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Abstract—We discuss models of piezoelectric energy harvesters
for scavenging energy from random mechanical vibrations, rep-
resented by a white Gaussian noise source. We show that circuit
theory can be applied to design a matching network, to be
interposed between the piezoelectric transducer and the load,
able to increase the power transferred to the latter. The second
order matching network is compared with a previously proposed
solution, based on power factor correction, implemented through
a single reactive element. We show that the new architecture
boosts the harvested power with respect to the simple, unmatched
resistive load, by a factor larger than 9, and with respect to the
power factor correction solution by more than 17%.

Index Terms—Energy harvesting, piezoelectric energy har-
vester, nonlinear dynamical systems, equivalent circuits, load
matching, power efficiency, nonlinear resonance
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I. INTRODUCTION

Environmental energy scavenging [1]–[5] is an increasingly
popular solution to the issue of power supply for the wireless-
connected electronic and electro-mechanical systems, consti-
tuting the hardware backbone of the Internet of things (IoT)
paradigm in terms of sensors and actuators. Such solution
overcomes all of the main limitations of traditional approaches,
namely the use of batteries, as the latter still exhibit size and
weight issues, a limited lifetime, an environmentally hazardous
disposal, and ultimately a difficult maintenance as the IoT
devices are scattered over large and often remote areas.

Possible ambient energy sources to be tapped for IoT
device powering are quite varied, including e.g. dispersed
electromagnetic waves, ambient heat, and kinetic energy from
parasitic mechanical vibrations. Mechanical energy sources are
especially interesting, as they are widely available as well as
characterized by a relatively large power density. Parasitic
vibrations are ubiquitous in mechanical structures, due to
impacts or periodic motions, in buildings and bridges, due to

traffic and wind, in vehicles, due to road asperity and engine
induced vibrations, as well as in the very human body motion
[6]–[9].

Irrespective of the source nature, energy harvesting system
performance are limited by the relatively small available power
densities, and by geometric constraints that impact on the
frequency range where the energy conversion mechanism may
effectively take place. Trading off among competing require-
ments is, as usual, the signature of any energy harvesting
system design. For example, energy harvesters must be charac-
terized by a sufficiently large Q factor, to convert mechanical
energy into electrical power with good efficiency. However, a
large Q factor is usually obtained at the expense of bandwidth,
thus implying that the efficiency abruptly drops outside of
a limited frequency interval. Therefore, the harvester’s res-
onance frequency should match the spectral range where most
vibrational energy is concentrated. Unfortunately, the general
rule is that the smaller is the size of an object, the larger its
resonance frequency will be. As a consequence, it is quite
hard to realize energy harvesters that are both miniaturized,
and that work efficiently at the typical frequencies of ambient
mechanical vibrations. Another limiting key factor is the
impedance mismatch between the mechanical and electrical
domains of the harvester, and the load, often represented by
an electrical or electronic circuit.

With reference to load mismatch, we have recently shown
that circuit theory may represent an instrumental tool, to
design solutions aimed at improving the performances of
energy harvesters [10]–[13]. In this contribution, we extend
our previous results on the application of circuit theory
concepts, namely equivalent circuit modelling, power factor
correction and impedance matching, to the design of highly
efficient energy harvesting systems based on piezoelectric
energy conversion. Furthermore, as from the modeling point



of view mechanical vibrations are effectively represented by
stochastic processes, we consider energy harvesters subject to
Gaussian white noise sources that represent random mechan-
ical vibrations. We use mechanical-to-electrical analogies to
develop equivalent circuit models for the energy harvesters.
As the main contribution, we show that impedance matching
theory can be used to design two-port matching networks, that
can be interposed between the piezoelectric transducer and
the load, to maximize the power transferred to the load. We
compare the performances of the new matching network to
the ones of previously proposed solutions, based on a simple
power factor correction scheme [11], [12]. We show that,
with respect to the simple resistive load, the new architecture
increases the harvested power by a factor of nine, and with
respect to the power factor correction-based solution by more
than 17%.

This paper is organized as follows: Section II is devoted to
the description of the model we develop for the piezoelectric
energy harvester, and to the derivation of the corresponding
equivalent electrical circuit excited by a stochastic generator
representing mechanical vibrations. The analysis of the system
performance, the design of the power factor correction and
of the two-port, second order matching network, and their
comparison are discussed in Section III. Finally, conclusions
are drawn in Section IV.

II. ENERGY HARVESTING SYSTEM MODELLING

Besides traditional sources, i.e. solar and wind power,
energy is found in the ambient in various form, such as ther-
mal gradient, dispersed electromagnetic waves and parasitic
mechanical vibrations. Although negligible at the macro-scale,
these sources may be significant enough to supply power to
wireless miniaturized electronic systems [14].

Ambient vibrations can be converted into usable electri-
cal power exploiting different physical principles. The most
widespread type of transducers uses the piezoelectric effect,
to convert stress and strain produced by vibrations in a
cantilever structure, into electrical power [4]. A schematic
representation of a piezoelectric energy harvesting system for
ambient mechanical vibration is shown in figure 1. A cantilever
beam is fixed at one end to a vibrating support, with an
inertial mass m placed at the opposite end, aimed at increasing
the oscillation amplitude. The beam is covered by layers of
piezoelectric material, that convert mechanical stress and strain
induced in the beam by oscillations, into an electrical current.
The main contribution of this work is the interposition of a
properly designed, two port matching network, between the
piezoelectric transducer and the electrical load. The role of
the matching network is to reduce as much as possible the
impedance mismatch between the electrical and the mechani-
cal domains of the harvester, thus maximizing the scavenged
power fed to the load.

If the mass of the beam is negligibly small with respect to
the inertial mass m, the differential equation describing the
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Fig. 1. Schematic representation of a piezoelectric energy harvester for
ambient mechanical vibrations.
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Fig. 2. Equivalent circuit for a piezoelectric energy harvester. The case of
a linear elastic force is depicted here. In the general case, capacitance C1

becomes nonlinear, along with the relation v(q1).

mechanical structure reads

m
d2x

dt2
+

dU(x)

dx
+ γ

dx

dt
= fext(t) + fpz(t) (1)

where x is the beam displacement, U(x) is the elastic potential
of the beam, and γ is the friction constant. fext(t) represents
the external force describing vibrations, while fpz(t) is the
feedback force applied to the mechanical part by the piezo-
electric layers.

Concerning the piezoelectric transducer, the macro-scale
equations can be put in the following form [15]

fpz =− θv2 (2a)
q =θx− Cpzv2 (2b)

where θ is the electro-mechanical coupling constant (in N/V
or As/m), v2 is the voltage established across the transducer, q
represent the corresponding electrical charge (so that dq/dt =
i becomes the current delivered by the transducer, see Fig. 2),
and Cpz represents the piezoelectric capacitance.

An equivalent circuit representing the mechanical and
mechanical-electrical transduction elements can be easily de-
rived exploiting mechanical-to-electrical analogies, where po-
sition is replaced by a charge, mass by inductance, elastic
stiffness by capacity, friction by resistance, and forces by
voltages. The substitutions are summarized in Table I, where
a linear elastic constant k is used (thus, a quadratic elastic
potential U(x) is assumed in (1)). The equivalent circuit is
shown in figure 2.



TABLE I
MECHANICAL TO ELECTRICAL ANALOGIES

x→ q1 m→ L1 fext(t) → vin(t)
dx
dt

→ dq1
dt

= i1 γ → R k → C−1
1

Applying Kirchhoff voltage law (KVL) to the right loop,
and Kirchhoff current law (KCL) to node a, the following
differential equations are obtained

dq1
dt

=i1 (3a)

di1
dt

=− 1

L1
v(q1)− R1

L1
i1 −

1

nL1
v2 +

1

L1
vin(t) (3b)

dv2
dt

=
1

nCpz
i1 −

1

Cpz
i (3c)

where the elastic force has been been replaced by the voltage
across the capacitor v(q1), and n = θ−1. It should be noted
that the current i delivered by the harvester will depend on the
matching network and on the load. Different configurations
will be considered in the next section.

The voltage source vin(t) represents the random mechanical
vibrations, and will be modelled here as a Gaussian white
noise voltage source. Consequently, the differential equations
(3) should be interpreted as stochastic differential equations
(SDEs). We shall use the Itô interpretation1. Adopting the
standard notation for Itô SDEs, the external voltage source
will be written as

vin(t)dt = DdWt (4)

where D ∈ R+ is a real positive parameter, Wt is a scalar
Wiener process (the integral of a white noise), E[dWt] = 0,
E[dWtdWs] = δ(t − s) and E[·] denotes the expectation
operator.

III. MATCHING NETWORK DESIGN AND COMPARISON

We show here that the harvested power and the power
efficiency of the harvester can be maximized by the inter-
position of a second order matching network between the
energy harvester and the load. To illustrate the result, we shall
compare the performance of the proposed solution with both
the simple resistive load, and with the power factor correction
solution, consisting in placing a shunted reactive element in
parallel with the load to compensate the reactive part of the
equivalent impedance seen from the load [11], [12].

If nonlinear effects in the beam stiffness are neglected, the
elastic potential reduces to U(x) = kx2/2. Consequently,
the equivalent circuit in figure 2 is linear, with a linear
capacitor characterized by the voltage-charge characteristic
v(q1) = q1/C1, and it can be effectively analyzed in the
frequency domain.

1As the forcing term in (3) is additive (i.e., not modulated), there is no
Itô-Stratonovich interpretation dilemma [16].
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Fig. 3. Two port network closed on a resistive loop with conductance GL =
R−1

L .

For a linear time invariant system (LTI) the input-output
relation takes the form

y(t) =

∫ +∞

−∞
dr h(r)x(t− r) = h(t) ∗ x(t) (5)

where h(t) is the step response, and ∗ denotes the convolution
product. The autocorrelation function Ryy(τ) of the output
variable y(t) is given by [17]

Ryy(τ) =E[y(t)y(t− τ)]

=

∫ +∞

−∞
dr

∫ +∞

−∞
ds h(r)h(s)Rxx(τ + r − s) (6)

Taking the Fourier transform we obtain the well known
relation between input and output power spectral densities

SY (ω) = |H(ω)|2 SX(ω) (7)

where H(ω) = Ŷ (ω)/X̂(ω) is the transfer function, and
Ŷ (ω), X̂(ω) are the Fourier transforms of y(t) and x(t),
respectively. The total power is calculated by integrating
the correspondent power spectral densities over the whole
frequency spectrum. Using the properties of white Gaussian
noise, it is straightforward to calculate the power spectral
density for the mechanical vibrations

SV̂in
(ω) = D2 (8)

which reflects the well known fact that energy content for
white noise is constant over all frequencies. Obviously a
true white noise signal cannot exist in the real world, as
(8) would imply an infinite power content. Still, band-limited
white noise, e.g. noise with flat spectrum within a frequency
interval and null otherwise, is a realistic model for many noise
sources.

We aim at comparing the harvested power for different
matching networks. Therefore, it is convenient to view the
equivalent circuit of figure 2, as composed by cascade inter-
connected two-port networks. Given a network composed by
N cascade interconnected two-ports, each represented by a
transmission matrix2 Tk(ω), the total transmission matrix is
given by

T(ω) =

[
A(ω) B(ω)
C(ω) D(ω)

]
=

N∏
k=1

Tk(ω) (9)

2The transmission matrix is also known as ABCD matrix. Symbol B
should not be confused with the susceptance used later on.
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Fig. 4. Equivalent circuit for the mechanical domain.
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Fig. 5. Equivalent circuit for the piezoelectric transducer.

When the cascaded network is closed on a resistive load
with conductance GL = R−1L as in figure 3, the transfer
function H(ω) = V̂out(ω)/V̂in(ω) is easily found as

H(ω) =
V̂out(ω)

V̂in(ω)
= (A(ω) +B(ω)GL)

−1 (10)

The power absorbed by the conductance GL is calculated
substituting (10) into (7) and integrating over the whole
frequency spectrum

PGL
= GLD

2

∫ +∞

−∞
|H(ω)|2 dω (11)

In the frequency domain, the transmission parameter de-
scription for the mechanical part of the harvester, as shown in
figure 4, is[

V̂in

Îin

]
=

[
1 R1 + jX1(ω)
0 1

]
︸ ︷︷ ︸

TM(ω)

[
V̂out

Îout

]
(12)

where j =
√
−1, X1(ω) = ωL1 − 1/(ωC1) is the reactance

of the mechanical part, and TM(ω) is the mechanical trans-
mission matrix.

Similarly, for the equivalent circuit of the piezoelectric
transducer shown in figure 5, the transmission parameter
representation is[

V̂ ′in
Î ′in

]
=

[
1
n 0

jnBpz(ω) n

]
︸ ︷︷ ︸

Tpz(ω)

[
V̂ ′out

Î ′out

]
(13)

where Bpz(ω) = ωCpz and Tpz(ω) are the susceptance
and the transmission matrix of the piezoelectric transducer,
respectively.

Fig. 6. Total harvested power for a piezoelectric energy harvester closed on
a resistive load, as a function of the load resistance. Parameters’ values are
based on [18].

TABLE II
VALUES OF CIRCUIT COMPONENTS, BASED ON [18]

Parameter Value
R1 6.9366 Ω
C1 5.874 µF
L1 1 H
Cpz 80.08 nF
RL 1 MΩ
n 37.4254
D 0.1 V

A. Resistive load

It is usually assumed that the load, modelled as a sim-
ple resistor, is directly connected to the output port of the
piezoelectric transducer. If this is the case, the transmission
matrix is T(ω) = TM(ω)Tpz(ω). Using equations (10)-(13),
the transfer function becomes

H(ω) =
n

1 + n2(GL + jBpz(ω))(R1 + jX1(ω))
(14)

The total power harvester by the resistive load is then com-
puted using (11). The total harvester power as a function of
the load resistance is shown in figure 6. The values of the
components are summarized in table II.

B. Power factor correction network

Several works have shown the total harvested power can
be increased using power factor correction [11], [12], [19]. In
this approach, a shunted inductor is placed in parallel with the
resistive load (see figure 7). The value of the shunted inductor,
is determined in such a way, that the circuit composed by
the piezoelectric transducer and the shunted inductor resonates
at the same frequency of the mechanical part. Therefore, the
whole energy harvester behaves as two coupled resonators with
the same resonance frequency.
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Fig. 7. Matching network for power factor correction.

Fig. 8. Total harvested power for a piezoelectric energy harvester with a power
factor correction matching network, as a function of the shunted inductance
value L. Parameters’ values are based on [18].

The transmission matrix for the shunted inductor in figure
7 is [

V̂ ′′in
Î ′′in

]
=

[
1 0

jBL(ω) 1

]
︸ ︷︷ ︸

TPF(ω)

[
V̂ ′′out

Î ′′out

]
(15)

where BL = −(ωL)−1 is the inductor susceptance. The total
transmission matrix is T(ω) = TM(ω)Tpz(ω)TPF(ω) while
the transfer function takes the form

H(ω) =
n

1 + n2(GL + jB2(ω))(R1 + jX1(ω))
(16)

where B2(ω) = ωCpz − (ωL)−1. The value of the shunt
inductor that maximize the harvested power turns out to be
the resonant value Lmax = L1C1/Cpz.

Figure 8 shows the total harvested power versus the shunted
inductance value L. Values of the circuit parameters are taken
from [18]. It should be noted that for the reference load
resistance value RL = 1 MΩ [18], application of the power
factor correction network increases the harvested power with
respect to a simple resistive load almost by a factor of 8 (see
table III).

C. Low-pass L-matching network

The matching network proposed in this work, is a simple
low-pass L-matching network, as shown in figure 9. In this
matching setup two reactive elements, an inductor L and a
capacitor CP are arranged in a L-shaped structure. At very
low frequencies, the inductor behaves as a short circuit, and

+

−

V̂ ′′′in

Î ′′′in
+

−
V̂ ′′′out

Î ′′′out

L

CP

Fig. 9. L-matching low pass network.

TABLE III
MAXIMUM HARVESTED POWER FOR RL = 1MΩ

Resistive load Power factor correction L–matching
0.41059 mW 3.1834 mW 3.7261 mW

the capacitor as an open circuit. At very high frequencies the
behavior is reversed, so that the network is a low-pass filter. It
is worth mentioning that there exist many different matching
network solutions, which differ for the number of components
and for their topology. The aim of this work is to show that
impedance matching can be an instrumental tool to increase
the performance of energy harvesters, and therefore we restrict
the attention to the simplest matching network.

For the low-pass L-matching network of figure 9, the
transmission matrix takes the form[

V̂ ′′′in
Î ′′′in

]
=

[
1−XLBP jXL

jBP (ω) 1

]
︸ ︷︷ ︸

Tmat(ω)

[
V̂ ′′′out

Î ′′′out

]
(17)

where XL = ωL and BP = ωCP . The total transmission
matrix is T(ω) = TM(ω)Tpz(ω)Tmat(ω), and the transfer
function is H(ω) = (n∆(ω))−1, where (explicit dependence
on ω is omitted for simplicity of notation)

∆(ω) =

det

[
R1 + jX1

1
n
(1 + jXL(GL + jBP ))

− 1
n

jBpz(1 + jXL(GL + jBP )) +GL + jBP

]
(18)

Figure 10 shows the total harvested power for an energy
harvester with the low-pass L-matching network, versus the
values of the matching parameters L and CP . In this example,
maximum power is harvested for L = 303.7273 H and
CP = 23.309 nF. It should be noted that the unrealistically
large value of the matching inductor is a consequence of the
normalization adopted, i.e. of posing L1 = 1 H.

The harvester with the low-pass L-matching network is
capable to collect 9 times more power than the harvester with
a simple resistive load, and 17% more power than the solution
with the power factor correction matching network

Finally, figure 11 shows a comparison between the ampli-
tude responses (i.e., |H(ω)|2) for the three different setups
considered. Because the harvested power depends on the
integral of the amplitude response, the design strategy is a
trade-off between maximum amplitude, and passband width.



Fig. 10. Total harvested power for a piezoelectric energy harvester with a
L-matching network, as a function of the matching parameters L and CP .
Parameters’ values are based on [18].

Fig. 11. Amplitude response (|H(ω)|2) as a function of frequency for the
three setup considered: resistive load; power factor correction and low-pass
L-matching network.

IV. CONCLUSIONS

In this contribution we have studied the impact of load
matching to improve the power delivery capabilities of
piezoelectric energy harvesters subject to Gaussian white
random mechanical vibrations. Exploiting mechanical-to-
electrical analogies, an equivalent circuit representing the
entire Itô SDEs describing the harvester dynamics has been
derived. This description enables the use of circuit theory
approaches to the estimation of the power delivered to the load
in presence of different types of two-port matching networks,
namely the purely resistive load, the power factor correction
solution, and the use of a simple, second order L–shaped
low-pass matching network. We have shown that the latter
architecture boosts the harvested power with respect to the

simple, unmatched resistive load by a factor larger than 9,
and with respect to the power factor correction solution by
more than 17%.
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