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Abstract
Amean-field selective optimal control problem of multipopulation dynamics via tran-
sient leadership is considered. The agents in the system are described by their spatial
position and their probability of belonging to a certain population. The dynamics in
the control problem is characterized by the presence of an activation function which
tunes the control on each agent according to the membership to a population, which,
in turn, evolves according to a Markov-type jump process. In this way, a hypothetical
policy maker can select a restricted pool of agents to act upon based, for instance, on
their time-dependent influence on the rest of the population. A finite-particle control
problem is studied and its mean-field limit is identified via Γ -convergence, ensuring
convergence of optimal controls. The dynamics of the mean-field optimal control is
governed by a continuity-type equation without diffusion. Specific applications in the
context of opinion dynamics are discussed with some numerical experiments.
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1 Introduction

Multipopulation agent systems have drawn much attention in the last decades as a tool
to describe the evolution of groups of individuals with some features that can change
with time. These models find their application in contexts as varied as evolutionary
population dynamics [11, 36, 48], economics [53], chemical reaction networks [39,
42, 44], and kinetic models of opinion formation [31, 50]. In these models, each
agent carries a label that may describe, for instance, membership to a population (e.g.,
leaders or followers), or the strategy used in a game. While this label space is often
discrete, for many applications (and also as a necessary condition for the existence
of Nash equilibria [43]) it is useful to attach to each agent located at a point x ∈ R

d

a continuous variable which describes their mixed strategies or, referring back to the
context of leaders and followers, their degree of influence. If U denotes the space
of labels, this may be encoded by a probability measure λ ∈ P(U ). It is natural to
postulate that λ can vary with time according to a spatially inhomogeneous Markov-
type jumpprocesswith a transition rateT (x, λ, (x,λ)) thatmaydependon the position
x of the agent and on the global state of the system (x,λ), containing the positions
and the labels of all the agents. Leadership may indeed be temporary and affected, for
instance, by circumstances, need, location, and mutual distance among the agents.

Mean-field descriptions of such systems allow for an efficient treatment by replacing
the many-agent paradigm with a kinetic one [21, 23], consisting of a limit PDE whose
unknown is the distribution of agents with their label, as those obtained in [6, 7, 41,
49] (see also [40] for a related Boltzmann-type approach).

A further step which we devise in this paper is the extension of the mean-field point
of view to the problem of controlling such systems, possibly in a selective way. The
underlying idea is the presence of a policy maker whose control action, at any instant
of time, concentrates on a subset of the population chosen according to the level of
influence of the agents.

More precisely, in a population of N agents, the time-dependent state of the i-th
agent is given by t �→ yi (t) = (xi (t), λi (t)), where xi ∈ R

d and λi ∈ P(U ), for every
i = 1, . . . , N , and evolves according to the controlled ODE system

{
ẋi = v(xi , λi , (x,λ)) + h(xi , λi , (x,λ))ui
λ̇i = T (xi , λi , (x,λ))

(1)

where v is a velocity field, ui is the control on the i-th agent belonging to a compact
convex subset K of Rd , and h ≥ 0 is a non-negative activation function selecting
the set of agents targeted by the decision of the policy maker, depending on their
state and, possibly, on the global state of the system. The values ui are determined by
minimization of the cost functional
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EN ( y, u) := 1

N

N∑
i=1

 T

0
LN (yi (t), Ψ

N
t ) dt + 1

N

N∑
i=1

 T

0
φ(ui (t)) dt (2)

where Ψ N
t is the empirical measure defined as Ψ N

t := 1
N

∑N
i=1 δyi (t) and φ is a

positive convex cost function, superlinear at infinity, and such that φ(0) = 0; finally,
the Lagrangian LN (·) is continuous and symmetric (see Definition 1 and Remark 2
below).

In this paper we show that the variational limit, in the sense of Γ -convergence [13,
26] in a suitable topology, of the functional introduced in (2) is given by

E(Ψ ,w) :=
 T

0

ˆ
Rd×P(U )

L(y, Ψt ) dΨt (y) dt

+
 T

0

ˆ
Rd×P(U )

φ(w(t, y)) dΨt (y) dt, (3)

where L is a certain limit Lagrangian cost and where Ψt ∈ P(Rd ×P(U )) and w are
coupled by the mean-field continuity equation

∂tΨt + div(b(t, ·)Ψt ) = 0 for b(t, y) :=
(

v(y, Ψt ) + h(y, Ψt )w(t, y)
T (y, Ψt )

)
, (4)

with the request that w be integrable with respect to the measure hΨt ⊗ dt . From the
point of view of the applications, we remark that our main result Theorem 2 implies
that a minimizing pair (Ψ ,w) for the optimal control problem (3) can be obtained as
the limit of minimizers ( yN , uN ) of the finite-particle optimal control problem (2) (a
precise statement is given in Corollary 1).

In this sense, our result extends to the multipopulation setting the results of [32,
34] with the relevant feature that the activation function h allows the policy maker to
tune the control action on a subset of the entire population which is not prescribed a
priori, but rather depends on the evolution of the system. At fixed time t > 0, it can
target its intervention on the most influential elements of the population according to
a threshold encoded by h. This is similar, in spirit, to a principle of sparse control,
as considered, e.g., in [1, 22, 33]. Again, our model includes additional features;
in particular, a control action only through leaders is already present in [33], where
however the leaders population is fixed a priori and discrete. A localized control action
on a small time-varying subset ω(t) of the state space of the system is presented in
[22] as an infinite-dimensional generalization of [37]; there, no optimal control is
considered and the evolution of ω(t) is algorithmically constructed to reach a desired
target, instead of being determined by the evolution itself. The numerical approach
of [1] makes use of a selective state-dependent control specifically designed for the
Cucker–Smale model. For other recent examples of localized/sparse intervention in
mean-field control systems, we refer the reader to [3, 4, 18, 24, 38, 46, 51].

The role of the variable λ deserves some attention. It can be generally intended as
a measure of the influence of an agent, accounting for a number of different inter-
pretations according to the context. Similar background variables have been used in
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recent literature to describe wealth distribution [28, 30, 45], degree of knowledge [16,
17], degree of connectivity of an agent in a network [5, 15], and also applications
to opinion formation [29], just to name a few. Comparing to these other approaches,
our mean-field approximation (3), (4) features a more profound interplay between the
variable λ and the spatial distribution x of the agents, resulting in a higher flexibility
of the model: not only is λ changing in time, but its variation is driven by an optimality
principle steered by the controls.

We present some applications in Sect. 5 in the context of opinion dynamics, where
λ represents the transient degree of leadership of the agents. Specifically, in the former
example we highlight the emergence of leaders and how this can be exploited by a
policy maker; in the latter, two competing populations of leaders with different targets
and campaigning styles are considered, and the effect of the control action in favoring
one of them is analyzed.

The plan of the paper is the following: in Sect. 2 we introduce the functional
setting of the problem and we list the standing assumptions on the velocity field v,
on the transition operator T , and on the cost functions LN , L, and φ; in Sect. 3 we
present and discuss the existence of solutions to the finite-particle control problem; in
Sect. 4 we introduce the mean-field control problem and prove the main theorem on
the Γ -convergence to the continuous problem. In Sect. 5 we discuss the applications
mentioned above.

1.1 Technical Aspects

We highlight the main technical aspects of the proof of Theorem 2. The Γ -liminf
inequality builds upon a compactness property of sequences of empiricalmeasuresΨ N

t
with uniformly bounded cost EN . The hypotheses on the velocity field v and on the
transition operator T in (1) (see Sect. 2) imply, by a Grönwall-type argument, a
uniform-in-time estimate of the support ofΨ N

t , ensuring the convergence to a limitΨt .
The lower bound and the identification of the control field w are consequences of the
convergence of LN to L and of the convexity and superlinear growth of the cost func-
tion φ. As for the Γ -limsup inequality, we remark that the sole integrability of w

(contrary to the situation considered in [32]) does not guarantee the existence of a
flow map for the associated Cauchy problem

⎧⎪⎨
⎪⎩
ẋi = v(yi , y) + h(yi , y)w(t, yi ),

λ̇i = T (yi , y),

yi (0) = y0,i ,

(5)

and therefore does not allow for a direct construction of a recovery sequence based on
the analysis of (5) due to the lack of continuity with respect to the data. Following the
main ideas of [34], we base our approximation strategy on the superposition principle
[11, Theorem 5.2], [41, Theorem 3.11] (see also [9, 10, 20, 47]), which indeed selects
a sequence of trajectories zN such that the corresponding empirical measures ΛN

t :=
1
N

∑N
i=1 δzNi (t) converge to Ψt and the cost EN (zN , uN ) converges to E(Ψ ,w), where
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we have set uN
i (t) := w(t, zNi (t)). The explicit dependence of (5) on the global state

of the system calls for a further modification of the trajectories zN . Here, the fact that h
may take the value 0 introduces an additional technical difficulty as we cannot exploit
the linear dependence on the controls in (1). To overcome this problem, we resort once
again to the local Lipschitz continuity of v and of T , and construct the trajectories yN

by solving the Cauchy problem

⎧⎪⎨
⎪⎩
ẋi = v(yi , y) + h(yi , y)ui ,

λ̇i = T (yi , y),

yi (0) = y0,i .

(6)

By Grönwall estimates, we can conclude that the distance betweenΛN
t and the empir-

ical measure Ψ N
t generated by yN is infinitesimal, so that we obtain the desired

convergences of Ψ N
t to Ψt and of EN ( yN , uN ) to E(Ψ ,w). Let us also mention that

the symmetry of the cost is used in a crucial way to deal with the initial conditions
in (6).

2 Mathematical Setting

In this section we introduce the mathematical framework and notation to study our
system.
Basic notation. Given a metric space (X ,dX ), we denote by M(X) the space of
signed Borel measuresμ in X with finite total variation ‖μ‖TV, byM+(X) andP(X)

the convex subsets of nonnegative measures and probability measures, respectively.
We say that μ ∈ Pc(X) if μ ∈ P(X) and the support sptμ is a compact subset
of X . For any K ⊆ X , the symbol P(K ) denotes the set of measures μ ∈ P(X) such
that sptμ ⊆ K . Moreover,M(X;Rd) denotes the space ofRd -valued Borel measures
with finite total variation.

As usual, if (Z ,dZ ) is another metric space, for every μ ∈ M+(X) and every μ-
measurable function f : X → Z , we define the push-forwardmeasure f#μ ∈ M+(Z)

by ( f#μ)(B) := μ( f −1(B)), for any Borel set B ⊆ Z .
For a Lipschitz function f : X → R we define its Lipschitz constant by

Lip( f ) := sup
x,y∈X
x 	=y

| f (x) − f (y)|
dX (x, y)

and we denote by Lip(X) and Lipb(X) the spaces of Lipschitz and bounded Lips-
chitz functions on X , respectively. Both are normed spaces with the norm ‖ f ‖Lip :=
‖ f ‖∞ + Lip( f ), where ‖·‖∞ is the supremum norm. Furthermore, we use the nota-
tion Lip1(X) for the set of functions f ∈ Lipb(X) such that Lip( f ) ≤ 1.
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In a complete and separable metric space (X ,dX ), we shall use the Wasserstein
distance W1 in the set P(X), defined as

W1(μ, ν) := sup

{ ˆ
X

ϕ dμ −
ˆ
X

ϕ dν : ϕ ∈ Lip1(X)

}
.

Notice that W1(μ, ν) is finite if μ and ν belong to the space

P1(X) :=
{
μ ∈ P(X) :

ˆ
X
dX (x, x̄) dμ(x) < +∞ for some x̄ ∈ X

}

and that (P1(X),W1) is a complete metric space if (X ,dX ) is complete.
If (E, ‖·‖E ) is a Banach space andμ ∈ M+(E), we define the first momentm1(μ)

as

m1(μ) :=
ˆ
E
‖x‖E dμ.

Notice that for a probability measure μ finiteness of the integral above is equivalent
to μ ∈ P1(E), whenever E is endowed with the distance induced by the norm ‖·‖E .
Furthermore, the notation C1

b(E) will be used to denote the subspace of Cb(E) of
functions having bounded continuous Fréchet differential at each point. The symbol∇
will be used to denote the Fréchet differential. In the case of a functionφ : [0, T ]×E →
R, the symbol ∂t will be used to denote partial differentiation with respect to t .

Functional setting. We consider a set of pure strategies U , where U is a compact
metric space, and we denote by Y := R

d × P(U ) the state-space of the system.
According to the functional setting considered in [11, 41], we consider the space

Y := R
d × F(U ), where we have set (see, e.g., [8, 12] and [52, Chap. 3])

F(U ) := span(P(U ))
‖·‖BL ⊆ (Lip(U ))′. (7)

The closure in (7) is taken with respect to the bounded Lipschitz norm ‖·‖BL, defined
as

‖μ‖BL := sup
{〈μ, ϕ〉 : ϕ ∈ Lip(U ), ‖ϕ‖Lip ≤ 1

}
for every μ ∈ (Lip(U ))′.

We notice that, by definition of ‖ · ‖BL, we always have

‖μ‖BL ≤ ‖μ‖TV for every μ ∈ M(U ),

in particular, ‖λ‖BL ≤ 1 for every λ ∈ P(U ).
Finally, we endow Y with the norm ‖y‖Y = ‖(x, λ)‖Y := |x | + ‖λ‖BL .
For every R > 0, we denote by BY

R the closed ball of radius R in Y , namely
BY
R = {y ∈ Y : ‖y‖Y ≤ R} and notice that, in our setting, BY

R is a compact set.
As in [41], we consider, for every Ψ ∈ P1(Y ), a velocity field vΨ : Y → R

d such
that
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(v1) for every R > 0, vΨ ∈ Lip(BY
R;Rd) uniformly with respect to Ψ ∈ P(BY

R), i.e.,
there exists Lv,R > 0 such that

|vΨ (y1) − vΨ (y2)| ≤ Lv,R‖y1 − y2‖Y for every y1, y2 ∈ Y ;

(v2) for every R > 0 there exists Lv,R > 0 such that for every Ψ1, Ψ2 ∈ P(BY
R) and

every y ∈ BY
R

|vΨ1(y) − vΨ2(y)| ≤ Lv,RW1(Ψ1, Ψ2) ;

(v3) there exists Mv > 0 such that for every y ∈ Y and every Ψ ∈ P1(Y )

|vΨ (y)| ≤ Mv

(
1 + ‖y‖Y + m1(Ψ )

)
.

As for T , for every Ψ ∈ P1(Y ) we assume that the operator TΨ : Y → F(U ) is
such that

(T0) for every (y, Ψ ) ∈ Y ×P1(Y ), the constants belong to the kernel of TΨ (y), i.e.,

〈TΨ (y), 1〉F(U ),Lip(U ) = 0,

where 〈·, ·〉 denoted the duality product;
(T1) there exists MT > 0 such that for every y ∈ Y and every Ψ ∈ P1(Y )

‖TΨ (y)‖BL ≤ MT
(
1 + ‖y‖Y + m1(Ψ )

) ;

(T2) for every R > 0, there exists LT ,R > 0 such that for every (y1, Ψ1), (y2, Ψ2) ∈
BY
R × P(BY

R)

‖TΨ1(y1) − TΨ2(y2)‖BL ≤ LT ,R
(‖y1 − y2‖Y + W1(Ψ1, Ψ2)

) ;

(T3) for every R > 0 there exists δR > 0 such that for every Ψ ∈ P1(Y ) and every
y = (x, λ) ∈ BY

R we have

TΨ (y) + δRλ ≥ 0.

For every y ∈ Y and every Ψ ∈ P1(Y ) we set bΨ (y) :=
(

vΨ (y)
TΨ (y)

)
, which

is the velocity field driving the evolution; we also consider an activation function
hΨ : Y → [0,+∞) satisfying:

(h1) hΨ is bounded uniformly with respect to Ψ ∈ P1(Y );
(h2) for every R > 0 there exists Lh,R > 0 such that for every Ψ1, Ψ2 ∈ P1(BY

R) and
every y1, y2 ∈ BY

R

|hΨ1(y1) − hΨ2(y2)| ≤ Lh,R
(‖y1 − y2‖Y + W1(Ψ1, Ψ2)

)
.
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Remark 1 We notice that assumptions (T0) and (T3) together imply that for every
y = (x, λ) ∈ BY

R we have TΨ (y) + δRλ ∈ P(U ), as shown for instance in [41,
formula (3.13)].

In order to define the optimal control problems of Sects. 3 and 4 , we have to
introduce some further notation. For every N ∈ N, we define

PN (Y ) :=
{
Ψ ∈ P(Y ) : there exist y1, . . . , yN ∈ Y such that Ψ = 1

N

N∑
i=1

δyi

}
.

In particular, we notice that, up to a permutation, every N -tuple yN := (y1, . . . , yN ) ∈
Y N can be identified with an element Ψ ∈ PN (Y ). We now give the following two
definitions (see also [34, Definition 2.1].

Definition 1 For every N ∈ N, we say that a map FN : Y × Y N → [0,+∞) is
symmetric if FN (y, y) = FN (y, σ ( y)) for every y ∈ Y , every y ∈ Y N , and every
permutation σ : Y N → Y N .

Remark 2 Notice that, by symmetry and by identifying yN : = (y1, . . . , yN ) ∈ Y N

with Ψ N = 1
N

∑N
i=1 δyi , we may write FN (y, Ψ N ) for FN (y, yN ).

Definition 2 Let FN : Y × Y N → [0,+∞) be symmetric. We say that FN P1-
converges to F : Y × P1(Y ) → [0,+∞) uniformly on compact sets as N → ∞
if for every subsequence Nk and every sequence Ψk ∈ PNk (Y ) converging to Ψ in
P1(Y ) w.r.t. the 1-Wassertstein distance we have

lim
k→∞ sup

y∈K
|FNk (y, Ψk) − F(y, Ψ )| = 0 for every compact subset K of Y .

For the cost functionals for the finite particle control problem and for their mean-
field limit we consider the functions φ : Rd → [0,+∞), LN : Y × Y N → [0,+∞),
and L : Y × P1(Y ) → [0,+∞) such that

(φ1) φ is convex and superlinear with φ(0) = 0;
(L1) LN is continuous and symmetric;
(L2) LN P1-converges to L uniformly on compact sets;
(L3) for every R > 0, L is continuous on BY

R × P(BY
R).

We conclude this section recalling an existence result for ODEs on convex subsets
of Banach spaces. We refer to [14, Sect. I.3, Theorem 1.4, Corollary 1.1] (see also [11,
Theorem B.1] and [41, Corollary 2.3]) for a proof.

Theorem 1 Let (E, ‖ · ‖E ) be a Banach space, C a closed convex subset of E, and
let A(t, ·) : C → E, t ∈ [0, T ], be a family of operators satisfying the following
properties:

(i) for every R > 0 there exists a constant L R ≥ 0 such that for every c1, c2 ∈
C ∩ BR and t ∈ [0, T ]

‖A(t, c1) − A(t, c2)‖E ≤ LR‖c1 − c2‖E ;
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(ii) there exists M > 0 such that for every c ∈ C, there holds

‖A(t, c)‖E ≤ M(1 + ‖c‖E );

(iii) for every c ∈ C the map t �→ A(t, c) belongs to L1([0, T ]; E);
(iv) for every R > 0 there exists θ > 0 such that

c ∈ C, ‖c‖E ≤ R ⇒ c + θ A(t, c) ∈ C .

Then for every c̄ ∈ C there exists a unique absolutely continuous curve c : [0, T ] → C
satisfying ct ∈ C for all t ∈ [0, T ] and

d

dt
ct = A(t, ct ) in [0, T ], c0 = c̄

for a.e. t ∈ [0, T ]. Moreover, if c1, c2 are the solutions starting from the initial data
c̄1, c̄2 ∈ C ∩ BR respectively, there exists a constant L = L(M, R, T ) > 0 such that

‖c1t − c2t ‖E ≤ eLt‖c̄1 − c̄2‖E , for every t ∈ [0, T ].

3 The Finite Particle Control Problem

We now introduce the finite particle control problem. We fix a compact and convex
subset K ofRd of admissible controls with 0 ∈ K . For every N ∈ N and every control
function ui ∈ L1([0, T ]; K ), i = 1, . . . , N , the dynamics of the N -particles system
is driven by the Cauchy problem

⎧⎨
⎩ ẏi (t) = bΨ N

t
(yi (t)) +

(
hΨ N

t
(yi (t))ui (t)

0

)
for i = 1, . . . , N ,

yi (0) = y0,i ∈ Y ,

(8)

where we have set Ψ N
t : = 1

N

∑N
i=1 δyi (t) ∈ PN (Y ). For simplicity of notation, we

set uN (t) : = (u1(t), . . . , uN (t)) ∈ K N for every t ∈ [0, T ]. In view of assump-
tions (v1)–(v3), (T0)–(T3), and (h1)–(h2), applying Theorem 1 we deduce that the
Cauchy problem (8) admits a unique solution yN := (y1, . . . , yN ) ∈ AC([0, T ]; Y N ),
which is also identified with the empirical measure Ψ N

t , up to a permutation. To ease
the notation in our analysis, we give the following definition.

Definition 3 We say that ( yN , uN ) ∈ AC([0, T ]; Y N ) × L1([0, T ]; K N ) generates
the pairs (Ψ N , νN ) ∈ AC([0, T ]; (PN (Y );W1)) × M([0, T ] × Y ;Rd) if Ψ N =
Ψ N
t ⊗ L1 [0, T ] with Ψ N

t = 1
N

∑N
i=1 δyi (t) and νN = νN

t ⊗ L1 [0, T ] with

νN
t := 1

N

N∑
i=1

hΨ N
t

(·)ui (t)δyi (t)(·),
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where L1 [0, T ] denotes the Lebesgue measure onR restricted to the interval [0, T ].
In a similar way, if yN0 = (y0,1, . . . , y0,N ) ∈ Y N , we say that yN0 generates Ψ N

0 ∈
PN (Y ) if Ψ N

0 = 1
N

∑N
i=1 δy0,i .

Given yN0 = (y0,1, . . . , y0,N ) ∈ Y N , we define the set of couples trajectory-control
solving the Cauchy problem (8) as

S( yN0 ) := {
( y, u) ∈ AC([0, T ]; Y N ) × L1([0, T ]; K N ) : ( y, u) solves (8)

}
. (9)

Given functions φ, LN , and L satisfying conditions (φ1), (L1), and (L2), for every
initial condition yN0 ∈ Y N and every ( y, u) ∈ AC([0, T ]; Y N )× L1([0, T ]; K N ), we
define the cost functional

E yN0
N ( y, u) :=

⎧⎪⎨
⎪⎩

1

N

N∑
i=1

 T

0
LN (yi (t), Ψ

N
t ) dt + 1

N

N∑
i=1

 T

0
φ(ui (t)) dt if ( y, u) ∈ S( yN0 )

+∞ otherwise,

(10)

where (Ψ N , νN ) is the pair generated by ( y, u). Therefore, the optimal control problem
for the N -particle system reads as follows:

min
{
E yN0
N ( y, u) : ( y, u) ∈ AC([0, T ]; Y N ) × L1([0, T ]; K N )

}
. (11)

We now prove the existence of solutions of the minimum problem (11). First, we
state the boundedness of the trajectories y for given control and initial datum, which
will also be useful in the Γ -convergence analysis of Sect. 4.

Proposition 1 For every N ∈ N, every initial datum yN0 = (y0,1, . . . , y0,N ) ∈ Y N ,
and every ( yN , uN ) ∈ S( yN0 ) we have

sup
i=1,...,N

‖yi‖L∞([0,T ];Y ) ≤ C sup
i=1,...,N

‖y0,i‖Y (12)

for a positive constant C independent of N .

Proof Let (Ψ N , νN ) be the pair generated by ( yN , uN ). Since the control uN takes
values in K N with K compact in R

d and in view of the assumptions (v1), (T1),
and (h1), for every t ∈ [0, T ] we estimate

‖yi (t)‖Y ≤ ‖y0,i‖Y +
ˆ t

0
‖bΨ N

τ
(yi (τ ))‖Y dt +

ˆ t

0
|hΨ N

τ
(yi (τ ))ui (τ )| dτ

≤ ‖y0,i‖Y +
ˆ t

0
(Mv + MT )(1 + ‖yi (τ )‖Y + m1(Ψ

N
τ )) dτ + Ct

≤ ‖y0,i‖Y +
ˆ t

0
(Mv + MT )

(
1 + ‖yi (τ )‖Y + sup

j=1,...,N
‖y j (τ )‖Y

)
dτ + Ct,
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for some positive constant C depending only on h and K . Taking the supremum
over i ∈ {1, . . . , N } in the previous inequality and applying Grönwall inequality we
deduce (12). ��
Proposition 2 For every N ∈ N and every initial datum yN0 ∈ Y N , the minimum prob-
lem (11) admits a solution ( yN , uN ). If (Ψ N , νN ) is the pair generated by ( yN , uN ),
then also the pair ( yN , ũN ) where

ũi (t) =
{
ui (t) if hΨ N

t
(yi (t)) 	= 0,

0 otherwise,
i = 1, . . . , N (13)

is a solution of (11). If the cost function φ satisfies {φ = 0} = {0}, then every
solution ( yN , uN ) of (11) satisfies ui (t) = 0 a.e. on {t ∈ [0, T ] : hΨ N

t
(yi (t)) = 0}

for i = 1, . . . , N.

Proof Let us fix N ∈ N and let uN
k = (uk,1, . . . , uk,N ) ∈ L1([0, T ]; K N ) and

yNk = (yk,1, . . . , yk,N ) ∈ AC([0, T ]; Y N ) be a minimizing sequence for the cost

functional E yN0
N . In particular, we may assume ( yNk , uN

k ) ∈ S( yN0 ) for every k. Let us
further denote (Ψ N

k , νN
k ) ∈ AC([0, T ]; (PN (Y );W1))×M([0, T ]×Y ;Rd) the pair

generated by ( yNk , uN
k ).

Since uN
k takes values in K N and K is compact and convex in R

d , up to a subse-
quence we have that uN

k ⇀uN weakly∗ in L∞([0, T ]; K N ). By Proposition 1, yNk is
bounded in C([0, T ]; Y N ). Let us fix R > 0 such that ‖ yNk (t)‖

Y
N ≤ R for t ∈ [0, T ]

and k ∈ N. Then, by (v1), (T1), and (h1), for every s < t ∈ [0, T ], every i = 1, . . . , N ,
and every k we have that

‖yk,i (t) − yk,i (s)‖Y ≤
ˆ t

s
‖bΨ N

k,τ
(yk,i (τ ))‖Y dτ +

ˆ t

s
|hΨ N

k,τ
(yk,i (τ ))uk,i (τ )| dτ

≤
ˆ t

s
(Mv + MT )(1 + ‖yk,i (τ )‖Y + m1(Ψ

N
k,τ )) dτ + C |t − s|

≤ 2(Mv + MT )(1 + R)|t − s| + C |t − s|.

Thus, yNk is bounded and equi-Lipschitz continuous in [0, T ]. By Ascoli-Arzelà
Theorem, yNk converges uniformly to some yN ∈ C([0, T ]; Y N ) along a suitable
subsequence, and yN (0) = yN0 . Furthermore, if (Ψ N , νN ) is the pair generated
by ( yN , uN ), we also deduce that Ψ N

k → Ψ N in C([0, T ]; (PN (Y );W1)). In view
of (v2), (T2), and (h2), it is easy to see that ( yN , uN ) ∈ S( yN0 ).

Finally, the continuity of LN and the convexity of φ yield the lower semicontinuity

of the cost functional E yN0
N , so that

E yN0
N ( yN , uN ) ≤ lim inf

k→∞ E yN0
N ( yNk , uN

k )

and ( yN , uN ) is a solution of (11).
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The second part of the statement follows from the structure of system (8). Indeed,
if we define ũN as in (13), the trajectory yN solution of (8) does not change and
( yN , ũN ) ∈ S( yN0 ). Since the cost function φ is non-negative with φ(0) = 0, it is

easy to see that E yN0
N ( yN , ũN ) ≤ E yN0

N ( yN , uN ). Finally, if {φ = 0} = {0}, the previous
inequality and the minimality of ( yN , uN ) imply that ui (t) = ũi (t) for t ∈ [0, T ] and
i = 1, . . . , N , and the proof is concluded. ��

4 Mean-Field Control Problem

Before introducing the mean-field optimal control problem and stating the main
Γ -convergence result, we discuss the compactness of sequences of pairs trajectory-

control ( yN , uN ) with bounded energy E yN0
N . To ease the notation, given a curve

Ψ ∈ C([0, T ]; (P1(Y );W1)) we denote by hΨ the map (t, y) �→ hΨt (y) and by
hΨ Ψ the curve t �→ hΨtΨt identified with the measure hΨtΨt ⊗L1 [0, T ]. Similarly
to (9) we define, for every Ψ̂0 ∈ Pc(Y ), the set

S(Ψ̂0) := {
(Ψ , ν) ∈ AC([0, T ]; (P1(Y );W1)) × M([0, T ] × Y ;Rd) :
ν � hΨ Ψ ,

dν

d(hΨ Ψ )
∈ KhΨ Ψ - a.e., (Ψ , ν) solves

∂tΨt + div(bΨtΨt + νt ) = 0 with Ψ0 = Ψ̂0 and νt = (νt , 0)
}
. (14)

Proposition 3 For N ∈ N, let yN0 = (y0,1, . . . , y0,N ) ∈ Y N and ( yN , uN ) ∈
S( yN0 ) with corresponding generated measures Ψ N

0 ∈ PN (Y ) and (Ψ N , νN ) ∈
AC([0, T ]; (PN (Y );W1)) × M([0, T ] × Y ;Rd). Assume that Ψ N

0 → Ψ̂0 ∈ Pc(Y )

in the 1-Wasserstein distance and that

sup
N∈N

E yN0
N ( yN , uN ) < +∞. (15)

Then, up to a subsequence, the curve Ψ N converges uniformly in C([0, T ]; (P1(Y );
W1)) to Ψ ∈ AC([0, T ]; (P1(Y );W1)), νN converges weakly∗ to ν ∈ M([0, T ] ×
Y ;Rd), and (Ψ , ν) ∈ S(Ψ̂0).

The proof of Proposition 3 is provided in Sect. 4.1.

Remark 3 Since ν � hΨ Ψ for (Ψ , ν) ∈ S(Ψ̂0), there exists a function v ∈
L1
hΨ Ψ ([0, T ] × Y ;Rd) such that ν = vhΨ Ψ . Furthermore, if we consider v(t, y) :=

v(t, y)1{hΨ 	=0}(t, y), we still have ν = vhΨ Ψ .

In view of the compactness result in Proposition 3, forΨ ∈ C([0, T ]; (P1(Y );W1))

and ν ∈ M([0, T ] × Y ;Rd) we define the cost functional for the mean-field control
problem as
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E Ψ̂0(Ψ , ν) :=
⎧⎨
⎩
 T

0

ˆ
Y
L(y, Ψt ) dΨt (y) dt + Φmin(Ψ , ν) if (Ψ , ν) ∈ S(Ψ̂0),

+∞ otherwise,

(16)

where we have set for (Λ,μ) ∈ S(Ψ̂0)

Φmin(Λ,μ) := min{Φ(w,Λ) : w ∈ L1
hΛΛ([0, T ] × Y ; K ), μ = whΛΛ}, (17)

Φ(w,Λ) :=
 T

0

ˆ
Y

φ(w(t, y)) dΛt (y) dt for w ∈ L1
hΛΛ([0, T ] × Y ; K ). (18)

With the above notation at hand, the mean-field optimal control reads as

min
{
E Ψ̂0(Ψ , ν) : (Ψ , ν) ∈ C([0, T ]; (P1(Y );W1)) × M([0, T ] × Y ;Rd)

}
. (19)

In order to discuss the existence of solutions to (19), we introduce the auxiliary func-
tionals

Φ(Λ,μ) :=
⎧⎨
⎩
 T

0
φ(Λt ,μt ) dt if μ � Λ,

+∞ otherwise,
φ(Λt ,μt ) :=

ˆ
Y

φ

(
dμt

dΛt
(y)

)
dΛt (y) (20)

for every (Λ,μ) ∈ AC([0, T ]; (P1(Y );W1)) × M([0, T ] × Y ;Rd). In the next two
propositions we show the existence of solutions to (19). We start by proving that for
each (Ψ , ν) ∈ S(Ψ̂0), the support of Ψt is bounded in Y uniformly.

Proposition 4 Let Ψ̂0 ∈ Pc(Y ). Then, there exist R > 0 and L > 0 such that for
every (Ψ , ν) ∈ S(Ψ̂0) the curve t �→ Ψt is L-Lipschitz continuous and satisfies
spt(Ψt ) ⊆ BY

R.

Proof Let (Ψ , ν) be as in the statement of the proposition. In particular, we may write
ν = whΨ Ψ for w ∈ L1

hΨ Ψ ([0, T ] × Y ; K ) such that

Φmin(Ψ , ν) =
 T

0

ˆ
Y

φ(w(t, y)) dΨt (y) dt .

Since φ(0) = 0 and φ ≥ 0, without loss of generality we may suppose w(t, y) = 0
in {(t, y) ∈ [0, T ] × Y : hΨ (t, y) = 0}.

Let us first give a bound on the first moment m1(Ψt ). To do this, we fix a function
ζ ∈ Cc(F(U )) such that 0 ≤ ζ ≤ 1 and ζ(λ) = 1 for λ ∈ P(U ), which is possible
since P(U ) is a compact subset of F(U ). For every n ∈ N and every ε > 0, let us fix
gε(x) := √|x |2 + ε2 and θn(x) := θ( xn ), where θ ∈ Cc(R

d) is such that 0 ≤ θ ≤ 1,
|∇xθ | ≤ 1 in R

d , θ(x) = 1 for |x | ≤ 1, and θ(x) = 0 for |x | ≥ 2. Recalling that
y = (x, λ), we have that the function ζ gεθn ∈ Cc(Y ) and
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ˆ
Y

gε(x)θn(x) dΨt (y) −
ˆ
Y
gε(x)θn(x) dΨ̂0(y)

=
ˆ t

0

ˆ
Y

∇x (gε(x)θn(x)) · bΨτ (y) dΨτ (y) dτ

+
ˆ t

0

ˆ
Y
hΨτ (y)∇x (gε(x)θn(x)) · w(τ, y) dΨτ (y) dτ.

(21)

Since |∇xθn| ≤ 1
n , gε(x) ≤ |x | + ε, and (h1)–(h2) hold, we continue in (21) with

ˆ
Y
gε(x)θn(x) dΨt (y) −

ˆ
Y
gε(x)θn(x) dΨ̂0(y)

≤
(
2 + ε

n

) ˆ t

0

ˆ
Y

‖bΨτ (y)‖Y dΨτ (y) dt + CT
(
2 + ε

n

)
,

(22)

for a positive constant C dependent only on h and on K . Passing to the limit, in the
order, as ε → 0 and n → ∞, and using (v3) and (T1), we deduce from (22) that

m1(Ψt ) ≤ m1(Ψ̂0) + 4(Mv + MT )

ˆ t

0
(1 + m1(Ψτ )) dτ + 2CT . (23)

Since Ψt ∈ P(Y ) for every t ∈ [0, T ], applying Grönwall inequality to (23) we infer
that

sup
t∈[0,T ]

m1(Ψt ) ≤ (
m1(Ψ̂0) + CT

)
e4T (Mv+MT ), (24)

for some positive constant C only depending on h, K , v, and T .
We now prove the uniform bound of the support ofΨt . To do this, we will apply the

superposition principle [11, Theorem 5.2]. The curve Ψ ∈ AC([0, T ]; (P1(Y );W1))

solves the continuity equation

∂tΨt + div(b(t, ·)Ψt ) = 0 with Ψ0 = Ψ̂0, (25)

where the velocity field b : [0, T ] × Y → Y is defined as

b(t, y) := bΨt (y) +
(
hΨt (y)w(t, y)

0

)
for y ∈ Y (26)

and is extended to 0 in Y \ Y . By (24), (v3), (T1), and (h1), and by the fact that
w(t, y) ∈ K , we can estimate

ˆ T

0

ˆ
Y

‖b(t, y)‖Y dΨt (y) dt ≤ (Mv + MT )

ˆ T

0

ˆ
Y
(1 + ‖y‖Y + m1(Ψt )) dΨt (y) dt

+
ˆ T

0

ˆ
Y

|hΨt (y)w(t, y)| dΨt (y) dt < +∞.

(27)
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We are therefore in a position to apply [11, Theorem 5.2] with velocity field b. Hence,
there exists π ∈ P(C([0, T ]; Y )) such that

Ψt = (evt )#π for every t ∈ [0, T ], (28)

where evt (γ ) := γ (t) for every γ ∈ C([0, T ]; Y ) and every t ∈ [0, T ]. Moreover, π
is concentrated on solutions of the Cauchy problems

{
γ̇ (t) = b(t, γ (t)),
γ (0) = y0 ∈ spt(Ψ̂0).

(29)

For every γ ∈ C([0, T ]; Y ) solution of (29), for t ∈ [0, T ] we have, by (v2), (T2),
and (h2), that

‖γ (t)‖Y ≤ ‖y0‖Y + (Mv + MT )

ˆ t

0
(1 + ‖γ (τ)‖Y + m1(Ψτ )) dτ + CT , (30)

where C is as in (22). Again by Grönwall inequality, since y0 ∈ spt(Ψ̂0) and (24)
holds, we deduce from (30) that there exists R > 0 independent of t such that every
solution t �→ y(t) of theCauchy problem (29) takes values inBY

R , so that spt(Ψt ) ⊆ BY
R

by (28). This implies, together with (v1), (T1), and (h1), that

‖b(t, y)‖Y ≤ (Mv + MT )(1 + 2R) + C (31)

for every t ∈ [0, T ] and every y ∈ sptΨt . Since Ψ solves (25), we deduce that t �→ Ψt

is Lipschitz continuous, with Lipschitz constant L only depending on R. In particular,
all the above computations are independent of the choice of (Ψ , ν) ∈ S(Ψ̂0). This
concludes the proof of the proposition. ��
Proposition 5 For every Ψ̂0 ∈ Pc(Y ) the minimum problem (19) admits a solution.

Proof The proof of existence follows from the Direct Method. Let (Ψk, νk) ∈ S(Ψ̂0)

be a minimizing sequence for (19). For every k, we may write νk = wkhΨkΨk for
wk ∈ L1

hΨkΨk
([0, T ] × Y ; K ) such that

Φmin(Ψk, νk) =
 T

0

ˆ
Y

φ(wk(t, y)) dΨk,t (y) dt .

Without loss of generality we may suppose wk(t, y) = 0 in {(t, y) ∈ [0, T ] × Y :
hΨk (t, y) = 0}.

By Proposition 4,Ψk,t have a uniformly bounded support in Y and is equi-Lipschitz
continuous. By Ascoli-Arzelà theorem, there exists Ψ ∈ AC([0, T ]; (P1(Y );W1))

such that, up to a subsequence,Ψk converges toΨ uniformly inC([0, T ]; (P1(Y );W1)).
Since νk = wkhΨkΨk , we have that, up to a subsequence, νk⇀ν weakly∗

inM([0, T ]×Y ;Rd). Let us define the auxiliarymeasureμk := wkΨk ∈ M([0, T ]×
Y ;Rd). In particular, we may assume that μk⇀μ weakly∗ in M([0, T ] × Y ;Rd).
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Thus, thanks to (h1), to the uniform convergence of Ψk to Ψ , and to the fact that
spt(Ψk,t ) ⊆ BY

R , we also have that ν = hΨ μ. By definition ofΦmin and ofΦ (see (17)–
(18) and (20)), we have that for every k

Φmin(Ψk, νk) = Φ(wk, Ψk) = Φ(Ψk,μk),

so that

sup
k

Φ(Ψk,μk) < +∞.

Applying [19, Corollary 3.4.2] we infer that μ � Ψ and

Φ(Ψ ,μ) ≤ lim inf
k→∞ Φ(Ψk,μk). (32)

Since ν = hΨ μ, we also have that ν � hΨ Ψ . Moreover, since K is convex and
compact with 0 ∈ K , we have that w := dμ

dΨ ∈ K for Ψ -a.e. (t, y) ∈ [0, T ] × Y and

dν

d(hΨ Ψ )
(t, y) = d(hΨ μ)

d(hΨ Ψ )
(t, y) = w(t, y) ∈ K for hΨ Ψ -a.e. (t, y) ∈ [0, T ] × Y .

Thus, (Ψ , ν) ∈ S(Ψ̂0) and, by (32),

Φmin(Ψ , ν) ≤ Φ(w,Ψ ) = Φ(Ψ ,μ) ≤ lim inf
k→∞ Φ(Ψk,μk) = lim inf

k→∞ Φmin(Ψk, νk).

(33)

Finally, by (L3), by the uniform convergence of Ψk to Ψ , and by the uniform inclu-
sion spt(Ψk,t ) ⊆ BY

R , we get that

 T

0

ˆ
Y
L(y, Ψt ) dΨt (y) dt = lim

k→∞

 T

0

ˆ
Y
L(y, Ψk,t ) dΨk,t (y) dt . (34)

Combining (33) and (34) we infer that

E Ψ̂0(Ψ , ν) ≤ lim inf
k→∞ E Ψ̂0(Ψk, νk),

which concludes the proof of the proposition. ��
We are now in a position to state our main Γ -convergence result.

Theorem 2 Let Ψ̂0 ∈ Pc(Y ). Then the following facts hold:
(Γ -liminf inequality) for every sequence ( yN , uN ) ∈ AC([0, T ]; Y N ) × L1([0, T ];
K N ) and yN0 ∈ Y N , let (Ψ N , νN ) ∈ AC([0, T ]; (P1(Y );W1))×M([0, T ]×Y ;Rd)

be the pair generated by ( yN , uN )and letΨ N
0 be themeasure generated by yN0 . Assume
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that Ψ N converges to Ψ in C([0, T ]; (P1(Y );W1)), that νN converges weakly∗ to ν

inM([0, T ] × Y ;Rd), and that W1(Ψ
N
0 , Ψ̂0) → 0 as N → ∞. Then

E Ψ̂0(Ψ , ν) ≤ lim inf
N→∞ E yN0

N ( yN , uN ). (35)

(Γ -limsup inequality) for every (Ψ , ν) ∈ S(Ψ̂0) and every sequence of initial
data yN0 ∈ Y N such that the generated measures Ψ N

0 satisfy W1(Ψ
N
0 , Ψ̂0) → 0,

there exists a sequence ( yN , uN ) ∈ S( yN0 ) with generated pairs (Ψ N , νN ) ∈
AC([0, T ]; (P1(Y );W1))×M([0, T ]×Y ;Rd) such thatΨ N → Ψ in C([0, T ]; (P1
(Y );W1)), νN⇀ν weakly∗ inM([0, T ] × Y ;Rd), as N → ∞, and

E Ψ̂0(Ψ , ν) ≥ lim sup
N→∞

E yN0
N ( yN , uN ). (36)

We provide the proof of Theorem 2 in Sect. 4.1.
As a corollary of Theorem 2, we obtain the convergence of minima andminimizers.

Corollary 1 Let Ψ̂0 ∈ Pc(Y ) and let yN0 ∈ Y N a fixed sequence of initial data with
generated measure Ψ N

0 ∈ PN (Y ) satisfying W1(Ψ
N
0 , Ψ̂ ) → 0 as N → ∞. Then for

every sequence ( yN , uN ) ∈ S( yN0 )of solutions to (11)with generated pairs (Ψ N , νN ),
there exists (Ψ , ν) ∈ S(Ψ̂0) solution to (19) such that, up to a subsequence,Ψ N → Ψ

in C([0, T ]; (P1(Y );W1)), νN⇀ν weakly∗ inM([0, T ] × Y ;Rd), and

E Ψ̂0(Ψ , ν) = lim
N→∞ E yN0

N ( yN , uN ).

Proof The result is standard in Γ -convergence theory (see, e.g., [13, 26]) and follows
from the compactness result in Proposition 3 and from Theorem 2. ��

4.1 Proofs of Proposition 3 and Theorem 2

Before proving Proposition 3 and Theorem 2, we state two lemmas regarding the

control part of the cost functional E yN0
N and the functionals Φ and φ defined in (20).

Lemma 1 Let N ∈ N, let ( yN , uN ) ∈ AC([0, T ]; Y N ) × L1([0, T ]; K N ), and
let (Ψ N , νN ) ∈ AC([0, T ]; (PN (Y );W1)) × M([0, T ] × Y ;Rd) be the pair gen-
erated by ( yN , uN ); finally, let

μN
t := 1

N

N∑
i=1

ui (t)δyi (t), μN := μN
t ⊗ L1 [0, T ]. (37)

Then, for a.e. t ∈ [0, T ] we have

1

N

N∑
i=1

φ(ui (t)) ≥ φ(Ψ N
t ,μN

t ). (38)
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If yN0 ∈ Y N and the pair ( yN , uN ) ∈ S( yN0 ) is such that ui (t) = 0 if hΨ N
t

(yi (t)) = 0
for i = 1, . . . , N and t ∈ [0, T ], then for a.e. t ∈ [0, T ], we have that

1

N

N∑
i=1

φ(ui (t)) = φ(Ψ N
t ,μN

t ). (39)

Proof The proof of (38) can be found in [34, Lemma 6.2, formula (6.2)]. Arguing as in
the proof of [34, Lemma 6.2, formula (6.3)] we may also prove (39). Referring to the
notation in [34, Lemma 6.2], the only modification we have to make is that, whenever
yi (t) = y j (t) for t ∈ S ⊆ [0, T ] and for some i 	= j , the equality ẏi (t) = ẏ j (t)
for a.e. t ∈ S only implies that hΨ N

t
(yi (t))ui (t) = hΨ N

t
(y j (t))u j (t) for a.e. t ∈ S.

Therefore, for a.e. t ∈ S ∩ {hΨ N
t

(yi (t)) 	= 0} we have ui (t) = u j (t). Instead, for
a.e. t ∈ S∩{hΨ N

t
(yi (t)) = 0}we have ui (t) = u j (t) = 0 by assumption. This implies

that ui (t) = u j (t) a.e. in S, and the proof can be concluded as in [34, Lemma 6.2]. ��
Lemma 2 Let Ψ̂0 ∈ Pc(Y ) and yN0 ∈ Y N be such that the generated measure Ψ N

0
converges to Ψ̂0 in the 1-Wasserstein distance. Let ( yN , uN ) ∈ S( yN0 ) and let
(Ψ N , νN ) ∈ AC([0, T ]; (P1(Y );W1)) × M([0, T ] × Y ;Rd) be the corresponding
generated measures, according to Definition 3. Assume that

sup
N∈N

E yN0
N ( yN , uN ) < +∞

and that Ψ N → Ψ uniformly in C([0, T ]; (P1(Y );W1)) and νN⇀ν weakly∗
inM([0, T ]×Y ;Rd). Then, ν � hΨ Ψ , dν

dhΨ Ψ
∈ K for hΨ Ψ -a.e. (t, y) ∈ [0, T ]×Y ,

and

Φmin(Ψ , ν) ≤ lim inf
N→∞

1

N

N∑
i=1

 T

0
φ(ui (t)) dt . (40)

Proof Wedefine the auxiliarymeasuresμN andμN
t as in (37) andwe notice that νN =

hΨ N μN , νN
t = hΨ N

t
μN
t for t ∈ [0, T ]. In view of Proposition 1, both μN and νN are

supported on a compact subset of [0, T ] × Y and are bounded inM([0, T ] × Y ;Rd).
In particular, we deduce that there existsμ ∈ M([0, T ]×Y ;Rd) such that, up to a not
relabelled subsequence, μN⇀μ weakly∗ in M([0, T ] × Y ;Rd). Since (h2) holds,
Ψ N → Ψ uniformly in C([0, T ]; (P1(Y );W1)), and μN and νN have uniformly
compact support, in the limit it holds ν = hΨ μ.

By Lemma 1 and by the boundedness of the energy E yN0
N , it is clear that

sup
N∈N

Φ(Ψ N ,μN ) < +∞.

Hence, we can apply [19, Corollary 3.4.2] to infer that, in the limit, μ � Ψ and

Φ(Ψ ,μ) ≤ lim inf
N→∞ Φ(Ψ N ,μN ). (41)
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Since ν = hΨ μ and μ � Ψ , we have that ν � hΨ Ψ . Furthermore, being K a convex
and compact set with 0 ∈ K , we have that dμ

dΨ (t, y) ∈ K forΨ -a.e. (t, y) ∈ [0, T ]×Y .

and, denoting w := dμ
dΨ ,

dν

d(hΨ Ψ )
(t, y) = d(hΨ μ)

d(hΨ Ψ )
(t, y) = w(t, y) ∈ K for hΨ Ψ -a.e. (t, y) ∈ [0, T ] × Y ,

so that ν = whΨ Ψ and Φ(w,Ψ ) = Φ(Ψ ,μ). Finally, by definition of Φmin in (17)
we get (40). ��

We now prove Proposition 3.

Proof of Proposition 3 Let yN0 , ( yN , uN ), (Ψ N , νN ), and Ψ N
0 be as in the statement

of the proposition. Since W1(Ψ
N
0 , Ψ̂0) → 0 as N → ∞, by Proposition 1 we obtain

that for every t ∈ [0, T ] the probability measure Ψ N
t has support contained in the

compact set BY
R for a suitable R > 0 independent of t and N . This implies that the

curveΨ N takes values in a compact subset ofP1(Y )with respect to the 1-Wasserstein
distance. Let us now show that the sequence Ψ N is equi-continuous. Thanks to the
assumptions (v1), (T1), and (h1), to the fact that uN (t) ∈ K N and spt(Ψ N

t ) ⊆ BY
R for

t ∈ [0, T ], for every s < t ∈ [0, T ] we estimate

W1(Ψ
N
s , Ψ N

t ) = sup

{ˆ
Y

η(y) d(Ψ N
t − Ψ N

s )(y) : η ∈ Lip1(Y )

}

= sup

{
1

N

N∑
i=1

(
η(yi (t)) − η(yi (s))

) : η ∈ Lip1(Y )

}

≤ 1

N

N∑
i=1

ˆ t

s
‖bΨ N

τ
(yi (τ ))‖Y dτ + 1

N

N∑
i=1

ˆ t

s
|hΨ N

τ
(yi (τ ))ui (τ )| dτ

≤ (2(Mv + MT )(1 + R) + C)|t − s|,

(42)

for a positive constantC independent of t , s, and N . Therefore,Ψ N is equi-continuous
in C([0, T ]; (P1(Y );W1)) and, by Ascoli-Arzelà Theorem, it converges, up to a sub-
sequence, to a limit curve Ψ in C([0, T ]; (P1(Y );W1)). By (42), Ψ is also Lipschitz
continuous.

Since uN takes values in K N with K compact and hΨ N is bounded by (h1), we have
that, up to a further subsequence, νN⇀ν weakly∗ in M([0, T ] × Y ;Rd). Since the

cost functional E yN0
N ( yN , uN ) is bounded, we deduce from Lemma 2 that ν � hΨ Ψ

and dν
dhΨ Ψ

(t, y) ∈ K for hΨ Ψ -a.e. (t, y) ∈ [0, T ] × Y .
We finally show that (Ψ , ν) solves the corresponding continuity equation in the

sense of distributions. By the uniform convergence ofΨ N toΨ , we have thatΨ0 = Ψ̂0.
For every test function ϕ ∈ C∞

c ((0, T ) × Y ), since ( yN , uN ) ∈ S( yN0 ), we have that,
for every t ∈ [0, T ],
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ˆ
Y

ϕ(t, y) dΨ N
t (y) =

ˆ t

0

ˆ
Y

∂tϕ(τ, y) dΨ N
τ (y) dτ

+
ˆ t

0

ˆ
Y

∇ϕ(τ, y) · bΨ N
τ

(y) dΨ N
τ (y) dτ

+
ˆ t

0

ˆ
Y

∇xϕ(τ, y) dνN
t (y) dt

(43)

Since Ψ N → Ψ in C([0, T ]; (P1(Y );W1)) and νN⇀ν weakly∗ in M([0, T ] ×
Y ;Rd), we only have to determine the limit of the second integral on the right-hand
side of (43). To do this, we estimate

∣∣∣∣
ˆ t

0

( ˆ
Y

∇ϕ(τ, y) · bΨ N
τ

(y) dΨ N
τ (y) −

ˆ
Y

∇ϕ(τ, y) · bΨτ (y) dΨτ (y)

)
dτ

∣∣∣∣
≤
ˆ t

0

ˆ
Y

∣∣∇ϕ(τ, y) · (
bΨ N

τ
(y) − bΨτ (y)

)∣∣ dΨ N
τ (y) dτ

+
∣∣∣∣
ˆ t

0

ˆ
Y

∇ϕ(τ, y) · bΨτ (y) d(Ψ
N
τ − Ψτ )(y) dτ

∣∣∣∣ =: I N1 + I N2 .

(44)

By the regularity of the test function ϕ, by assumptions (v2) and (T2), and by the
uniform inclusion spt(Ψ N

t ) ⊆ BY
R , we may estimate I N1 with

I N1 ≤ LR‖ϕ‖C∞
c ((0,T )×Y )

ˆ t

0
W1(Ψ

N
τ , Ψτ ) dτ,

for a positive constant LR depending only on R. SinceΨ N → Ψ inC([0, T ]; (P1(Y );
W1)), we deduce from the previous inequality that I N1 → 0 as N → ∞. Again
by (v2) and (T2), the function y �→ ∇ϕ(t, y)bΨt (t) is Lipschitz continuous on B

Y
R for

every t ∈ [0, T ], with Lipschitz constant CR > 0 uniformly bounded in time. Since
spt(Ψt ), spt(Ψ N

t ) ⊆ BY
R for t ∈ [0, T ], we estimate I N2 with

I N2 ≤ CR

ˆ t

0
W1(Ψ

N
τ , Ψτ ) dτ,

and I N2 → 0 as N → ∞. We can now pass to the limit in (44) to obtain that

lim
N→∞

ˆ t

0

ˆ
Y

∇ϕ(τ, y) · bΨ N
τ

(y) dΨ N
τ (y) dτ =

ˆ t

0

ˆ
Y

∇ϕ(τ, y) · bΨτ (y) dΨτ (y) dτ,

which in turn implies, by passing to the limit in (43), that

ˆ
Y

ϕ(t, y) dΨt (y) =
ˆ t

0

ˆ
Y

∂tϕ(τ, y) dΨτ (y) dτ +
ˆ t

0

ˆ
Y

∇ϕ(τ, y) · bΨτ (y) dΨτ (y) dτ

+
ˆ t

0

ˆ
Y

∇xϕ(τ, y) dνt (y) dt .
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By the arbitrariness of ϕ ∈ C∞
c ((0, T ) × Y ), we conclude that (Ψ , ν) ∈ S(Ψ̂0). This

completes the proof. ��

Eventually, we prove the Γ -convergence result.

Proof of Theorem 2 The proof follows the lines of [34, Theorem 3.2]. We divide the
proof into two steps.

Step 1: Γ -liminf inequality. Let (Ψ , ν), ( yN , uN ), yN0 , (Ψ
N , νN ), and Ψ N

0 be as in

the statement. If lim infN→∞ E yN0
N ( yN , uN ) = +∞ there is nothing to show. Without

loss of generality we may therefore assume that

sup
N∈N

E yN0
N ( yN , uN ) < +∞,

which implies, by definition (10) of E yN0
N , that ( yN , uN ) ∈ S( yN0 ) for every N . Fur-

thermore, by Proposition 1 there exists R > 0 independent of N and t such that
spt(Ψ N

t ) ⊆ BY
R . By Proposition 3 we have that the limit pair (Ψ , ν) belongs to S(Ψ̂0)

and spt(Ψt ) ⊆ BY
R for every t ∈ [0, T ]. Applying Lemma 2 we infer that

Φmin(Ψ , ν) ≤ lim inf
N→∞

1

N

N∑
i=1

 T

0
φ(ui (t)) dt . (45)

Since LN P1-converges to L uniformly on compact sets and spt(Ψ N
t ), spt(Ψt ) ⊆ BY

R ,
we get that

 T

0

ˆ
Y
L(y, Ψt ) dΨt (y) dt =

 T

0

ˆ
BY
R

L(y, Ψt ) dΨt (y) dt

= lim
N→∞

 T

0

ˆ
BY
R

LN (y, Ψ N
t ) dΨ N

t (y) dt

= lim
N→∞

 T

0

ˆ
Y
LN (y, Ψ N

t ) dΨ N
t (y) dt

= lim
N→∞

1

N

N∑
i=1

 T

0
LN (yi (t), Ψ

N
t ) dt .

(46)

Combining (45) and (46) we conclude that

E Ψ̂0(Ψ , ν) ≤ lim inf
N→∞ E yN0

N ( yN , uN ),
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which is (35).

Step 2: Γ -limsup inequality. We will construct a sequence ( yN , uN ) such that

E Ψ̂0(Ψ , ν) = lim
N→∞ E yN0

N ( yN , uN ) (47)

and we recall that this condition is equivalent to (36).
Let (Ψ , ν) ∈ S(Ψ̂0) be such that E Ψ̂0(Ψ , ν) < +∞, and let w ∈ L1

hΨ Ψ ([0, T ] ×
Y ; K ) be such that ν = whΨ Ψ and Φmin(Ψ , ν) = Φ(w,Ψ ). In particular, we may
assume that w = 0 on the set {(t, y) ∈ [0, T ] × Y : hΨt (y) = 0}.

As in [34, Theorem 3.2], the construction of a recovery sequence is based on the
superposition principle [11, Theorem 5.2]. The curve Ψ ∈ AC([0, T ]; (P1(Y );W1))

solves indeed the continuity equation

∂tΨt + div(b(t, ·)Ψt ) = 0 with Ψ0 = Ψ̂0, (48)

where the velocity field b : [0, T ] × Y → Y is defined by

b(t, y) := bΨt (y) +
(
hΨt (y)w(t, y)

0

)
for y ∈ Y (49)

and is extended to 0 in Y \Y . By Proposition 4, there exists R > 0 such that spt(Ψt ) ⊆
BY
R for every t ∈ [0, T ], and arguing as in (27) we get that b ∈ L1

Ψ ([0, T ] × Y ).
We are therefore in a position to apply [11, Theorem 5.2] with velocity field b.

Setting

Γ := C([0, T ]; Y ),

Δ :=
{
γ ∈ Γ : γ (t) ∈ Y for t ∈ [0, T ] and solves

γ̇ (t) = bΨt (γ (t)) +
(
hΨt (γ (t))w(t, γ (t))

0

)
in [0, T ] with γ (0) ∈ spt(Ψ̂0)

}
,

we infer that there exists a probability measure π ∈ P(Γ ) concentrated on Δ such
that for every t ∈ [0, T ] Ψt = (evt )#π . We further notice that Proposition 4, the
boundedness of the control w, and assumptions (v3), (T1), and (h1) yield

ˆ
Δ

‖γ ‖Y dπ(γ ) < +∞. (50)

We define the auxiliary functional

F(γ ) :=
 T

0
φ(w(t, γ (t))) dt for every γ ∈ Δ. (51)
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We notice that by Fubini Theorem

ˆ
Γ

F(γ ) dπ(γ ) =
ˆ

Γ

 T

0
φ(w(t, γ (t))) dt dπ(γ )

=
 T

0

ˆ
Γ

φ(w(t, evt (γ ))) dπγ ) dt

=
 T

0

ˆ
Y

φ(w(t, y)) dΨt (y) dt = Φmin(Ψ , ν).

Furthermore,F is lower semicontinuous inΔ. Indeed, if γk, γ ∈ Δ are such that γk →
γ with respect to the uniform convergence in Γ , since w takes values in the compact
set K we immediately deduce that w(·, γk(·)) is bounded in L∞([0, T ];Rd), and
therefore converges weakly∗, up to a subsequence, to some g ∈ L∞([0, T ];Rd) and,
by convexity of φ, we have the lower-semicontinuity (see, e.g., [25, Theorem 3.23])

 T

0
φ(g(t)) dt ≤ lim inf

k→∞ F(γk).

Since γk ∈ Δ for every k, for s < t ∈ [0, T ] we can write

γk(t) − γk(s) =
ˆ t

s

(
bΨτ (γk(τ )) +

(
hΨτ (γk(τ ))w(τ, γk(τ )))

0

))
dτ.

Passing to the limit in the previous equality we deduce, thanks to (v1), (T2), and (h2),

γ (t) − γ (s) =
ˆ t

s

(
bΨτ (γ (τ )) +

(
hΨτ (γ (τ ))g(τ )

0

))
dτ.

On the other hand, being γ ∈ Δ we have that

γ (t) − γ (s) =
ˆ t

s

(
bΨτ (γ (τ )) +

(
hΨτ (γ (τ ))w(τ, γ (τ ))

0

))
dτ,

which implies, by the arbitrariness of s and t , that hΨτ (γ (τ ))g(τ ) = hΨτ (γ (τ ))w(τ,

γ (τ )) for a.e. τ ∈ [0, T ]. Hence, g(t) = w(t, γ (t)) for a.e. t ∈ {s ∈ [0, T ] :
hΨs (γ (s)) 	= 0}, while w(t, γ (t)) = 0 for t ∈ {s ∈ [0, T ] : hΨs (γ (s)) = 0}.
Since φ ≥ 0 and φ(0) = 0, we finally obtain

F(γ ) ≤
 T

0
φ(g(t)) dt ≤ lim inf

k→∞ F(γk).

By Lusin theorem, we can select an increasing sequence of compact sets Δk �
Δk+1 � Δ such that π(Δ \ Δk) < 1

k and F is continuous on Δk . Setting

πk := 1

π(Δk)
π Δk ∈ P(Γ ),
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we have that

lim
k→∞ W1(π, πk) = 0, lim

k→∞

ˆ
Γ

F(γ ) dπk(γ ) =
ˆ

Γ

F(γ ) dπ(γ ). (52)

In particular, the first limit follows from (50) and from the narrow convergence of πk

to π . The second limit is a consequence of the first.
Since Δk is compact, we can select a sequence of curves {(γk)mi : i =

1, . . . ,m, m ∈ N} ⊆ Δk such that for every k the measures

πm
k := 1

m

m∑
i=1

δ(γk )
m
i

∈ P(Γ )

satisfy

lim
m→∞ W1(π

m
k , πk) = 0, lim

m→∞

ˆ
Γ

F(γ ) dπm
k (γ ) =

ˆ
Γ

F(γ ) dπk(γ ), (53)

where the second equality is due to the fact that F is continuous and bounded on Δk .
Let us fix a countable dense set D := {ϕ�}�∈N in Cc([0, T ] × Y ;Rd). We recall

that, by construction, on the set Δk the function γ �→ F(γ ) is continuous. Since φ

is superlinear, this implies that w(·, γ j (·)) → w(·, γ (·)) in L p([0, T ];Rd) for every
p < +∞ whenever γ j , γ ∈ Δk with γ j → γ . Hence, also the map

γ �→
ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt

is continuous in Δk for every � ∈ N. Combining this fact with (52) and (53), we are
able to select a suitable strictly increasing sequencem(k) such that for everym ≥ m(k)
it holds

W1(π
m
k , πk) <

1

k
, (54)∣∣∣∣

ˆ
Γ

F(γ ) dπm
k (γ ) −

ˆ
Γ

F(γ ) dπk(γ )

∣∣∣∣ <
1

k
, (55)∣∣∣∣

ˆ
Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt d(πm

k − πk)(γ )

∣∣∣∣ ≤ 1

k
for � ≤ k,

(56)

where in the last inequality we have used thatπm
k converges narrowly toπk asm → ∞

and that πm
k is concentrated on curves belonging to Δk .

Therefore we set πN := πN
k for m(k) ≤ N < m(k + 1) and obtain that

lim
N→∞ W1(πN , π) = 0, (57)

so that
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lim
N→∞

ˆ
Γ

F(γ ) dπN (γ ) = Φmin(Ψ , ν). (58)

We now construct the recovery sequence ( yN , uN ). First, we define the auxil-
iary curves ΛN

t : = (evt )#πN ∈ AC([0, T ]; (P1(Y );W1)) and the corresponding
curves zN = (z1, . . . , zN ) ∈ AC([0, T ]; Y N ) so that ΛN

t = 1
N

∑N
i=1 δzi (t). Then,

we set ui (t) : = w(t, zi (t)) for every t ∈ [0, T ], every i = 1, . . . , N , and every
N ∈ N, and uN := (u1, . . . , uN ) ∈ L1([0, T ]; K N ). In particular, each component
of zN solves the ODE

żi (t) = bΨt (zi (t)) +
(
hΨt (zi (t))ui (t)

0

)
(59)

with initial point zi (0) ∈ spt(Ψ̂0). The curves zN have to be further modified, since in
the ODE (59) the velocity field bΨt still contains the state of the limit system Ψt rather
than ΛN , and the initial data zN0 = (z1(0), . . . , zN (0)) do not coincide with yN0 .

Being Ψ N
0 and ΛN

0 two empirical measures, we can find a sequence of permuta-
tions σ N : Y N → Y N such that

W1(Ψ
N
0 ,ΛN

0 ) = 1

N

N∑
i=1

‖(σ N ( yN0 )
)
i − zi (0)‖. (60)

Let us further denote by σ N
Rd : (Rd)N → (Rd)N the spatial component of σ N .

We set yN0 := σ N ( yN0 ) and denote by y0,i its i-th component. We define yN =
(y1, . . . , yN ) ∈ AC([0, T ]; Y N ) by solving for i = 1, . . . , N the Cauchy problems

⎧⎨
⎩ ẏi (t) = bΨ N

t
(yi (t)) +

(
hΨ N

t
(yi (t))ui (t)

0

)
,

yi (0) = y0,i ,
(61)

where, as for the Cauchy problem in (8), we have set Ψ N
t := 1

N

∑N
i=1 δyi (t) ∈ PN (Y ).

By [41, Corollary 2.3] system (61) admits a unique solution and ( yN , uN ) ∈ S( yN0 ).
Finally, we set ( yN , uN ) := ((σ N )−1( yN ), (σ N

Rd )
−1(uN )) ∈ S( yN0 ), where, with a

slight abuse of notation, we have denoted by σ N
Rd

the action of the permutation σ N on

the (Rd)N -component of yN .
We denote by (Ψ N , νN ) and (ΛN , ηN ) the pairs generated by ( yN , uN ) and

by (zN , uN ), respectively, and notice that, by invariance with respect to permuta-
tions, (Ψ N , νN ) coincides with the pair generated by ( yN , uN ). We want to show
that

Ψ N → Ψ in C([0, T ]; (P1(Y );W1))and νN⇀νweakly∗inM([0, T ] × Y ;Rd).

(62)
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To do this, we will prove that

lim
N→∞ sup

t∈[0,T ]
W1(Ψ

N
t ,ΛN

t ) = 0 and lim
N→∞ sup

t∈[0,T ]
W1(Λ

N
t , Ψt ) = 0 (63)

and that

νN − ηN⇀0 and ηN⇀ν weakly∗inM([0, T ] × Y ;Rd), (64)

so that (62) follows by triangle inequality.
Let us consider the pair (ΛN , ηN ). Since zi (0) ∈ spt(Ψ̂0) for every i = 1, . . . , N

and Ψ̂0 ∈ Pc(Y ), Proposition 1 yields the existence of R > 0 independent of N
and t such that spt(ΛN

t ) ⊆ BY
R for every t ∈ [0, T ]. Repeating the computations

performed in (42) we obtain that ΛN is equi-Lipschitz continuous with respect to t .
The convergence in (57) implies that W1(Λ

N
t , Ψt ) → 0 for every t ∈ [0, T ] as

N → ∞, so that an application of Ascoli-Arzelà Theorem yields that ΛN → Ψ

in C([0, T ]; (P1(Y );W1)). This proves the second convergence in (63).
To prove the first convergence in (63), we estimate the distance between yN and zN .

First we notice that, up to possibly taking a larger R, we have that ‖yi (t)‖Y ≤ R for
every i = 1, . . . , N for every N ∈ N and for every t ∈ [0, T ], so that spt(Ψ N

t ) ⊆ BY
R .

For every t ∈ [0, T ] and every i = 1, . . . , N we have, by definition of yi and zi and
by assumptions (v2), (T2), and (h2),

‖zi (t) − yi (t)‖Y ≤‖zi (0) − y0,i‖ +
ˆ t

0
‖bΨτ (zi (τ )) − bΨ N

τ
(yi (τ ))‖Y dτ

+
ˆ t

0
|hΨτ (zi (τ )) − hΨ N

τ
(yi (τ ))| |w(τ, zi (τ ))| dτ

≤ ‖zi (0) − y0,i‖ + LR

ˆ t

0

(‖zi (τ ) − yi (τ )‖Y + W1(Ψτ , Ψ
N
τ )

)
dτ,

(65)

for some positive constant LR independent of N . Hence, by Grönwall and triangle
inequalities we deduce from (65) that

‖yi (t) − zi (t)‖Y ≤ eLRT
(
‖zi (0) − y0,i‖Y

+ LR

ˆ t

0
(W1(Ψ

N
τ ,ΛN

τ ) + W1(Ψτ ,Λ
N
τ )) dτ

)
. (66)

Summing (66) over i = 1, . . . , N and recalling (60), we infer that for every t ∈ [0, T ]

W1(Ψ
N
t ,ΛN

t ) ≤ 1

N

N∑
i=1

‖zi (t) − yi (t)‖

≤ eLRT W1(Ψ
N
0 ,ΛN

0 ) + LRe
LRT

ˆ t

0
(W1(Ψ

N
τ ,ΛN

τ ) + W1(Ψτ ,Λ
N
τ ))dτ. (67)
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Applying once again Grönwall inequality to (67) we obtain for every t ∈ [0, T ]

W1(Ψ
N
t ,ΛN

t ) ≤
(
eLRT W1(Λ

N
0 , Ψ N

0 ) + LRe
LRT

ˆ T

0
W1(Ψt ,Λ

N
t ) dt

)
eLRT eLRT

.

(68)

Since W1(Λ
N
0 , Ψ̂0) → 0, W1(Ψ

N
0 , Ψ̂0) → 0, and the second limit in (63) holds,

from (68)weconclude (63) and the convergenceofΨ N toΨ inC([0, T ]; (P1(Y );W1)).
We now turn our attention to (64). The second convergence in (64) is a matter of

a direct computation. Indeed, for every ϕ ∈ Cc([0, T ] × Y ;Rd) and every ε > 0 we
can fix ϕ� ∈ D such that ‖ϕ − ϕ�‖C([0,T ]×Y ) ≤ ε and estimate

∣∣∣∣
ˆ T

0

ˆ
Y

ϕ(t, y) d(ηN − ν)(t, y)

∣∣∣∣
≤
ˆ T

0

ˆ
Y

|ϕ(t, y) − ϕ�(t, y)| d|ηN − ν|(t, y)

+
∣∣∣∣
ˆ T

0

ˆ
Y

ϕ�(t, y) d(η
N − ν)(t, y)

∣∣∣∣
≤ Cε +

∣∣∣∣ 1N
N∑
i=1

ˆ T

0
ϕ�(t, zi (t))w(t, zi (t))hΨt (zi (t)) dt

−
ˆ T

0

ˆ
Y

ϕ�(t, y)w(t, y)hΨt (y) dΨt (y) dt

∣∣∣∣
= Cε +

∣∣∣∣
ˆ T

0

ˆ
Y

ϕ�(t, y)w(t, y)hΨt (y) dΛ
N
t (y) dt

−
ˆ T

0

ˆ
Y

ϕ�(t, y)w(t, y)hΨt (y) dΨt (y) dt

∣∣∣∣
= Cε +

∣∣∣∣
ˆ

Γ

ˆ T

0
ϕ�(t, y(t))w(t, γ (t))hΨt (γ (t)) dt dπN (γ )

−
ˆ

Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπ(γ )

∣∣∣∣,

(69)

for some positive constant C independent of ε. We now estimate the right-hand side
of (69). By definition of πN and by (54) and (56), for every N ∈ [m(k),m(k + 1))
with k ≥ � we have that∣∣∣∣

ˆ
Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπN (γ )

−
ˆ

Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπ(γ )

∣∣∣∣
≤

∣∣∣∣
ˆ

Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπ N

k (γ )

123



   22 Page 28 of 44 Applied Mathematics & Optimization            (2022) 85:22 

−
ˆ

Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπk(γ )

∣∣∣∣
+

∣∣∣∣
ˆ

Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπk(γ )

−
ˆ

Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπ(γ )

∣∣∣∣
≤ 1

k
+

∣∣∣∣ 1

π(Δk)

ˆ
Δk

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπ(γ )

−
ˆ

Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπ(γ )

∣∣∣∣.
Passing to the limit as N → ∞ in the previous inequality we get by the boundedness
of w, ϕ�, and h, that

lim
N→∞

ˆ
Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπN (γ )

=
ˆ

Γ

ˆ T

0
ϕ�(t, γ (t))w(t, γ (t))hΨt (γ (t)) dt dπ(γ ).

Therefore, passing to the limsup as N → ∞ in (69) we obtain

lim sup
N→∞

∣∣∣∣
ˆ T

0

ˆ
Y
ϕ(t, y) d(ηN − ν)(t, y)

∣∣∣∣ ≤ Cε.

By the arbitrariness of ε and ϕ we infer that ηN⇀ν weakly∗ inM([0, T ] × Y ;Rd).
We now turn to the first convergence in (64). For every ϕ ∈ Cc([0, T ]×Y ;Rd) we

have that, using the definition of νN , of ηN , and of the controls uN ,

∣∣∣∣
ˆ T

0

ˆ
Y

ϕ(t, y) dνN (t, y) −
ˆ T

0

ˆ
Y

ϕ(t, y) dηN (t, y)

∣∣∣∣
=

∣∣∣∣ 1N
N∑
i=1

ˆ T

0

(
ϕ(t, yi (t))hΨ N

t
(yi (t)) − ϕ(t, zi (t))hΨt (zi (t))

)
w(t, zi (t)) dt

∣∣∣∣
≤ 1

N

N∑
i=1

ˆ T

0

∣∣ϕ(t, yi (t)) − ϕ(t, zi (t))
∣∣ · ∣∣hΨ N

t
(yi (t))w(t, zi (t))

∣∣ dt
+ 1

N

N∑
i=1

ˆ T

0

∣∣hΨ N
t

(yi (t)) − hΨt (zi (t))
∣∣ · ∣∣ϕ(t, zi (t))w(t, zi (t))

∣∣ dt .
(70)

In order to continue in (70) let us fix a modulus of continuity ωϕ for the function
ϕ. Notice that, without loss of generality, we may assume ωϕ to be increasing and
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concave. Thus, by (h1), (h2), by the fact that w(t, zi (t)) ∈ K and yi , zi ∈ BY
R for

every t ∈ [0, T ] and every i = 1, . . . , N , and by the inequalities (67), (68), we can
further estimate (70) with

∣∣∣∣
ˆ T

0

ˆ
Y

ϕ(t, y) dνN (t, y) −
ˆ T

0

ˆ
Y

ϕ(t, y) dηN (t, y)

∣∣∣∣
≤ C

N

N∑
i=1

ˆ T

0

[
ωϕ(‖zi (t) − yi (t)‖Y ) + ‖ϕ‖C([0,T ]×Y )

(‖zi (t) − yi (t)‖Y + W1(Ψt , Ψ
N
t )

)]
dt

≤ C
ˆ T

0
ωϕ

(
1

N

N∑
i=1

‖zi (t) − yi (t)‖Y
)
dt

+ C‖ϕ‖C([0,T ]×Y )

(
eLRT TW1(Ψ

N
0 ,ΛN

0 ) + (1 + LRT e
LRT )

ˆ T

0
W1(Ψ

N
t , Ψt ) dt

)

≤ CTωϕ

(
eLRT W1(Ψ

N
0 ,ΛN

0 ) + LRe
LRT

ˆ T

0
W1(Ψ

N
t , Ψt ) dt

)

+ C‖ϕ‖C([0,T ]×Y )

(
eLRT TW1(Ψ

N
0 ,ΛN

0 ) + (1 + LRT e
LRT )

ˆ T

0
W1(Ψ

N
t , Ψt ) dt

)
,

where C > 0 is a constant independent of N . Therefore, by (63) we conclude that

lim
N→∞

∣∣∣∣
ˆ T

0

ˆ
Y

ϕ(t, y) dνN (t, y) −
ˆ T

0

ˆ
Y

ϕ(t, y) dηN (t, y)

∣∣∣∣ = 0,

which yields the first convergence in (64).
Finally, we prove (47). As already observed, ( yN , uN ) ∈ S( yN0 ) by construction,

so that

E yN0
N ( yN , uN ) = 1

N

N∑
i=1

 T

0
LN (yi (t), Ψ

N
t ) dt + 1

N

N∑
i=1

 T

0
φ(ui (t)) dt .

(71)

Since spt(Ψ N
t ), spt(Ψt ) ⊆ BY

R for every t ∈ [0, T ] and, by (L1) and (L2), LN is
continuous and LN P1-converges to L uniformly on compact sets, we have that

lim
N→∞

1

N

N∑
i=1

 T

0
LN (yi (t), Ψ

N
t ) dt = lim

N→∞

 T

0

ˆ
Y
LN (y, Ψ N

t ) dΨ N
t dt

= lim
N→∞

 T

0

ˆ
BY
R

LN (y, Ψ N
t ) dΨ N

t dt

=
 T

0

ˆ
BY
R

L(y, Ψt ) dΨt dt

=
 T

0

ˆ
Y
L(y, Ψt ) dΨt dt .

(72)
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As for the second termon the right-hand side of (71),we recall that uN = (σ N
Rd )

−1(uN )

with ui (t) = w(t, zi (t)) and that ΛN
t = (evt )#πN , so that we can write

1

N

N∑
i=1

 T

0
φ(ui (t)) dt = 1

N

N∑
i=1

 T

0
φ(ui (t)) dt =

 T

0

ˆ
Y

φ(w(t, y)) dΛN
t (y) dt

=
ˆ

Γ

 T

0
φ(w(t, γ (t))) dt dπN (γ ) =

ˆ
Γ

F(γ ) dπN (γ ).

In view of (58), we infer that

lim
N→∞

1

N

N∑
i=1

 T

0
φ(ui (t)) dt = Φmin(Ψ , ν),

which implies, together with (72), that

lim
N→∞ E yN0

N ( yN , uN ) = E Ψ̂0(Ψ , ν),

which is (47). This concludes the proof of the theorem. ��

5 Numerical Experiments

In this section we consider specific applications of our model in the context of opinion
dynamics. In Sect. 5.1, we discuss the effects of controlling a single population of
leaders. In Sect. 5.2, instead, two competing populations of leaders and a residual
population of followers are considered, but the policy maker favors only one of the
populations of leaders towards their goal.

In both cases, for the continuity equation (4) we use a finite volume scheme with
dimensional splitting for the state space discretization, following a similar approach
to the one employed in [6]. Introducing a suitable discretization of the density Ψ n

i =
Ψ (tn, yi ) on uniform grid with parameters Δx,Δλ in the state space, and Δt in time,
the resulting scheme reads

Ψ̃ n
i = Ψ n

i + Δt

Δλ

(
Ti+1/2[Ψ n](yi ) − Ti−1/2[Ψ n](yi )

)
,

Ψ n+1
i = Ψ̃ n

i + Δt

Δx

(
Vi+1/2[Ψ n, wn](yi ) − Vi−1/2[Ψ n, wn](yi )

)
,

where Ti±1/2,Vi±1/2 are suitable discretizations of the transition operator and the
non-local velocity flux, respectively, and wn denotes the control computed at the
corresponding time. Notice that the update of Ψ follows a two-step approximation,
first inλ then in x , of the continuity equation (4) (see also [7] for a rigorous convergence
result).
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The realization of the control is approximated using a nonlinear Model Predictive
Control (MPC) tecnique. Hence, an open-loop optimal control action is synthesized
over a prediction horizon [0, Tp], by solving the optimal control problem (3), (4). Hav-
ing prescribed the system dynamics and the running cost, this optimization problem
depends on the initial state and the horizon Tp only. The controlw∗, which is obtained
for the whole horizon [0, Tp], is implemented over a possibily shorter control horizon
[0, Tc]. At t = Tc the initial state of the system is re-initialized to Ψ (Tc) and the
optimization is repeated. In this setting, to comply with an efficient solution of the
dynamics, we perform the MPC optimization selecting Tp = Tc = Δt . This choice
of the horizons correponds to a instantaneous relaxation towards the target state. For
further discussion on MPC literature we refer to [1, 27, 35] and references therein.

5.1 A Leader–Follower Dynamics

In this setting, the setU consists of two elements, that isU := {F, L} and is endowed
with a two-valued distance

0 = dist(F, F) = dist(L, L), 1 = dist(F, L) = dist(L, F).

The space P1({F, L}) is identified with the interval [0, 1]; accordingly, in the discrete
model, λi is a scalar value describing the probability of the i-th particle of being a
follower.

In order to tune the influence of the control, the simplest possible choice is to
fix a function hΨ (x, λ) = h(λ) in (8) for a suitable bounded non-negative Lipschitz
function h : [0, 1] → R. In the applications,where the policymaker aims at controlling
only the population of leaders, the ideal function h should be non-increasing and equal
to zero when λ is close to 1. As shown in Proposition 2, if the cost function φ satisfies
{φ = 0} = {0}, the optimal control will steer only agents with small λ.

It is natural to partition the total population into leaders and followers, according
to λ. GivenΨ ∈ P(Rd ×[0, 1]), and for a fixed Lipschitz function g : [0, 1] → [0, 1],
we define the followers and leaders distributions as

μF
Ψ (B) :=

ˆ
B×[0,1]

g(λ) dΨ (x, λ),

μL
Ψ (B) :=

ˆ
B×[0,1]

(1 − g(λ)) dΨ (x, λ),

(73)

for each Borel set B ⊂ R
d . In particular, the sum μF

Ψ (B)+μL
Ψ (B) coincides with the

first marginal of Ψ and therefore it counts the total population contained in B. In the
discrete setting, the leaders and followers distributions in (73) are given by
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μF
Ψ N (B) = 1

N

∑
i : xi∈B

g(λi ),

μL
Ψ N (B) = 1

N
#{i : xi ∈ B} − μF

Ψ N (B) = 1

N

∑
i : xi∈B

(1 − g(λi )).
(74)

A typical choice for g is any Lipschitz regularization of the indicator function of the
set {λ ≥ m}, with m ≥ 0 a small given threshold. Doing so amounts to classifying
agents with small λ (and therefore high influence) as leaders and the remaining ones
as followers. However, different and softer choices for g are possible. For instance,
the choice g(λ) = λ allows one to measure the average degree of influence of an agent
sitting in the region B on the remaining ones.

It is a common feature of many-particle models to assume that each agent expe-
riences a velocity which combines the action of the overall followers and leaders
distribution. Hence, these velocities are an average velocity of the system, weighted
by the probability λ that an agent located at x has of being a follower, and have the
general form

vΨ (x, λ) = g1(λ)

ˆ
Rd×[0,1]

× [
K FF (x − x ′)g2(λ′) + K LF (x − x ′)(1 − g2(λ

′))
]
dΨ (x ′, λ′)

+ (1 − g1(λ))

ˆ
Rd×[0,1]

× [
K FL(x − x ′)g2(λ′) + K LL(x − x ′)(1 − g2(λ

′)) dΨ (x ′, λ′),
(75)

where the functions gi : [0, 1] → R (for i = 1, 2) are given Lipschitz continuous
functions and K �• : Rd → R

d for �, • ∈ {F, L} are suitable Lipschitz continuous
interaction kernels. Let us remark that the choice g1 = g2 = g, so that the velocities
actually depend on Ψ through the distributions μF

Ψ and μL
Ψ , is quite plausible in this

kind of modeling. In the discrete setting, a velocity field of this kind reads as

vΨ N (xi , λi )

= g1(λi )

(
1

N

N∑
j=1

K FF (xi − x j )g2(λ j ) + 1

N

N∑
j=1

K LF (xi − x j )(1 − g2(λ j ))

)

+ (1 − g1(λi ))

(
1

N

N∑
j=1

K FL (xi − x j )g2(λ j ) + 1

N

N∑
j=1

K LL (xi − x j )(1 − g2(λ j ))

)
.

Similar principles can be used for defining the transitions rates. According to the
identification of P1({F, L}) with [0, 1], the transition operator TΨ (x, λ) will be iden-
tified with a scalar (see (76) below), instead of taking values in the two-dimensional
spaceF({F, L}). Indeed, in this case (T0) uniquely determines the second component
of TΨ once the first one is known. For instance, one can consider
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TΨ (x, λ) = −αF (x, Ψ )g3(λ) + αL(x, Ψ )(1 − g3(λ)), (76)

with α• having the typical form

α•(x, Ψ ) =
ˆ
Rd×[0,1]

H•(x − x ′)�•(λ′) dΨ (x ′, λ′), for • ∈ {F, L},

and where g3 : [0, 1] → [0, 1], H• : Rd → R+, and �• : [0, 1] → [0, 1] are given
Lipschitz functions.Notice that condition (T3) amounts to requiring that the conditions

α• ≥ 0, g3(0) = 0, g3(1) = 1 (77)

are satisfied (equivalently, the evolution of λ is confined into [0, 1]). If one chooses
g3(λ) = λ, for fixed x andΨ the evolution of λ is governed by a linearmaster equation.
Instead, for g3 = g, the switching rates αF and αL are activated depending on the
population to which an agent belongs. The function H• can be used to localize the
effect of the overall distribution on the transition rates; within this model, an agent
sitting at x is able to interact only with agents in a small neighborhood around x .
Similarly, with a proper choice of �•, one can tune the influence of the surrounding
agents according to their probability of belonging to the populations of followers or
leaders. The choice �F = 1−�L = g corresponds to having rates which depend on Ψ

through the distributions μF
Ψ and μL

Ψ . Let us however stress that, in general, also with
these choices it is not possible to decouple equation (14) into a system of equations for
μF

Ψ andμL
Ψ , which, on the contrary, can only be reconstructed after solving forΨ first.

Some particular cases where this is instead possible are discussed in [41, Proposition
4.8].

With the arguments of [41, Sect. 4], one can see that choices of vΨ and TΨ made
in (75) and (76) fit in our general framework. Let us remark that in [41, Sect. 4], only
the case g(λ) = gi (λ) = λ, i = 1, 2, 3 was discussed, but the adaption to the current,
more general situation, is straightforward.

A typical Lagrangian that we may consider should penalize the distance of the
leaders from a desired goal. This may be encoded by a function of the form

L1(x, λ) = θ(λ)|x − x̄ |2, (78)

where x̄ ∈ R
d is the position of the desired goal and θ : [0, 1] → [0, 1] is zero when

λ is above a given threshold (a possible choice is even θ(λ) = 1− g(λ)). Moreover, a
competing effect, depending on the overall distribution of the population, can be taken
into account: leaders should stay as close as possible to the population of followers,
in order to influence their behavior. This may be encoded by a function of the form

L2(x, λ, Ψ ) = θ(λ)

∣∣∣∣x −
 
Rd

x ′ dμF
Ψ (x ′)

∣∣∣∣
2

, (79)

which favors a leader agent to be close to the barycenter of the followers distribution.
Notice that the functionL2 depends continuously onΨ as long asμF

Ψ (Rd) > 0, which
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is always the case in practical situations. Hence, the Lagrangian of the system is the
sum

L(x, λ, Ψ ) := αL1(x, λ) + (1 − α)L2(x, λ, Ψ ), (80)

for α ∈ [0, 1] a given constant.
Finally, a very simple and natural family of cost functions is

φp(u) = γ

p
|u|p, for p ∈ (1,+∞) and u ∈ R

d . (81)

In particular, φp is strictly convex and {φp = 0} = {0}, so that the conclusions of
Proposition 2 hold true in the case hΨ = h mentioned above. Namely, the optimal
control u ∈ L1([0, T ]; (Rd)N ) in the N -particle problem will actually act only on
the population of leaders, while the evolution of the population of followers will be
determined by the velocities and transitions rates detailed above.

5.1.1 Test 1: Opinion Dynamics with Emerging Leaders Population

We study the setting proposed in [2, 31] for opinion dynamics in presence of leaders
influence, andwe assume that x ∈ [−1, 1], where {±1} identify two opposite opinions.
The interaction field vΨ (75) is characterized by bounded confidence kernels with the
following structure

K �•(x − x ′) = χε({|x − x ′| ≤ κ�•}), for �, • ∈ {F, L}, (82)

where ε ≥ 0 is a regularization parameter for the characteristic function χ and κ•�

represent the confidence intervals with the following numerical values,

κFF = 0.25, κFL = 0.5, κLF = 0, κLL = 0.2.

The weighting functions g1, g2 are such that g1(λ) ≡ g2(λ) ≡ �(λ) with

�(λ) = eC(λ−λ̄)

1 + eC(λ−λ̄)
, C = 103, λ̄ = 0.5. (83)

The transition operator TΨ (x, λ) in (76) is identified by the following quantities

αF (x, Ψ ) = aF (1 − DL(x, Ψ )) , αL(x, Ψ ) = aL (1 − DF (x, Ψ )) , g3(λ) = λ,

where the functions DF and DL represent the concentration of followers and leaders
at position x and are defined by

D•(x, Ψ ) = S•
ˆ
Rd×[0,1]

exp

{
− (x − x ′)2

σ 2•

}
G•(λ′)dΨ (x ′, λ′), • ∈ {F, L} , (84)
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Fig. 1 Test 1. Intial distribution Ψ0(x, λ) and the marginals associated with the opinion space μF
Ψ (t, x),

μL
Ψ (t, x), and to the label space νFΨ (t, λ), νLΨ (t, λ). The red dashed line marks the target position x̄ = − 0.5

(Color figure online)

with GF (λ) = �(λ) and GL(λ) = 1 − GF (λ), and S• normalization constants such
that concentrations are bounded above by one, i.e., D•(x, Ψ ) ∈ [0, 1] to preserve the
positivity of the rates αF and αL , and with the following parameters

aF = 0.025, aL = 0.05, σF = σL = 0.1.

Finally, the cost functional is defined by the Lagrangian defined in (80), which
steers followers towards x̄ = − 0.5 and keeps track of followers average position with
α = 0.35 and θ(λ) = 1 − �(λ). We account for quadratic penalization of the control
in (81) by choosing γ = 2.

In Fig. 1, we report the choice of the initial data, and the marginals μF
Ψ (t, x),

μL
Ψ (t, x) relative to the opinion space, and to the label space νF

Ψ (t, λ), νL
Ψ (t, λ). The

structure of the initial data is a bimodal Gaussian distribution defined as follows

Ψ0(x, λ) := C0

(
exp

{
− (x − xF )2

σ 2
x,F

− (λ − λF )2

σ 2
λ,F

}

+ exp

{
− (x − xL)2

σ 2
x,L

− (λ − λL)2

σ 2
λ,L

})
,

where σ 2
λ,F = σ 2

λ,L = 1/100, σ 2
x,L = 1/50, σ 2

x,F = 1/30, λF = 0.45, λL = − 0.45,
xF = 0.3, xL = 0.7 and C0 is normalizing constant.

Figure 2 reports from left to right four frames of the marginals up to time t = 10,
without control. We observe transition from leader to follower, and viceversa, where,
without the action of a policy maker, the initial clusters of opinions remain bounded
away and no consensus is reached. In Fig. 3, control is activated and in this case we
observe the steering action of the leaders towards the target position x̄ .

We summarize the evolution of controlled and uncontrolled case up to final time
T = 50 in Fig. 4, comparing the controlled and uncontrolled cases, respectively.
We compare marginals μF

Ψ and μL
Ψ and the percentage of followers and leaders as

functions of time.
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Fig. 2 Test 1.Evolution of themarginals without control. In the top rowμF
Ψ (t, x) andμL

Ψ (t, x) are depicted;

in the bottom row νFΨ (t, λ), νLΨ (t, λ) are depicted, both for time frames associated with t = 0.5, 2, 3.5, 10

Fig. 3 Test 1. Evolution of the marginals with control. In the top row μF
Ψ (t, x) and μL

Ψ (t, x) are depicted;

in the bottom row νFΨ (t, λ), νLΨ (t, λ) are depicted, both for time frames associated with t = 0.5, 2, 3.5, 10

5.2 Two-Leader Game

A rather natural extension of the situation considered in Sect. 5.1 consists in studying
the interaction between three different populations: one of followers, still denoted
with the label F , and two of leaders, denoted by L1 and L2, respectively, competing
for gaining consensus among the followers and working to attract them towards their
own objectives. A policy maker may choose to promote one of the two populations of
leaders by favoring the interactions among these leaders and the followers. We discuss
here how to model such a scenario within our analytical setting.

The setU consists now of three labelsU := {F, L1, L2} endowed with the distance
d : U ×U → [0,+∞) defined as

d(F, L1) = d(L1, F) = d(F, L2) = d(L2, F) = d(L1, L2) = d(L2, L1) := 1,

d(F, F) = d(L1, L1) = d(L2, L2) := 0.
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Fig. 4 Test 1. Upper row: uncontrolled case; bottom row: controlled case. Left and central plots depict
marginals in the time-space domain. Right plot shows the percentage of population associated with leader
or follower populations as functions of time

The space of probability measures P(U ) is identified with the simplex of R3

{
λ = (λF , λL1 , λL2) ∈ R

3 : λ• ≥ 0 for • ∈ U ,
∑
•∈U

λ• = 1

}

or, equivalently, to the subset Δ of R2

Δ := {λ = (λL1 , λL2) ∈ R
2 : 0 ≤ λL1 , λL2 ≤ 1, λL1 + λL2 ≤ 1}.

Hence, in a discrete model the scalar values λL1,i , λL2,i stand for the probability
of the i-th particle of being an L1-leader and an L2-leader, respectively. Clearly,
λF,i = (1 − λL1,i − λL2,i ) represents the probability of being a follower.

Assuming that the policy maker wants to promote the goals of the leaders L1, the
influence of the controls on the populations dynamics may be tuned by the function
hΨ (x, λ) = h(λL1) for a bounded non-negative Lipschitz function h : [0, 1] → [0, 1]
such that h(λL1) = 1 for λL1 close to 1 and h(λL1) = 0 for λL1 close to 0. Considering
a cost function φ of the form (81), for instance, the control u ∈ R

d will act only on
the L1-leaders, as a consequence of Proposition 2.

GivenΨ ∈ P(Rd ×Δ) and a Lipschitz continuous function f = ( fL1 , fL2) : Δ →
Δ such that fL j (λ) = fL j (λL j ), for j = 1, 2, we define the followers and leaders
distributions as

μ
L j
Ψ (B) :=

ˆ
B×Δ

fL j (λL j ) dΨ (x, λ), for j = 1, 2,

μF
Ψ (B) :=

ˆ
B×Δ

(1 − fL1(λL1) − fL2(λL2)) dΨ (x, λ)

for every Borel subset B of Rd . In the discrete setting, the leaders and followers
distributions are
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μ
L j

Ψ N (B) = 1

N

∑
i : xi∈B

fL j (λL j ,i ), for j = 1, 2,

μF
Ψ N (B) = 1

N

∑
i : xi∈B

(1 − fL1(λL1,i ) − fL2(λL2,i )).

A possible choice for fL j is any Lipschitz regularization of the indicator function of

the set {λL j ≥ m} with m > 1
2 and such that fL j (λL j ) = 0 for λL j ≤ 1

2 , compatible
with the request that f mapsΔ inΔ. We further notice that the choice fL j (λL j ) = λL j

is still allowed with the same interpretation given in (74).
The velocity field vΨ (x, λ) in (75) can be easily modified for the current scenario

by setting, for instance,

vΨ (x, λ) := v
L1
Ψ (x, λ) + v

L2
Ψ (x, λ) + vF

Ψ (x, λ),

where for � ∈ {F, L1, L2}

v�
Ψ (x, λ) := f�(λ)

ˆ
Rd×Δ

∑
•∈{F,L1,L2}

K �•(x − x ′) f•(λ′) dΨ (x ′, λ′) (85)

under the additional condition that fF (λ) = 1− fL1(λL1) − fL2(λL2). The transition
TΨ (x, λ) is now given by

TΨ (x, λ) :=
⎛
⎝−αL1L1(x, Ψ ) αL1L2(x, Ψ ) αL1F (x, Ψ )

αL2L1(x, Ψ ) −αL2L2(x, Ψ ) αL2F (x, Ψ )

αFL1(x, Ψ ) αFL2(x, Ψ ) −αFF (x, Ψ )

⎞
⎠

×
⎛
⎝ gL1(λL1)

gL2(λL2)

1 − gL1(λL1) − gL2(λL2)

⎞
⎠ (86)

where the transition rates α are defined as in (77) with the obvious modifications,
and gL j have similar properties as fL j . To comply with (T0), we need (see [41,
Proposition 5.1])

α••(x, Ψ ) =
∑
�∈U
�	=•

α�•(x, Ψ ), (87)

in view of which we can write (omitting the dependence on x, Ψ )

TΨ (x, λ) =
(−(αL1L1 + αL1F ) αL1L2 − αL1F

αL2L1 − αL2F −(αL2L2 + αL2F )

)(
gL1(λL1)

gL2(λL2)

)
+

(
αL1F

αL2F

)

in order to determine the evolution of the two independent parameters λL1 and λL2 .
Since the policymaker promotes the L1-leaders, the Lagrangian should penalize the

distance of the population L1 from their goal. As in (78), this is done by considering
a function of the form
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L̃1(x, λ) := θ(λL1)|x − x |2,

where x ∈ R
d denotes the desired goal of the L1-leaders and θ : [0, 1] → [0, 1] is a

continuous function which is 0 close to 0 and 1 close to 1. With the same idea, the
second term (79) is modified in order to penalize only the distance of the L1-leaders
from the barycenter of the followers

L̃2(x, λ, Ψ ) = θ(λL1)

∣∣∣∣x −
 
Rd

x ′ dμF
Ψ (x ′)

∣∣∣∣
2

.

Again, we notice that L̃2 is continuous as long as μF
Ψ (Rd) > 0. Finally, the

Lagrangian L̃ of the system has the same structure of (80), i.e., L̃ = αL̃1 + (1−α)L̃2
for a parameter α ∈ [0, 1] to be tuned.

5.2.1 Test 2: Opinion Dynamics with Competing Leaders

We consider the opinion dynamics presented in Test 1, where the opinion variable
is x ∈ [−1, 1] with {±1} two opposite opinions. We introduce two populations of
leaders competing over the consensus of the followers. The first population of leaders
L1 has a radical attitude aiming tomantain their position, and their strategy is driven by
the policy maker. Instead, the population L2 is characterized by a populistic attitude,
without the intervention of an optimization process: they arewilling tomove from their
position in order to have a broader range of interaction with the remaining agents.

The interaction field vΨ (85) is characterized by bounded confidence kernels with
the following structure

K �•(x − x ′) = χε({|x − x ′| ≤ κ�•}), for �, • ∈ {F, L1, L2}, (88)

where ε ≥ 0 is a regularization parameter for the characteristic function χ and κ•�

represent the confidence intervals with the following numerical values,

κFF = 0.35, κFL1 = 0.5, κFL2 = 0.5, κL1F = κL2F = 0,

κL1L1 = 0.4, κL2L2 = 0.8, κL1L2 = κL2L2 = 0.

The weighting functions fL1 , fL2 are such that fL j (λL j ) ≡ 1 − �(λL j ) with

�(λ) = eC(λ−λ̄)

1 + eC(λ−λ̄)
, C = 103, λ̄ = 0.5. (89)

The transition operator TΨ (x, λ) in (86) is identified by the following quantities

αL j F (x, Ψ ) = aL j F (1 − DL(x, Ψ )) , αFF (x, Ψ ) =
∑
j=1,2

αL j F (x, Ψ )

αL j L j (x, Ψ ) = aL j L j (1 − DF (x, Ψ )) , αFL j (x, Ψ ) = αL j L j (x, Ψ ),
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Fig. 5 Test 2. Initial distribution Ψ0(x, λ) and the marginals associated with the opinion space x , μF
Ψ (t, x),

μL
Ψ (t, x), and the label space (λL1 , λL2 ), νΨ (t, λ). Red dashed line corresponds to the target opinion for

L1 leaders (Color figure online)

and αL1L2(x, Ψ ) = αL2L1(x, Ψ ) = 0, coherently with respect to (87). Functions DF

andDL represent the concentration of followers and the total concentration of leaders
at position x , defined similarly to (84). We use the following parameters

aL j F = 0.015, aL j L j = 0.025, j = 1, 2.

The weighting function g j (λ) is defined as in (89) with C = 20 and λ̄ = 0.5. Finally,
the cost functional is defined by the Lagrangian defined in (80), with λ = λL1 since
only the radical leaders are controlled. Radical leaders aim to steer followers towards
x̄ = − 0.75 and keeping track of followers average position with weighting parameter
α = 0.85 and θ(λ) = 1 − �(λ). We account for quadratic penalization of the control
in (81) by choosing γ = 2.

In Fig. 5, choice of the initial data, and the marginals μF
Ψ (t, x), μ

L1
Ψ (t, x) and

μ
L2
Ψ (t, x) relative to the opinion space, and to the label space νΨ (t,λ), defined as

follows

Ψ0(x,λ) := C0

(
exp

{
− (x − xF )2

σ 2
x,F

− |λ − λ̄F |2
σ 2

λ,F

}

+
∑
j=1,2

exp

{
− (x − x j )2

σ 2
x, j

− |λ − λ̄ j |2
σ 2

λ, j

})
,

where here λ = (λL1, λL2), the parameters are σ 2
λ,F = 1/40, σ 2

λ, j = 1/100, σ 2
x, j =

1/60, σ 2
x,F = 1/250, λ̄F = (0.2, 0.2), λ̄1 = (0.2, 0.65), λ̄2 = (0.65, 0.2), xF = 0,

x1 = − 0.65, x2 = 0.65, and C0 is a normalizing constant.
Figure 6 reports from left to right four frames of the marginals up to time t =

{5, 15, 27.5, 50}, without control. Without the action of a policy maker, the majority
of followers are driven close to the initial position of populist leaders L2, who interact
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Fig. 6 Test 2. Evolution of the marginals without control for time frames t = {5, 15, 27.5, 50}. Bottom row

depicts μF
Ψ (t, x), μ

L1
Ψ (t, x) and μ

L2
Ψ (t, x); top row shows νΨ (t, λ)

Fig. 7 Test 2. Evolution of the marginals with control for time frames t = {5, 15, 27.5, 50}. Bottom row

depicts μF
Ψ (t, x), μ

L1
Ψ (t, x) and μ

L2
Ψ (t, x); top row shows νΨ (t, λ)

Fig. 8 Test 2. Percentage of population associated with leader L1, L2 and follower as functions of time.
Left plot: uncontrolled case. Right plot: controlled case
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with a wider portion of agents. In Fig. 7, the control action of the policy maker is
activated resulting in a different distribution of the followers: while the populistic
leaders retain some capability of attraction, the portion of the followers which is
driven towards the target position x̄ of the radical leaders L1 is considerably larger
than in the uncontrolled case (Fig. 8).
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