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ABSTRACT
The thermal buckling behavior of metallic and laminated beams/plates is inves-
tigated using a linearized stability analysis. By selecting different reference
frames, two distinct types of 3D stability equations can be generated using
total and updated Lagrangian formulations (TLF and ULF). Various beam theory
kinematics can be obtained within the framework of 1D Carrera Unified
Formulation (CUF) by employing an arbitrary expansion of the generalized vari-
ables. More precisely, an improved hierarchical Legendre expansion (IHLE) is
used to formulate the Layer-Wise (LW) model in a robust manner. Additionally,
using a finite element approximation in conjunction with CUF-IHLE, the
obtained stability equations are discretized into a set of algebraic equations.
The critical temperatures predicted by TLF- and ULF-based CUF-IHLE models
are compared using numerical examples of beams and plates with varying
boundary conditions, lamination schemes, and thickness-to-width ratios. Both
models are validated for correctness using the commercial software ABAQUS.
Besides, the effect of strain distribution during the pre-buckling stage is eval-
uated in the plate-like structure using one- and two-step analyses.
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1. Introduction

In the aeronautical and space industries, sub-portions of several complicated structural topologies
can be viewed as approximate to beam- and plate-like structures. For instance, skin panels can be
idealized as plate/shell structures, whereas longitudinal stringers and transverse frames as beams.
These structures frequently undergo severe aerodynamic heating after the speed of the vehicle
exceeds Mach 2.2. Thus, the thermoelastic buckling problem that arises should be of major con-
cern to designers and researchers [1]. By definition, the solution to the thermal buckling problem
is to determine the critical temperature beyond which beam/plate structures enter another equi-
librium state dominated by a bending mode in response to an external perturbation force. As a
result, this temperature is also referred to as the thermal bifurcation point. Numerous scientists
have committed their attention to this subject throughout the years, utilizing 1D/2D structural
theories. For the sake of completeness, the following is a brief and not exhaustive survey of the
kinematic descriptions used for 1D/2D models.
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One of the most well-known theories is the Euler-Bernoulli beam theory (EBBT), which pre-
supposes that the cross section of the beam remains flat and perpendicular to the neutral axis of
the beam before and after deformation. The buckling load can be determined using EBBT by
solving differential equations in an analytical form known as Euler’s column formula or or in an
approximate form using the Rayleigh-Ritz method [2]. Based on EBBT, Elishakoff and his collab-
orators developed closed-form solutions for buckling of colums in terms of non-uniform Young’s
modulus [3], a variety of boundary conditions [4], and the combined action of concentrated and
distributed loads [5]. Li and Batra [6] investigated the buckling modes and transitions among
them of uniformly heated Euler–Bernoulli beams rested on nonlinear elastic foundations analytic-
ally. Sankar and Tzeng [7] derived an exact solution to the plane thermoelasticity issue for func-
tionally graded beams based on EBBT under the premise of exponentially varying elastic
constants and temperature. The only snag is that EBBT overestimates the buckling stresses of
short beams due to its omission of shear deformation effects. As an alternative, Timoshenko
beam theory (TBT) incorporates shear deformation effects by allowing the cross-section of beams
to rotate about the neutral axis. Mathew et al. [8] studied the thermal buckling behavior of anti-
symmetric cross-ply composite laminates with regard to TBT. Kar and Sujata [9] investigated
static buckling load and dynamic instability region of a Timoshenko beam with a thermal gradi-
ent lying on a variable Pastenak foundation. Wang [10] devised a B-spline Rayleigh–Ritz
approach based on TBT for the analysis of free vibration and buckling issues in thin and thick
beams and plates, and the method was found to be locking-insensitive. Notably, EBBT correlates
to Kirchhoff–Love theory in plate structures, whereas TBT corresponds to Mindlin–Reissner the-
ory. Morimoto [11] demonstrated how to define a new position of the reference plane for an
inhomogeneous rectangular plate and then derived its fundamental equation in terms of arbitrary
thermal loads based on Kirchhoff–Love theory. They also discussed the effect of the aspect ratio,
width-to-thickness ratio, and inhomogeneity parameter on the critical temperature. Prabhu and
Dhanaraj [12] conducted thermoelasticity and thermal buckling analysis on symmetrically lami-
nated composite plates using Mindlin–Reissner theory. Li et al. [13] presented analytical solutions
to the buckling and vibro-acoustic problems of the clamped composite laminated plate in the
thermal environment using Kirchhoff–Love and Mindlin–Reissner theories, respectively.
Additionally, the aforesaid theory has made contributions to the thermal buckling of micro and
nano beams and plates through the work of Mohammadabadi et al. [14], Ebrahimi and Salari
[15], Taati [16], Wang et al. [17], and Shojaeefard et al. [18]. Although extensively employed,
TBT requires the definition of a shear correction factor to ensure that the unloaded lateral surfa-
ces have zero shear stress. As reported by Omidvar [19], and Madabhusi-Raman and Davalos
[20], the definition of the shear correction factor depends on many factors, e.g., the structural
geometry dimension, material property, lamination scheme, loading form, and boundary condi-
tion, etc.

Accordingly, numerous higher-order shear deformation theories (HSDT) have been presented
in order to eliminate the need for the shear correction factor. Lezgy-Nazargah [21] used isogeo-
metric analysis to conduct a thorough coupled thermal-mechanical analysis of bidirectional func-
tionally graded beams. The in-plane displacement field introduced in his work is approximated
via a combination of polynomial and exponential expressions, resulting in a refined high order
global–local theory. Shafiei and She [22] employed HSDT to deal with the problem of thermally
induced vibration in functionally graded nano-tubes. Such a kind of HSDT characterizes the
through-the-thickness variation of the axial displacement field with polynomial functions. By
incorporating a shape function into the approximation of the longitudinal displacement vector,
Aydogdu [23] developed a unified three-degree-of-freedom beam theory. Thus, Reddy’s parabolic
shear deformation beam theory [24], Soldatos’s hyperbolic shear deformation beam theory [25],
and Karama’s shear deformation beam theory [26] can all be derived as special cases of this the-
ory. In terms of the thermal buckling of cross-ply laminated beams, they discovered that some
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cross-ply laminated beams buckle upon cooling rather than heating while others do not buckle
regardless of whether they are heated or cooled. Van Do and Lee [27] developed a refined quasi-
3D theory for thermal buckling analysis of perfect and imperfect functionally graded plates by
including transverse shear and transverse normal shape functions in the description of in-plane
and out-of-plane displacements, respectively, confirming the importance of including thickness
expansion effects in thermal buckling assessments of functionally graded plates. Cetkovic [28]
used Layer-Wise (LW) description of in-plane displacement components and quadratic variation
of transverse displacement to derive thermal buckling solutions for laminated composite plates,
including Navier’s analytical solution in the strong form and the finite element solution in the
weak form. The full LW definition of a 3D displacement field is used in the work of Shariyat
[29], in which the instability temperature of composite multilayered plates with temperature-
dependent properties can be calculated via a modified Budiansky criterion.

According to Koiter’s suggestion [30], any refinement of classical theories may be deemed use-
less in the modeling of multilayered laminated structures until the effects of interlaminar continu-
ous transverse shear and normal stresses are taken into account. In response to this
consideration, Carrera [31] developed a uniform formulation, later dubbed the Carrera Unified
Formulation (CUF). Within the framework of CUF, any structural theories can degenerate into a
generalized kinematics that employs an arbitrary expansion of generalized variables, such as dis-
placement or stress components. CUF was initially used to build 2D models of plates and shells
[32] and was then extended to beam (1D) models [33]. Depending on the function used in the
expansion, CUF can be further classified into the following categories: TE (Taylor expansion), LE
(Lagrange expansion), CE (Chebyshev expansion), HLE (hierarchical Legendre expansion), and
IHLE (improved hierarchical Legendre expansion). Nali et al. [34] developed the Equivalent
Single Layer (ESL) model using 2D CUF-TE to evaluate a large variety of 2D models for buck-
ling analysis of isotropic, orthotropic, and anisotropic plates under biaxial and shear stresses.
They concluded that classical theories, such as Kirchhoff–Love and Mindlin–Reissner, are insuffi-
cient for modeling thick plates or multilayered plates made of laminae with a high orthotropic
ratio. Fazzolari and Carrera [35] compared the critical temperature for a sandwich plate using
2D CUF-TE and -HLE. They employed TE to implement ESL models and HLE to LW models.
Vescovini [36] extended the work of [35] to predict the global and local buckling behaviors of
sandwich plates with anisotropic facesheets and pointed out that the Ritz approach based on trig-
onometric functions produced significant inaccuracies in anisotropic plates with non-negligible
bending/twisting coupling. Ibrahim et al. [37] applied 1D CUF-TE to analyze the buckling of
laminated beams and panels and emphasized the critical nature of higher-order terms in accur-
ately predicting torsional modes. As an alternative to weak-form solutions, Carrera et al. [38]
developed differential governing equations in strong form as an alternative to weak-form solu-
tions using 1D CUF-TE and tackled the buckling problem of thin-walled beams using the
dynamic stiffness approach. Recently, Pagani and Sanchez-Majano [39,40] extended LW models
(1D CUF-LE and-HLE) to mesoscale and multiscale buckling assessments of variable angle tow
laminates with the inclusion of uncertain defects, such as, fiber misalignment. The ESL model
(1D CUF-TE) was employed as a comparative model.

IHLE [41,42] is a more powerful, but elegant, model for CUF models with preexisting expan-
sions. It is based on HLE models, inheriting all of its advantages, such as hierarchical kinematics
and local refinement of the cross-section sub-domain, while deftly avoiding its disadvantage, i.e.,
the possibility of violating C0

Z-Requirements [43], by transforming the hierarchical Legendre func-
tions on the edge to Lagrange ones. Additionally, the remarkable advantages of HLE over TE and
LE are reported in Pagani et al. [44]. By promoting expansion order in two orthogonal dimen-
sions throughout the cross-section, 1D CUF-IHLE can be considered an alternative to 2D plate/
shell models for the analysis of plates or cylindrical shells without requiring re-meshing opera-
tions, as 1D CUF-LE does [39,40].
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Li and Song [45], and Zhou et al. [46] considered the buckling of thin panels exposed to a
uniform temperature field as an in-plane stress problem, omitting the transverse normal stress.
Additionally, they skipped pre-buckling analysis, assuming that when the boundary condition is
simply supported, clamped, or a combination of the two, the pre-buckling stress state is domi-
nated by uniform thermal stress. This form of buckling analysis will be referred to as one-step
analysis hereafter. Obviously, due to the absence of pre-buckling analysis, rapid buckling analysis
has a limited range of applicability, necessitating the need of integrated buckling analysis, referred
to in this work as two-step analysis.

Carrera [47], on the other hand, emphasized the need of including the transverse normal
strain effect in static thermoelastic analysis of thick homogeneous and multilayered plates. In this
context, quasi-3D or three-dimensional thermal buckling assessment remains critical for high-
fidelity solutions. CUF is capable of reproducing 3D-like accuracy at a cheaper computing cost
than 3D solid elements by refining kinematics across the cross-section or thickness. Furthermore,
classical buckling analysis can be converted to a standard eigenvalue problem by taking the incre-
ment of the nonlinear equilibrium equation, which is built using total Lagrangian description, i.e.,
the reference frame characterized by the undeformed configuration. As opposed to this,
Vescovini et al. [48] used nonlinear eigenvalue prediction to determine the critical temperature of
laminated and sandwich plates, taking into consideration nonlinear pre-buckling deformation in
the thickness direction. They concluded that there is a discernible difference between the linear
and nonlinear forecasts for thick plates or strong anisotropy in the lay-up, despite the fact that
both predictions are capable of 3D-like accuracy. However, the proposed approach confines the
solution to immovable edge boundary conditions.

The purpose of this work is to demonstrate the feasibility of using 1D CUF-IHLE for thermal
buckling analysis of beams and plates using both total and updated Lagrangian formulations. The
key novelties of the paper can be stated as follows: (i) the computational effort required by the
present models is significantly less than that required by models based on 3D FE discretizations;
(ii) the systematic difference between the linearized total and updated Lagrangian formulations
for thermal buckling analysis is unmasked; (iii) the use of the linearized updated Lagrangian for-
mulation enables the quantification of the thermal buckling strength of structures of any thick-
ness using a linear solver, avoiding the nonlinear eigenvalue analysis in the case of thick
structures, as described in Vescovini et al. [48]; (iv) the proposed model is capable of resolving
plate thermal buckling issues in both in-plane and three-dimensional descriptions. The remainder
of this paper is structured as follows. To begin, Section 2 discusses thermal buckling in detail

Figure 1. The geometrical configurations and the associated variables at different times.
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using total and updated Lagrangian formulations; then, the CUF kinematic field and the IHLE
formulation are explained in Section 3; Section 4 discusses the solution processes defined by one-
step and two-step analyses, as well as the derivation of the fundamental nucleus within the con-
text of total and updated Lagrangian formulations for pre-buckling and thermal buckling prob-
lems. In Section 5, the accuracy and efficiency of the proposed approach are validated by 3D
finite element analysis; comparisons between total and updated Lagrangian formulations, as well
as one-step and two-step analyses are made by considering various thickness-to-length ratios,
fiber orientation angles, and boundary conditions; and finally, some useful conclusions are drawn
in Section 6.

2. Linearized variational equations in three-dimensional space

Figure 1 gives a deformable body whose configurations, indicated by 0V, :::, tV , tþDtV, vary with
the time (t). The position vectors of a particle are referred as X, :::, tx, tþDtx, where X is the mater-
ial (or referential) coordinate, x the spatial (or current) coordinate, and the left superscript the
current time. The crucial step in resolving the buckling problem is linearizing the variational
equation, i.e., determining its increment at time t. Additionally, correct definitions of stress ðtSÞ
and strain ðtEÞ tensors must be adopted in accordance with the reference frame. When different
reference frames are chosen, however, separate models are constructed, namely the total
Lagrangian formulation (TLF) and the updated Lagrangian formulation (ULF). Following that, we
will take a quick look at the linearization process in terms of TLF and ULF. Further details on
the derivation of the formula can be found in Kim [49] and Noguchi and Hisada [50].

2.1. Total Lagrangian formulation

Assume that the elastic continuum experiences a gradual change in temperature, resulting in a
thermal-mechanical issue. Additionally, we define that the thermal and mechanical states that are
generated are uncoupled. In other words, thermal and mechanical strains (tEth and tE) can be
independently analyzed. As specified above, the variational equation at time t is written in terms
of material variables based on the initial (or undeformed) configuration; that isð

0V
dt0E : t0Sd

0V ¼ dLext (1)

where the left subscript of a variable represents the chosen reference frame. d is the variational
operator; Lext is the work done by the external load. Temperature cannot be viewed as the pri-
mary variable under the uncoupled hypothesis, i.e., dtEth ¼ 0: The second Piola-Kirchhoff stress
tensor t

0S, the Green-Lagrange strain tensor t
0E, and the thermal strain tEth can be defined as

t
0E ¼ 1

2
r0uð ÞT þr0uþr0u � r0uð ÞT

� �
, t

0Eij ¼
1
2

@ui
@Xj

þ @uj
@Xi

þ @uk
@Xi

@uk
@Xj

 !
i, j ¼ 1, 2, 3

t
0S ¼ C : t

0E�tEth
� �

, t
0Sij ¼ Cijkl

t
0Ekl�tEthkl
� �

i, j, k, l ¼ 1, 2, 3
tEth ¼ DTa, tEthij ¼ DTaij, DT¼tT�0T i, j ¼ 1, 2, 3

(2)

where the symbol r0 specifies the material gradient; u is the displacement vector; the right sub-
script T stands for the transposition operator; C is the fourth-order constitutive tensor which is
invariant with respect to the time variable t by assumption; DT signifies an increase in tempera-
ture over the reference temperature 0T; and a denotes the thermal coefficient of expansion, which
is believed to be a time-independent variable. Thermal strains are configuration independent as a
result of this assumption.
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Since DðdLextÞ is zero in the case of the conservative loading, the linearization of the vari-
ational equation only acts on the left-hand side of Eq. (1), which can be simplified to the follow-
ing form when the present and reference configurations are indistinguishable:

D
ð
0V
dt0E : t0Sd

0V
� �

¼
ð
0V
sym r0Du � r0duð ÞT

� �
: Sd0V

þ
ð
0V
sym r0duð Þ : C : sym r0Duð Þd0V ¼ 0

(3)

Note that the stress S is defined independently of the reference frame after the linearization.
Besides, the first integral in Eq. (3) reflects the stiffness term in linear systems, whereas the
second one represents the geometric stiffness term found in buckling problems. The solution to
Eq. (3) will be examined in detail in the solution procedure section, which will be transfomed
into an eigenvalue issue.

2.2. Updated Lagrangian formulation

As an alternative, ULF describes structural deformation using the current configuration as the ref-
erence frame which facilitates the employment of rate-form-defined constitutive equations
through using spatial tensors (tE, tS) rather than material tensors (0E, 0S). Following this charac-
ter, the associated variation equation can be written as:ð

tV
dttE : ttSd

tV ¼ dLext (4)

where t
tE is the Eulerian strain tensor and t

tS is the Cauchy stress tensor at time t. Their expres-
sions are written as:

t
tE ¼ 1

2
ruð ÞT þruþru � ruð ÞT

� �
, t

tEij ¼
1
2

@ui
@xj

þ @uj
@xi

þ @uk
@xi

@uk
@xj

 !
i, j ¼ 1, 2, 3

DtSJ ¼ C : DtE, DtSij ¼ Cijkl DtEkl i, j, k, l ¼ 1, 2, 3

(5)

where the sign r is the spatial gradient. DtSJ represents the Jaumann incremental form of the
Cauchy stress tensor, which is objective. Notably, the constitutive law in Eq. (5) must be given in
the objective form to include the effect of rigid-body rotation. Besides, under the time-independ-
ent material coefficients hypothesis, DC is not addressed in the rate-form constitutive law.

Typically, buckling analysis is performed on the initial geometry, Thus, in Eq. (4), the domain
of the virtual work should be transformed into its undeformed configuration.ð

0V
ðr0duÞ � ðr0xÞ�1
� �

: ttSjJjd0V ¼ dLext (6)

where r0x is defined as the deformed gradient, and jJj denotes its determinant. As a result, jJj
can be regarded as the amplification factor between the undeformed ðd0VÞ and deformed ðdtVÞ
infinitesimal volumes. This denotation allows for the definition of a new stress measure called the
Kirchhoff stress tensor in the undeformed area as s ¼t

t SjJj conjugated to the Eulerian strain ten-
sor, which has a clear physical meaning in contrast to the second Piola-Kirchhoff stress tensor
conjugated to the Green-Lagrange strain tensor.

Due to the linearity of the strain–displacement relationship and constitutive law during the
pre-buckling stage, it is unnecessary to distinguish between the second Piola-Kirchhoff, Cauchy,
and Kirchhoff stresses, i.e., t

0S �t
t S � s, as well as between material and spatial gradients, i.e.,

r0 � r when the linearization is performed. Details on how these stresses are defined can be
found in [49].

674 Y. YAN ET AL.



Taking the increment of Eq. (6), we obtain:

D
ð
0V
ðr0duÞ � ðr0xÞ�1 : sd0V

� �
¼
ð
0V
sym r0duð Þ : C : sym r0Duð Þd0V

þ
ð
0V
symðr0Du � ðr0duÞTÞ : Sd0V

� 2
ð
0V

sym r0DuÞ � symðr0du
� �� �

: Sd0V ¼ 0

(7)

By comparing Eq. (7) and Eq. (3), it is obvious that ULF and TLF result in distinct buckling

formulae. The additional term 2
ð
0V
ðsymðr0DuÞ � symðr0duÞÞ : Sd0V in Eq. (7) exemplifies this.

Such a minute difference will be amplified if the related displacement gradient (r0du or r0du or
r0u) exhibits a considerable variation, as discussed later in the section on numerical results.

3. Structural model

3.1. Preliminary

The matrix–vector notation is more accessible for computer implementations of an in-house
finite element code than the tensor notation. Consider a flat structure described in the Cartesian
coordinate system and featured by its length l, the width w, and the thickness h, as illustrated in
Figure 2. Vectors of displacement, strain, and stress can be expressed as follows in the case of lin-
ear thermoelasticity:

u ¼ ux , uy , uz½ �T
e ¼ exx , eyy , ezz , cxz , cyz , cxy½ �T
S ¼ Sxx , Syy , Szz , Sxz , Sxz , Sxy½ �T

(8)

Take note that e is employed instead of E here due to the assumption of a small displacement
gradient, and it is referred to as the engineering strain, as its shear component is twice that of
the tensor. The geometrical relation and the constitutive equation take the following forms:

e ¼ Du
S ¼ ~C e�ethð Þ (9)

Figure 2. Cartesian coordinate system for a flat structure.
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where

D ¼

@

@x
0 0

0
@

@y
0

0 0
@

@z
@

@z
0

@

@x

0
@

@z
@

@y
@

@y
@

@x
0

2
6666666666666666664

3
7777777777777777775

, ~C ¼

~C11 ~C12 ~C13 0 0 ~C16
~C12 ~C22 ~C23 0 0 ~C26
~C13 ~C23 ~C33 0 0 ~C36

0 0 0 ~C44 ~C45 0
0 0 0 ~C45 ~C55 0
~C16 ~C26 ~C36 0 0 ~C66

2
66666664

3
77777775
, eth ¼

axxDT
ayyDT
azzDT
0
0
axyDT

2
6666664

3
7777775

(10)

where the material stiffness matrix ~C is defined in the global coordinate system ½x, y, z�, which is
rotated to the material coordinate system ½1, 2, 3� by an angle h for an orthotropic case. For clarity
purposes, the components of ~C are not listed here; nonetheless, they maybe found be in [51]. eth

is defined in the same way as e: A uniform temperature increase is assumed ðDT � constantÞ in
the present work, and the thermal coefficient of expansion orientated at principal coordinate axis
can be expressed as:

axx ¼ a11 cos 2hþ a22 sin 2hð Þ
ayy ¼ a11 sin 2hþ a22 cos 2hð Þ
azz ¼ a33
axy ¼ 2 a11 � a22ð Þ sin h cos h

(11)

3.2. Carrera Unified Formulation (CUF)

CUF has been demonstrated to be applicable across a broad range of structural shapes and mater-
ial properties [52]. The fundamental idea behind 1D CUF is to define 3D displacement vector as
a cross-section expansion of 1D displacement variables in the axial direction, with the explicit
form being:

uðx, y, zÞ ¼ Fsðx, zÞusðyÞ s ¼ 1, :::,M (12)

where usðyÞ is the 1D generalized displacement vector; the repeated subscript s signifies summa-
tion in Einstein notation; and Fsðx, zÞ is the function associated with the cross-section coordinate.
Currently, under the CUF framework, both ESL and LW models can be constructed by selecting
different types of expansion functions (TE, LE, CE, HLE, and IHLE). Among these, this work
makes use of the IHLE beam theory.

3.2.1. Improved hierarchical Legendre expansion (IHLE)
IHLE, which Yan et al. [41,42] just developed, may be considered a derivation of HLE. It converts
non-interpolative bases on the edge of HLE expansion domains to interpolative Lagrange-type
nodal bases while maintaining hierarchical Legendre interpolation bases on the inside. As a result,
before constructing IHLE, we will present an outline of HLE, which consists of vertex, side, and
internal modes. For a quadrilateral domain with an inverval ½�1, 1� � ½�1, 1�, their expressions
are given as follows:

Vertex modes: they are used to characterize the deformation of four vertices over the quadri-
lateral plane.
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Fs ¼ 1
4
ð1þ n nsÞð1þ g gsÞ; s ¼ 1, 2, 3, 4 (13)

where ns and gs are the coordinates of point s in the natural coordinate system. n and g range
between [-1, þ1].

Side modes: they are used to denote the edge-featuring deformation over the quadrilateral
plane.

Fs ¼ 1
2
ð1� gÞ/j1ðnÞ; j1 � 2; s ¼ 5, 9, 13, 18, :::

Fs ¼ 1
2
ð1þ nÞ/j2ðgÞ; j2 � 2; s ¼ 6, 10, 14, 19, :::

Fs ¼ 1
2
ð1þ gÞ/j3ðnÞ; j3 � 2; s ¼ 7, 11, 15, 20, :::

Fs ¼ 1
2
ð1� nÞ/j4ðgÞ; j4 � 2; s ¼ 8, 12, 16, 21, :::

(14)

where ji; i ¼ 1, 2, 3, 4 is the expansion order of the ith edge. /ji is the integrated Legendre poly-
nomial, which is described in depth in [53].

Internal modes: they are used to illustrate the deformation that happens on the internal face
and vanishes at nodes and edges.

Fs ¼ /jmðnÞ/knðgÞ; jm, kn � 2; m, n ¼ 1, 2, 3, 4; s ¼ 17, 22, 23, 28, 29, 30 � � � (15)

It should be noted that, with the exception of the kinematic terms referring to vertex modes,
the remainder of the kinematic ones related to side and internal modes lack a clear physical
meaning. When the complicated (arbitrary-shaped) cross-section are discretized into an optional
number of quadrilateral sub-domains, the assembly of terms in adjacent sub-domains becomes
difficult. Besides, the expansion order of side and internal modes is unrelated, laying the ground-
work for the IHLE implementation.

Figure 3 specifies the transformation of the expansion function over the side in the kth sub-

domain. Assume that ugsðyÞ ¼ ugxs , u
g
ys , u

g
zs

� 	T
is the displacement vector related to the sth Gauss-

Lobatto node ðns, gsÞ with the total number N. Due to the fact that three components of displace-
ment fields have an equal amount of expansion terms, we will illustrate the detailed process by
taking the component along the x direction as an example.

Ug
x ¼ VUx (16)

where

Figure 3. Transformation from HLE to IHLE.
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Ug
x ¼ ugx1 , :::, u

g
xs , :::, u

g
xN

� 	T

V ¼

F1 n1, g1ð Þ � � � Fs n1, g1ð Þ � � � FN n1, g1ð Þ
� � � � � � � � � � � � � � �

F1 ns, gsð Þ ::: Fs ns, gsð Þ ::: FN ns, gsð Þ
� � � � � � � � � � � � � � �

F1 nN , gNð Þ ::: Fs nN , gNð Þ ::: FN nN , gNð Þ

2
66664

3
77775

Ux ¼ ux1 , :::, uxs , :::, uxN½ �T

(17)

Additionally, the total number of transformed nodes must equal that of the expansion terms rela-
tive to vertex and side modes. Due to the mathematical constraint, the nodal collocation tech-
nique is such that non-equispaced nodes, especially Gauss-Lobatto nodes, are chosen for each
edge in order to mitigate the significant oscillation problem associated with a growing number of
nodes, referred to as Runge’s phenomenon.

The local displacement field of four edges (including four vertices), indicated by ufesx ðx, y, zÞ,
can be expressed in terms of nodal displacement variables using the relation in Eq. (16):

ufesx ¼ Lsðn, gÞugxsðyÞ
L ¼ GV�1 (18)

where G ¼ ½F1, F2, :::, FN � is the vectorization representation of the expansion function
Fsðn, gÞ; s ¼ 1, 2, ::::,N; Ls means the Lagrange-type interpolation function and its vectorized
form is denoted by L.

Bear in mind that the transformation occurring on the edge has no effect on the Legendre-like
kinematics within the sub-domain. This critical property enables the formulation of a novel kine-
matic field, which asserts that:

u ¼ Ls1ðn, gÞugs1ðyÞ þ Fs2ðn, gÞus2ðyÞ; s1 ¼ 1, 2, :::,N; s2 ¼ 1, 2, :::,M � N; s1 6¼ s2

¼ �Fsðn, gÞusðyÞ; s ¼ 1, 2, :::,M
(19)

where �Fðn, gÞ is the IHLE-type kinematic assumption, which is a combination of Lagrange and
hierarchical Legendre expansions.

The key feature of this variable-kinematic beam model is that the degrees of freedom on the border
of the cross-section have a clear physical meaning (see Figure 3). Thus, the implementation of LW
models can be done in a straightforward manner. In other words, through the assembly of coinciding
degrees of freedom, the continuity of displacements at the plies’ interfaces is imposed. The discussion
of LW theories is out of the scope of this paper, but the reader can refer to the literature [44]. Besides,
the basis transformation acting exclusively on edges preserves the partial hierarchical properties of the
original HLE model. In other words, kinematic refinement can still be simply accomplished by adjust-
ing the polynomial order. The effectiveness of the additional but essential transformation is dependent
on the time consumed by the matrix inversion in Eq. (18).

The traditional FE formulation is widely utilized to address mechanical problems due to its
simplicity and broad application. In the present work, the standard 1D shape function Ni in
FEM is selected to interpolate the axial displacement variable us

usðyÞ ¼ NiðyÞqsi i ¼ 1, :::, n (20)

where qsi is a nodal unknown vector; and n denotes the number of nodes contained within an elem-
ent. Four-node (B4) Lagrange-type element is chosen in this work with the following expression:

NiðcÞ ¼

Q4
j¼1

c� cjð Þ
Q4

j¼1, j6¼i
ci � cjð Þ

(21)
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where Ni is specified in the isoparametric space ½�1, 1� with the equidistant root ci. Accordingly,
under the framework of CUF-based FEM approximation, the complement expression of 3D dis-
placement field is as follows:

uðx, y, zÞ ¼ �Fsðx, zÞNiðyÞqsi i ¼ 1, :::, n (22)

4. Solution procedure

The buckling problem can be transformed mathematically into a generalized eigenvalue problem.
However, as seen from the governing equations (Eq. (7) and Eq. (3)) to be discretized, the solu-
tion process is strongly dependent on the distribution of displacement and temperature changes
at the pre-buckling stage. In certain specialized cases, such as thin symmetric laminates or thin
isotropic panels with four edges that are either fully clamped or simply-supported, 3D thermal
buckling problems can be reduced to in-plane buckling problems under the assumption of uni-
form temperature changes. The pre-buckling strain ðeÞ is equal to zero in this circumstance, and
the pre-buckling stress is mostly caused by thermal strain (eth, see Eq. 9). Thus, eigenvalue ana-
lysis alone can be used to calculate the critical temperature, resulting in what is known as one-
step analysis. Otherwise, prior to performing the eigenvalue analysis, the pre-buckling strain
should be calculated. For convenience, we’ll refer to this type of solution technique as two-step
analysis, which will be presented immediately without any loss of generality.

4.1. Two-step analysis

Because pre-buckling analysis is restricted to the small strain assumption, no distinction is pos-
sible between Eq. (1) and Eq. (4). By substitution of Eq. (9), Eq. (19), Eq. (12), and Eq. (20) into
Eq. (1), we can obtain the governing equation of linear thermoelastic problem in a discretization
manner:

Kq ¼ Pth (23)

where K is denoted as the stiffness matrix containing the fundamental nucleus (FN) of dimension
3� 3:

Kssij 1, 1½ � ¼ E11s, xs, x þ E44s, zs, z

� �
Jij þ E16s, xsJij, y þ E16ss, xJi, yj þ E66ss Ji, yj, y

Kssij 1, 2½ � ¼ E16s, xs, x þ E45s, zs, z

� �
Jij þ E12s, xsJij, y þ E66ss, x Ji, y jþ E26ss Ji, y j, y

Kssij 1, 3½ � ¼ E13s, xs, z þ E44s, zs, x

� �
Jij þ E45s, zsJij, y þ E36ss, z Ji, yj

Kssij 2, 1½ � ¼ E16s, xs, x þ E45s, zs, z

� �
Jij þ E66s, xsJij, y þ E12ss, x Ji, y jþ E26ss Ji, yj, y

Kssij 2, 2½ � ¼ E66s, xs, x þ E55s, zs, z

� �
Jij þ E26s, xsJij, y þ E26ss, x Ji, y jþ E22ss Ji, y j, y

Kssij 2, 3½ � ¼ E36s, xs, z þ E45s, zs, x

� �
Jij þ E55s, zsJij, y þ E23ss, z Ji, yj

Kssij 3, 1½ � ¼ E44s, xs, z þ E13s, zs, x

� �
Jij þ E36s, zsJij, y þ E45ss, z Ji, yj

Kssij 3, 2½ � ¼ E45s, xs, z þ E36s, zs, x

� �
Jij þ E23s, zsJij, y þ E55ss, z Ji, yj

Kssij 3, 3½ � ¼ E44s, xs, x þ E33s, zs, z

� �
Jij þ E45s, xsJij, y þ E45ss, x Ji, yj þ E55ss Ji, yj, y

(24)

where the terms Eabs, hs, f and Ji, 1j, 1 denote the cross-section moment parameter and integral along

the beam axis, respectively, as follows:
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Eabs, hs, f ¼
ð
X

~Cab�Fs, hðx, zÞ�Fs, fðx, zÞdX

Ji, 1j, 1 ¼
ð
L
Ni, 1ðyÞNj, 1ðyÞdy

(25)

Due to the absence of the mechanical load, the nodal loading vector refers to the thermally
induced part (Pth), whose FN (Pth

si ) consists of a 3� 1 vector:

Pth
si 1, 1½ � ¼ ayyDT0ðE12s, x Ji þ E26s Ji, yÞ þ axxDT0ðE11s, x Ji þ E16s Ji, yÞ þ azzDT0ðE13s, x Ji þ E36s Ji, yÞ þ axyDT0ðE16s, x Ji þ E66s Ji, yÞ

Pth
si 2, 1½ � ¼ ayyDT0ðE22s Ji, y þ E26s, x JiÞ þ axxDT0ðE12s Ji, y þ E16s, x JiÞ þ azzDT0ðE23s Ji, y þ E36s, x JiÞ þ axyDT0ðE26s Ji, y þ E66s, x JiÞ

Pth
si 3, 1½ � ¼ ayyDT0ðE23s, z JiÞ þ axxDT0ðE13s, z JiÞ þ azzDT0ðE33s, z JiÞ þ axyDT0ðE36s, z JiÞ

(26)

DT0 is the reference temperature change. Notably, the generated FNs are invariant, which
means that their expression remains constant regardless of the shape or cross-section expansion
function used. Additionally, integrals are decoupled throughout the cross-section and along the
beam axis. Thus, classical and higher-order beam theories can be constructed by appropriately
raising the order of the expansion function without regard for the element size in the longitudinal
direction; consequently, there are no aspect ratio limitations between these two domains.

FN is often limited to the cross-section sub-domain of a single 1D CUF finite element in the
LW model. The global stiffness matrix can be constructed by expanding the indices s, s, i, and j.
Interesting readers might consult the literature [33] for a more complete implementation. After
obtaining global matrices, it is possible to solve a system of linear algebraic equations by impos-
ition of boundary conditions.

After obtaining the pre-buckling displacement, the corresponding stress ðSÞ can be determined
using the constitutive equation. Bifurcation points (typical of buckling) connected with the cur-
rent equilibrium state appear when the tangent stiffness matrix (KT) has a zero determinant, i.e.,

KTj j ¼ Kþ kcrKg



 

 ¼ 0 (27)

where K is the stiffness matrix with the same FN as in Eq. (24); kcr is the eigenvalue, which is
multiplied by the reference temperature change DT0 to get the critical value. Kg is the geometric
stiffness matrix related to S. FN in Kg , on the other hand, takes on a separate form in TLF and
ULF, depending on the reference frame used.

Substituting Eq. (9), Eq. (19), Eq. (12), and Eq. (20) into Eq. (3) yields FN (Kssij
g ) in TLF as:

Kssij
g : , :½ � ¼ DssijI (28)

in which

Dssij ¼ < Sxx�Fs, x
�Fs, xNiNj > þ < Syy�Fs�FsNi, yNj, y > þ < Szz�Fs, z

�Fs, zNiNj >

þ < Sxy�Fs, x
�FsNiNj, y > þ < Sxy�Fs�Fs, xNi, yNj > þ < Sxz�Fs, x

�Fs, zNiNj >

þ < Sxz�Fs, z
�Fs, xNiNj > þ < Syz�Fs, z

�FsNiNj, y > þ < Syz�Fs�Fs, zNi, yNjÞ >
(29)

where I is the 3� 3 identity matrix; and < ð�Þ >¼
ð
0V
ð�Þd0V: Different from the diagonal form,

FN (Kssij
g ) in ULF takes the full form by inserting Eq. (9), Eq. (19), Eq. (12), and Eq. (20) into

Eq. (7):
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Kssij
g 1, 1½ � ¼ Dssij � 2 < Sxx�Fs, x

�Fs, xNiNj > � 1
2
< Sxx�Fs�FsNi, yNj, y > � 1

2
< Sxx�Fs, z

�Fs, zNiNj >

� 1
2
< Syy�Fs�FsNi, yNj, y > � 1

2
< Szz�Fs, z

�Fs, zNiNj > � < Sxy�Fs�Fs, xNi, yNj > � < Sxy�Fs, x
�FsNiNj, y >

� < Sxz�Fs, x
�Fs, zNiNj > � < Sxz�Fs, z

�Fs, xNiNj > � 1
2
< Syz�Fs, z

�FsNiNj, y > � 1
2
< Syz�Fs�Fs, zNi, yNj >

Kssij
g 1, 2½ � ¼ � 1

2
< Sxx�Fs�Fs, xNi, yNj > � 1

2
< Syy�Fs�Fs, xNi, yNj > � < Sxy�Fs, x

�Fs, xNiNj >

� < Sxy�Fs�FsNi, yNj, y > � 1
2
< Sxy�Fs, z

�Fs, zNiNj > � 1
2
< Sxz�Fs�Fs, zNi, yNj > � 1

2
< Syz�Fs, z

�Fs, xNiNj >

Kssij
g 1, 3½ � ¼ � 1

2
< Sxx�Fs, z

�Fs, xNiNj > � 1
2
< Szz�Fs, z

�Fs, xNiNj > � 1
2
< Sxy�Fs, z

�FsNiNj, y >

� < Sxz�Fs, x
�Fs, xNiNj > � 1

2
< Sxz�Fs�FsNi, yNj, y > � < Sxz�Fs, z

�Fs, zNiNj > � 1
2
< Syz�Fs�Fs, xNi, yNj >

Kssij
g 2, 1½ � ¼ � 1

2
< Sxx�Fs, x

�FsNiNj, y > � 1
2
< Syy�Fs, x

�FsNiNj, y > � < Sxy�Fs, x
�Fs, xNiNj >

� < Sxy�Fs�FsNi, yNj, y > � 1
2
< Sxy�Fs, z

�Fs, zNiNj > � 1
2
< Sxz�Fs, z

�FsNiNj, y > � 1
2
< Syz�Fs, x

�Fs, zNiNj >

Kssij
g 2, 2½ � ¼ Dssij � 1

2
< Sxx�Fs, x

�Fs, xNiNj > � 1
2
< Syy�Fs, x

�Fs, xNiNj > �2 < Syy�Fs�FsNi, yNj, y >

� 1
2
< Syy�Fs, z

�Fs, zNiNj > � 1
2
< Szz�Fs, z

�Fs, zNiNj > � < Sxy�Fs�Fs, xNi, yNj > � < Sxy�Fs, x
�FsNiNj, y >

� 1
2
< Sxz�Fs, x

�Fs, zNiNj > � 1
2
< Sxz�Fs, z

�Fs, xNiNj > � < Syz�Fs, z
�FsNiNj, y > � < Syz�Fs�Fs, zNi, yNj >

Kssij
g 2, 3½ � ¼ � 1

2
< Syy�Fs, z

�FsNiNj, y > � 1
2
< Szz�Fs, z

�FsNiNj, y > � 1
2
< Sxy�Fs, z

�Fs, xNiNj >

� 1
2
< Sxz�Fs, x

�FsNiNj, y > � 1
2
< Syz�Fs, x

�Fs, xNiNj > � < Syz�Fs�FsNi, yNj, y > � < Syz�Fs, z
�Fs, zNiNj >

Kssij
g 3, 1½ � ¼ � 1

2
< Sxx�Fs, x

�Fs, zNiNj > � 1
2
< Szz�Fs, x

�Fs, zNiNj > � 1
2
< Sxy�Fs�Fs, zNi, yNj, y >

� < Sxz�Fs, x
�Fs, xNiNj > � 1

2
< Sxz�Fs�FsNi, yNj, y > � < Sxz�Fs, z

�Fs, zNiNj > � 1
2
< Syz�Fs, x

�FsNiNj, y >

Kssij
g 3, 2½ � ¼ � 1

2
< Syy�Fs�Fs, zNi, yNj > � 1

2
< Szz�Fs�Fs, zNi, yNj > � 1

2
< Sxy�Fs, x

�Fs, zNiNj >

� 1
2
< Sxz�Fs�Fs, xNi, yNj > � 1

2
< Syz�Fs, x

�Fs, xNiNj > � < Syz�Fs�FsNi, yNj, y > � < Syz�Fs, z
�Fs, zNiNj >

Kssij
g 3, 3½ � ¼ Dssij � 1

2
< Sxx�Fs, x

�Fs, xNiNj > � 1
2
< Syy�Fs�FsNi, yNj, y > � 1

2
< Szz�Fs, x

�Fs, xNiNj >

� 1
2
< Szz�Fs�FsNi, yNj, y > �2 < Szz�Fs, z

�Fs, zNiNj > � 1
2
< Sxy�Fs�Fs, xNi, yNj > � 1

2
< Sxy�Fs, x

�FsNiNj, y >

� < Sxz�Fs, x
�Fs, zNiNj > � < Sxz�Fs, z

�Fs, xNiNj > � < Syz�Fs, z
�FsNiNj, y > � < Syz�Fs�Fs, zNi, yNj >

(30)

ULF, as comparison to TLF, contains redundant terms, which occur as a result of the degener-
acy of the current geometry into the reference geometry. When geometrical nonlinear deform-
ation increases, their effect is amplified. As with the stiffness matrix, the 3� 3 FN can be utilized
as the fundamental building block for constructing the geometric stiffness matrix for any higher-
order refined beam element accounting for varied kinematics. In summary, the solution process
in terms of two-step analysis can be written in a compact form as:

Kq ¼ Pth

Kþ kcrKg



 

 ¼ 0

(
(31)

4.2. One-step analysis

The first step toward implementing one-step analysis is to set the thermal stress caused by the
thermal strain to zero across the thickness, hence reducing to the in-plane stress problem. The
specific strategy is to alter the elastic coefficients anchored on the thermal strain. The modified
elastic coefficients in the material coordinate system are listed as follows:
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Cnew
11 ¼ E1

1� v12v21
,Cnew

12 ¼ v21E2
1� v12v21

,Cnew
22 ¼ E2

1� v12v21
(32)

Accordingly, the constitutive law given by Eq. (9) may then be recast into the alternative form:

S ¼ ~Ce�~Cneweth (33)

where

~Cnew ¼

~C
new
11

~C
new
12 0 0 0 ~C

new
16

~C
new
12

~C
new
22 0 0 0 ~C

new
26

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

~C
new
16

~C
new
26 0 0 0 ~C

new
66

2
66666664

3
77777775

(34)

where ~Cnew is defined in the global coordinate system, the components of which are transformed
from the terms (Cnew

11 ,Cnew
22 ,Cnew

12 ) in the material coordinate system. Detailed expression can be
found in Reddy [54].

Another fundamental justification for one-step analysis is that the strain response (both in-
plane and out-of-plane) caused by the temperature change during the pre-buckling stage is irrele-
vant. Then, substituting the new relation S ¼ �~Cneweth into Eq. (3), we can just do the eigenvalue
analysis described in the second equation of Eq. (31) to get the critical temperature. It should be
pointed out the expression for FN in one-step analysis is identical to that in two-step analysis,
which will be omitted for brevity.

5. Numerical results

Numerous numerical examples involving beam and plate structures are used to demonstrate the
correctness and versatility of the proposed CUF-IHLE model. The first case is related to the ther-
mal buckling behavior of metallic beams with a range of thickness-to-length ratios, with an
emphasis on comparisons between various models, including ABAQUS 2D, ABAQUS 3D, IHLE-
TLF, and IHLE-ULF. Note that ABAQUS results are based on ULF. Following that, the same
comparison investigation is conducted on laminated beams. The role of shear and normal defor-
mations is further explored. The final case examines the capabilities of one-step analysis in the
thermal buckling problem of the laminated plates with zero-displacement boundary conditions,
discussing the effect of the fiber orientation angle and thickness-to-length ratio, and providing
the solutions obtained through two-step analysis for comparison purposes.

5.1. Metallic beam

The critical thermal solutions of metallic beams with a square cross-section are addressed in the
preliminary validation. A set of thickness-to-length ratios (h/l) is taken into account while the
length is kept constant (l¼ 1 m). The studied structure is composed of aluminum alloy materials
being Young modulus E¼ 72GPa, Poisson ratio � ¼ 0:33, and the coefficient of thermal expan-

sion a ¼ 23� 10�6=
	
C: Boundary conditions of clamped types are assumed at both ends, as

shown in Figure 4.
Table 1 shows the convergence property of the first buckling values with respect to the num-

ber and type of elements along the axial direction and the kinematic order over the cross-section
used in the FEM-based CUF models. A group of 2D and 3D finite element solutions obtained
via the commercial software Abaqus is presented here for comparison purposes. Due to their
insensitivity to shear locking, the quadratic shell element with reduced integration scheme (S8R)
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and quadratic brick element with full and reduced integration schemes (C3D20 or C3D20R) are
used in particular. Among them, the letter” R” means the reduced integration scheme. On the
other hand, 1D CUF-IHLE-based beam elements are indicated by the notation #B4Rþ 1IHLn�
f with the reduced integration scheme working exclusively on the axial direction (see Figure 4),
where # refers to the number of cubic beam elements, and n and f stand for the kinematic order
along the x and z direction. The degree of freedom (DOF) is listed in the last column of
the table.

By observing numerical results provided by various approaches, it can be found that the
method implemented within the framework of IHLE-ULF is able to lead to correct values at
the lower computational consumption. The results computed by IHLE-TLF and S8R models
reach smaller values than those by the corresponding IHLE-ULF and C3D20 (R) models for
h=l > 0:01, and S8R and IHLE-TLF models fails for h=l � 0:1: By comparison of Eq. (28) and
Eq. (30), the discrepancy between the IHLE-TLF and -ULF model stems from diagonal
and off-diagonal terms with negative values. While regarding the difference between S8R and
C3D20R models, different kinematic assumptions through the thickness account for the under-
lying reason. In the case of h=l ¼ 0:01, the beam is less affected by the transverse shear
deformation, resulting in the close values between refined S8R and C3D20R results, at least to
two significant digits. The C3D20 model predicts lower values in comparison to its reduced
integration form constantly. Such a difference can be insignificant for a comparatively thicker
beam. The fundamental reason is that when h/l is relatively small, the C3D20 soltion is mar-
ginally influenced by the shear locking, which can be overcome by the associated reduced inte-
gration scheme. Note that the behavior of the locking-insensitive solutions may not show a
decreasing trend with the refinement of the element on a whole range of h/l. In general,
increasing values can be seen with respect to the type of the S8R element, yet C3D20R follows
the opposite trend with the exception of h/l equal to 0.06 and 0.08. On the contrary, IHLE
results yield a monotonic increase with the augment of beam elements except for h=l ¼ 0:20
but an analogous decrease with higher-order kinematics.

Figure 4. Geometric properties, boundary condition, and FEM discretization of the metallic beam.
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5.2. Laminated beam

The second assessment aims to show the capability of the present model for a set of laminated
beams with an anti-symmetric stacking sequence ½45	

=� 45
	 �2: The same geometrical size

(h=l, l ¼ 1 m) and boundary condition as those in the previous case are considered again (see
Figure 5). Each lamina is of equal thickness and made of an orthotropic material with the follow-
ing properties: E11 ¼ 76:0 GPa, E22 ¼ E33 ¼ 5:5 GPa, v12 ¼ v13 ¼ v23¼0.34, G12 ¼ G13 ¼ 2:3

GPa, G23 ¼ 1:5 GPa, a1 ¼ �4� 10�6 =
	
C, a2 ¼ a3 ¼ 79� 10�6 =

	
C:

Table 2 provides a full comparative analysis between total and updated Lagrangian forms of
1D CUF models, accompanied by a series of ABAQUS results used for reference purposes. When
the kinematic order over the thickness of each layer is larger than or equal to 2, the computa-
tional cost of the proposed LW models increases dramatically, far exceeding that of the refined
S8R element. Nonetheless, even for a very thin beam with h/l equal to 0.01, the first-order plate
model obtained using the ESL approach, namely S8R, produces poor results. This inaccuracy is
primarily due to nonlinear deformation along the thickness caused by anti-symmetric laminates.
The even IHLE model with the first-order expansion in each layer cannot lead to results with
improved accuracy. Notably, 20B4þ 4IHL3� 2 with ULF is capable of producing more precise
critical temperatures than the ABAQUS 3D model using a low-fidelity mesh, although the two
models being virtually identical in terms of DOF. However, due to the advantage of the aspect
ratio of the beam element and the higher-order approximation of the deflection variation through
the thickness, 4IHL4� 3 with ULF can save more computational effort in terms of DOF without
sacrificing the numerical accuracy of the solution compared to the ABAQUS 3D reference model
with a dense mesh. Additionally, the difference between IHLE-TLF and -ULF becomes evident
from h=l ¼ 0:08, which is smaller than that of the metallic counterparts mentioned in the previ-
ous sub-section. As a result of such the distinction, a linearized buckling analysis becomes useless,
necessitating the use of a geometrically nonlinear analysis. Another unexpected and intriguing
phenomena can be found when full and reduced integration schemes are compared. The differ-
ence becomes more pronounced as h/l raises for ABAQUS 3D models and h/l equals 0.20 for
IHLE-TLF models, but is minor for all h/l in the table for IHLE-TLF models. Indeed, 3D ele-
ments apply reduced integration across the entire volume, while refined 1D elements employ it

Table 1. Convergence of the thermal buckling loads of metallic beams for various thickness-to-length ratios.

Model

h / l

DOF0.01 0.06 0.08 0.10 0.15 0.20

Abaqus-S8Ra 14.274 493.55 852.16 1284.3 2573.6 3966.0 1950
Abaqus-S8Rb 14.274 493.88 852.83 1285.4 2576.1 3970.0 3342
Abaqus-C3D20Rc 14.281 496.82 864.18 1315.5 2727.2 4383.1 3663
Abaqus-C3D20Rd 14.271 496.87 864.28 1315.5 2724.9 4375.0 8520
Abaqus-C3D20d 14.247 496.80 864.18 1315.3 2724.3 4373.9 8520
IHLE-TLF
10B4Rþ 1IHL2� 2 14.231 487.03 835.57 1250.7 2464.7 3746.5 744
15B4Rþ 1IHL2� 2 14.251 487.29 835.92 1251.1 2465.0 3746.4 1104
20B4Rþ 1IHL2� 2 14.254 487.32 835.96 1251.2 2465.0 3746.2 1464
20B4Rþ 1IHL3� 3 14.254 485.95 831.49 1240.7 2424.0 3655.1 2379
20B4þ 1IHL3� 3 14.218 485.64 831.03 1240.1 2423.3 3654.6 2379
IHLE-ULF
10B4Rþ 1IHL2� 2 14.240 498.31 869.69 1329.9 2790.9 4554.5 744
15B4Rþ 1IHL2� 2 14.260 498.70 870.29 1330.4 2791.8 4555.0 1104
20B4Rþ 1IHL2� 2 14.263 498.76 870.38 1330.4 2791.8 4555.0 1464
20B4Rþ 1IHL3� 3 14.263 497.15 864.86 1316.4 2727.1 4380.4 2379
20B4þ 1IHL3� 3 14.227 496.85 864.37 1315.7 2726.2 4379.5 2379
aThe number of elements is 2� 40
bThe number of elements is 3� 50
cThe number of elements is 2� 40� 2
dThe number of elements is 3� 50� 3
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Figure 5. Geometric properties and lamination scheme of the four-layer laminated beam.

Table 2. Comparison of the critical temperatures of laminated beams for various thickness-to-length ratios.

Method

h / l

DOF0.01 0.06 0.08 0.10 0.15 0.20

Abaqus-S8Ra 66.518 2210.7 3695.7 5357.8 9593.5 13163 1950
Abaqus-S8Rb 66.505 2211.7 3698.0 5362.1 9605.4 13169 3342
Abaqus-C3D20Rc 25.517 894.09 1544.9 2323.8 4518.2 6396.8 6351
Abaqus-C3D20c 26.206 920.11 1591.5 2395.5 4657.3 6577.9 6351
Abaqus-C3D20Rd 23.613 828.29 1432.8 2149.8 4187.8 5835.8 19935
Abaqus-C3D20d 23.848 836.88 1448.2 2175.8 4240.8 5979.8 19935
IHLE-TLF
10B4þ 4IHL3� 1 36.499 1216.5 2037.8 2962.4 5368.6 7451.8 1860
15B4þ 4IHL3� 1 36.456 1217.4 2037.8 2962.0 5372.5 7504.4 2760
20B4þ 4IHL3� 2 26.028 881.70 1488.7 2183.2 4041.1 5708.3 5856
20B4Rþ 4IHL4� 3 23.410 802.48 1357.8 1994.1 3700.6 5219.0 8967
20B4þ 4IHL4� 3 23.727 804.68 1359.4 1995.1 3704.4 5259.6 8967
IHLE-ULF
10B4þ 4IHL3� 1 36.550 1273.8 2197.6 3285.5 6032.1 7752.5 1860
15B4þ 4IHL3� 1 36.507 1274.9 2197.8 3284.8 6030.9 7752.2 2760
20B4þ 4IHL3� 2 26.056 914.66 1583.1 2384.6 4641.6 6562.1 5856
20B4Rþ 4IHL4� 3 23.440 829.46 1435.6 2161.8 4217.0 5916.2 8967
20B4þ 4IHL4� 3 23.750 831.83 1437.6 2163.4 4217.4 5916.6 8967
aThe number of elements is 2� 40
bThe number of elements is 3� 50
cThe number of elements is 2� 40� 4
dThe number of elements is 3� 50� 8
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exclusively along the longitudinal direction. This means that reducing the number of integration
points does not always result in a large increase in accuracy as in the preceding example, but can
occasionally result in solution oscillation. The prominent difference in values with h=l ¼ 0:2 can
be further reflected in the buckling shapes in the 3D space as shown in Figure 6. The plot clearly
shows that irregular deformation occurs in varying degrees around both ends, among with IHLE-
TLF being the most conspicuous regardless of the integration technique, followed by the
ABAQUS model with a reduced integration strategy and finally the remaining models with flaw-
less shapes.

5.3. Laminated plate

The purpose of this section is to compare the effects of different types of analyses, namely one-
step and two-step analyses on the buckling values with respect to laminated plates oriented at
½6h�s: Each layer of the square cross-section is regarded to be equal in h=l, l ¼ 1 m. The material
property is identical to that in the previous one. The investigation regards three sets of boundary
conditions, namely four edges clamped (CCCC), four edges simply supported (SSSS), and two
opposite edges clamped and other sides simply supported (CSCS). Figure 7 denotes three sets of
conditions mentioned above with the detailed mathematical formulation.

Figure 8 compares the critical temperatures of laminated plates given by various models with
h ¼ 45

	
: For IHLE, 10B4þ 4IHL10� 2 is adopted, and the number of elements in ABAQUS-3D

is 30� 30� 4, ensuring convergent results. The accuracy of the proposed model is demonstrated
once again by the minuscule difference between ULF (Two-step analysis) and ABAQUS-3D

Figure 6. Comparison of the buckling modes computed by various CUF-IHLE models against ABAQUS solutions.
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models. Additionally, when h/l is less than or equal to 0.01 the computed values are not com-
pletely sensitive to the models. In other words, the cheapest computational approach, i.e., TLF
(One-step analysis) is the best candidate for analyzing thermal buckling in thin structures.
However, with an increase in h/l, particularly in the SSSS boundary condition, an apparent dis-
tinction can be detected.

Tables 3–5 gives a detailed comparison of IHLE-TLF and -ULF for the laminated plate with a
set of ply angles, emphasizing the distinction between one-step and two-step analyses.

In general, the simple-supported condition provides lower bounds on critical temperatures by
selectively relaxing boundary constraints, whereas the fully clamped condition presents upper
bounds. IHLE-TLF predicts lower values than IHLE-ULF. Specifically, when h/l approaches 0.1,
the deformed and original configurations become significantly identifiable, resulting in the great-
est divergence between the values produced by the same CUF model with different buckling for-
mulas. Additionally, the closer h is to 45

	
, the more TLF deviates from ULF in terms of the

critical temperature. This is because h of 45
	
contributes significantly to structural heterogeneity

throughout the thickness, demonstrating the nonlinear effect of cross-section deformation. As for
the analysis step, one-step analysis within the framework of IHLE-TLF produces values that are
closer to those obtained by the two-step analysis implemented in the IHLE-ULF framwork when
h/l equals 0.01 and the boundary condition is CCCC, with a maximum difference of approxi-
mately 3.1% appearing at h¼ 45

	
: This finding proves in turn the correctness of prior works

[45,46], where the analysis procedure consisted solely of the solution of the eigenvalue problem
given by Eq. (27). Therefore, when the influence of the pre-buckled deformation induced by the
thermal force (see Eq. (31)) and Szz can be safely ignored, TLF with one-step analysis can achieve
optimal numerical efficiency while producing acceptable results. In comparison to ULF (two-step
analysis), TLF (one-step analysis) performs poorly with h=l ¼ 0:1, resulting in values with a min-
imum difference of 26.1% occurring at h¼ 75

	
under CSCS boundary condition. In fact, one-step

analysis assumes a negligible out-of-plane normal stress (Szz), leading to an in-plane problem in
the pre-buckling stage. Obviously, both shear and normal deformation play a non-negligible role

Figure 7. Three kinds of boundary conditions for square laminated plates.
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(a) (b)

(c)

Figure 8. Graphical representation of the critical temperatures of laminated plates computed by different models.

Table 3. Buckling values of CCCC laminated plates corresponding to different types of analyses.

h / l h
IHLE-TLF IHLE-ULF

One-step analysis Two-step analysis One-step analysis Two-step analysis

0.01 0
	

25.812 24.504 25.876 24.561
15

	
32.325 30.656 32.418 30.733

30
	

55.441 55.370 55.572 55.500
45

	
79.156 76.270 79.313 76.778

60
	

55.466 54.493 55.598 54.621
75

	
32.358 32.042 32.444 32.127

0.05 0
	

504.72 483.17 531.17 507.82
15

	
605.50 580.56 632.75 612.46

30
	

1000.9 992.66 1056.0 1048.7
45

	
1545.8 1472.2 1626.3 1548.7

60
	

1000.9 978.81 1056.0 1033.9
75

	
605.39 597.56 632.68 625.06

0.1 0
	

1286.1 1244.5 1449.8 1440.6
15

	
1484.8 1442.3 1687.6 1683.4

30
	

2358.4 2300.7 2740.2 2691.3
45

	
3898.9 3620.9 4476.3 4186.6

60
	

2358.4 2280.0 2740.2 2668.2
75

	
1484.6 1455.5 1687.5 1663.6
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as structural h/l and inhomogeneity increase. In other words, the efficacy of one-step analysis in
resolving the thermal buckling problem is contingent upon the boundary condition, geometrical
size, and material property.

Additional innovative outcomes may be derived from the individual table. As seen in Table 3,
one-step analysis always predicts higher values than two-step analysis with the same formulation
adopted, which makes the structure in an unsecure area. When h/l is smaller than 0.05, these
overestimated values correspond well with those obtained using two-step analysis (IHLE-ULF),
indicating the possibility of using one-step analysis (IHLE-TLF) in this context. Another compu-
tationally efficient approach, one-step analysis (IHLE-ULF), demonstrates comparable capacity
under such conditions and may be generalized to the situation of h=l ¼ 0:1 excluding the ply
angle at 45

	
: However, the conclusions reached above are not generally applicable. When it comes

to Table 4, the results reach higher values with two-step analysis than with one-step one. Besides,
substantial discrepancies occur between one-step (IHLE-TLF) and two-step (IHLE-ULF) analyses

Table 4. Buckling values of SSSS laminated plates corresponding to different types of analyses.

h / l h
IHLE-TLF IHLE-ULF

One-step analysis Two-step analysis One-step analysis Two-step analysis

0.01 0
	

11.356 11.370 11.365 11.380
15

	
15.821 15.848 15.836 15.863

30
	

31.893 32.166 31.934 32.208
45

	
37.210 38.187 37.242 38.220

60
	

31.888 32.317 31.929 32.360
75

	
15.816 15.917 15.831 15.932

0.05 0
	

257.29 280.44 262.19 285.80
15

	
338.76 370.25 346.08 378.39

30
	

631.66 723.67 650.31 746.51
45

	
752.50 1012.7 767.38 1037.5

60
	

631.87 738.63 650.53 762.23
75

	
338.84 377.65 346.17 386.00

0.1 0
	

809.80 1034.7 862.33 1103.4
15

	
1001.3 1279.2 1073.2 1374.9

30
	

1706.9 2303.3 1870.0 2552.5
45

	
2210.7 3969.4 2362.7 4258.4

60
	

1708.5 2327.5 1872.1 2603.0
75

	
1002.2 1302.5 1074.3 1404.4

Table 5. Buckling values of CSCS laminated plates corresponding to different types of analyses.

h / l h
IHLE-TLF IHLE-ULF

One-step analysis Two-step analysis One-step analysis Two-step analysis

0.01 0
	

21.770 21.884 21.806 21.920
15

	
27.681 27.817 27.732 27.868

30
	

48.739 48.931 48.812 49.006
45

	
60.309 60.773 60.395 60.861

60
	

37.505 36.860 37.560 36.913
75

	
20.147 19.905 20.182 19.939

0.05 0
	

425.88 477.06 441.02 494.12
15

	
518.00 580.44 538.58 604.11

30
	

874.28 1023.2 904.49 1063.7
45

	
1202.0 1334.4 1247.0 1389.3

60
	

773.18 739.34 800.83 764.47
75

	
430.60 413.61 447.55 429.62

0.1 0
	

1110.6 1461.1 1239.3 1645.0
15

	
1302.2 1681.5 1466.6 1913.2

30
	

2076.5 2786.2 2288.1 3193.8
45

	
3178.6 3930.9 3556.1 4463.2

60
	

2096.6 2003.9 2359.3 2247.8
75

	
1231.7 1167.5 1388.9 1313.4
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when h/l equals 0.05 and h is inside in the interval 30
	
, 60

	½ �: On the other hand, two-step ana-
lysis (IHLE-TLF) predicts somewhat smaller values with acceptable accuracy as an alternative to
two-step analysis (IHLE-ULF). The inconsistency between one-step and two-step analyses (IHLE-
TLF) reveals that decreased stiffness at boundaries may contribute to the amplification of the pre-
buckled deformation. After evaluating the influence of boundary conditions denoted by single S
and C, it will proceed to the one mixed with S and C. The results are summarized in Table 5.
The discrepancy between one-step analysis (IHLE-TLF) and two-step (IHLE-ULF) analysis can be
explained by the variation of h. Smaller values are seen in one-step analysis until h reaches 45

	
,

from which point this relationship becomes inverse. And, once again, one-step analysis (IHLE-
TLF) may be a possibility for the case of h=l ¼ 0:05 due to conservative estimates for h 
 45

	

and a maximum difference of almost 1.1% in the range 60
	
, 75

	½ �:
Figure 9 illustrates 3D buckling mode shapes of laminated plates with h=l ¼ 0:05 under the

boundary conditions discussed before. As can be seen in the figure, the mode shapes are domi-
nated by a variable number of crests and troughs. At h ¼ 0

	
, 15

	
, a triple undulation in the width

direction occurs for the CCCC condition, with crests and troughs of variable magnitudes. h ¼
30

	
, 60

	
, 75

	
correspond to a double undulation with the same-valued crest and trough. At h ¼

45
	
, a single-wave bending mode exists, which persists under all subsequent conditions. The SSSS

condition softens the boundary restriction, resulting in a decrease in buckling values as well as
the number of crests and troughs. Except for h ¼ 60

	
, the CSCS condition exhibits virtually iden-

tical modes to the CCCC condition.

6. Conclusions

The thermal buckling analysis of beam and plate structures is contrasted using linear incremental
techniques based on total and updated Lagrangian formulations (TLF and ULF). Furthermore,
3D stability equations can be obtained using the Carrera Unified Formulation-improved hierarch-
ical Legendre expansion (CUF-IHLE) as a structural basis and 1D Finite Element Method (FEM)
as a numerical method. Due to the intrinsic advantage of CUF-based FEM models, the governing
equations in terms of TLF and ULF are concisely defined using fundamental nuclei. A rigorous
numerical evaluation of the critical temperature of metallic and composite beams and plates has
been conducted in order to illustrate the increased accuracy and efficacy of the proposed model.
The following is a summary of several major findings from this investigation:

Figure 9. Buckling mode shapes of laminated plates subject to: (a) CCCC; (b) SSSS; (c) CSCS boundary conditions.
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1. S8R, as a typical 2D element in ABAQUS, is capable of discriminating the critical tempera-
ture of thin structures with strong homogeneity, e.g., isotropic materials or symmetric lami-
nates. 3D elements are qualified to perform all perfect buckling analyses with regard to
accuracy, particularly in heterogeneous structures with anti-symmetric lamination schemes,
where S8R fails. This is not the case with CUF-IHLE, which, due to its variable-kinematic
features, can provide an advantageous tradeoff between accuracy and computational cost.

2. In contrast to improved accuracy in static and free vibration analyses, the reduced integration
scheme in 3D elements for linearized buckling analysis cannot achieve the same performance
as the thickness-to-length ratio increases, but rather results in irregular deformation at the
boundary. Nevertheless, in the proposed higher-order 1D formulation, such an integration
that operates exclusively on 1D elements has a negligible effect on the magnitude of
the value.

3. For panels with a high degree of heterogeneity and a large thickness-to-length ratio, the non-
linear influence of displacement fields across the thickness becomes apparent, explaining the
inconsistencies between TLF and ULF results. This discrepancy, meanwhile, demonstrates
that the current and initial configurations are distinct, necessitating the application of post-
buckling analysis that is computationally expensive.

4. If a homogeneous temperature change is assumed, both in-plane and out-of-plane strains at
the pre-buckling stage can be omitted for thin symmetric laminates or thin isotropic panels
with some particular boundary conditions, e.g., four edges clamped or simply supported.
Thus, the ensuing uniform distribution of pre-buckling stresses allows for pure eigenvalue
analysis, i.e., one-step analysis. Otherwise, knowledge of the pre-buckling stress is required
prior to conducting the subsequent eigenvalue analysis, resulting in the so-called two-
step analysis.

The thermal buckling of multilayer composite laminates as predicted by TLF and ULF-based
CUF-IHLE models is compared in this study. Although this article considers just uniform a tem-
perature change, more advanced composite materials, such as functionally graded composites,
typically suffer temperature changes that vary across the thickness. The proposed model will be
extended to the uncertainty analysis on the thermal buckling behavior of these types of structures
in the future.
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