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Abstract
Optical fiber links are customarily monitored by Optical Time Domain Reflectometer (OTDR), an optoelectronic instru-

ment that measures the scattered or reflected light along the fiber and returns a signal, namely the OTDR trace. OTDR

traces are typically analyzed by experts in laboratories or by hand-crafted algorithms running in embedded systems to

localize critical events occurring along the fiber. In this work, we address the problem of automatically detecting optical

events in OTDR traces through a deep learning model that can be deployed in embedded systems. In particular, we take

inspiration from Faster R-CNN and present the first 1D object-detection neural network for OTDR traces. Thanks to an ad-

hoc preprocessing pipeline for OTDR traces, we can also identify unknown events, namely events that are not represented

in training data but that might indicate rare and unforeseen situations that need to be reported. The resulting network brings

several advantages with respect to existing solutions, as these typically classify fixed-size windows of OTDR traces, thus

are less accurate in the localization. Moreover, existing solutions do not report events that cannot be safely associated to

any label in the training set. Our experiments, performed on real OTDR traces, show very promising performance, and can

be directly executed on embedded OTDR devices.

Keywords Detection Network � Open-Set � Recognition � OTDR Events � Time Series

1 Introduction

Optical fiber links represent one of the major communi-

cation technologies, ranging from the backbone world-

wide telecommunication systems to the last mile connec-

tions reaching our homes and apartments. Optical fibers run

below our streets and in impervious areas like deserts,

oceans or uninhabited lands. Problems along these links are

not uncommon because of breakages, bad splicing or

conjunctions that impair transmission quality when not

entirely stopping the communication. Not surprisingly,

monitoring optical spans and identifying faults is a primary

activity for companies managing fiber links and optical

equipment, and this has become even a more relevant issue

since the introduction of coherent transmissions. In fact,

optical-fiber monitoring enables a better characterization of

the transmission performance, and a better allocation of

optical channels.

A powerful and widely used instrument to test optical

fiber links is the Optical Time Domain Reflectometer

(OTDR) [1]. This device injects a series of optical pulses

into the fiber and measures the light that is scattered or

reflected back to the source into the OTDR trace (see

Fig. 1). OTDR traces are characterized by a background

signature, due to the attenuation of the signal because of

fiber dispersion, and by multiple ‘‘event signatures’’.

Optical events result from Rayleigh scattering and Fresnel

reflections caused by physical devices connected to the

fiber, bendings, knots or any other flaw along the fiber, and

as such indicate potential issues on the fiber link.

Optical events are either analyzed by domain experts in

laboratories, which can recognize patterns characterizing

specific conditions (see Fig. 2) or by ad-hoc software

running on embedded devices, which implements rather

simplistic detection rules. These algorithms analyze fixed-
Extended author information available on the last page of the article
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size windows cropped from the OTDR traces, and can only

recognize events belonging to the following macro-cate-

gories: ‘‘reflection’’, ‘‘loss’’, and ‘‘dead zones’’, but

unfortunately, these categories do not cover the entire

range of events that need to be routinely identified in most

fiber links. Moreover, existing solutions are not able to

identify events which can not be traced back to any known

event category and, more in general, to categories that are

not represented in the training set. Identifying unknown

events is indeed a very important aspect as these might

represent situations that need to be promptly reported.

Here we present the first deep OTDR event detection

network, which solves many key problems of OTDR trace

monitoring. First of all, our network analyzes an OTDR

trace and detects an arbitrary number of events belonging

to categories annotated in the training set. Second, each

Fig. 1 An OTDR trace that is 100 km long and contains 3 events, a Face-Plate which appears as a downward slope on the left, a Pass-Through,

which appears as a bump in the middle of the trace and a Fiber-Cut on the right in which we have an sudden decay of the signal and then noise

(a) (b)

(c) (d)

Fig. 2 Instances of OTDR events windows in the training set
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known event is accurately localized estimating its support,

rather than a fixed-size window. Third, thanks to a pre-

processing of the OTDR trace, we can assign an additional

unknown event label to those events that cannot be traced

back to annotated categories in the training set, thus for

which no supervision is provided. To the best of our

knowledge, unknown event detection has never been

addressed before on OTDR traces. Finally, the proposed

network can be trained in an end-to-end manner, and is

very efficient at inference to enable deployment on Cisco

routing platforms.

Our solution takes inspiration from Faster R-CNN [2]

and performs both classification and localization of dif-

ferent types of events in an input trace, resulting in the first

1D event-detection Convolutional Neural Network (CNN)

able to detect events in optic signals. The other major

contribution, the detection of unknown events, comes from

a preprocessing pipeline that first detect local peaks within

the OTDR trace, and then classifies fixed-size windows

clipped around them by employing an open-set classifier

based on open-max [3]. These processing pipeline is only

used to identify unknown events regions, which are then

ignored by the detection network and separately reported. It

is important to remark that, despite the object detection

network includes a no-event (or background) class, this is

primarily characterized by smooth decreasing patterns

rather than events with peaks. Therefore, unknown events,

which might possibly deserve even more attention than

known events, are typically misclassified among the known

categories [4].

Our experimental campaign, performed over a dataset of

real OTDR traces acquired by Cisco Photonics from mul-

tiple fiber links, shows that the OTDR event detection

network is very effective, achieving a mean average pre-

cision (mAP) score of 77:0%, representing an improvement

in mAP of 26:67% with respect to automatic analysis

software currently embedded in Cisco devices. Such high

event detection performance is a consequence of a feature

extraction network – representing the backbone of the

event detection network – which has very accurate event

classification capabilities. Indeed, our investigation

demonstrates that these layers extract distinctive features

for recognizing the event type, and that these can also be

used to detect unknown events. Our extensive study in fact

demonstrates that the backbone of the detection network

can isolate unknown events synthetically introduced in the

OTDR traces and that some events that were never shown

during training can be detected as unknown events, thanks

to a leave-one-class-out validation procedure. Overall, the

proposed pipeline for isolating unknown events turn to be

very effective in all the event-detection experiments,

including those on real traces acquired from Cisco plat-

forms. Moreover, the proposed OTDR event detection

network is very efficient, and can run on Cisco routing

platforms. Indeed, the event detection capabilities in the

Cisco NCS-1K will be provided by an event detection

network like the one described here.

This paper extends our conference publication [5] where

we have presented the OTDR event detection network in

conventional closed-set settings, namely as a network

returning a label in a set of known event categories. The

present manuscript presents an advanced solution to detect

unknown events, thus operates in open-set conditions

described in Sect. 3.3, together with an expanded experi-

mental validation (Sect. 8). To enable unknown-event

detection capabilities, we have revisited the entire prepro-

cessing phase of OTDR traces, including an adaptive

detrending of each trace based on robust fitting procedures

to remove the background signature in each OTDR trace,

as described in Sects. 6.1 and 6.2. The entire manuscript

has been also expanded to provide a more comprehensive

overview of the OTDR traces and of the related work as

well as a more detailed description of the proposed

solution.

2 Background on OTDR traces

OTDR systems operate like one-dimensional radars inside

optical fibers, and can accurately locate faults along a fiber

link with a resolution up to a few centimeters. The

underpinning principle is illustrated in Fig. 3: a short laser

pulse is injected at one end of the fiber link and a photo-

diode at same location measures the backscattered and

reflected signal. The OTDR trace accumulates thousands of

measurements and represents the optical power (expressed

in dB) as a function of the distance along the fiber (ex-

pressed in meters). An example of the resulting trace is

reported in Fig. 1.

Many optical equipments, including those based on

NCS2K and NCS1K platforms produced by Cisco [6, 7],

embed the OTDR module to monitor failure conditions in

different locations of the network. The analysis of OTDR

traces allows the identification of a large number of events

or failures that are primarily due to the following optical

conditions, whose effects on the OTDR trace are illustrated

in Fig. 4:

Rayleigh Back Scattering

It represents the natural reflection of the fiber, which

is due to impurities and in-homogeneous structures

resulting from the fabrication process. Rayleigh Back

Scattering contributes to the attenuation of optical power

as a function of the fiber distance, resulting in a linear

decay trend of OTDR traces, usually expressed in dB/

km.
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Fresnel Reflection

It originates when the laser pulse hits a physical

device like a connector, mechanical splice, bulk atten-

uator or fiber break, and mirrors back to the photodiode,

resulting in a local increase of the reflected light.

Concentrated Losses

These are due to attenuators, splices or splitters that

reduce the optical power returned to the OTDR instru-

ment and the OTDR trace attenuates very abruptly.

Finally, when the fiber contains two nearby physical

objects, the former might introduce reflection or scatter-

ing that masks the latter. Regions where the optical

measurements suffer of such masking effect are named

dead zones.

These optical conditions generates optical events which

optical experts or specific softwares analyze to diagnose

and monitor the fiber link conditions. In our study we

consider four types of events:

• Face-Plate this event originates at the beginning of the

span where OTDR tool inject its pulses.

• Pass-Through this event occurs when two fiber links are

connected with a mechanical conjunction.

• Fiber-End this event is due to a connector that is

plugged in a remote equipment to terminate the fiber

link.

• Fiber-Cut this event is due to a cut, which interrupts the

fiber and therefore the transmission.

In practice, there might also appear unknown events, which

cannot be traced back to any of the above categories. On

top of these, there are few event types, such as the bulk

attenuator, which are very rare, thus it is not possible to

gather a sufficiently large number of training examples.

Solutions to detect unknown events are very valuable as

these can also report rare events that are not represented in

the training set.

3 Related work

This section covers the machine learning literature that is

most relevant to event detection in OTDR traces, including

object detection networks (Sect. 3.1), deep neural networks

for time series (Sect. 3.2), and open-set recognition

(Sect. 3.3). We also present the existing solutions for

automatically detecting optic events in OTDR traces (Sect.

3.4), discussing their limitations with respect to the pro-

posed solution.

Fig. 3 The typical OTDR

module include a laser who

sends a pulse to the fiber link

and a photodiode which gathers

the backscattered and reflected

signal

Fig. 4 Illustration of an OTDR

trace with multiple events. The

text annotations describe the

root causes of these events
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3.1 Object detection networks

Object-detection networks are trained to both localize and

classify objects from known categories. These have been

primarily investigated in the computer vision community to

automatically locate objects in images. We mainly focus on

networks based on the R-CNN architecture [2, 8, 9], which

have inspired the design of the proposed OTDR event

detection network. Detection networks belonging to the

R-CNN family are composed of two blocks, where the first

generates region proposals for the classification block.

The pioneering object detection network is R-CNN [8],

which leverages an external region proposal algorithm that

heuristically identifies image regions containing objects.

These regions are then cropped from the image, reshaped

and fed to a CNN, thus separately classified. Extensions

over these models are the Fast R-CNN [9], which speeds up

computation w.r.t. R-CNN by directly cropping selected

regions from the network latent representations, and the

Faster R-CNN [2] which in addition trains a Region Pro-

posal Networks (RPN) to identify region proposals. The

Faster R-CNN is very efficient and effective, since the RPN

can be trained to maximize detection performance, and its

high detection accuracy demonstrates that convolutional

features preserve useful information to generate accurate

region proposals. On top of these convolutional features,

the RPN jointly predicts a correction term for the region

proposal and infers an objectness scores at each location on

a regular grid.

Other detection networks follows a single-shot

approach, where the neural network is applied to the entire

image to directly detect objects. The most notable example

is YOLO [10] and its later versions like [11]. As mentioned

in Sect. 1 we took inspiration from Faster R-CNN, since it

is a simpler architecture than YOLO and we do not have

strict timing constrains in OTDR monitoring. In fact,

OTDR traces have to be analyzed much less frequently

than video frames and, being 1D signals, are definitely less

computationally demanding than images.

3.2 Deep learning for time series

Given the success of CNN in solving visual recognition

problems on images, it is not surprising that CNN for 1D

inputs (1D CNNs) have reached state-of-the-art perfor-

mance in many supervised problems concerning time-ser-

ies. Here we primarily focus on time series detection,

which is related to our work, and we do not cover the broad

literature concerning time series forecasting.

Performing object detection in time series corresponds

to localizing and classifying specific patterns or shapes in

the input time series, which in case of OTDR traces are

events. Detection problems have been much less investi-

gated in time series domain rather than in images, and the

only examples refer to the detection of anomalies in ECG

tracings [12], earthquakes in seismic waves [13], and

specific words in audio signals [14]. A recently proposed

network, SpeechYOLO [15], detects and localizes specific

keywords or speech objects in a fixed-length audio signal.

Our solution shares the same rationale behind Spee-

chYOLO, as we also adapt successful object-detection

network designed for images to operate on time series,

even though our OTDR detection network is meant for a

different domain and takes inspiration from a different

detection network. Moreover, our event-detection network

can detect unknown events.

3.3 Open-set recognition

The vast majority of deep neural networks for classification

work in closed-set settings, thus associate each input to a

category belonging to the closed-set of labels provided

during training. This is a too strict assumption in visual

recognition problems, since at test time inputs might

belong to unseen categories. Therefore, in Open-Set

Recognition (OSR) [16] the network has the capability to

spot inputs not belonging to the set of known categories

and mark them as unknown. To this end, techniques like

thresholding posterior probabilities provided by Softmax,

or the use of OpenMax [3] have been proposed. Over the

past few years, many alternatives to OpenMax have been

proposed, which include some ad-hoc learning procedure

[17, 18].

Open-Set recognition in object detection has been

addressed only lately [4, 19, 20]. The reason might be that

OSR is not straightforward to solve in detection networks,

since all these networks include a background class that is

expected to gather objects that do not belong to known

categories. These networks are trained over large datasets

of natural images, which typically include many unknown

objects on top of the annotated (known) ones. Thus, all the

unknown objects are provided to the network during

training and implicitly associated to the background label

[19]. As a matter of fact, there have been only a few works

addressing object detection in more realistic settings where

the model is expected to identify unknown objects, and

these primarily revolve around the estimation of model

uncertainty on each prediction, to then discard any low-

confidence detection [21, 22].

3.4 Deep learning for OTDR trace analysis

Deep learning models have been used to automatically

analyze OTDR traces for distributed acoustic sensing,

where a buried optical fiber link is used to sense external
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nearby events (e.g., a human walking or some seismic

activity). Quite a few recent studies [23–25] demonstrate

that deep learning has the potential to classify these type of

events, which however have to be preliminary detected by

an external algorithm/pipeline. In particular, [26] proposes

a 1D neural network based on sequence learning, that takes

as input a de-noised 1D signal and recognizes external

intrusion events. In [27] the authors propose a classifier for

OTDR traces based on 2D CNN that accurately classifies

events among 5 categories such as walking or digging.

The proposed OTDR event detection network is how-

ever rather different from those mentioned above, both for

the type of application and for the deep learning model

employed. In terms of application, none of the above net-

work concerns the detection of optic events, since [24] is

meant for seismic data, while others, like [27], deal with

general events unrelated with the optic field. The major

difference, however, concerns the type of network

employed since all these methods formulate event recog-

nition as a classification problem, while we jointly classify

and localize events estimating the position and extent of

the event along the OTDR trace. Most remarkably, none of

the above solutions address the problem of detecting

unknown events.

4 Problem formulation

Here we provide a formal description to the problem of

detecting known and unknown events in OTDR traces. We

describe each OTDR trace as a time series of lenght n,

which can be stored in a vector. For the sake of conve-

nience, we re-sample the trace over a uniform grid, i.e.,

T ¼ fTðx1Þ; Tðx2Þ; :::;TðxnÞg ð1Þ

where TðxiÞ 2 R represents the reflection loss at the i-th

position in the fiber, and n 2 N is the length of the trace T.

OTDR traces might contain a varying number of events.

Each event is represented by triplet e ¼ ðy; xs; xeÞ that

corresponds to a portion of the OTDR trace

fTðxsÞ; :::; TðxeÞg between the starting point xs and ending

point xe where the trace exhibits a pattern corresponding to

an event of type y. We assume we are provided with a

labeled training set TR ¼ f Tj ; Ej

� �
; j ¼ 1; . . .;Ng, con-

taining N traces. Each trace Tj in the training set is paired

with a set of events Ej ¼ f y; xs; xeð Þi; i ¼ 1; . . .;Mjg. Due

to the special nature of optic events in OTDR traces, the

training set TR might not cover all the possible event types,

thus the label set Y ¼ YK [ YU is the union of known

events YK , which are represented in TR, and unknown

events YU , which might appear only during testing. In our

experiments, we consider as YK the common events: YK ¼

f face� plate; pass� through; fiber� end; fiber� cut g
described in Sect. 2. Obviously YK \ YU ¼ ;.

Our goal can be formulated as designing a neural net-

work that can automatically detect all the events in an input

trace T, estimating, for each event its location and label in

YK . Moreover, whenever the trace T contains an unknown

event – whose label belongs to YU – the model should

detect it and return the unknown event label. The neural

network will be trained over the training set TR and has to

be sufficiently lightweight to be executed in an embedded

OTDR device.

5 OTDR event detection network

The architecture of the proposed OTDR event detection

network is inspired by the R-CNN family, which have been

modified to take as input 1D time series rather than images.

The output of our network is a collection of detected events

fðy; xs; xeÞg. The major advantage of adopting a detection

network is that events are not detected by analyzing a fixed

window selected over the trace, but rather the network

itself identifies the best window providing the largest evi-

dence for each specific event. Our event-detection network

has been already deployed onto Cisco NCS-1001 optical

platform, offering an on-demand feature for automatic

OTDR trace analysis. In this section, we describe the

architecture of the network to detect events from known

classes YK .

5.1 Network architecture

Figure 5 illustrates the proposed OTDR event detection

network, which mimics the Faster R-CNN architecture [2].

Here we primarily discuss the major differences which are

due to the fact that our detection model is a 1D CNN, and

we refer the reader to [2] for additional details. The net-

work has overall 103.108 parameters, which is much less

than 2D object detection networks. The three major com-

ponents of the OTDR event detection network are: i) the

Feature Extractor

RegionProposal
Network

Eventness

Anchor Offset DetectionHead

RoI Pool Flatten

Regressor

Classifier

Fig. 5 Architecture of the proposed OTDR Event Detection Network
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feature extraction network, ii) the region proposal network,

and iii) the detection head.

5.1.1 Feature extraction network (FEN)

We took inspiration from the family of ResNet CNNs [28]

to design our FEN. These have demonstrated to be effec-

tive in extracting informative features for image classifi-

cation, thus we expect its 1D counterpart to be very

effective as FEN. According to the training procedure in

[2], the FEN is pretrained as a classification network,

specifically we train our FEN to classify OTDR events in

TR. Details concerning FEN training are reported in

Sect. 7. The FEN is composed of 22 convolutional layers

and has receptive field of 278 and effective stride of 8. As

depicted in Fig. 6, the FEN is composed by a convolutional

layer with 13 filters of size 1 � 3 followed by a Batch

Normalization and a Max Pooling layer of size 1 � 2, then

three pairs of 1D-Conv-Projection (Fig. 7a) and 1D-Conv-

Identity blocks (Fig. 7b) consisting of 3 and 4 convolu-

tional layers, respectively. Being a 1D CNN, the resulting

FEN is very lightweight and, despite its overall 22 con-

volutional layers, it contains only 83.888 parameters.

5.1.2 Region proposal network (RPN)

The RPN is a CNN introduced in [2] to preliminary esti-

mate the location of objects to be detected in an input

image. In our case, the RPN is trained to return candidate

locations for events in an OTDR trace. The RPN takes as

input the features extracted from the FEN and outputs a set

of region proposals, which are defined upon anchors,

namely predefined segments in the anchor set A, which

play the role of the 2D bounding boxes in images [2].

As illustrated in Fig. 5, the RPN has two sibling output

layers, and is applied in sliding window fashion over the

feature maps extracted by the FEN. The two output layers

return, per each spatial location and per each anchor in A,

an estimate of region proposals. In practice, each region

proposal is associated with an eventness score p and an

offset t. The eventness score p encodes the confidence of

having an event in that specific location over the region of

the corresponding anchor. The offset t is meant to be

applied to this region to match at best the region of a

nearby annotated event. As in [2], the offset associated to

the anchor a 2 A is described as t ¼ ta;x; ta;w
� �

, where ta;x
is a scale-invariant translation term, and ta;w is the log-

space width scaling:

ta;x ¼
x� xa
wa

; ta;w ¼ log
w

wa
ð2Þ

being xa (x) the location of the corresponding anchor (es-

timated region), and wa (w) the width of the corresponding

anchor (estimated region). In our OTDR event detection

network we use three different anchors thus, at each

location on the feature maps provided by the FEN we get

jAj ¼ 3 estimates.

5.1.3 Detection head

As illustrated in Fig. 5, the detection head takes as input

the feature maps from the FEN and the region proposals

from the RPN. The two are fed together to a RoI (Region of

Interest) pooling layer, which is meant to return a fixed-

length feature vector for each region proposal. Indeed,

region proposals from different anchors have different

spatial extent. The output of RoI pooling is fed to two

sibling output layers: a classification layer and a regression

layer. The classification layer consists in a fully connected

layer followed by a Softmax, and returns – for each RoI – a

vector of jY j þ 1 posterior probabilities, one per each

known class in YK , plus one for the NO-EVENT class. The

regression layer provides jYj outputs, each corresponding

to the offset to adjust the event locations estimated by the

RPN for a specific class. Thus, different refinements might

be provided based on the event class. As anticipated in

Sect. 4, the OTDR event detection network is trained to

detect events of type FACE-PLATE, PASS-THROUGH, FIBER-END,

and FIBER-CUT.

6 Known/unknown event detection in OTDR
traces

In this section, we describe the procedure for detecting

both known and unknown events in OTDR traces. The

proposed OTDR event detection network is not able to

report unknown events. The most straightforward solution

of modifying the detection head to an OSR classifier (e.g.,

OpenMax) is not a viable option, since unknown events

Fig. 6 Architecture of the Feature Extraction Network. The P blocks colored in blue are the 1D-Conv-Projection block, the I blocks colored

orange are the 1D-Conv-Identity block
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would be most probably associated to the background

class, which is necessarily included in these type of net-

works. Therefore, we detect unknown events by a prelim-

inary analysis of the trace to identify candidate regions.

The proposed solution is detailed in Algorithm 1. The

first operation to be performed on an input OTDR trace T is

detrending (line 2), as described in Sect. 6.1. OTDR trace

detrending eases the detection of local maxima (line 3) by

standard procedures that are based on comparisons over a

fixed support for identifying the maximum, and a threshold

that requires the peak to stand out a minimum height from

its neighbors. Around each peak, we select a fixed-size

window W containing 300 samples (thus w ¼ 150 at line

5), which is then fed to an OSR classifier C (line 6), which

is trained as described in Sect. 6.2. When the window W is

classified as Unknown (line 8), the detected unknown event

is stored in EU and accordingly reported. Any other label

returned by C is ignored, since classification of known

events over W is deemed less accurate than from the OTDR

event detection network. After having analyzed all the

peaks, the OTDR event detection network E is run on the

original trace T (line 11). We have indeed experienced a

superior event detection performance when training (and

running) E over original traces T rather than detrended

traces T 0, probably because the trend retains some useful

information for event detection. In particular, certain

events are more likely to be found at specific locations of

the trace, for example, the FACE-PLATE is always at the

beginning of the trace, while FIBER-END and FIBER-CUT are

typically far from the beginning of the trace. In these cases,

the network can identify this information when analyzing T

values, but not from values of T 0. Detections from E con-

stitute the set EK of known events, and we remove from

this any event that is found within the support of an

unknown event EU (line 12). In what follows we provide

more details concerning the adopted detrending procedure

(Sect. 6.1), and the training of the OSR classifier

(Sect. 6.2).

6.1 OTDR trace detrending

As illustrated in Sect. 2, each OTDR trace features a steady

decrease of intensity, due to the natural attenuation of the

impulse along the fiber. Such a trend depends on the

specific type of optical fiber in place and, in our prelimi-

nary experiments, we have experienced that it can impair

the detection of unknown events. To mitigate this problem,

we present a detrending technique, detailed in Algorithm 2,

to estimate and remove a tilt to compensate for possible

linear trends affecting an input OTDR trace. We assume

that the trends altering the OTDR are linear, thus trend

estimation boils down to fit a line, described as the zero set

of a first degree equation TðxÞ ¼ mxþ q, where m; q 2 R.

The key is to employ a robust fitting method that prevents

outliers, namely samples departing from the OTDR trend

like events, to impair the trend estimate, as it would happen

if a fragile least-square fitting was adopted instead.

Specifically, we borrow from the Computer Vision litera-

ture a variant of LO-RanSaC [29].

Fig. 7 Building blocks of our

network architecture
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LO-RanSaC follows a two-steps hypothesize-then-ver-

ify procedure. The hypothesize step is iterative: at each

iteration k, we select a pair of points xi; TðxiÞð Þ and

xj; TðxjÞ
� �

(see Algorithm 2, line 3), to instantiate a line ‘k
(line 4). The verification steps consist in keeping track of

the line ‘� that best explains the data (lines 5 - 11) among

all the lines sampled so far. Lines are assessed by the score

Jð�Þ (line 3) defined as:

Jð‘Þ ¼
X

xi

q
�
ðxi; TðxiÞÞ; ‘

�
ð3Þ

where qð�; �Þ is a robust function that measures the distance

between a line ‘ and a sample xi; TðxiÞð Þ taking advantage

of a user-specified tolerance � that dichotomizes between

inliers and outliers. Specifically, q is defined as follows:

q
�
ðxi; TðxiÞÞ; ‘

�
¼ d

�
ðxi; TðxiÞÞ; ‘

�
if d

�
ðxi; TðxiÞÞ; ‘

�
\�

� otherwise:

(

ð4Þ

where dððxi; TðxiÞÞ; ‘Þ ¼ jTðxiÞ � mxi � qj is the point-line

distance along the vertical axis. The tolerance � depends on

the amount of noise in the data, and we set it to � ¼ 0:5 in

all our experiments since the noise is well below this value.

In other words, when ðxi; TðxiÞÞ is an inlier for the line ‘,

qðxi; ‘Þ returns the distance between the line and the

sample along the vertical direction. In contrast, when xi lies

outside the tolerance � from the line ‘, a constant penalty �

is returned. Since using only two points to fit a line lacks of

statistical efficiency, the returned line parameters might be

very noisy. Therefore, an additional optimization step is

used to refine the parameters of ‘ on the inlier set every

time a better line is detected (line 7). After iterating the

process m ¼ 100 times, the line ‘� yielding the minimum

score is returned. The best line equation ‘� is hence used

(line 13) to counter-tilt the trace T by subtracting the value

of the line in correspondences of the samples of the signal:

T 0ðxÞ ¼ TðxÞ � m�x� q�: ð5Þ

where m� and q� are the parameters of the line ‘�.

6.2 Open-set recognition of OTDR events

We initially train the OSR classifier C as a traditional (i.e.,

closed-set) classifier over known events YK , and then

modify its last layer to accommodate for unknown events

according to open-set recognition solutions. In particular,

the classifier C corresponds to the FEN of the OTDR event

detection network and takes as input a fixed-window W

containing 2w ¼ 300 samples. After the convolutional

blocks, we introduce a Global Averaging Pooling (GAP)

[30] and a Softmax layer at the network top to return

estimates of class posterior.

The CNN is trained to classify windows W that are

either selected around annotated events in the training set

TR or randomly cropped from portions of the time series

that do not include any event. These latter are associated to

the background class. To train the classification network C,

we adopt the same data-augmentation procedure used for

training the FEN (described in Sect. 7). However, here the

entire training is performed over detrended traces T 0, since

C operates in cascade to detrending. Once the CNN C has

been trained, we modify the final layer to obtain an OSR

classifier. More specifically, we have implemented two

OSR baselines: the Softmax, a natural approach that

assesses the confidence of the network in its prediction and

OpenMax [3] an alternative that exploit demonstrates to

achieve valuable results.

6.2.1 OSR by Softmax thresholding

The output of the Softmax activation can be interpreted as

the confidence of the network in its prediction and is

expected to be small when the network is uncertain. We

can exploit this uncertainty by applying a threshold to the

output of Softmax in order to classify as unknown the input

samples for which the network is uncertain. In particular,

the input is classified as UNKNOWN when the following

condition is satisfied:

max
i
ðpÞi\s ð6Þ

where p 2 RjYK j is the probability computed by the clas-

sifier and s is a threshold that has been tuned to reduce the

number of false alarms (NFA) in the training set [31].

6.2.2 OSR by OpenMax

This method estimates the probability that an input is

unknown by inspecting the distribution of the training

activation vectors. In the following, we review the main

steps, while for an exhaustive description, the reader is

referred to [3]. OpenMax computes the activation vector

AVðWÞ 2 RjYK j for each correctly classified training
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window W 2 R2w, then, for each class y, OpenMax: i)

groups all the activation vectors depending on their

ground-truth class y, so to obtain a set

Ay ¼ fAVðWÞ j CðWÞ ¼ yg; ii) averages the set Ay to

obtain a mean activation vector ly 2 RjYK j; iii) computes

the distance between the mean activation vector ly and all

the activation vectors in Ay; iv) exploits Extreme Value

Theory to fit a Weibull distribution to ly and the d farthest

activation vectors in Ay. At test time, given an input W,

OpenMax uses the previously computed Weibull to recal-

ibrate the input activation vector obtaining cAV ðWÞ. The

difference between the updated activation vector cAV ðWÞ
and the original one AV(W) denotes the uncertainty of the

network prediction. Therefore, the unknown score UW is

computed as:

UW ¼
XjYK j

i¼1

AViðWÞ � cAViðWÞ ð7Þ

Finally, OpenMax concatenates UW to the recalibrated

activation vector cAV ðWÞ thus introducing an additional

fictitious class UNKNOWN. The vector cAViðWÞ
�� UW

h i
is

fed to a Softmax to get the recalibrated probabilities of the

known classes and the probability of the unknown class.

Therefore, when the probability of the class UNKNOWN is the

largest, or the maximum probability is below a threshold s,

input W is classified as UNKNOWN.

7 OTDR event detection network training

The training procedure of the proposed OTDR Event

Detection Network follows that of Faster R-CNN [2]. In

particular, before training the entire network to perform

event detection, we train the FEN to solve an auxiliary

event-classification problem over a fixed input size. Such a

preliminary training is meant to initialize the FEN to

extract meaningful features, which enables training the

RPN and accordingly the detection head. In particular, we

adapt the ‘‘alternating training’’ procedure in [2] to train the

entire OTDR network to detect events, according to the

following four steps:

1. We freeze the weights of the pretrained FEN layers and

fine-tune the RPN layers for solving the region

proposal task. In particular, we minimize the loss in

(9) which ignores event types.

2. We freeze the RPN and fine-tune both the FEN layers

and the detection head on the proposals provided by the

RPN. Here we minimize the event detection loss

in (10), which considers both event location and labels.

3. We freeze the FEN layers and the detection head, and

then fine-tune specifically the layers of the RPN,

minimizing the loss in (9).

4. We freeze the FEN backbone and the RPN, and then

fine-tune only the layers of the detection head to

minimize the loss in (10).

7.1 Training FEN

To train the FEN we adopt the same CNN architecture and

training procedures we used for the OSR classifier C. In

particular, we add a GAP layer as a regularizer to achieve

better translation invariance, then a Dense layer followed

by a Softmax. We prepare a training set for event classi-

fication by cropping fixed-size windows W of 2w ¼ 300

points around events of the selected four types plus the no-

event (these latter will concur to the background class).

The event classification loss for a window W is the cate-

gorical cross-entropy over the known event types YK given

by:

L y; ŷð Þ ¼ �
XjYK j

k¼1

yk logðŷkÞ; ð8Þ

where yk and ŷk are the ground-truth and predicted one-hot

encoded labels, respectively. Once trained, the GAP and

Softmax layers are removed, and the trained layers repre-

sent the FEN backbone of the 1D-Faster R-CNN (see

Fig. 5).

To cope with the severe class imbalance and the limited

amount of annotated events, we adopt the following data-

augmentation procedure during training. In each batch, we

randomly select 10% of events and apply a right/left

translation of the OTDR trace by a random amount

between 5% and 25% of the original size. Furthermore, we

randomly select 5% of the events in the batch and add a

random offset within ½�8;þ8� to shift the values of the

time series. On top of these ‘‘standard’’ augmentation

transformations, we adopt mix-up data augmentation [32],

which has shown to be very beneficial when training deep

CNNs for solving several tasks both in image and time

series domains. Mix-up creates new training samples that

are convex combinations of two randomly selected win-

dows, which are associated to the very same linear com-

bination of labels (one-hot encoded) as target. Therefore,

mix-up extends the training distribution by including linear

interpolation of training samples. Despite events generated

by mix-up do not have a true physical meaning, we found

experimentally this technique is very effective to improve

generalization capabilities of our OTDR event detection

network.
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7.1.1 Training RPN

In contrast with the initialization of the FEN layers, the

RPN is trained over OTDR traces to minimize a loss

function which assesses how close the estimated anchors

are to the annotated events, ignoring their class. Each

anchor is associated to an eventness score which measure

its membership to one of the known categories rather than

no-event. When training the RPN, we minimize the fol-

lowing loss function over a mini-batch:

L y; ŷ; t; t̂ð Þ ¼
X

i

Lcls yi; ŷið Þ þ k �
X

i

yi � Lreg ti; t̂ið Þ :

ð9Þ

where y and ŷ denote the ground-truth and predicted

eventness scores while t and t̂ gather all the ground-truth

and predicted offsets. The event loss Lcls is the binary

cross-entropy over event/no-event classes. The terms yi and

ŷi denote the ground-truth and predicted eventness score of

the i�th anchor. We set yi ¼ 1 when the Intersection-over-

Union (IoU) between the i-th anchor and at least one

annotated event is higher than 0.5, otherwise we set yi ¼ 0.

According to [2] we adopt as regression loss Lreg the L1

smoothed loss, namely L1;smooth, which is a variant of L1

loss function that is smoothed at the origin:

L1;smooth ti; t̂ið Þ ¼

1

2
ti � t̂ið Þ2

; if jti � t̂ij\1

jti � t̂ij �
1

2
; otherwise.

8
><

>:
ð10Þ

The L1;smooth loss is applied on each component of the

predicted offset t̂i and ground-truth offset ti. Regression

loss is multiplied by yi because we want to assess local-

ization errors only for positive anchors. The hyper-pa-

rameter k balances the two terms of this multi-task loss

function. To summarize, the loss in (9) combines the

classification error for the eventness scores and a regression

error for the estimated anchor offsets in the mini-batch.

7.1.2 Training fast R-CNN

The multi-task loss computed on each RoI follows from [2]

and is defined as:

L yi; ŷi; ti; t̂ið Þ ¼ Lcls yi; ŷið Þ þ k � yi � 1½ � � Lreg ti; t̂ið Þ
ð11Þ

where yi, ŷi denote the ground-truth and predicted class for

each RoI, while ti and t̂i represent the offset of the ground-

truth and predicted event with respect to the generic

anchor. The classification loss Lcls consists in the cate-

gorical-cross entropy defined in (8). As in (9), the hyper-

parameter k balances the classification Lcls and regression

Lreg terms of the multi-task loss. The term ½yi � 1� evalu-

ates to 1 when yi � 1 and 0 otherwise, being yi ¼ 0 the no-

event class. This latter factor is used to assess regression

loss only at optic events. The regression loss Lreg is defined

as in (9).

8 Experiments

In this section, we quantitatively assess the proposed

OTDR event detection network to detect both known and

unknown events. First, we describe the employed datasets

(Sect. 8.1) and the figures of merit (Sect. 8.2). Then, we

analyze the classification performance on both known and

unknown events (Sect. 8.3) and the event-detection per-

formance over both known and unknown events

(Sect. 8.4).

Since there are no publicly available OTDR event-de-

tection network that we can use in our experiments, we

compare against the OTDR event detection algorithm

running in Cisco devices NCS1001, NCS2K and NCS1010

[6, 7] and two OSR approaches, both for classification and

event detection, the OpenMax and the Softmax (described

in Sect. 6.2).

All our networks have been trained using Adam opti-

mizer with learning rate 0.001, a batch size of 8 when

pretraining the layers of the FEN, and 2 when training the

event-detection network, 200 epochs on each fold and set

k ¼ 5 in (9) and (11). In addition, we use early-stopping

criteria in all of our experiments to reduce the risk of

overfitting.

Lastly, as regard the execution time, the inference only

lasts 124.923 milliseconds on a NVIDIA RTX A6000 run-

ning TensorFlow 2.6.2. We have also measured the infer-

ence time on the NCS1001, which is the embedded device

where the deployed network runs. It is equipped with an

Intel Atom� C2718 CPU with 1.99 GHz and runs Ten-

sorflow 1.15, On this platform, we obtain an average

inference time of 5.347 seconds.

8.1 Datasets

The dataset of OTDR traces used to validate our method

has been acquired in Cisco facilities over a long span of

optical fiber where different devices were connected at

different locations along the fiber link to generate optical

events. OTDR recordings are stored in ‘‘SOR’’ file format

[33], which includes – together with all the raw measure-

ment – several information about the OTDR module and

the tested link. However, to the purpose of event detection,

we only consider the time series of raw measurements,

which is paired with the location along the fiber where each
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measurement was acquired. As a preprocessing step we

normalize all the power values of the trace to have intensity

within [0, 1]. All the traces have been annotated by

locating the initial and final points of each event, and

labeled in YK by a specific annotation tool developed to this

purpose. Overall, we have collected 628 traces with 1674

labeled events, excluding no-events. The distribution of

events along the four classes is illustrated in Fig. 8.

Note that the above dataset does not contain any

unknown event (either labeled or unlabeled). Therefore, to

assess the detection performance over unknown events we

gathered two OTDR traces from customers that contain a

new event termed BULK ATTENUATOR, which are only used

for testing purposes. In addition, to extensively assess the

OSR capabilities of the classifier C we resort to 1D time

series from a completely different domain, namely ECG

tracings. More specifically, we test our OSR classifier C

over 633 heartbeats from a public dataset [34]. We select

heartbeats as they also have a peak like OTDR events, but

at the same time ECG tracings exhibit a very different

shape than OTDR events, thus can be safely considered

unknown events. We compensate for the intensity differ-

ence between heartbeats and OTDR traces by scaling each

heartbeat to bring the average peak of all the 633 heartbeats

equal to K-times the average peak over OTDR events. To

investigate the OSR performance of C we consider differ-

ent values K 2 f0:125; 0:25; 0:5; 1; 2; 4; 8g. Values of

K[ [ 1 result in very apparent changes, while K ! 0

makes changes impossible to perceive.

8.2 Figures of merit

In our experiments we assess both event classification and

event detection performance, over both known and

unknown events. In event classification over fixed-size

windows W, we report both the classification accuracy as a

confusion matrix (including both known and unknown

events), as well as standard figures of merit for each class,

namely the accuracy, precision, recall, F1 score and the

area under the ROC curve (ROC-AUC). These metrics are

also used in the OSR scenario and applied to unknown

events as being all of the same class. Due to the relatively

small size of the dataset, we evaluate the above figures of

merit in a K � Fold Cross-Validation framework. We split

our dataset in K ¼ 5 different folds and performance are

estimated over the union of all the test folds.

To assess the detection performance of the proposed

model both for known and unknown events we resort to

object-detection metrics used in the computer-vision liter-

ature, specifically the mean average precision (mAP) score,

which is a global measure of classification and localization

accuracy introduced in the PASCAL VOC challenge [35].

Fig. 8 Distribution of event types in the dataset

(a)

(b)

Fig. 9 Classification performance of the known events. We report the

confusion matrix in a and the ROC Curve in b
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We also adopt the COCO [36] metric, denoted as

mAP@½:5 : :05 : :95�: which evaluates mAP at 10 different

intersection over union thresholds. Despite both metrics are

specifically designed for 2D boxes, their adaptation to line

segments is straightforward.

8.3 Event classification

We assess the classification performance, on both known

and unknown events, to test the network’s capability to

correctly recognize events on fixed-length windows. As

regards unknown events classification, we compare Soft-

max thresholding with s ¼ 0:75 and OpenMax with s ¼
0:35 and d ¼ 25 on two experiments. In a first experiment,

OTDR event classes are removed one at a time from the

training set so that this class can be used for testing. In a

second experiment, we directly injected ECG signals in the

traces at test time.

8.3.1 Known event classification

We start by analyzing the classification results on known

events. The confusion matrix in Fig. 9a shows that the

layers of the FEN successfully identify specific events such

as NO-EVENT and FACE-PLATE, while for the other classes we

have slightly worse performance. By visual inspection of

the results, we discovered that often incorrectly classified

pass-through events are very low bumbs, which are con-

fused with the noise, and therefore classified as no-event.

Table 1 Classification

performance computed by

cross-validation

Accuracy Precision Recall F1 Score ROC-AUC

Pass-Through 0.851 0.918 0.851 0.883 0.979

Fiber-Cut 0.937 0.923 0.937 0.930 0.994

Fiber-End 0.850 0.933 0.850 0.890 0.974

Face-Plate 0.984 0.964 0.984 0.974 0.997

No-Event 0.959 0.923 0.959 0.940 0.975

Mean 0.916 0.932 0.916 0.923 0.984

Std. Dev. 0.062 0.018 0.062 0.037 0.011

Table 2 Leave-one-class-out results. We remove an event type at a

time from the dataset (the one specified in each row) and we train the

network on the remaining data. Then we test using also instances of

the left out event which has to be labelled as unknown. For each

metric we compare Softmax and OpenMax

Accuracy Precision Recall F1 Score ROC-AUC

Soft Open Soft Open Soft Open Soft Open Soft Open

Pass-Through 0.681 0.758 0.616 0.655 0.681 0.758 0.647 0.703 0.790 0.897

Fiber-Cut 0.156 0.048 0.123 0.068 0.155 0.048 0.137 0.056 0.487 0.232

Fiber-End 0.661 0.745 0.641 0.702 0.661 0.741 0.651 0.721 0.855 0.865

Face-Plate 0.299 0.737 0.439 0.727 0.299 0.737 0.355 0.732 0.594 0.829

Mean 0.449 0.572 0.455 0.538 0.4492 0.571 0.448 0.553 0.681 0.706

The bold denotes the method that performs the best for each metric

(a)

(b)

Fig. 10 a Shows the confusion matrix of the model embedded with

the thresholding on the Softmax probabilities.b shows the confusion

matrix of the model embedded with OpenMax
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The classification of fiber-cut and fiber-end is very chal-

lenging due to the class imbalance in our dataset, since we

have roughly 250 examples for fiber-end and fiber-cut

class, while at least 500 examples for the other classes (see

Fig. 8). A summary of the results is shown in Table 1, our

approach achieves, on average, more than 90% in terms of

accuracy, precision, recall, F1 Score and ROC-AUC. For

the latter, the ROC curves of Fig. 9b confirm the dis-

crimination capability of our model.

8.3.2 Unknown event classification with leave-one-class-
out

To assess the unknown event classification performance,

we remove one at a time a known class from the training

set and consider the corresponding OTDR events as

unknown. At test time, we feed the network with a test-set

containing also instances of the left out class and we expect

these to be classified as unknown. Table 2 reports fig-

ures of merit relatively to the unknown class for both

OpenMax and Softmax thresholding. Each row specifies a

left-out class and shows the performance of the model

when trained on the remaining ones. For all the classes

except fiber-cut, OpenMax overcomes the Softmax

thresholding. As shown in Fig. 10, the performance on

fiber-cut is very low because it is confused with fiber-end

class. Indeed the two classes of events are very similar and

we speculate that without supervision of both events, the

network has not learned specific characteristics to dis-

criminate them, which makes fiber-cut instances classified

as fiber-end. In contrast, when we left out the fiber-end

class, we have more 74% accuracy with OpenMax. This is

because different features are learnt by the same network

when trained using different data, therefore there is no

guarantee of symmetry in the behavior of leaving out either

the fiber-cut or the fiber-end.

(a) (b)

(c) (d)

Fig. 11 We assess the network on a test set of OTDR windows to

which we have added ECG beat windows. a Shows the True Positive

Rate as the average intensity of the heartbeat changes. b, c and

d Show the confusion matrices in the case of CSR, with threshold on

the Softmax probability and with OpenMax
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8.3.3 Unknown event classification with ECG tracings

To conclude the validation on unknown event classification

we considered OTDR traces into which ECG signals have

been injected. Figure 11a illustrates the TPR of the two

methods as K changes. As K increases, OpenMax detects

more and more beats as unknown and converges to a TPR

close to 1. Conversely, Softmax gradually worsens. This

can be ascribed to the normalization of the scores carried

out by Softmax. For large values of K, the ECG beats are

very different from OTDR windows, therefore the network

(a) Pass-Through (b) Fiber-Cut

(c) Fiber-End (d) Face-Plate

Fig. 12 Distribution of distances of the activation vectors from the centroid of the corresponding class. As shown in [3], they follow a Weibull

distribution

Table 3 Performance of the OTDR detection network when tested

against known events

TP FP FN AP@.5

Pass-Through 109 34 21 0.779

Fiber-Cut 41 25 3 0.840

Fiber-End 51 20 17 0.680

Face-Plate 120 18 18 0.789

mAP@.5 – – – 0.772

mAP@[.5:.05:.95] – – – 0.445

Table 4 NCS-1001 Comparison

Event Type NCS-1K Ours

Reflective 0.25 0:76

Non-Reflective 0.77 0:78

End of Fiber 0.49 0:76

mAP 0.50 0:77

Our techniques that performs better, and their results are consequently

highlighted in bold
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cannot extract any relevant feature. Therefore the scores

fed to Softmax are all very low and with minimal differ-

ences. In this case, the normalization amplifies the small

fluctuations between the scores bringing a random class to

stand out. For K ¼ 1 we analyse the case where the average

peak in heartbeats is equal to the average peak over OTDR

events. In this scenario we show in Fig. 11b the confusion

matrix without any OSR mechanism where all heartbeat

are classified as fiber-end. Fig. 11c shows that Softmax

thresholding detects as unknown 57:5% of the heartbeats

while 42:5% of them are classified as fiber-end. Fig. 11d

shows that the best result is given by OpenMax which

detects 73:14% of heartbeats as unknown events.

Finally, as depicted in Fig. 12, we verified that the

distance of the activation vectors from the corresponding

class follow a Weibull distribution. This is a fundamental

assumption underpinning the OpenMax framework, and

such a close match between histograms and the Weibull

plot suggest this can be the reason for such a superior

performance of OpenMax over Softmax.

8.4 Event detection

The detection assessment, on both known and unknown

events, is meant to test the network’s capability to correctly

localize events that span windows of different size over the

trace and correctly classify them as one of the known

classes or as unknown. As regards unknown detection, we

exploit OpenMax with s ¼ 0:35 and d ¼ 25. In Sect. 8.4,

we test the performance of our model on traces containing

only known events, while in Sect. 8.4 we evaluate the OSR

performance by directly injecting ECG beats in the traces

and expecting the network to recover them as unknown.

Finally, to qualitatively assess the detection on OTDR

events, we evaluate the trace on traces containing a new

event termed BULK-ATTENUATOR. Notice that if we had fol-

lowed the same Leave-One-Class-Out strategy as for

classification, we would have discarded all OTDR traces

that contained at least one event of the unknown class.

Since each trace contains from two to three classes of

events, in varying numbers and distances, this strategy

would have significantly reduced the dataset and prevented

training.

8.4.1 Known event detection

Our OTDR event detector achieves very good detection

performance, achieving mAP@0.5 equal to 77:21%

(PASCAL VOC) among all the classes and

mAP@[.5:.05:.95] equal to 44:5% (COCO), see Table 3.

We also compare our approach with existing solutions

currently embedded in Cisco NCS-1001 (or shortly NCS-

1K) for OTDR events detection. To enable a fair com-

parison, we have mapped predicted event types to the

standard categories detected by existing solutions, which

are fewer than those provided by the proposed OTDR

detection network. These events are REFLECTIVE, NON-RE-

FLECTIVE, and FIBER-END. Results in Table 4 show that the

proposed detection network substantially outperforms

existing solutions on NCS-1K devices, which implement

hand-crafted detectors characterized by thresholds that

have been tuned by optical experts, and that operate under

strict assumptions on the event position and size. On top of

a broad label set, the proposed OTDR event-detection

network provides a more accurate localization since it does

not process the trace on a fixed-size window basis.

Table 5 Method comparisons overview in terms of mAP@0.5. Base
denotes the trained OTDR detection network with no unknown

detection mechanism. OSR-DH denotes the method in which Open-

Max is embedded in the detection head classifier. Ours denotes the

method described in Algorithm 1. TE denotes the test set with only

known OTDR events. Finally TE ? ECG denotes the dataset of

OTDR traces where ECG heartbeats have been injected

Base OSR-DH Ours

TE 0.772 0.767 0.744

TE ? ECG 0.496 0.502 0.751

The method with the highest mAP is bolded

Table 6 Comparison between

our method (see Algorithm 1)

and the detection network with

OpenMax embedded in the

detection head. The two

methods are tested against

known OTDR events and

unknown events (ECG

hearbeats)

TP FP FN AP@.5

Ours OSR-DH Ours OSR-DH Ours OSR-DH Ours OSR-DH

Pass-Through 106 104 47 31 24 26 0.707 0.744

Fiber-Cut 37 40 24 32 7 4 0.790 0.729

Fiber-End 50 47 22 133 18 21 0.634 0.273

Face-Plate 120 116 18 19 18 22 0.789 0.758

Unknown (ECG) 106 5 39 51 15 116 0.835 0.007

mAP@.5 – – – – – – 0.751 0.502

mAP@[.5:.05:.95] – – – – – – 0.414 0.288

The bold denotes the method that performs the best for each metric
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8.4.2 Unknown event detection

In order to assess the performance of our model for

unknown event detection we considered OTDR traces with

ECG signals. Table 5 collects the detection results on two

test beds, one composed entirely by known OTDR events

(TE) and a second one where ECG tracings have been

added (TE ? ECG). We compare the mAP@0.5 of our

algorithm with a base detection network (Base) and a

variant where OpenMax has been embedded in the detec-

tion head (OSR-DH).

Results demonstrates that the presence of ECG tracings

in the test set reduces the mAP@0.5 to 49:61%. OSR-DH

gets mAP@0.5 equal to 76:72%, which is only 1% less

(a)

(b)

Fig. 13 During training, bulk-attenuator instances were not provided,

so the network either ignores or incorrectly classifies these events.

The OTDR traces depicted in a and b show that our algorithm is able

to detect the bulk-attenuator instances as unknown events in addition

to the known events
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than the case without OpenMax. When tested against ECG

tracings OSR-DH gets mAP@0.5 equal to 50:24%, which

is only 1% improvement compared to Base. This happens

because the detection network does not produce region

proposals for unknown events and therefore the impact of

OpenMax is minimal.

Our solution (proposed in Algorithm 1) achieves

mAP@0.5 equal to 74:36% when tested against the known

OTDR events and 75:10% when tested against the data set

with ECG tracings. From Table 6 we see that we achieved

a mAP@0.5 equal to 83:52% on unknown events. As a

final observation, from Table 6 we see that OpenMax in the

detection head has the advantage of reducing the number of

false positives, as these will be detected as unknown.

The unknown detection performance are qualitatively

assessed using two OTDR traces gathered from CISCO

customers. These traces contains a new OTDR event ter-

med BULK-ATTENUATOR. Figure 13 shows that we are able to

successfully detect the unknown event together with the

known ones while the traditional network correctly detect

only the known ones.

9 Conclusions

In this paper we present a deep learning model to detect

events in OTDR traces. This is a very valuable alternative

to existing solutions, which are based on expert-driven

rules, thus are not flexible enough to identify different

types of events along the optical fiber. We show that the

proposed OTDR event detection network is not only able to

recognize more event types than existing algorithms, but it

is also more accurate in localizing them. Remarkably, we

have presented a solution to report unknown events,

including rare ones that do not appear in the training set.

Our experiments show that the proposed approach can

effectively solve the detection of optical events and can be

used in a real-world environment, being employed in an

embedded device and running in comparable time with

respect to current industrial solutions (less than 6 seconds).

As a future work, we plan to extend the set of event types

and to remove the limitation of the fixed-size window for

the classification of a given event.
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3 Department, Università della Svizzera Italiana, Via Buffi 13,

6900 Lugano, Switzerland

Neural Computing and Applications

123

https://www.iscaiscaspeech.org/archive/interspeech_2016/palaz16_interspeech.html
https://www.iscaiscaspeech.org/archive/interspeech_2016/palaz16_interspeech.html
https://doi.org/10.1109/TPAMI.2021.3106743
https://doi.org/10.1109/TPAMI.2021.3106743
http://arxiv.org/abs/2112.01698
https://opg.optica.org/abstract.cfm?URI=OFS-2018-ThE22
https://opg.optica.org/abstract.cfm?URI=OFS-2018-ThE22
https://openreview.net/forum?id=5hLP5JY9S2d
https://openreview.net/forum?id=5hLP5JY9S2d
https://telecom-info.njdepot.ericsson.net/sitecgi/ido/docs.cgi?ID=SEARCH%26DOCUMENT=SR-4731
https://telecom-info.njdepot.ericsson.net/sitecgi/ido/docs.cgi?ID=SEARCH%26DOCUMENT=SR-4731
https://doi.org/10.1007/s11263-009-0275-4
http://orcid.org/0000-0002-7756-5638

	Known and unknown event detection in OTDR traces by deep learning networks
	Abstract
	Introduction
	Background on OTDR traces
	Related work
	Object detection networks
	Deep learning for time series
	Open-set recognition
	Deep learning for OTDR trace analysis

	Problem formulation
	OTDR event detection network
	Network architecture
	Feature extraction network (FEN)
	Region proposal network (RPN)
	Detection head


	Known/unknown event detection in OTDR traces
	OTDR trace detrending
	Open-set recognition of OTDR events
	OSR by Softmax thresholding
	OSR by OpenMax


	OTDR event detection network training
	Training FEN
	Training RPN
	Training fast R-CNN


	Experiments
	Datasets
	Figures of merit
	Event classification
	Known event classification
	Unknown event classification with leave-one-class-out
	Unknown event classification with ECG tracings

	Event detection
	Known event detection
	Unknown event detection


	Conclusions
	Funding
	References




