 0 (see, e.g., [32, Lemma 2.4 and Remark 2.5]),
one immediately sees that d(ω) = 0, for every ω ≤ 0, which entails that there cannot be
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any δ-NLS action minimizer at frequency ω whenever ω 6 0. In view of this we will focus
throughout only on the case ω > 0.

Now, the first step of our discussion is to detect for which ω > 0 the two inequalities in
(49) are strict. To this aim let us introduce the set

N̂ω := {qGλ : λ > 0, q ∈ C \ {0}, Iω(qGλ) = 0},

which is the subset of Nω containing those functions admitting a decomposition with the
sole singular part for at least one value of λ > 0. The next two lemmas characterize the

set N̂ω on varying ω > 0.

Lemma 4.1. Let p > 2, α ∈ R and ω > 0. Then, qGλ ∈ N̂ω if and only if λ > 0 and
q ∈ C \ {0} satisfy

ω − λ
4π

+ λ (α+ θλ) > 0 (50)

(with θλ defined by (3)) and

|q| = 1

Kp

[
ω − λ

4π
+ λ (α+ θλ)

] 1
p−2

, (51)

with Kp = ‖G1‖
p
p−2
p .

Proof. Fix ψ = qGλ with q 6= 0 and λ > 0. By (18), Iω(ψ) = 0 if and only if

ω − λ
4πλ

|q|2 + (α+ θλ) |q|2 − K

λ
|q|p = 0,

with K := ‖G1‖pp, which entails

|q|p−2 =
1

K

[
ω − λ

4π
+ λ (α+ θλ)

]
.

Since |q|p−2 > 0, (50) and (51) follow. �

Let us define, now,

ω0 := −`α, (52)

with `α defined by (5).

Lemma 4.2. Let p > 2, α ∈ R, ω > 0 and ω0 as in (52). Therefore:

(i) if ω ∈ (0, ω0), then

N̂ω = {qGλ : λ ∈ (0, λ1(ω)) ∪ (λ2(ω),+∞), q ∈ C \ {0} and satisfies (51)},

with λ1(ω) ∈ (0, ω0) and λ2(ω) > ω0 the sole solutions of the equation

ω − λ
4π

+ λ (α+ θλ) = 0;

(ii) if ω = ω0, then

N̂ω = {qGλ : λ > 0, λ 6= ω0, q ∈ C \ {0} and satisfies (51)};

(iii) if ω > ω0, then

N̂ω = {qGλ : λ > 0, q ∈ C \ {0} and satisfies (51)}

Proof. Let ω > 0 and introduce the function

g(λ) :=
ω − λ

4π
+ λ (α+ θλ) .
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Recall that, in view of Lemma 4.1, qGλ ∈ N̂ω if and only if g(λ) > 0 and q satisfies (51),

namely |q| = K−1
p g

1
p−2 (λ). Now, it is straightforward (by (3)) that

lim
λ→0+

g(λ) =
ω

4π
> 0 , lim

λ→+∞
g(λ) = +∞

and
g′(λ) = α+ θλ.

Hence, one can easily see that g is decreasing for λ < ω0 and increasing for λ > ω0, has a
global minimizer at λ = ω0 and g(ω0) = ω−ω0

4π . Therefore, if ω > ω0, then condition (50)
can be satisfied for every λ > 0. On the contrary, if ω = ω0, then (50) can be satisfied
provided that λ > 0 and λ 6= ω0. Finally, if ω < ω0, then g(ω0) < 0 and this implies that
there exist λ1(ω), λ2(ω) > 0 such that (50) does not hold if and only if λ ∈ [λ1(ω), λ2(ω)].
Note that λ1(ω) and λ2(ω) are the only values of λ > 0 for which g vanishes. �

After this characterization of the set N̂ω, we can estimate the value of d(ω) for ω ∈
(0, ω0].

Proposition 4.3. Let p > 2, α ∈ R. Then, d(ω) = 0, for every ω ∈ (0, ω0].

Proof. Let us discuss separately the cases ω ∈ (0, ω0) and ω = ω0. If ω ∈ (0, ω0), then in
view of Lemma 4.2 one can check that

lim
λ→λ1(ω)−,
qGλ∈Nω

|q| = lim
λ→λ1(ω)−

1

Kp

[
ω − λ

4π
+ λ (α+ θλ)

] 1
p−2

= 0.

Hence, recalling and (48) and (18),

0 ≤ d(ω) ≤ inf
qGλ∈Nω

Sω(qGλ) 6 lim
λ→λ1(ω)−,
qGλ∈Nω

Sω(qGλ)

= lim
λ→λ1(ω)−,
qGλ∈Nω

S̃(qGλ) = lim
λ→λ1(ω)−,
qGλ∈Nω

p− 2

2p
‖G1‖pp

|q|p

λ
= 0.

If, on the contrary, ω = ω0, then one obtains the same result, just arguing as before and
replacing the limits for λ→ λ1(ω)− with the limits for λ→ ω0. �

This result has an immediate consequence on the existence of the δ-NLS action mini-
mizers below ω0.

Corollary 4.4. Let p > 2, α ∈ R. Then, there exists no δ-NLS action minimizer at
frequency ω, for every ω ∈ (0, ω0].

Proof. The claim follows by Proposition 4.3 and (48). �

On the other hand, in order to discuss the behavior of d(ω) when ω > ω0, it is prelimi-

narily necessary to further investigate the relation between Sω and S̃.

Lemma 4.5. Let p > 2, α ∈ R and ω > ω0. Then

d(ω) = inf
v∈Ñω

S̃(v), (53)

with
Ñω := {v ∈ D \ {0} : Iω(v) ≤ 0}

(and Iω defined by (15)). Moreover, for any function u ∈ D \ {0},{
S̃(u) = d(ω)

Iω(u) ≤ 0
⇐⇒

{
Sω(u) = d(ω)

Iω(u) = 0.
(54)
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Remark 4.6. In view of this lemma, searching for δ-NLS action minimizers is equivalent
to searching for

u ∈ Ñω such that S̃(u) = inf
v∈Ñω

S̃(v) = d(ω).

Proof of Lemma 4.5. We divide in proof in two parts.

Part (i): proof of (53). On the one hand, if u ∈ Nω, then Sω(u) = S̃(u), so that

inf
v∈Ñω

S̃(v) ≤ d(ω),

as Ñω ⊃ Nω. On the other hand, fix u ∈ D \ {0} such that Iω(u) < 0 (i.e. u ∈ Ñω \Nω).
Now, for any fixed β > 0

Iω(βu) = β2Qω(u)− βp‖u‖pp,
(see (16) for the definition of Qω), and thus Iω(βu) = 0 (i.e. u ∈ Nω) if and only

β = β(u) :=

(
Qω(u)

‖u‖pp

) 1
p−2

(where we also used that Qω(u) > 0, for every u ∈ D \ {0}, whenever ω > ω0). Moreover,
since Iω(u) < 0, β(u) < 1 and hence

Sω(β(u)u) = S̃(β(u)u) = β(u)pS̃(u) < S̃(u).

As a consequence

d(ω) ≤ inf
v∈Ñω

S̃(v),

which completes the proof.

Part (ii): proof of (54). If u ∈ Nω and Sω(u) = d(ω), then clearly u ∈ Ñω and (by (48))

S̃(u) = d(ω). On the contrary, assume by contradiction that u ∈ Ñω \Nω. If S̃(u) = d(ω),
then, arguing as before, one obtains that β(u)u ∈ Nω and

Sω(β(u)u) < d(ω),

which is impossible. Hence, if u ∈ Ñω and S̃(u) = d(ω), then u ∈ Nω and Sω(u) =
d(ω). �

We can now prove that the left inequality of (49) is strict.

Proposition 4.7. Let p > 2, α ∈ R. Then, d(ω) > 0, for every ω > ω0.

Proof. First, let u ∈ Ñω ∩H1(R2). By Sobolev inequality, for any p ∈ (1,+∞) there exists
Cp > 0, depending only on p, such that

0 ≥ Iω(u) = ‖∇u‖22 + ω‖u‖22 − ‖u‖pp ≥ Cp‖u‖2p + ω‖u‖22 − ‖u‖pp ≥ Cp‖u‖2p − ‖u‖pp.

Hence, ‖u‖p−2
p ≥ Cp and so

S̃(u) ≥ p− 2

2p
C

p
p−2
p ,

whence

inf
v∈Ñω∩H1(R2)

S̃(v) ≥ p− 2

2p
C

p
p−2
p > 0 (55)

Consider now a function u = φλ + qGλ ∈ Ñω \H1(R2) (so that q 6= 0) and fix λ ∈ (ω0, ω).
Clearly (α+ θλ) > 0, and thus there exists a constant C > 0 such that

‖∇φλ‖22 + λ‖φλ‖22 + (ω − λ)‖u‖22 + |q|2 (α+ θλ) ≥ C
(
‖φλ‖2H1 + |q|2

)
. (56)

Moreover, by Sobolev inequality we have that

‖u‖pp ≤ Cp
(
‖φλ‖pp + |q|p

)
≤ Cp

(
‖φλ‖pH1 + |q|p

)
≤ Cp

(
‖φλ‖2H1 + |q|2

) p
2 ,
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which implies

‖φλ‖2H1 + |q|2 ≥ 1

Cp
‖u‖2p. (57)

Then, combining (56) and (57),

0 ≥ Iω(u) ≥ C
(
‖φλ‖2H1 + |q|2

)
− ‖u‖pp ≥

C

Cp
‖u‖2p − ‖u‖pp

and so, arguing as before, there exists Kp > 0, depending only on p, such that

S̃(u) ≥ Kp

and, consequently,

inf
v∈Ñω\H1(R2)

S̃(v) ≥ Kp > 0. (58)

Finally, combining (55) and (58), we obtain the claim. �

For what concerns the right inequality in (49), we need to recall preliminarily some of
the main properties of the NLS action minimizers at frequency ω, that is functions u ∈ N0

ω

such that S0
ω(u) = d0(ω) (see Theorem 8.1.5 in [30]).

Proposition 4.8. Let p > 2 and ω > 0. Then, there exists at least an NLS action
minimizer at frequency ω. In particular, such minimizer u is unique, positive and radially
symmetric decreasing, up to gauge and translations invariances.

Then, we can prove that also the right inequality of (49) is strict.

Proposition 4.9. Let p > 2, α ∈ R. Then, d(ω) < d0(ω), for every ω > ω0.

Proof. For a fixed ω > ω0, let u be the unique positive NLS action minimizer at frequency
ω provided by Proposition 4.8. Then, u cannot be also a δ-NLS action minimizer at
frequency ω. Indeed, if u were a δ-NLS action minimizer at frequency ω, then u would
have to satisfy (7) and, in particular, φλ(0) = (α + θλ)q, but this can be proved to be a
contradiction with the positivity of u by arguing as in the proof of Proposition 3.2. Hence,
there exists v ∈ Nω \ H1(R2) such that Sω(v) < Sω(u) = d0(ω), which concludes the
proof. �

Finally, we have all the tools to prove the existence part of Theorem 1.11.

Proof of Theorem 1.11-(i). The case ω 6 ω0 has been already proved by the remarks at
the beginning of the section and by Corollary 4.4. On the contrary, it is convenient to
divide the proof of the case ω > ω0 in four steps. We also note that, as in the proof of
point (i) of Theorem 1.5, many of the following limits has to be meant as valid up to
subsequences. We do not repeat it for the sake of simplicity and since this does not give
rise to misunderstandings.

Step 1: weak convergence of the minimizing sequences. Fix ω > ω0 and let (un)n be a

δ-NLS action minimizing sequence at frequency ω, that is (by Remark 4.6) (un)n ⊂ Ñω

and S̃(un) → d(ω), as n → +∞. In addition, for any fixed λ > 0 we can use for un the

decomposition un = φn,λ + qnGλ. First, we see that, since ‖un‖pp → 2p
p−2d(ω), (un)n is

bounded in Lp(R2). Moreover, as Iω(un) ≤ 0, we get

‖∇φn,λ‖22 + λ‖φn,λ‖22 + (ω − λ)‖un‖22 + (α+ θλ) |qn|2 ≤ ‖un‖pp.

Now, if one sets λ = ω+ω0
2 , then the three constants in front of ‖φn,λ‖22, ‖un‖22 and |qn|2 are

all strictly positive. Hence, (∇φn,λ)n, (φn,λ)n and (un)n are bounded in L2(R2) and (qn)n
is bounded in C. Thus, there exists φλ ∈ H1(R2), q ∈ C and u ∈ D such that u = φλ+qGλ
and

∇φn,λ ⇀ ∇φλ, φn,λ ⇀ φλ un ⇀ u in L2(R2) and qn → q in C.
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Step 2: u ∈ D \ H1(R2). Assume, by contradiction, that u ∈ H1(R2), namely that
q = 0, and define the sequence wn := σnφn,λ ∈ H1(R2), with

σn :=

(
1 +

Iω(un)− (α+ θλ) |qn|2 + (‖un‖pp − ‖φn,λ‖pp) + (ω − λ)(‖φn,λ‖22 − ‖un‖22)

‖φn,λ‖pp

) 1
p−2

,

so that I0
ω(σnφn,λ) = 0. Note that σn is well defined since there exists C > 0 such that

‖φn,λ‖pp ≥ C for every n ∈ N. Indeed, by Proposition 4.7, ‖un‖pp is uniformly bounded
away from zero and qn → 0. On the other hand, since |qn|2 → 0, it follows that both
‖φn,λ‖22 − ‖un‖22 → 0 and∣∣‖un‖pp − ‖φn,λ‖pp∣∣ ≤ C1 |‖un‖p − ‖φn,λ‖p| ≤ C2‖un − φn,λ‖p → 0.

As a consequence, since Iω(un) ≤ 0, (σpn)n is bounded from above by a sequence (an)n
converging to 1. Thus, as I0

ω(wn) = 0 and S̃(un)→ d(ω),

d0(ω) + o(1) = S̃(wn) = σpnS̃ (φn,λ) 6 an
(
S̃(un) + o(1)

)
= S̃(un) + o(1) = d(ω) + o(1),

that implies that d(ω) ≥ d0(ω), which contradicts Proposition 4.9.

Step 3: u ∈ Ñω. In view of Step 2, it is left to prove that Iω(u) ≤ 0. Assume by
contradiction that Iω(u) > 0. From boundedness of φn,λ in H1(R2) and qn → q, one sees
that un → u in Lploc(R

2) and hence un → u a.e. in R2. As (un)n is bounded in Lp(R2), one
can use Brezis-Lieb lemma to get ‖un‖pp − ‖un − u‖pp − ‖u‖pp → 0, and thus

S̃(un)− S̃(un − u)− S̃(u)→ 0. (59)

Since, in addition, qn → q, ∇φn,λ ⇀ ∇φλ, φn,λ ⇀ φλ and un ⇀ u in L2(R2) and Qω is
quadratic, one can also check that

Iω(un)− Iω(un − u)− Iω(u)→ 0. (60)

Let us prove now that Iω(un) → 0. Assume by contradiction that Iω(un) 6→ 0. As
‖un‖pp ≤ C, for some C > 0,

−C ≤ Iω(un) ≤ 0.

Hence, without loss of generality, we can suppose that Iω(un)→ −β, with β > 0. Consider,
then, the sequence vn := θnun, with

θn :=

(
1 +

Iω(un)

‖un‖pp

) 1
p−2

,

so that Iω(vn) = 0. Thus, an easy computation shows that

θn → l :=

(
1− β(p− 2)

2pd(ω)

) 1
p−2

< 1.

As a consequence,

S̃(vn) = S̃(θnun) = θpnS̃(un)→ lpd(ω) < d(ω),

which is a contradiction. Hence Iω(un)→ 0. Finally, looking back at (60), since Iω(u) > 0
and Iω(un)→ 0,

Iω(un − u) = Iω(un)− Iω(u) + o(1) = −Iω(u) + o(1),

entailing that Iω(un − u) → −Iω(u) < 0. Choose, then, n̄ such that Iω(un − u) < 0 for

every n ≥ n̄. Since d(ω) ≤ S̃(un − u) and S̃(u) > 0, (59) yields

d(ω) 6 lim
n
S̃(un − u) = d(ω)− S̃(u) < d(ω),

which is again a contradiction and entails Iω(u) 6 0.
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Step 4: conclusion. As boundedness in Lp(R2) entails that un ⇀ u in Lp(R2), by weak
lower semicontinuity

S̃(u) ≤ lim inf
n→+∞

S̃(un) = d(ω),

which concludes the proof. �

5. Further properties: proof of point (ii) of Theorems 1.5 and 1.11

In this section we prove point (ii) in Theorem 1.5 and Theorem 1.11, that concern the
features of δ-NLS ground states and δ-NLS action minimizers. We point out that, by
Lemma 1.10, proving Theorem 1.11 implies the conclusion of Theorem 1.5.

Before proving (ii) of Theorem 1.11, let us give an informal description of the strategy.
First, we establish that ground states minimize the functional Qω defined in (16) on the
constraint

Dp
ω :=

{
v ∈ D : ‖v‖pp =

2p

p− 2
d(ω)

}
. (61)

Second, given a minimizer u of such a problem without the required property (i.e., posi-
tivity and radially symmetric monotonicity), we exhibit through rearrangement a function
ũ such that

‖ũ‖p > ‖u‖p and Qω(ũ) ≤ Qω(u).

Moreover, noting that there exists β < 1 such that

‖βũ‖pp = ‖u‖pp and Qω(βũ) < Qω(ũ),

we find a better competitor with respect to the minimizer, and obtain a contradiction.

Remark 5.1. Unfortunately, such a strategy is not applicable directly to the minimizers
of the energy E or of the action Sω. More in detail, applying to E the method described
above, we obtain

‖ũ‖r > ‖u‖r for every r ≥ 2 and E(ũ) < E(u).

However, since the mass constraint is not fulfilled by ũ, we note that there exists β < 1
such that ‖βũ‖22 = ‖u‖22, but here, since β2 > βp and E(ũ) < 0, this yields

E(βũ) =
1

2
β2Q(ũ)− 1

p
βp‖ũ‖pp > βpE(ũ) > E(ũ),

that provides an inequality in the opposite direction with respect to the aimed one.
Analogously, applying the same procedure to the minimization of the action Sω on the

Nehari manifold, there results

Iω(ũ) < 0 and Sω(ũ) < Sω(u).

However, if we set

β̄ :=

(
Qω(ũ)

‖ũ‖pp

) 1
p−2

,

then β̄ < 1, Iω(β̄ũ) = 0 and

Sω(β̄ũ) =
1

2
β̄2Qω(ũ)− 1

p
β̄p‖ũ‖pp > Sω(ũ). (62)

Indeed, computing
d

dβ
Sω(βũ) = βQω(ũ)− βp−1‖ũ‖pp,
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we find that d
dβSω(βũ) > 0 if and only if 0 < β < β̄, and d

dβSω(βũ)|β=β̄ = 0, so that

Sω(β̄ũ) > Sω(ũ). In other words, here again (62) is an inequality in the opposite direction
with respect to the aimed one.

We now start by proving (ii)(a), namely the coexistence of the regular and the singular
part for a δ-NLS action minimizer.

Proposition 5.2. Let p > 2, α ∈ R and ω > ω0. Let also u be a δ-NLS action minimizer
at frequency ω. Then, q 6= 0 and φλ := u− qGλ 6= 0, for every λ > 0.

Proof. Let λ > 0 and consider the decomposition u = φλ + qGλ. Assume by contradiction
that φλ = 0. Since u 6= 0, clearly q 6= 0. As u has to satisfy (7), then α+ θλ = 0, so that
λ = ω0. Since u has to satisfy also (8), with some computations one obtains that q has to
satisfy

ω − ω0 + |q|p−2|Gω0(x)|p−2 = 0, ∀x ∈ R2 \ {0},
which is clearly not possible.

On the other hand, assume by contradiction that q = 0, or equivalently that u ∈ H1(R2).
This would imply that d(ω) = d0(ω), which contradicts Proposition 4.9. �

Remark 5.3. Proposition 5.2 marks a difference with the model (2). Indeed, it was proven
in [6, 7] that for any bound state there exists a value of λ > 0 such that the regular part
of the decomposition vanishes.

We can move to the proof of point (ii)(b). Preliminarily, we note that, up to the
multiplication by a phase factor, a δ-NLS action minimizer u = φλ + qGλ can be assumed
to display a charge q > 0. Indeed, since Gλ(x) > 0 for every x ∈ R2 \ {0} and q 6= 0, it is
sufficient to multiply u times eiθ in such a way that qeiθ > 0. In particular, if θ satisfies the
equation eiθ = q̄

|q| , then qeiθ = |q|. As a consequence, we will always assume throughout

that q > 0.
The first key point for the proof of (ii)(b) is the switch from the minimization of Sω

constrained on Nω to the minimization of Qω constrained on Dp
ω, which is introduced in

the next result.

Proposition 5.4. Let p > 2, α ∈ R and ω > ω0. Then,

inf
v∈Dpω

Qω(v) =
2p

p− 2
d(ω),

with Dp
ω defined in (61), and there exists a function u ∈ Dp

ω such that Qω(u) = 2p
p−2d(ω).

In particular, there results that Qω(w) =
2p

p− 2
d(ω)

w ∈ Dp
ω

⇐⇒

{
Sω(w) = d(ω)

w ∈ Nω

(63)

Remark 5.5. In view of this result, one sees that, in order to study the features of δ-
NLS action minimizers at frequency ω, it is sufficient (in fact, equivalent) to study the
minimizers of Qω on Dp

ω.

Proof of Proposition 5.4. Let u be δ-NLS action minimizer at frequency ω. Then, by

Lemma 4.5 u is a minimizer of S̃ on Ñω, so that ‖u‖pp ≤ ‖v‖pp for every v ∈ Ñω, ‖u‖pp =
2p
p−2d(ω) and Iω(u) = 0.

Let v ∈ Dp
ω. First we see that Iω(v) ≥ 0 = Iω(u). Indeed, if we assume by contradiction

that there exists v ∈ D \ {0} such that Iω(v) < 0, then by Lemma 4.5 v cannot be a

minimizer of S̃ on Ñω, and thus ‖v‖pp > 2p
p−2d(ω), which contradicts the fact that v ∈ Dp

ω.

Therefore, u is a minimizer of Iω on Dp
ω, which yields, by using

Iω(u) = Qω(u)− ‖u‖pp = Qω(u)− 2p

p− 2
d(ω),
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that u is also a minimizer of Qω on Dp
ω and that Qω(u) = 2p

p−2d(ω).

This clearly proves the first part of the proposition and the reverse implication in (63).
It is, then, to prove that every minimizer of Qω on Dp

ω is a δ-NLS action minimizer at
frequency ω. To this aim, let w be a minimizer of Qω on Dp

ω. It is straightforward that

Sω(w) = S̃(w) =
p− 2

2p
‖w‖pp = d(ω)

and, by combining the two equations in (17),

Iω(w) = Qω(w)− ‖w‖pp = 2Sω(w)− p− 2

p
‖w‖pp = 2d(ω)− 2d(ω) = 0,

which conclude the proof. �

We can now prove the first part of (ii)(b), which is the positivity up to gauge invariance.

Proposition 5.6. Let p > 2, α ∈ R and ω > ω0. Then, δ-NLS action minimizers at
frequency ω are positive, up to gauge invariance.

Proof. Let u be a δ-NLS action minimizer at frequency ω. Up to gauge invariance, it is
not restrictive to assume q > 0. In addition, by Proposition 5.4, u is also a minimizer of
Qω on Dp

ω. Now, let us choose λ = ω in the decomposition of u and define Ω := {x ∈ R2 :
φω(x) 6= 0}. By Proposition 5.2, |Ω| > 0. Then, we can write

u(x) = φω(x) + qGω(x) = eiη(x)|φω(x)|+ qGω(x), ∀x ∈ Ω \ {0},
for some η : Ω → [0, 2π). If one can prove that η(x) = 0 for a.e. x ∈ Ω \ {0}, then
the proof is complete as this entails that φω(x) = |φω(x)| > 0 for every x ∈ R2, whence
u(x) > 0 for every x ∈ R2 \ {0}.

To this aim, assume by contradiction that η 6= 0 on Ω1 ⊂ (Ω \ {0}), with |Ω1| > 0.
Letting ũ := |φω|+ qGω (note that u = ũ in R2 \ Ω1), there results that

|u(x)|2 = |φω(x)|2 + q2G2
ω(x) + 2 cos(η(x))|φω(x)|Gω(x)

< |φω(x)|2 + q2G2
ω(x) + 2|φω(x)|Gω(x) = |ũ(x)|2, ∀x ∈ Ω1.

Hence, as |Ω1| > 0,

‖u‖pp =

∫
R2

(
|u|2
) p

2 dx <

∫
R2

(
|ũ|2
) p

2 dx = ‖ũ‖pp. (64)

On the other hand, it is straightforward to check that Qω(ũ) ≤ Qω(u). Now, from (64)

and the positivity of Qω, there exists β ∈ (0, 1) such that ‖βũ‖pp = ‖u‖pp = 2p
p−2d(ω) and

Qω(βũ) = β2Qω(ũ) < Qω(u),

which contradicts the fact that u minimizes Qω on Dp
ω. Thus η = 0 a.e. on Ω \ {0}, which

concludes the proof. �

The proof of the previous result also entails that for, λ = ω, the regular part φω of a
δ-NLS action minimizer at frequency ω is nonnegative. The following corollary points out
that, whenever λ > ω, it is in fact positive.

Corollary 5.7. Let p > 2, α ∈ R and ω > ω0. Let also u be a δ-NLS action minimizer at
frequency ω. Then the regular part φλ := u− qGλ is positive for every λ > ω, up to gauge
invariance.

Proof. Let u be a positive δ-NLS action minimizer at frequency ω and consider the de-
composition u = φλ + qGλ for a fixed λ > ω. First, using (21) and q > 0, we see that

φλ(x) = φω(x) + q(Gω(x)− Gλ(x)) > 0, ∀x ∈ R2 \ {0}.
Then, one concludes the proof just recalling (24). �



GROUND STATES FOR THE PLANAR NLSE WITH A POINT DEFECT 23

Finally, we may address the problem of the radially symmetric monotonicity of δ-NLS
action minimizers.

Proposition 5.8. Let p > 2, α ∈ R and ω > ω0. Then, δ-NLS action minimizers at
frequency ω are radially symmetric decreasing, up to gauge invariance.

Proof. Without loss of generality let u be a positive δ-NLS action minimizers at frequency
ω. Consider also the decomposition u = φω + qGω, corresponding to the choice λ = ω.
In order to prove the claim is is sufficient to show that φω = φ∗ω, with φ∗ω the radially
symmetric nonincreasing rearrangement of φω.

Assume, by contradiction, that φω 6= φ∗ω, that is φω is not radially symmetric nonincreas-
ing. Then, define the function ũ = φ∗ω+qGω. By (39) and (31), we have ‖∇φ∗ω‖2 ≤ ‖∇φω‖2
and ‖φ∗ω‖2 = ‖φω‖2, so that

Qω(ũ) ≤ Qω(u).

Now, applying Proposition 2.4 with f = qGω and g = φω, there results that ‖ũ‖pp > ‖u‖pp,
as φω 6= φ∗ω. Therefore, (as Qω is positive) there exists β < 1 such that ‖βũ‖pp = ‖u‖pp and

Qω(βũ) = β2Qω(ũ) < Qω(ũ) ≤ Qω(u),

but, via Proposition 5.4 (arguing as in the proof of Proposition 5.6), this contradicts that
u is a δ-NLS action minimizer, thus concluding the proof. �

We can now sum up all the previous results to prove point (ii) of Theorems 1.5 and
1.11.

Proof of Theorems 1.5 and 1.11-(ii). Let u be a δ-NLS action minimizer at frequency ω >
ω0. Then, by Proposition 5.2, Proposition 5.6, Corollary 5.7 and Proposition 5.8, u satisfies
all the properties stated in (ii).

Let p ∈ (2, 4) and u be a δ-NLS ground state of mass µ. Combining Lemma 1.10
and point (i) of Theorem 1.11 one sees that u is also a δ-NLS action minimizer at some
frequency ω > ω0 (in particular, ω = µ−1(‖u‖pp − Q(u))). Then, one concludes by point
(ii) of Theorem 1.11. �

Appendix A. Ground states, action minimizers and bound states

In this section, we show that both δ-NLS ground states and δ-NLS action minimizers
are δ-NLS bound states, i.e. they satisfy (7) and (8).

First, we note that (using either the Lagrange Multipliers theorem in the former case
or the simple Du Bois-Reymond equation in the latter case), if u is either a δ-NLS ground
state of mass µ or a δ-NLS action minimizers at frequency ω, then it satisfies, for any fixed
λ > 0,

〈∇χλ,∇φλ〉+ λ〈χλ, φλ〉+ (ω − λ)〈χ, u〉+ ξ̄q (α+ θλ)− 〈χ, |u|p−2u〉 = 0

∀χ = χλ + ξGλ ∈ D. (65)

Whenever u is a δ-NLS ground state of mass µ, ω = µ−1(‖u‖pp−Q(u)). Now, letting ξ = 0
in (65), so that χ = χλ ∈ H1(R2), there results

〈∇χ,∇φλ〉+ 〈χ, ωφλ + (ω − λ)qGλ − |u|p−2u〉 = 0 ∀χ ∈ H1(R2).

Hence, as ωφλ + (ω − λ)qGλ − |u|p−2u ∈ L2(R2), φλ ∈ H2(R2) and, by density,

−∆φλ + ωφλ + (ω − λ)qGλ − |u|p−2u = 0 in L2(R2), (66)

which is equivalent to (8). On the other hand, letting χλ = 0 and ξ = 1 in (65), so that
χ = Gλ, there results

〈Gλ, (ω − λ)u− |u|p−2u〉+ q (α+ θλ) = 0.
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Finally, using (66), we obtain

〈Gλ, (−∆ + λ)φλ〉 = q (α+ θλ) ,

which is equivalent to φλ(0) = q (α+ θλ), so that also (7) is satisfied.

Appendix B. Energy and action

Proof of Lemma 1.10. Let u be a δ-NLS ground state at mass µ and let ω > 0 be the
associated Lagrange multiplier, given by ω = µ−1(‖u‖pp−Q(u)). Assume, by contradiction,
that there exists v = ηλ + ξGλ ∈ Nω such that Sω(v) < Sω(u) and let σ > 0 be such that
‖σv‖22 = µ. Then

Sω(σv) =
σ2

2
Qω(v)− σp

p
‖v‖pp.

Computing the derivative with respect to σ and using that v ∈ Nω, we get

d

dσ
Sω(σv) = σQω(v)− σp−1‖v‖pp = σIω(v) + (σ − σp−1)‖v‖pp = σ(1− σp−2)‖v‖pp,

which is greater than or equal to zero if and only if 0 < σ 6 1. Hence Sω(σv) ≤ Sω(v), for
every σ > 0. Therefore, since Sω(σv) ≤ Sω(v) < Sω(u),

E(σv) +
ω

2
‖σv‖22 < E(u) +

ω

2
‖u‖22,

and using the fact that ‖σv‖22 = ‖u‖22 = µ, this entails E(σv) < E(u). However, as
this contradicts the assumptions on u, we obtain that u is a δ-NLS action minimizer at
frequency ω. �

Appendix C. Stability of the set of ground states

In this section, we show that the set of ground states at mass µ, denoted by Aµ, is
orbitally stable. Although this is an expected result, we report it here for the sake of
completeness. The proof is obtained adaptating the arguments in [31] and collecting some
other results already present in the literature.

Fix λ > 0. Let us recall that the energy domain (9) can be endowed with the natural
norm

‖ψ‖D :=
(
‖∇φλ‖22 + λ‖φλ‖22 + (α+ θλ)|q|2

) 1
2 , (67)

and denote by D∗ the dual space of D. In view of (67), the expression of the energy E in
(11) can be written as

E(ψ) =
1

2
‖ψ‖2D −

λ

2
‖ψ‖22 −

1

p
‖ψ‖pp.

Let us then consider the Cauchy problem{
i∂ψ∂t = Hαψ − |ψ|p−2ψ

ψ(0) = ψ0,
(68)

and define its weak solutions as follows.

Definition C.1. Let I be an open interval such that 0 ∈ I ⊂ R. A function ψ ∈ L∞(I;D)
is called a local weak solution to (68) on I if ψ belongs to L∞(I;D) ∩W 1,∞(I;D∗) and
satisfies (68) in the sense of L∞(I;D∗). In particular, if I coincides with R, then ψ is
called a global weak solution to (68).

The next result concerns the global well-posedness in D and is the first ingredient to
prove the orbital stability of Aµ via [31]. The proof is obtained by combining inequality
[24, eq. (2.11)] and the results about the local well-posedness obtained in [36, Appendix
B].
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Proposition C.2 (Global well-posedness in D). Let 2 < p < 4. Then, for any ψ0 ∈ D
there exists a unique global weak solution

ψ ∈ C(R;D) ∩ C1(R;D∗)

of (68). Moreover, the following conservation laws hold:

‖ψ(t)‖L2(R2) = ‖ψ0‖L2(R2), ∀ t ∈ R, (69)

E(ψ(t)) = E(ψ0), ∀ t ∈ R. (70)

Proof. The proof is an application of [56, Theorem 2.4], that deals with abstract NLSE
in the spirit of [30], but with general self-adjoint operators in the place of the standard
Laplacian. The hypothesis to be verified are the six conditions [56, (G1)–(G6)] on the
nonlinear term g(ψ) = −|ψ|p−2ψ of the equation, together with a uniqueness result for
the solutions to (68). The first five conditions (G1)–(G5) and the uniqueness result are
proved respectively in [36, Lemma B.1] and [36, Lemma B.2] and are sufficient for the
local well-posedness in D. We are left to prove hypothesis (G6), that reads in our context
as follows:

(G6) ∃ ε ∈ (0, 1] and C0(·) > 0 :
1

p
‖ψ‖pp 6

1− ε
2
‖ψ‖2D + C0(‖ψ‖2), ∀ψ ∈ D.

However, by using [24, eq. (2.11)] and inequality ab 6 εar+C(ε)b
r
r−1 , with r = 2

p−2 , there

results
1

p
‖ψ‖pp 6

Cp
p
‖ψ‖p−2

D ‖ψ‖22 6
εCp
p
‖ψ‖2D +

C(ε)Cp
p
‖ψ‖

4
4−p
2 ,

which proves (G6) and concludes the proof. �

Now, we can introduce the definition of stability and prove the aimed result.

Definition C.3. Fix µ > 0. We say that the set of ground states Aµ is orbitally stable if
for any ε > 0 there exists δ > 0 such that for any ψ0 ∈ D satisfying infu∈Aµ ‖ψ0−u‖D < δ,
the unique global solution ψ(t) of (68) satisfies infu∈Aµ ‖ψ(t)− u‖D < ε for any t ∈ R.

Proposition C.4. For any µ > 0 the set of ground states Aµ is orbitally stable.

Proof. We prove it by contradiction as in [31]. Suppose that Aµ is not orbitally stable.
This means that there exists ε0 > 0, a sequence (ψn0 )n ⊂ D and a sequence (tn)n ⊂ R such
that

inf
u∈Aµ

‖ψn0 − u‖D → 0, as n→ +∞, (71)

but
inf
u∈Aµ

‖ψn(tn)− u‖D > ε0, for every n ∈ N, (72)

where ψn is the unique global solution of (68) with initial datum ψn0 provided by Propo-
sition C.2.

The convergence in (71) entails the existence of a sequence (un)n ⊂ Aµ such that
‖ψn0 − un‖D → 0 as n → +∞. It is straightforward to check that ‖ψn0 ‖22 → µ as n →
+∞. Moreover, being (un) ⊂ Aµ, they satisfy E(un) = E(µ) < 0 and, applying [24,
eq. (2.11)], it turns out that ‖un‖D and ‖un‖p are bounded. As a consequence, since
‖ψn0 ‖D ≤ ‖ψn0 − un‖D + ‖un‖D, the boundedness of ‖ψn0 ‖D follows. Moreover, the same
argument together with [24, eq. (2.11)] can be used to prove the boundedness of ‖ψn0 ‖p.
By using these estimates, one can show that E(ψn0 )→ E(µ). Indeed,

E(ψn0 )− E(un) 6
1

2

∣∣‖ψn0 ‖2D − ‖un‖2D∣∣+
λ

2

∣∣‖ψn0 ‖22 − ‖un‖22∣∣+
1

p

∣∣‖ψn0 ‖pp − ‖un‖pp∣∣
6 (‖ψn0 ‖D + ‖un‖D) ‖ψn0 − un‖2D + (‖ψn0 ‖2 + ‖un‖2) ‖ψn0 − un‖2
+ max{‖ψn0 ‖p−1

p , ‖un‖p−1
p }‖ψn0 − un‖p → 0 as n→ +∞.
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In view of (69) and (70), we have that

‖ψn(tn)‖22 → µ and E(ψn(tn))→ E(µ) as n→ +∞. (73)

By (73) and [24, eq. (2.11)], both ‖ψn(tn)‖D and ‖ψn(tn)‖p are bounded. Moreover, if

we define ξn :=
√
µ

‖ψn(tn)‖2ψ
n(tn), then ‖ξn‖22 = µ and, by using ‖ψn(tn)‖22 → µ and the

boundedness of ‖ψn(tn)‖D and ‖ψn(tn)‖p,

E(ξn) = E(ψn(tn)) + o(1), as n→ +∞.

This entails that ξn is a minimizing sequence for E of mass µ. Hence, arguing as in the
proof of Theorem 1.5, one has that there exists u ∈ Aµ such that ‖ξn − u‖D → 0 as
n → +∞. By the definition of ξn and the facts that ‖ψn(tn)‖22 → µ as n → +∞ and
‖ψn(tn)‖D is bounded, there results that

‖ψn(tn)− u‖D → 0 as n→ +∞,

being in contradiction with (72).

Remark C.5. Proposition C.4 deals with the orbital stability of the whole set of ground
states Aµ. As explained in [31], a natural improvement of such a result is the orbital
stability of a single ground state (up to gauge invariace), which is a straightforward con-
sequence of Proposition C.4 as soon as one can prove the uniqueness of the ground state
(up to gauge invariace). This is true, for instance, for the standard L2-subcritical NLSE
[49] and could be an interesting topic to be studied in the context of the δ−NLSE in a
forthcoming paper.

�
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